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Coassociative 4-folds with conical singularities
Jason D. Lotay

This article studies the deformation theory of coassociative 4-folds
N with conical singularites in a G2 manifold. We describe three
moduli spaces: first we consider deformations with the same sin-
gularities as N , then allow for changes in the singularities and,
finally, include variations of the ambient G2 structure. We show
that the moduli space, in each case, is locally homeomorphic to the
kernel of a smooth map between smooth manifolds and determine
a lower bound for its expected dimension. Further, by relaxing
the condition on the G2 structure, we prove a generic smoothness
result for the second and third moduli spaces.

1. Introduction

Coassociative 4-folds were introduced by Harvey and Lawson in [3] as exam-
ples of calibrated 4-dimensional submanifolds of R

7 which are linked to the
exceptional Lie group G2. Moreover, the coassociative condition is shown
to be equivalent to the vanishing of a certain differential 3-form on the sub-
manifold. The definition of coassociative submanifolds, both in R

7 and in
more general 7-manifolds, is given in § 2.

Manifolds with singularities modelled on cones have been studied by a
number of authors, but most relevantly by Lockhart and McOwen [15], in
their work on analysis on noncompact manifolds, and by Joyce [6–10], who
considered special Lagrangian submanifolds with conical singularities. The
latter’s work will be discussed in § 1.1. Coassociative 4-folds with conical
singularities specifically appear in the work of Kovalev [11] on coassociative
fibrations of G2 manifolds. The definition of this class of coassociative 4-folds
can be found in § 3.

1.1. Motivation

McLean [17] showed that a compact coassociative 4-fold admits a smooth
moduli space of deformations with dimension b2

+. This result was extended
by the author [16] to the situation where the coassociative 4-fold is asymp-
totic to a cone at infinity — a natural progression from the compact case.
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The moduli space is shown to be smooth if the rate at which the 4-fold
converges to the cone at infinity is generic and above a critical value. These
studies motivate the work presented here, as a submanifold with conical sin-
gularities can be considered as another generalization from the compact to
the noncompact category.

Another primary impetus for our research is the work on special
Lagrangian m-folds with conical singularities by Joyce in the series of papers
[6–10]. Special Lagrangian m-folds are calibrated submanifolds of Calabi–
Yau manifolds, and can be characterized by the vanishing of differential
forms on them. Joyce shows that the moduli space of deformations, for
a fixed Calabi–Yau structure, is locally homeomorphic to the kernel of
a smooth map between smooth manifolds. Further, he proves a generic
smoothness result for the moduli space of deformations in almost Calabi–
Yau manifolds. These results are mimicked in this article, but the proofs are
made more difficult essentially because Joyce is able to restrict his attention
to analysis using functions, whereas we are forced to deal with differential
forms. This may appear to be a minor detail, but it proves to be surprisingly
challenging. Another major difference is that we make a detailed calculation
of the expected dimension of the moduli space, which requires analytic and
topological considerations specific to the coassociative scenario.

We also study coassociative 4-folds with conical singularities because
understanding their deformations should be a useful step towards attempting
to prove a 7-dimensional analogue of the SYZ conjecture — a proposed
geometric explanation of Mirror Symmetry in String Theory.

1.2. Summary

We begin, in § 2, by discussing the notions of G2 structures on 7-manifolds,
G2 manifolds and coassociative 4-folds. In § 3, we define a distinguished
class of singular manifolds which we call CS manifolds. CS manifolds have
conical singularities and their nonsingular part is a noncompact Rieman-
nian manifold. We also define what we mean by tangent cones at conical
singularities and CS coassociative 4-folds, that is, coassociative 4-folds with
conical singularities.

In order that we may employ various analytic techniques in the course of
our study, we choose to use weighted Banach spaces of forms on the nonsingu-
lar part of a CS manifold. These spaces are described in § 4. We then focus,
in § 5, on a linear, elliptic, first-order differential operator acting between
weighted Banach spaces on a 4-dimensional CS manifold. The Fredholm
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and index theory of this operator is discussed using the theory developed
in [15].

In § 6, we stratify the types of deformations allowed into three problems,
each with an associated nonlinear first-order differential operator whose ker-
nel gives a local description of the moduli space. For Problem 1, we force
deformations of the CS coassociative 4-fold N to have the singularities at the
same points as N with the same tangent cones. In Problem 2, we allow the
singular points of the deformations, and the tangent cones at these points,
to differ from those of N . Finally, in Problem 3, we consider deformations
of N as in Problem 2 but which now can be coassociative under a defor-
mation of the G2 structure within a prescribed family. The main result for
each problem, given in § 7, is that the moduli space of deformations near
N is homeomorphic to the kernel of a smooth map between smooth man-
ifolds near zero. In each case, the map in question can be considered as
a projection from the infinitesimal deformation space onto the obstruction
space. Thus, when there are no obstructions, the moduli space is a smooth
manifold. Furthermore, using the material in § 5 helps to provide a lower
bound on the expected dimension of the moduli space in § 8.

Finally, in § 9, we show that, for a suitable larger category of G2 struc-
tures on the ambient 7-manifold, there is always a family of nearby G2
structures such that the third moduli space is smooth and that, for generic
fixed elements of this family, the second moduli space of deformations is
smooth as well.

Notes.

(a) Manifolds are taken to be nonsingular and submanifolds to be embed-
ded, for convenience, unless stated otherwise.

(b) We use the convention that the natural numbers N = {0, 1, 2, . . .}.

2. Coassociative 4-folds

In this section, we present the basic definitions we need for our study.
The key to defining coassociative 4-folds lies with the introduction of a

distinguished 3-form on R
7.

Definition 2.1. Let (x1, . . . , x7) be coordinates on R
7 and write dxij···k for

the form dxi ∧ dxj ∧ · · · ∧ dxk. Define a 3-form ϕ0 by:

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356.
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The 4-form ∗ϕ0, where ϕ0 and ∗ϕ0 are related by the Hodge star, is given by:

∗ϕ0 = dx4567 + dx2367 + dx2345 + dx1357 − dx1346 − dx1256 − dx1247.

Our choice of expression for ϕ0 follows that of [5, Chapter 10]. This
form is sometimes known as the G2 3-form because the Lie group G2 is the
subgroup of GL(7, R) preserving ϕ0.

Definition 2.2. A 4-dimensional submanifold N of R
7 is coassociative if

and only if ϕ0|N ≡ 0 and ∗ϕ0|N > 0.

This definition is not standard but is equivalent to the usual definition in
the language of calibrated geometry by [3, Proposition IV.4.5 and Theorem
IV.4.6].

