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Families of knots for which Morton’s
inequality is strict

Mark Brittenham and Jacqueline Jensen

We describe a procedure for creating infinite families of knots,
each having the maximum degree of their HOMFLYPT polyno-
mial strictly less than twice their canonical genus.

1. Introduction

Every knot K in the 3-sphere S3 is the boundary of a compact orientable
surface Σ ⊆ S3, known as a Seifert surface for the knot K. In fact, in the
1930s Seifert [20] gave an algorithm which, given a diagram of the knot K,
produces such a surface. The algorithm consists of orienting the knot dia-
gram, breaking each crossing and reconnecting the four ends according to the
orientation, without re-introducing a crossing, producing disjoint “Seifert”
circles in the projection plane, bounding (after offsetting nested circles) dis-
joint “Seifert” disks, and then re-introducing the crossings by stitching the
disks together with half-twisted bands.

Every knot therefore has infinitely many such “canonical” surfaces (of
arbitrarily high genus). The minimum of the genera of the surfaces built
by Seifert’s algorithm, over all diagrams of the knot K, is known as the
canonical genus or diagrammatic genus of K, denoted gc(K). The minimum
genus over all Seifert surfaces, whether built by Seifert’s algorithm or not,
is known as the genus of K, and denoted g(K).

In 1985, shortly after the discovery of the HOMFLYPT polynomial
[5, 18], Morton [16] showed that the highest degree of the z-variable (in his
formulation) of the HOMFLYPT polynomial gave a lower bound on 2gc(K);
details are outlined below. This was, perhaps, the first piece of information
encoded in the HOMFLYPT polynomial to be related to topological informa-
tion about the knot K. Morton’s inequality, M(K) = maxdegz PK(v, z) ≤
2gc(K), has since been shown to be an equality for many classes of knots.
These include all of the knots having 12 or fewer crossings [22], all alter-
nating knots [4, 14], and, more generally, all homogeneous knots [3], and
the Whitehead doubles of 2-bridge knots [15,24] and alternating arborescent
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knots [1,10]. It was not until 1998 and later that knots were found for which
Morton’s inequality was strict. The first such were found by Stoimenow
[22,23] while analyzing the survey of knots through 16 crossings.

In this paper, we show how to use Stoimenow’s second collection of
examples, or any other example that might be built along the same lines, to
build infinite families of knots having M(K) = maxdegz PK(v, z) < 2gc(K).
In particular, we have the following

Theorem 1.1. Suppose K is a knot with g(K)=gc(K) and M(K)<2gc(K).
Let D be a gc-minimizing diagram of K, and suppose there is a crossing c in
D which bounds a half-twisted band connecting a pair of Seifert disks, and
the knot K ′ obtained by changing the crossing c has gc(K ′) < gc(K). Then
the knots Kn, bounding the canonical Seifert surfaces Σn obtained by replac-
ing the half-twisted band at the crossing c with 2n + 1 half-twisted bands
in parallel, all joining the same pair of Seifert disks, all satisfy M(Kn) <
2gc(Kn) = 2(gc(K) + n).

The figures in Section 2 should make the construction clear, if the
description above did not. We note that the condition gc(K ′) < gc(K) sim-
ply states that the diagram D′ obtained from changing the crossing c is not
a gc-minimizing diagram for K ′; this can often in practice be verified fairly
quickly, as our examples below show.

In particular, since, as we shall see, some of Stoimenow’s examples satisfy
the hypotheses of the theorem, and we only need one to get the process
started, we have

Corollary 1.2. There exist knots K with arbitrarily large canonical genus
for which M(K) < 2gc(K); in particular, there are infinitely many of them.