Remark. The condition ϕ0|N ≡ 0 forces ∗ϕ0 to be a nonvanishing 4-form
on N . Thus, the positivity of ∗ϕ0|N is equivalent to a choice of orientation
on N .

So that we may describe coassociative submanifolds of more general
7-manifolds, we make two definitions following [2, p. 7] and [5, p. 243].

Definition 2.3. Let M be an oriented 7-manifold. For each x ∈ M , there
exists an orientation preserving isomorphism ιx : TxM → R

7. Since dim
G2 = 14, dim GL+ (TxM) = 49 and dim Λ3T ∗

xM = 35, the GL+(TxM) orbit
of ι∗x(ϕ0) in Λ3T ∗

xM , denoted by Λ3
+T ∗

xM , is open. A 3-form ϕ on M is
definite if ϕ|TxM ∈ Λ3

+T ∗
xM for all x ∈ M . Denote the bundle of definite

3-forms by Λ3
+T ∗M . It is a bundle with fibre GL+(7, R)/ G2 which is not a

vector subbundle of Λ3T ∗M .

Essentially, a definite 3-form is identified with the G2 3-form on R
7 at each

point in M . Therefore, to each definite 3-form ϕ, we can uniquely associate
a 4-form ∗ϕ and a metric g on M such that the triple (ϕ, ∗ϕ, g) corresponds
to (ϕ0, ∗ϕ0, g0) at each point. This leads us to our next definition.

Definition 2.4. Let M be an oriented 7-manifold, let ϕ be a definite 3-form
on M and let g be the metric associated with ϕ. We call (ϕ, g) a G2 structure
on M . If ϕ is closed (or coclosed) then (ϕ, g) is a closed (or coclosed) G2
structure. A closed and coclosed G2 structure is called torsion-free.

Our choice of notation here agrees with [2].



Coassociative 4-folds with conical singularities 895

Remarks.

(a) There is a 1-1 correspondence between pairs (ϕ, g) and principal G2
subbundles of the frame bundle.

(b) By [21, Lemma 11.5], (ϕ, g) is a torsion-free G2 structure if and only
if the holonomy of g is contained in G2.

Definition 2.5. Let M be an oriented 7-manifold endowed with a G2 struc-
ture (ϕ, g), denoted (M, ϕ, g). We say that (M, ϕ, g) is a ϕ-closed, or ϕ-
coclosed, 7-manifold if (ϕ, g) is a closed, respectively coclosed, G2 structure.
If (ϕ, g) is torsion-free, we call (M, ϕ, g) a G2 manifold.

We are now able to extend our definition of coassociative 4-folds.

Definition 2.6. A 4-dimensional submanifold N of (M, ϕ, g) is coassocia-
tive if and only if ϕ|N ≡ 0 and ∗ϕ|N > 0.

We end this section with a result, [17, cf. Proposition 4.2], that is invalu-
able in describing the deformation theory of coassociative 4-folds.

Proposition 2.7. Let N be a coassociative 4-fold in (M, ϕ, g). There is
an isometric isomorphism between the normal bundle ν(N) of N in M and
Λ2

+T ∗N given by jN : v �→ (v · ϕ)|TN .

3. Conical singularities

Here we first give the general definition of a manifold with conical singu-
larities, then specialise to coassociative 4-folds. The second definition relies
on the introduction of a suitable local coordinate system on the ambient
7-manifold.

3.1. CS manifolds

Definition 3.1. Let N be a connected Hausdorff topological space and let
z1, . . . , zs ∈ N be distinct points. Suppose that N̂ = N \ {z1, . . . , zs} has
the structure of a (nonsingular) n-dimensional Riemannian manifold, with
Riemannian metric g, compatible with its topology. Then N is a mani-
fold with conical singularities (at z1, . . . , zs with rate λ) if there exist con-
stants ε > 0 and λ > 1, a compact (n−1)-dimensional Riemannian manifold
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(Σi, hi), an open set Ui � zi in N with Ui ∩ Uj = ∅ for j �= i and a diffeo-
morphism Ψi: (0, ε) × Σi → Ui \ {zi} ⊆ N̂ , for i = 1, . . . , s, such that

(3.1)
∣
∣∇j

i

(

Ψ∗
i (g) − gi

)∣
∣ = O

(

rλ−1−j
i

)

for j ∈ N as ri −→ 0,

where ri is the coordinate on (0,∞) on the cone Ci = (0,∞) × Σi, gi =
dr2

i + r2
i hi is the conical metric on Ci, ∇i is the Levi–Civita connection

derived from gi and | · | is calculated using gi.
We call Ci the cone at the singularity zi and let the ends N̂∞ of N̂ be

the disjoint union N̂∞ =
⊔s

i=1 Ui \ {zi}.
We say that N is CS or a CS manifold (with rate λ) if it is a manifold

with conical singularities which have rate λ and it is compact as a topological
space. In these circumstances it may be written as the disjoint union N =
K �

⊔s
i=1 Ui, where K is compact as it is closed in N .

The condition λ > 1 guarantees that the metric on N̂ genuinely tends
to the conical metric on Ci near the singularities, as is evident from (3.1).
Since N is Hausdorff, the set Ui \ {zi} is open in N̂ for all i. Moreover, the
condition that the Ui are disjoint is easily satisfied since, if i �= j, zi and zj

may be separated by disjoint open sets, and there are only a finite number
of singularities.

Remark. If N is a CS manifold, N̂ is a noncompact manifold.

Definition 3.2. Let N be a CS manifold. Using the notation of Definition
3.1, a radius function on N̂ is a smooth map ρ: N̂ → (0, 1] such that there
exist constants 0 < c1 < 1 < c2 with c1ri < Ψ∗

i (ρ) < c2ri on (0, ε) × Σi, for
all i.

If N is CS, we may construct a radius function on N̂ as follows. Let ρ(x) = 1
for all x ∈ N̂ \ N̂∞. Define ρi: Ψi

(

(0, ε/2) × Σi

)

→ (0, 1) to be equal to ri/ε
for i = 1, . . . , s and then define ρ by interpolating smoothly between its
definition on N̂ \ N̂∞ and ρi on each of the disjoint sets Ψi

(

(ε/2, ε) × Σi

)

.

3.2. CS coassociative 4-folds

Let B(0; η) denote the open ball about 0 in R
7 with radius η > 0. We define

a preferred choice of local coordinates on a G2 manifold near a finite set
of points, which is an analogue of the local coordinate system for almost
Calabi–Yau manifolds used by Joyce [6, Definition 3.6].
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Definition 3.3. Let (M, ϕ, g) be a G2 manifold and let z1, . . . , zs be dis-
tinct points in M . There exist a constant η ∈ (0, 1), an open set Vi � zi in
M with Vi ∩ Vj = ∅ for j �= i, and a diffeomorphism χi :B(0; η) ⊆ R

7 → Vi

with χi(0) = zi, for i = 1, . . . , s, such that ζi = dχi|0: R
7 → Tzi

M is an iso-
morphism identifying the standard G2 structure (ϕ0, g0) on R

7 with the
pair (ϕ|Tzi

M , g|Tzi
M ). We call the set {χi :B(0; η) → Vi : i = 1, . . . , s} a G2

coordinate system near z1, . . . , zs.
We say that two G2 coordinate systems near z1, . . . , zs, with maps χi

and χ̃i for i = 1, . . . , s respectively, are equivalent if dχ̃i|0 = dχi|0 = ζi for
all i.

Although the family of G2 coordinate systems near z1, . . . , zs is clearly
infinite-dimensional, there are only finitely many equivalence classes, given
by the number of possible sets {ζ1, . . . , ζs}. Moreover, the family of choices
for each ζi is isomorphic to G2.

Note. Definition 3.3 does not require the G2 structure (ϕ, g) to be torsion-
free.

Definition 3.4. Let (M, ϕ, g) be a G2 manifold, let N ⊆ M be compact
and connected and let z1, . . . , zs ∈ N be distinct points. Let {χi :B(0; η) →
Vi : i = 1, . . . , s} be a G2 coordinate system near z1, . . . , zs as in Definition
3.3. We say that N is a 4-fold in M with conical singularities at z1, . . . , zs

with rate λ, denoted a CS 4-fold, if N̂ = N \ {z1, . . . , zs} is a (nonsingular)
4-dimensional submanifold of M and there exist constants 0 < ε < η and
λ > 1, a compact 3-dimensional Riemannian submanifold (Σi, hi) of S6 ⊆
R

7, where hi is the restriction of the round metric on S6 to Σi, an open set
Ui � zi in N with Ui ⊆ Vi and a smooth map Φi : (0, ε) × Σi → B(0; η) ⊆ R

7,
for i = 1, . . . , s, such that Ψi = χi ◦ Φi : (0, ε) × Σi → Ui \ {zi} is a diffeomor-
phism, and Φi satisfies

(3.2)
∣
∣∇j

i

(

Φi(ri, σi) − ιi(ri, σi)
)∣
∣ = O

(

rλ−j
i

)

for j ∈ N as ri −→ 0,

where ιi(ri, σi) = riσi ∈ B(0; η), ∇i is the Levi–Civita connection of the cone
metric gi = dr2

i + r2
i hi on Ci = (0,∞) × Σi coupled with partial differentia-

tion on R
7 and | · | is calculated with respect to gi.

We call Ci the cone at the singularity zi and Σi the link of the cone
Ci. We may write N as the disjoint union N = K �

⊔s
i=1 Ui, where K is

compact.
If N̂ is coassociative in M , we say that N is a CS coassociative 4-fold.



898 Jason D. Lotay

Suppose N is a CS 4-fold with rate λ in M and use the notation of
Definition 3.4. The induced metric on N̂ , g|N̂ , makes N̂ into a Riemannian
manifold. Moreover, it is clear from (3.2) that the maps Ψi satisfy (3.1) in
Definition 3.1 with the same constant λ. Thus, N may be considered as a
CS manifold with rate λ.

We now show that, if λ ∈ (1, 2), Definition 3.4 is independent of the
choice of G2 coordinate system near the singularities, up to equivalence.
Suppose we have two equivalent coordinate systems defined using maps χi

and χ̃i. These maps must agree up to second order since the zero and first-
order behaviour of each is prescribed, as stated in Definition 3.3. Therefore,
the transformed maps Φ̃i corresponding to χ̃i, such that Ψ̃i = χ̃i ◦ Φ̃i = χi ◦
Φi = Ψi, are defined by Φ̃i = (χ̃−1

i ◦ χi) ◦ Φi. Hence

∣
∣∇j

i

(

Φ̃i(ri, σi) − Φi(ri, σi)
)∣
∣ = O

(

r2−j
i

)

for j ∈ N as ri −→ 0,

where ∇i and | · | are calculated as in Definition 3.4. Thus, if λ < 2, the
terms generated by the transformation of the G2 coordinate system neither
dominate nor are of equal magnitude to the O

(

rλ−j
i

)

terms given in (3.2).
We now make a definition which also depends only on equivalence classes

of G2 coordinate systems near the singularities.

Definition 3.5. Let N be a CS 4-fold at z1, . . . , zs in a G2 manifold
(M, ϕ, g). Use the notation of Definitions 3.3 and 3.4. For i = 1, . . . , s
define a cone Ĉi in Tzi

M by Ĉi = (ζi ◦ ιi)(Ci). We call Ĉi the tangent cone
at zi.

One can show that Ĉi is a tangent cone to N at zi in the sense of geometric
measure theory (see, for example, [4, p.233]). We also have a straightforward
result related to the tangent cones at singular points of CS coassociative
4-folds.

Proposition 3.6. Let N be a CS coassociative 4-fold at z1, . . . , zs in a G2
manifold (M, ϕ, g). The tangent cones at z1, . . . , zs are coassociative.

Proof. Use the notation of Definitions 3.3 and 3.4. It is enough to show that
ιi(Ci) is coassociative in R

7 for all i, since ζi: R
7 → Tzi

M is an isomorphism
identifying (ϕ0, g0) with (ϕ|Tzi

M , g|Tzi
M ). This is equivalent to the condition

ι∗i (ϕ0) ≡ 0 for i = 1, . . . , s.
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Note that ϕ|N̂ ≡ 0 implies that, for all i, ϕ|Ui\{zi} ≡ 0. Hence, Ψ∗
i (ϕ) =

Φ∗
i

(

χ∗
i (ϕ)

)

vanishes on Ci for all i. Using (3.2),
∣
∣Φ∗

i

(

χ∗
i (ϕ)

)

− ι∗i
(

χ∗
i (ϕ)

)∣
∣ = O

(

rλ−1
i

)

as ri −→ 0

for all i. Moreover,
∣
∣ι∗i

(

χ∗
i (ϕ)

)

− ι∗i
(

ϕ0
)∣
∣ = O(ri) as ri −→ 0

since
χ∗

i (ϕ) = ϕ0 + O(ri) and |∇ιi| = O(1) as ri −→ 0.