2. Notations and preliminaries

K will always denote a knot in the 3-sphere S3, N(K) a tubular neighbor-
hood of K, E(K) = S3 \ intN(K) the exterior of K, Σ a Seifert surface for
K (which we treat as embedded in S3, or properly embedded in E(K), as
needed), and E(Σ) = E(K)|Σ = E(K) \ intN(Σ) the exterior of Σ. E(Σ)
can be thought of as a sutured manifold [6], that is, a compact manifold M
with ∂M = R+ ∪ R−, where R+ ∩ R− = γ is a collection of simple closed
curves, the sutures. Formally, torus boundary components with no sutures
may also be treated as a suture. In our case γ = the core of the annu-
lus ∂E(K) \ ∂Σ, cutting ∂E(Σ) into two copies of Σ, pushed off of Σ to
the +- and −-sides. The pair (E(K), ∂E(K)) is also an example.
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Figure 1: Sutured manifold decomposition.

The theory of sutured manifolds will play a central role to our proofs
below; we summarize the main points here. R+ and R− are thought of as
having normal orientations, pointing into M along R+ and out of M along
R−. Given a properly embedded surface F ⊆ M with a normal orientation
and ∂F transverse to γ, we can decompose (M, γ) along F to obtain a new
sutured manifold (M |F, γ′), where the new sutures are constructed by an ori-
ented sum of γ and ∂F , as in figure 1. A degenerate (but important) example
is the decomposition (E(K), ∂E(K)) ⇒ (E(Σ), γ) along Σ. A sequence of
decompositions is a sutured manifold decomposition. A sutured manifold is
taut if it admits a sutured manifold decomposition ending with a disjoint
union of sutured manifolds of the form (B3, e), where e is the equatorial cir-
cle in the boundary of the 3-ball B3. The sequence of decomposing surfaces
used in the decomposition is then called a taut sutured manifold hierarchy.
A fundamental theorem of Gabai [6] states that (E(Σ), γ) admits a taut
sutured manifold hierarchy if and only if Σ has minimal genus among all
Seifert surfaces for K. This gives, in principle, an effective way to compute
the genus of a knot or link [8]. We will use this technology in Section 2 to
compute the genera of our family of knots Kn.

The HOMFLYPT polynomial [5, 18] is a 2-variable Laurent polynomial
defined for any oriented link, and may be thought of as the unique poly-
nomial PK(v, z), defined on oriented link diagrams and invariant under
the Reidemeister moves, satisfying Punknot(v, z) = 1, and v−1PD+ − vPD− =
zPD0 , where D+, D−, D0 are diagrams for oriented links which all agree
except at one crossing, where they are given as in figure 2. Here we are
following the convention in the naming of our variables found in Morton’s
paper [16].

This skein relation gives an inductive method for computing the poly-
nomial, since one of D+, D− will be “closer” than the other to the unlink,
in terms of unknotting number, while D0 has fewer crossings. It also allows
any one of the polynomials to be computed from the other two. We will use
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Figure 2: HOMFLYPT polynomial.

this relation in Section 3 to give upper bounds on the z-degree M(Kn) of
our family of knots Kn.

3. The canonical genus via sutured handlebodies

The proof of our main theorem will be carried out in two steps. In this
section, we will show that the knots Kn described in the theorem have the
canonical genus claimed: gc(Kn) = gc(K) + n. In the next section, we will
show that the HOMFLYPT polynomials of these knots have z-degree M(Kn)
strictly lower than twice this.

The basic idea behind Stoimenow’s examples, and our argument, is that
if g(K) is achieved by a canonical Seifert surface, then this can be detected
using sutured manifold theory. In particular, a canonical Seifert surface Σ
has exterior E(Σ) = E(K)|Σ a handlebody, which we endow with a sutured
manifold structure as above. If (E(Σ), γ) admits a taut sutured manifold
hierarchy, then Σ is a genus-minimizing, and hence gc-minimizing, Seifert
surface for K. For a sutured handlebody, the simplest hierarchy we can hope
for is a disk decomposition, that is, the intermediate decomposing surfaces
are (compressing) disks for E(Σ).