Therefore, because λ > 1,

|ι∗i (ϕ0)| −→ 0 as ri −→ 0

for all i. As Triσi
ιi(Ci) = Tσi

ιi(Ci) for all (ri, σi) ∈ Ci, |ι∗i (ϕ0)| is indepen-
dent of ri and thus vanishes for all i as required. �

4. Weighted Banach spaces

For this section, let N be an n-dimensional CS manifold and let N̂ be its
nonsingular part, as in Definition 3.1. Let g be the metric and let ∇ be the
Levi–Civita connection on N̂ . Moreover, let ρ be a radius function on N̂
as in Definition 3.2. We define weighted Banach spaces of forms on N̂ as
in [1, § 1], as well as the usual “unweighted” spaces.

We begin with Sobolev spaces.

Definition 4.1. Let p ≥ 1 and let k, m ∈ N with m ≤ n. The Sobolev space
Lp

k(Λ
mT ∗N̂) is the set of m-forms ξ on N̂ which are k times weakly differ-

entiable and such that the norm

‖ξ‖Lp
k

=

⎛

⎝

k∑

j=0

∫

N̂
|∇jξ|p dVg

⎞

⎠

1/p

is finite. The normed vector space Lp
k(Λ

mT ∗N̂) is a Banach space for all
p ≥ 1 and L2

k(Λ
mT ∗N̂) is a Hilbert space.

We introduce the space of m-forms

Lp
k, loc(Λ

mT ∗N̂) = {ξ: fξ ∈ Lp
k(Λ

mT ∗N̂) for all f ∈ C∞
cs (N̂)}

where C∞
cs (N̂) is the space of smooth functions on N̂ with compact support.
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Let μ ∈ R. The weighted Sobolev space Lp
k, μ(ΛmT ∗N̂) is the subspace of

Lp
k, loc(Λ

mT ∗N̂) such that the following norm is finite:

‖ξ‖Lp
k, μ

=

⎛

⎝

k∑

j=0

∫

N̂
|ρj−μ∇jξ|pρ−n dVg

⎞

⎠

1/p

.

Then Lp
k, μ(ΛmT ∗N̂) is a Banach space and L2

k, μ(ΛmT ∗N̂) is a Hilbert space.

Note. By comparing the respective norms, it is clear that Lp = Lp
0,−n/p.

In particular,

(4.1) L2(ΛmT ∗N̂) = L2
0, − n

2
(ΛmT ∗N̂).

For the following two definitions, of weighted Ck and Hölder spaces,
we take Ck

loc(Λ
mT ∗N̂) to be the vector space of k times continuously dif-

ferentiable m-forms. In the definition of Hölder spaces, we refer to the
usual normed vector space Ck(ΛmT ∗N̂) of k times continuously differen-
tiable m-forms such that the following norm is finite:

‖ξ‖Ck =
k∑

j=0

sup
N̂

|∇jξ|.

Definition 4.2. Let μ ∈ R and let k, m ∈ N with m ≤ n. The weighted
Ck-space Ck

μ(ΛmT ∗N̂) is the subspace of Ck
loc(Λ

mT ∗N̂) such that the norm

‖ξ‖Ck
μ

=
k∑

j=0

sup
N̂

|ρj−μ∇jξ|

is finite. We also define C∞
μ (ΛmT ∗N̂) =

⋂

k≥0 Ck
μ(ΛmT ∗N̂). Then Ck

μ(Λm

T ∗N̂) is a Banach space, but in general C∞
μ (ΛmT ∗N̂) is not.

Definition 4.3. Let V be a vector bundle on N̂ endowed with Euclidean
metrics on its fibres and a connection preserving these metrics. Let d(x, y) be
the geodesic distance between points x, y ∈ N̂ , let a ∈ (0, 1) and let k, m ∈ N
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with m ≤ n. Let

H = {(x, y) ∈ N̂ × N̂ : x �= y, c1ρ(x) ≤ ρ(y) ≤ c2ρ(x) and

there exists a geodesic in N̂ of length d(x, y) from x to y},

where 0 < c1 < 1 < c2 are constant. A section s of V is Hölder continuous
(with exponent a) if

[s]a = sup
(x,y)∈H

|s(x) − s(y)|V
d(x, y)a

< ∞.

We understand the quantity |s(x) − s(y)|V as follows. Given (x, y) ∈ H,
there exists a geodesic γ of length d(x, y) connecting x and y. Parallel
translation along γ using the connection on V identifies the fibres over x and
y and the metrics on them. Thus, with this identification, |s(x) − s(y)|V is
well defined.

The Hölder space Ck, a(ΛmT ∗N̂) is the set of ξ ∈ Ck(ΛmT ∗N̂) such that
∇kξ is Hölder continuous (with exponent a) and the norm

‖ξ‖Ck, a = ‖ξ‖Ck + [∇kξ]a

is finite. The normed vector space Ck, a(ΛmT ∗N̂) is a Banach space.
We also introduce the notation

Ck, a
loc (ΛmT ∗N̂)

= {ξ ∈ Ck
loc(Λ

mT ∗N̂): fξ ∈ Ck, a(ΛmT ∗N̂) for all f ∈ C∞
cs (N̂)}.

Let μ ∈ R. The weighted Hölder space Ck, a
μ (ΛmT ∗N̂) is the subspace of

Ck, a
loc (ΛmT ∗N̂) such that the norm

‖ξ‖Ck, a
μ

= ‖ξ‖Ck
μ

+ [ξ]k, a
μ

is finite, where

[ξ]k, a
μ = [ρk+a−μ∇kξ]a.

Then Ck, a
μ (ΛmT ∗N̂) is a Banach space. It is clear that we have an embedding

Ck, a
μ (ΛmT ∗N̂) ↪→ C l

μ(ΛmT ∗N̂) whenever l ≤ k.

Remark. The set H in Definition 4.3 is introduced so that [ξ]k, a
μ is well

defined.
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We shall need the analogue of the Sobolev embedding theorem for wei-
ghted spaces, which is adapted from [15, Lemma 7.2] and [1, Theorem 1.2].

Theorem 4.4 (Weighted Sobolev Embedding Theorem). Let p, q ≥ 1,
a ∈ (0, 1), μ, ν ∈ R and k, l, m ∈ N with m ≤ n.

(a) If k ≥ l, k − n
p ≥ l − n

q and either p ≤ q and μ ≥ ν, or p > q and μ >

ν, there is a continuous embedding Lp
k, μ(ΛmT ∗N̂) ↪→ Lq

l, ν(Λ
mT ∗N̂).

(b) If k − n
p ≥ l + a, there is a continuous embedding Lp

k, μ(ΛmT ∗N̂) ↪→
C l, a

μ (ΛmT ∗N̂).

Finally, we shall also require an implicit function theorem for Banach
spaces, which follows immediately from [13, Chapter 6, Theorem 2.1].

Theorem 4.5 (Implicit Function Theorem). Let X and Y be Banach
spaces and let W ⊆ X be an open neighbourhood of 0. Let G : W → Y be
a Ck map (k ≥ 1) such that G(0) = 0. Suppose further that dG|0: X → Y
is surjective with kernel K such that X = K ⊕ A for some closed subspace
A of X. There exist open sets V ⊆ K and V ′ ⊆ A, both containing 0, with
V × V ′ ⊆ W , and a unique Ck map V: V → V ′ such that

Ker G ∩ (V × V ′) = {(x,V(x)) : x ∈ V }

in X = K ⊕ A.

5. The operator d + d∗

In this section we let N be a 4-dimensional CS manifold and let N̂ be as in
Definition 3.1. We also let ρ be a radius function on N̂ as in Definition 3.2.
An essential part of our study is the use of the Fredholm and index theory
for the elliptic operator d + d∗ acting from Λ2

+T ∗N̂ ⊕ Λ4T ∗N̂ to Λ3T ∗N̂ ,
where we identify the image of d and d∗ acting on self-dual 2-forms. We
therefore consider

(5.1) d + d∗: Lp
k+1, μ(Λ2

+T ∗N̂ ⊕ Λ4T ∗M̂) −→ Lp
k, μ−1(Λ

3T ∗N̂),

where p ≥ 2, k ∈ N and μ ∈ R.

5.1. Fredholm theory

Our first result follows from [15, Theorems 1.1 and 6.1].
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Proposition 5.1. There exists a countable discrete set D ⊆ R such that
(5.1) is Fredholm if and only if μ /∈ D.

Moreover, we can give an explicit description of D by similar arguments
to [18, Lemma 6.1.2] and [16, pp. 13–14], which are both for asymptotically
conical (AC) manifolds. The argument is long and technical, but the idea
is that to use the formalism of [15] one needs to consider manifolds with
cylindrical ends, so we associate to our operator (5.1) another which acts
on cylinders. We then push down to a map acting on forms on the cross-
sections of the cylinders and it is the Fredholm theory of this map which
determines the set D.

Recall the notation of Definition 3.1. If (ri, σi) are the coordinates on
(0, ε) × Σi, let ti = − log ri, recalling that ε < η < 1. Thus (ti, σi) are cylin-
drical coordinates on (T, ∞) × Σi, where T = − log ε > 0. Transform the
metric on N̂ to a conformally equivalent metric which is asymptotically
cylindrical on the ends N̂∞ ∼=

⊔s
i=1(T, ∞) × Σi of N̂ ; that is, the metric on

N̂ is asymptotic to dt2i + hi on the ith end. With respect to this new metric,
the asymptotically cylindrical operator corresponding to d + d∗ acts as

ρ−mdρm + ρ−m+2d∗ρm

on m-forms on N̂ . We refer the interested reader to [14, Proposition and
Definition 4.4] to explain the introduction of these powers of ρ. Since ρ is
asymptotic to ri = e−ti , we have a cylindrical operator (d + d∗)∞ associated
to d + d∗ which acts on m-forms on each component of N̂∞ ∼=

⊔s
i=1(T, ∞) ×

Σi by

(d + d∗)∞ = emti(d + e−2tid∗)e−mti .

Notice that an m-form ξ on N̂∞ can be written on the ith end as

ξ(ti, σi) = Ωi(ti, σi) + dt ∧ ωi(ti, σi),

where for each ti ∈ (T, ∞), Ωi(ti, σi) and ωi(ti, σi) are m- and (m−1)-forms
on Σi respectively. Thus, if pi: (0,∞) × Σi → Σi is the natural projection
map,

ΛmT ∗N̂∞ ∼=
s⊔

i=1

(

p∗
i (Λ

mT ∗Σi) ⊕ p∗
i (Λ

m−1T ∗Σi)
)

.
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Hence, (d + d∗)∞ maps sections of p∗
i (Λ

2T ∗Σi) ⊕ p∗
i (Λ

oddT ∗Σi) to sections
of p∗

i (Λ
oddT ∗Σi) ⊕ p∗

i (Λ
evenT ∗Σi). Moreover, this action is given by:

(d + d∗)∞

(
αi(ti, σi)

γi(ti, σi) + βi(ti, σi)

)

=

(

di + d∗
i − ∂

∂ti
+ 3 − m

∂
∂ti

− m −(di + d∗
i )

)(
αi(ti, σi)

γi(ti, σi) + βi(ti, σi)

)

,(5.2)

where di and d∗
i are the exterior derivative and its adjoint on Σi, and m

denotes the operator which multiplies m-forms by a factor m.
However, we wish to restrict attention to forms on Σi which correspond,

via p∗
i , to self-dual 2-forms on N̂∞ rather than general 2-forms. So, we define

Si ⊆ Λ2T ∗Σi ⊕ ΛoddT ∗Σi by

Si = {(αi, ∗iαi + βi): αi ∈ Λ2T ∗Σi, βi ∈ Λ3T ∗Σi},

where ∗i is the Hodge star on Σi. Then
⊔s

i=1 p∗
i (Si) ∼= Λ2

+T ∗N̂∞ ⊕ Λ4T ∗N̂∞.
For w ∈ C, define a map (d + d∗)∞(w) which acts on sections of

Si ⊗ C by:

(5.3) (d + d∗)∞(w) =
(

di + d∗
i w + 3 − m

−w − m −(di + d∗
i )

)

.

Notice that we have formally substituted w for − ∂
∂ti

in (5.2).
Let

Ti = {(∗iαi + βi, αi): αi ∈ Λ2T ∗Σi, βi ∈ Λ3T ∗Σi},

so that
⊔s

i=1 p∗
i (Ti) ∼= Λ3T ∗N̂∞. Define C ⊆ C as the set of w for which

(d + d∗)∞(w): Lp
k+1(Si ⊗ C) → Lp

k(Ti ⊗ C),

where we include a projection to Ti, is not an isomorphism for any i. By
the proof of [15, Theorem 1.1], D = {Re w : w ∈ C}. By [18, Lemma 6.1.13],
the corresponding sets C(Δm), where Δm is the Laplacian on m-forms, are
all real for an AC manifold. Since the same will be true for the CS case, we
deduce that C ⊆ R. Hence C = D.

The symbol, hence the index indw, of (d + d∗)∞(w) is independent of w.
Furthermore, (d + d∗)∞(w) is an isomorphism for generic values of w since



Coassociative 4-folds with conical singularities 905

D is countable and discrete. Therefore indw = 0 for all w ∈ C; that is,

dim Ker(d + d∗)∞(w) = dim Coker(d + d∗)∞(w),

so that (5.3) is not an isomorphism precisely when it is not injective.
The condition (d + d∗)∞(w) = 0, using (5.3), corresponds to the exis-

tence of αi ∈ C∞(Λ2T ∗Σi) and βi ∈ C∞(Λ3T ∗Σi), for some i, satisfying

diαi = −wβi and di∗iαi + d∗
i βi = −(w + 2)αi.(5.4)

Before we state our proposition, we make a few observations
concerning D.