It is known that not all taut sutured handlebodies are disk decomposable
[9], and this phenomenon can even occur for Seifert surface exteriors [2]. But
in the case of Stoimenow’s examples, a set of decomposing disks is readily
available. We show such a set of disks for the first example in figure 3. The
left-hand side of the figure describes a template for constructing the sutured
handlebody (E(Σ), γ) as a standard handlebody, at the right; the dotted line
represents the intersection of a vertical plane of the paper running down the
middle of the handlebody at the right. “B” marks the back of the figure
at right, “F” the front. Looking into the paper at left is looking down
from above at the right. On the right-hand side, we illustrate the sutured
manifold resulting from decomposing along the horizontal compressing disks
labeled 1 through 8. Since these disks cut E(Σ) into a single 3-ball, and the
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Figure 3: Sutured handlebodies.

suture under decomposition becomes a single curve, the decomposition is
taut, so the canonical Seifert surface has minimal genus. A similar sequence
of images can be built for the other example given in figure 4; we leave this
for the interested reader.

The conditions described by the theorem, and the construction of Kn

from K, are as in figure 5. In the discussion to follow, we assume for ease of
exposition that the half-twisted band of the theorem joins a pair of Seifert
disks that are not nested, i.e., the disks lie in the same plane and are disjoint.
This is not really an issue; every canonical Seifert surface is isotopic to a
checkerboard surface [12], and the isotopy process may be assumed to leave
fixed all crossings of our original diagram. The idea is that the isotopy to

Figure 4: Stoimenow’s examples.



976 Mark Brittenham and Jacqueline Jensen

Figure 5: K to Kn.

a checkerboard is carried out inductively on the outermost disk of a nested
collection, as in figure 6; this process adds, but does not delete, crossings
to the underlying diagram. The crossing hypothesized by the theorem is
therefore still available to us in a checkerboard configuration.

To prove our claim that gc(Kn) = gc(K) + n, we show that the canonical
Seifert surface Σn for Kn built from the diagram D of the theorem admits a
taut sutured manifold decomposition. Since each additional pair of crossings
introduced does not increase the number of Seifert circles for Σn, the Euler
characteristic decreases by two, so the genus increases by one, each time.

Since Σ is a genus-minimizing Seifert surface for K, (E(Σ), γ) admits a
taut sutured manifold decomposition. To show that Σn is genus-minimizing
for Kn, it suffices to show that there is a sequence of decomposing surfaces
taking (E(Σn), γn) to (E(Σ), γ); the taut sutured manifold hierarchy for
(E(Σ), γ) can then be appended to this sequence to give a taut hierarchy for
(E(Σn), γn). And to do this, it suffices to find a sequence taking (E(Σn), γn)
to (E(Σn−1), γn−1). But this in turn is not difficult; the pair of compressing
disks for the pair of 1-handles dual to the pair of half-twisted bands added to
obtain E(Σn) from E(Σn−1) provide the necessary decomposing surface. On
the level of sutured manifolds, this is illustrated in figure 7. The basic idea
is that since the disks “look” as if they belong in the exterior of the checker-
board surface of an alternating knot, the arguments of [7] ensure that the

Figure 6: Making canonical surfaces checkerboard.
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Figure 7: Hierarchies: The inductive step.

sutured manifold obtained by decomposing along them is also the exterior
of a Seifert surface; this surface is Σn−1.

By induction, therefore, we have E(Σn) admits a taut sutured manifold
hierarchy, and so, by induction, g(Kn) = g(Σn) = g(Σ) + n, as desired.

4. The degree of the HOMFLYPT polynomial is too low

In this section, we finish the proof of our main theorem by showing that if K
is as in the theorem, then M(Kn) < 2gc(K) + 2n. We then have M(Kn) <
2gc(K) + 2n = 2gc(Kn), as desired. The needed inequality follows directly
from the hypotheses of the theorem and an induction argument using the
skein relation satisfied by the HOMFLYPT polynomial.

In what follows, we assume that the crossing given in the hypotheses
of the theorem is a positive crossing for K and negative for K ′. A nearly
identical argument applies to the reverse situation. To avoid a possible
confusion of notation, we will denote by Ln the link obtained by replacing
the (positive) crossing c with n positive crossings joining the same two Seifert
circles as c does, in parallel. (So, in our theorem, K = L1 and Kn = L2n+1.)
It then suffices to show that M(Ln) < 2gc(K) − 1 + n, since then M(Kn) =
M(L2n+1) < 2gc(K) − 1 + (2n + 1) = 2gc(K) + 2n.