Notes.

(a) Clearly, (5.4) implies that did
∗
i βi = Δiβi = w(w + 2)βi. Since eigen-

values of the Laplacian on Σi must necessarily be positive, βi = 0 if
w ∈ (−2, 0).

(b) If w = 0 and we take αi = 0, (5.4) forces βi to be coclosed. As there
are nontrivial coclosed 3-forms on Σi, (d + d∗)∞(0) is not injective, so
0 ∈ D.

(c) Suppose that w = −2 ∈ D. Then (5.4) gives [βi] = 0 in H3
dR(Σi).

Using (a), βi is harmonic so, by Hodge theory, βi = 0. Therefore
−2 ∈ D if and only if there exists a nonzero closed and coclosed 2-form
on Σi for some i.

Proposition 5.2. Use the notation of Definition 3.1 and the discussion
above. For i = 1, . . . , s let

D(μ, i) = {(αi, βi) ∈ C∞(Λ2T ∗Σi ⊕ Λ3T ∗Σi) : diαi = −μβi,

di∗iαi + d∗
i βi = −(μ + 2)αi}.

The set D of real numbers μ such that (5.1) is not Fredholm is given by:

D =
s⋃

i=1

{μ ∈ R: D(μ, i) �= 0}.
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Remark. A perhaps more illuminating way to characterise D(μ, i) is by:

(αi, βi) ∈ D(μ, i) ⇐⇒ ξi = (rμ+2
i αi + rμ+1

i dri ∧ ∗αi, r
μ+3
i dri ∧ βi)

is an O(rμ
i ) solution of (d + d∗)ξi = 0 on Ci as ri −→ 0,

using the notation of Definition 3.1.

Lockhart and McOwen [15, §10] study the Laplacian on m-forms on
a manifold with a conical singularity. From this work, which can easily
be extended to manifolds with more than one singularity, we can make an
important observation about the set D.

Proposition 5.3. In the notation of Proposition 5.2, D ∩ (−2,−1] = ∅.

Proof. Let μ ∈ (−2,−1] and let

Δm: Lp
k+1, μ(ΛmT ∗N̂) −→ Lp

k−1, μ−2(Λ
mT ∗N̂)

be the Laplacian on m-forms and denote the set of μ such that it is not Fred-
holm by D(Δm). Since μ > −2 and p ≥ 2, we see that Lp

k+1, μ ↪→ L2
0, −2 = L2

by Theorem 4.4 and (4.1).
Applying [15, Theorem 10.2] to Δ2 and Δ4, we see that

D(Δ2) ∩ (−2,−1] = D(Δ4) ∩ (−2,−1] = ∅.

Note that our rate μ is related to the weighting factor ν in [15, §10] by μ =
−ν − 2. Since it is clear that D ⊆

(

D(Δ2) ∪ D(Δ4)
)

, the result follows. �

5.2. Index theory

We begin with some definitions following [15].

Definition 5.4. Use the notation of §5.1. Let μ ∈ D. Define d(μ) to be
the dimension of the vector space of solutions of (d + d∗)∞ξ = 0 of the form

ξ(ti, σi) = e−μtiqi (ti, σi)

on (T, ∞) × Σi, for i = 1, . . . , s, where qi (ti, σi) is a polynomial in ti with
coefficients in C∞(Si ⊗ C).

The next result is immediate from [15, Theorem 1.2].
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Theorem 5.5. Use the notation of Proposition 5.1 and Definition 5.4. Let
λ, λ′ /∈ D with λ′ ≤ λ. If indμ(d + d∗) denotes the index of (5.1) for μ /∈ D,

indλ′(d + d∗) − indλ(d + d∗) =
∑

μ∈D ∩(λ′, λ)

d(μ).

We make an observation which shall be useful in later sections.

Proposition 5.6. Let λ, λ′ ∈ R such that λ′ ≤ λ and [λ′, λ] ∩ D = ∅. The
kernels, and cokernels, of (5.1) when μ = λ and μ = λ′ are equal.

Proof. Denote the dimensions of the kernel and cokernel of (5.1), for μ /∈ D,
by k(μ) and c(μ) respectively. Since [λ′, λ] ∩ D = ∅, k(λ) − c(λ) = k(λ′) −
c(λ′), so

(5.5) k(λ) − k(λ′) = c(λ) − c(λ′).

We know that k(λ) ≤ k(λ′) because Lp
k+1, λ ↪→ Lp

k+1, λ′ by Theorem 4.4
as λ ≥ λ′. Similarly, since c(μ) is equal to the dimension of the kernel of
the formal adjoint operator acting on a Sobolev space with weight −3 − μ =
−4 − (μ − 1), c(λ) ≥ c(λ′). Noting that the right-hand side of (5.5) is non-
negative and the left-hand side is less than or equal to zero, we conclude
that both must be zero. The result follows from the fact that the kernel
of d + d∗ in Lp

k+1, λ is contained in the kernel of d + d∗ in Lp
k+1, λ′ , and vice

versa for the cokernels. �

We conclude by relating d(μ) and D(μ, i) in a result analogous to [16,
Proposition 5.4], and which can be proved in exactly the same manner.

Proposition 5.7. Using the notation of Proposition 5.2 and Definition 5.4,
d(μ) =

∑s
i=1 dim D(μ, i) for μ ∈ D.

6. The deformation problems

We have a common notation for the next three sections. Let N be a CS
coassociative 4-fold at z1, . . . , zs with rate λ in a G2 manifold (M, ϕ, g).
Suppose λ ∈ (1, 2) \ D, where D is given by Proposition 5.2, and the cone at
zi is Ci with link Σi. We shall then use the notation of Definitions 3.4 and
3.5. In particular, we let {χi : B(0; η) → Vi : i = 1, . . . , s}, with dχi|0 = ζi

for all i, be the G2 coordinate system near z1, . . . , zs used to define N and
we let Ĉi be the tangent cone at zi. We also write N = K �

⊔s
i=1 Ui, where
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K is compact and Ui is an open set in N containing zi. Moreover, we let ρ
be a radius function on N̂ as in Definition 3.2 and choose the smooth maps
Φi : (0, ε) × Σi → B(0; η) uniquely by imposing the condition

(6.1) Φi(ri, σi) − ιi(ri, σi) ∈
(

Triσi
ιi(Ci)

)⊥ for all (ri, σi) ∈ (0, ε) × Σi,

where ιi(ri, σi) = riσi is the inclusion map on Ci. The condition on Φi can
always be achieved by making ε and the sets Ui smaller. We shall endeavour
to remind the reader when we use specific elements of this notation.

In this section, we consider deformations of N which are CS coassociative
4-folds at s points with rate λ in (M, ϕ, g) with the same cones at the
singularities as N , but the singularities need not be at the same points, nor
have identical tangent cone. We also, eventually, allow variations in the
G2 structure on the ambient 7-manifold M , and include deformations of N
which may be coassociative with respect to a nearby G2 structure.

We tackle this deformation theory by splitting it into three moduli space
problems, each one allowing for more possible deformations of N . We do this
to help the reader because each time the notation becomes more cluttered
and the analysis more complicated, but most of the important ideas are
clear from the solution of the first problem.

6.1. Problem 1: fixed singularities and G2 structure

The first problem we study is where the deformations of N have identical
singular points to N with the same rate, cones and tangent cones, and the
G2 structure on M is fixed. We give a formal definition for this moduli
space.

Definition 6.1. The moduli space of deformations M1(N, λ) for Problem 1
is the set of N ′ in (M, ϕ, g) which are CS coassociative 4-folds at z1, . . . , zs

with rate λ, having cone Ci and tangent cone Ĉi at zi for all i, such that
there exists a diffeomorphism h :M → M , isotopic to the identity, such that
h(zi) = zi for i = 1, . . . , s, h|N :N → N ′ is a homeomorphism and h|N̂ :N̂ →
N ′ \ {z1, . . . , zs} is a diffeomorphism.

We begin our formulation of a local description of M1(N, λ) with a result
which is immediate from the proof of [12, Chapter IV, Theorem 9] since M
is a Riemannian manifold.

Theorem 6.2. Let P be a closed embedded submanifold of M . There exist
an open subset V of the normal bundle ν(P ) of P in M , containing the zero
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section, and an open set S in M containing P , such that the exponential
map exp |V : V → S is a diffeomorphism.

Note. The proof of this result relies entirely on the observation that
exp |ν(P ) is a local isomorphism upon the zero section.

This information provides us with a useful corollary to Theorem 6.2.

Corollary 6.3. Let Pi = ιi
(

(0, ε) × Σi

)

, Qi = Φi

(

(0, ε) × Σi

)

and define
ni : ν(Pi) → R

7 by ni(riσi, v) = v + Φi(ri, σi). For all i, there exist an open
subset V̂i of ν(Pi) in R

7, containing the zero section, and an open set Ŝi

in B(0; η) ⊆ R
7 containing Qi such that ni|V̂i

: V̂i → Ŝi is a diffeomorphism.
Moreover, V̂i and Ŝi can be chosen such that Pi ⊆ Ŝi and V̂i is an open set
in C1

1 .

Proof. Note that ni takes the zero section of ν(Pi) to Qi. By the definition
of Φi, ni is a local isomorphism upon the zero section. Thus, the proof of
Theorem 6.2 gives open sets V̂i and Ŝi such that ni|V̂i

: V̂i → Ŝi is a diffeo-
morphism. We can ensure that Ŝi lies in B(0; η) by making V̂i smaller if
necessary.

Furthermore, since Φi − ιi is orthogonal to Pi by (6.1), it can be iden-
tified with a small section of ν(Pi). Hence Pi lies in Ŝi as long as Ŝi grows
at O(ri) as ri → 0. As we can form Ŝi and V̂i in a translation equivariant
way because we are working on a portion of the cone Ci, we can construct
our sets with this decay rate as ri → 0 and such that they do not collapse
as ri → ε. Thus, we can ensure that V̂i is an open set in C1

1 as claimed. �
The reason for using Corollary 6.3, rather than simply considering expo-

nential normal deformations as given by Theorem 6.2, is that it gives us
control of the behaviour of the sets V̂i and Ŝi near 0. This is essential in
making our analysis valid.

By Proposition 2.7 and Theorem 6.2, we can think of nearby deforma-
tions of N as graphs of small self-dual 2-forms. The next proposition gives
a formal backing to this concept.

Proposition 6.4. There exist an open set Û ⊆ Λ2
+T ∗N̂ containing the zero

section, an open set T̂ ⊆ M containing N̂ and a diffeomorphism δ : Û → T̂
which takes the zero section to N̂ . Moreover, Û can be chosen to be an open

set in C1
1 and δ is compatible with the identifications (0, ε) × Σi

Ψi∼= Ui \ {zi}
and the isomorphism ν(N̂)

j∼= Λ2
+T ∗N̂ given by Proposition 2.7.
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Proof. Use the notation from the start of this section and of Corollary 6.3.
Define T̂i = χi(Ŝi). Then T̂i is an open set in M such that Ui \ {zi} ⊆ T̂i ⊆
Vi, since Qi ⊆ Ŝi by Corollary 6.3 and χi(Qi) = Ui \ {zi}.

Consider the bundle (Λ2
+)χ∗

i (g)T
∗((0, ε) × Σi

)

, where the notation (Λ2
+)h

indicates that the Hodge star is calculated using the metric h, and we identify
(0, ε) × Σi with Pi ⊆ R

7 using the inclusion map ιi. Then

ji : ν(Pi) −→ (Λ2
+)χ∗

i (g)T
∗Pi

v|riσi
�−→

(

v|riσi
· χ∗

i (ϕ)|Φi(ri,σi)
)∣
∣
Triσi

Pi

is an isomorphism because Ui \ {zi} is coassociative and thus Pi is, with
respect to

(

χ∗
i (ϕ), χ∗

i (g)
)

, and hence we may apply Proposition 2.7. Note
also that

Ψ∗
i : (Λ2

+)gT
∗(Ui \ {zi}) −→ (Λ2

+)χ∗
i (g)T

∗((0, ε) × Σi

)

is clearly a diffeomorphism. Therefore, let Ûi ⊆ (Λ2
+)gT

∗(Ui \ {zi}) be such
that Ψ∗

i (Ûi) = ji(V̂i). Note that Ûi is an open set in C1
1 since V̂i is by

Corollary 6.3.
Define a diffeomorphism δi : Ûi → T̂i such that the following commutes:

(6.2)

Ûi

Ψ∗
i ��

δi

��

ji(V̂i)

j−1
i

��
V̂i

ni

��
T̂i Ŝi.

χi��

Interpolating smoothly over K, we extend
⋃s

i=1 Ûi and
⋃s

i=1 T̂i to Û and T̂
as required and extend the diffeomorphisms δi smoothly to a diffeomorphism
δ : Û → T̂ such that δ acts as the identity on N̂ , which is identified with the
zero section in Λ2

+T ∗N̂ .
Note that we have a splitting T Û |(x,0) = TxN̂ ⊕ Λ2

+T ∗
x N̂ for all x ∈ N̂ .