Now by hypothesis, gc(K ′) < gc(K). But by Morton’s inequality,
M(K ′) ≤ 2gc(K ′), so M(K ′) < 2gc(K). From the skein equation for the
HOMFLYPT polynomial, v−1PK+ − vPK− = zPK0 , we can immediately con-
clude that, since the degree of the sum of two polynomials is no more than
the maximum of their degrees,

M(K0) ≤ max{M(K+), M(K−)} − 1, M(K+) ≤ max{M(K−), M(K0) + 1}

and

M(K−) ≤ max{M(K+), M(K0) + 1}.
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So using K+ = K = L1, K− = K ′ and K0 = L0, we have

M(L0) ≤ max{M(K), M(K ′)} − 1 < 2gc(K) − 1.

This together with M(L1) = M(K) < 2gc(K) = 2gc(K) − 1 + 1 gives us the
beginnings of our induction.

We proceed by complete induction. Assume that n ≥ 2 and M(Lj) <
2gc(K) − 1 + j for all j < n. Then looking at any one of the n parallel
crossings c of our diagram for Kn, we have K+ = Ln, K− = Ln−2 and K0 =
Ln−1. Then

M(K+) = M(Ln) ≤ max{M(K−), M(K0) + 1}
= max{M(Ln−2), M(Ln−1) + 1} < max{2gc(K)

− 1 + n − 2, (2gc(K) − 1 + (n − 1)) + 1} = 2gc(K) − 1 + n,

as desired. Since the inequality is true for n = 0, 1, by complete induction,
M(Ln) < gc(K) − 1 + n for all n ≥ 0 . This finishes the proof of Theorem 1.

We now prove Corollary 1.2 by demonstrating that Stoimenow’s examples
satisfy the hypotheses of the theorem. The sutured manifold calculations of
Section 2 verify that g(K) = gc(K) = 4 for both knots. A routine calculation
shows that the HOMFLYPT polynomial of K = 15100154 is
(v2 + 6v−2)z6 + (−v4 + 4v2 + 6 − 5v−2 + v−4)z4 + (−3v4 + 4v2 + 10 − 9v−2

+ 2v−4)z2 + (−2v4 + v2 + 6 − 5v−2 + v−4) and for K = 15167945 is

Figure 8: Explicit families of examples.
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(v2 + v−2)z6 + (− v4 + 2v2 + 9 − 4v−2 − 2v−4)z4 + (− 2v4 + 12 − 6v−2 − v−4

+ v−6)z2 + (−v4 − v2 + 6 − 3v−2). In addition, each of the gc-minimizing
knot diagrams in figure 4 has at least one crossing change which lowers the
canonical genus; see figure 8 for canonical surfaces of genus 3. The rele-
vant crossings join coplanar disks; both Seifert surfaces are checkerboards.
Therefore all of the hypotheses of Theorem 1.1 are satisfied, and so each knot
gives rise to a family of knots Kn, for n ≥ 1, with g(Kn) = gc(Kn) = n + 3
and M(Kn) < 2gc(Kn). This proves the corollary.

5. Further considerations

The main result of this paper was, in some sense, a by-product of our investi-
gations [1] into the canonical genus of Whitehead doubles of knots, motivated
by the work of Tripp [24] and Nakamura [15]. (In what follows, we use the
term “the Whitehead double” loosely here; in these investigations the result-
ing calculations are the same no matter how many twists the double has,
unless K is the unknot.) If W (K) is the Whitehead double of the knot K,
and c(K) is the minimal crossing number for K, then a direct construction
of a canonical Seifert surface for W (K) (K �= unknot) yields the inequality
gc(W (K)) ≤ c(K). Together with Morton’s inequality we then have

M(W (K)) ≤ 2gc(W (K)) ≤ 2c(K).

In the cases covered by the papers [1, 15, 24], an induction argument estab-
lishes that M(W (K)) = 2c(K), proving that gc(W (K)) = c(K) and (as a
by-product) M(W (K)) = 2gc(W (K)).

A posteriori, this method of proof requires that Morton’s inequality be an
equality. Since we were aware of this prior to beginning our investigations in
[1], we were led first to investigate the possible failure of Morton’s “equality”,
which led us to the examples of Stoimenow and so to our own. It is not too
difficult to generate examples of knots K for which M(W (K)) < 2c(K);
the knots K = 819, 820 were the first that the authors found, with the aid
of Mathematica and the software package KnotTheory [13]. (In fact, this
inequality is strict for every non-alternating pretzel knot K [1].) It fol-
lows that for these examples either M(W (K)) < 2gc(W (K)) or gc(W (K)) <
c(K). (Exactly one of these is true, for each of the above two knots.) The
question is: which of the two inequalities is strict? From the authors’ point
of view, strictness of the second one would probably be the more interesting.

We are led to believe that Morton’s inequality is the one which we would
expect to be an equality. This is supported by the known classes of knots for
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which it is true, mentioned in the introduction. It is further supported by
a result of Stoimenow [23, Theorem 11.1]; he shows that, asymptotically, as
the genus is held fixed but the number of crossings goes to infinity, almost
all canonical Seifert surfaces for a link diagram achieve the underlying link’s
genus, which in turn is equal to the degree of the Alexander polynomial.
Since, in terms of the HOMFLYPT polynomial, the Alexander polynomial
ΔK(t) = PK(1, t1/2 − t−1/2), the z-degree of the HOMFLYPT polynomial is
at least 2 · deg ΔK(t) = 2gc(K), in this case. Morton’s inequality is therefore
an equality.

It seems remarkable that the HOMFLYPT polynomial, which can be
computed from any projection of a knot K, can be so good at predicting the
canonical genus of K, and therefore, in some sense, be so good at predict-
ing what the “simplest” projection of K looks like (from the point of view
of Seifert’s algorithm). A better understanding of when the HOMFLYPT
polynomial fails to do so, that is, when Morton’s inequality is strict, could
help us to better understand why it is usually so good at it. For example,
when the inequality is strict, can one always find a skein tree diagram in
which every branch of the tree exhibits an unexpected drop in degree as we
progress to a collection of unlinks? Or do some knots, in the course of the
calculation of PK(v, z) from a diagram, always have an unexpected collision
of high z-degree terms which fortuitously cancel one another out?

We should mention that there is the potential for a completely different
path to families of knots for which Morton’s inequality is strict, using con-
nected sums. It is a straighforward calculation that the z-degree of the
HOMFLYPT polynomial is additive under connected sum, and one might
logically expect that the canonical genus is also additive under connected
sum, as other knot genera such as the genus [19] and free genus [17] are.
But this is not yet known to be true. Were it true, then the connected sum
of any knot with a knot for which Morton’s inequality is strict would also
yield a knot with strict inequality.

Finally, we should point out that we can, in principle, determine if
Morton’s inequality is an equality for any given knot K. This is because we
can recursively construct all knots having a canonical Seifert surface up to
a given genus g; all such surfaces are isotopic to checkerboard surfaces, and
fall into finitely-many twist-equivalent classes [21]. HOMFLYPT polynomi-
als within each class are related to one another via the skein relation, and
so we can quickly narrow our search down to finitely-many knots having at
most a given canonical genus and with the same HOMFLYPT polynomial
as K. We can then use the solution to the homeomorphism problem for
knot complements [11, 25] to check each candidate against K. This is, of
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course, an extremely laborious process. But this might be worthwhile to
carry out for a single knot like W (819) or W (820), where we know that the
canonical genus is at most 8 (by construction) and at least 7 (by Morton’s
inequality). Perhaps the best that we could hope for is that no knot with
canonical genus 7 has the same HOMFLYPT polynomial as W (819) and/or
W (820). Then we would not need to test for equivalence of knots; Morton’s
inequality would necessarily be the inequality which is strict.
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