Thus we can consider dδ at N̂ as a map from TN̂ ⊕ Λ2
+T ∗N̂ to TN̂ ⊕ ν(N̂) ∼=

TM |N̂ . Hence, we require in our extension of δ from δi to ensure that, in
matrix notation,

(6.3) dδ|N̂ =
(

I A
0 j−1

)

,
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where I is the identity and A is arbitrary. This can be achieved because of
the definition of δi.

The compatibility of δ with j and Ψi mentioned in the statement of
the proposition, is given by (6.2) and the behaviour of dδ|N̂ stipulated
in (6.3). �

Note. The open set Û will be used frequently throughout the rest of the
article.

We now define our deformation map for Problem 1. Let

Ck
loc(Û) = {α ∈ Ck

loc(Λ
2
+T ∗N̂) : Γα ⊆ Û},

where Û is given in Proposition 6.4 and Γα is the graph of α. We also
adopt similar notation to define subsets of the spaces of forms described in
§ 4, though we must be careful that the forms are continuous so that their
graphs are well-defined. Moreover, we notice that the subset will be open
whenever the Banach space embeds continuously in C1

1 .

Definition 6.5. Use the notation of Proposition 6.4. Let Γα be the graph
of α ∈ C1

loc(Û) and let πα : N̂ → Γα be given by πα(x) = (x, α(x)). Let
fα = δ ◦ πα and let N̂α = fα(N̂) ⊆ T̂ . Define a map F1 from C1

loc(Û) to
C0

loc(Λ
3T ∗N̂) by:

F1(α) = f∗
α

(

ϕ|N̂α

)

.

By Proposition 2.6, KerF1 is the set of α ∈ C1
loc(Û) such that N̂α is coas-

sociative. Using [17, p. 731], which we are allowed to do by our choice of δ,
the linearization of F1 at 0 acts on α ∈ C1

loc(Λ
2
+T ∗N̂) as

dF1|0(α) = L1(α) = dα.

Remark. The operator L1 is not elliptic.

We want to study CS coassociative deformations Nα = N̂α � {z1, . . . , zs}
with singularities at the same points as N with the same tangent cones, so
we restrict our choices of forms α ∈ C1

loc(Û). Since N̂α is supposed to be
smooth and nonsingular, α ∈ C∞(Û).

As Nα is a CS coassociative 4-fold, there exist smooth maps (Φα)i :
(0, ε) × Σi → B(0; η) satisfying (3.2) such that (Ψα)i = χi ◦ (Φα)i is a dif-
feomorphism onto an open subset of N̂α for all i as in Definition 3.4. We are
free to use χi because the tangent cones at the singularities of Nα must be
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the same as for N , so any G2 coordinate system near the singularities used to
define Nα must be equivalent to the one given by χi for i = 1, . . . , s. Choose
(Φα)i uniquely so as to satisfy a similar orthogonality condition to (6.1).

Use the notation of Corollary 6.3 and the proof of Proposition 6.4. Recall
that we identify (0, ε) × Σi with Pi using ιi. By (6.1), Φi − ιi can be identi-
fied using ji with the graph of βi ∈ C∞(

(Λ2
+)χ∗

i (g)T
∗((0, ε) × Σi

))

. Thus, if
∇i is the Levi–Civita connection of the cone metric on Ci,

(6.4) |∇j
iβi| = O(rλ−j

i ) for j ∈ N as ri −→ 0

by (3.2), and therefore βi ∈ C∞
λ

(

(Λ2
+)χ∗

i (g)T
∗((0, ε) × Σi

))

.
We may similarly deduce, by the definition of δ, Φi and (Φα)i, that

(Φα)i − ιi =
(

(Φα)i − Φi

)

+ (Φi − ιi) corresponds to the graph of Ψ∗
i (α) + βi

on (0, ε) × Σi, recalling that

Ψ∗
i : Λ2

+T ∗(Ui \ {zi}) → (Λ2
+)χ∗

i (g)T
∗((0, ε) × Σi

)

is a diffeomorphism for all i. Since Nα has the same types of singularities
as N , both βi and Ψ∗

i (α) + βi lie in C∞
λ

(

(Λ2
+)χ∗

i (g)T
∗((0, ε) × Σi

))

for each
i. Thus α must lie in C∞

λ (Λ2
+T ∗N̂).

We conclude that N̂α is a deformation of N̂ in T̂ with the same conical
singularities if and only if α ∈ C∞

λ (Û). We state this as a proposition.

Proposition 6.6. In the notation of Definitions 6.1 and 6.5, M1(N, λ) is
locally homeomorphic to Ker F1 = {α ∈ C∞

λ (Û) :F1(α) = 0}.

We define an associated map G1 to F1 which is a nonlinear elliptic oper-
ator at zero. This will be useful to prove regularity results.

Definition 6.7. Define G1 : C1
loc(Û) × C1

loc(Λ
4T ∗N̂) → C0

loc(Λ
3T ∗N̂) by:

G1(α, β) = F1(α) + d∗β.

This is a nonlinear first-order elliptic operator at (0, 0) since its linearization
there acts on (α, β) ∈ C1

loc(Λ
2
+T ∗N̂ ⊕ Λ4T ∗N̂) as

dG1|(0,0)(α, β) = dα + d∗β.

Note. If G1(α, β) = 0 and β ∈ C∞
λ (Λ4T ∗N̂), ∗β is a harmonic function

which decays with order O(ρλ) as ρ → 0. Since λ > 1, ∗β → 0 as ρ → 0 and
hence, by the maximum principle for harmonic functions, it must be 0.
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From the note, we deduce the following.

Proposition 6.8. Ker F1 ∼= {(α, β) ∈C∞
λ (Û) ×C∞

λ (Λ4T ∗N̂): G1(α, β) = 0}.

We conclude this section by stating and proving two results on regular-
ity which are analogous to [16, Proposition 4.3] and [16, Proposition 4.14],
respectively. The proof of the first is long and technical, but works by relat-
ing F1 to functions on the cones Ci, then using scale equivariance properties
of these new functions to prove regularity results using their restrictions to
the links Σi.

Proposition 6.9. The map F1 given in Definition 6.5 can be written as

(6.5) F1(α)(x) = dα(x) + PF1

(

x, α(x),∇α(x)
)

for x ∈ N̂ , where PF1 : {(x, y, z): (x, y) ∈ Û , z ∈ T ∗
x N̂ ⊗ Λ2

+T ∗
x N̂} → Λ3T ∗N̂

is a smooth map such that PF1(x, y, z) ∈ Λ3T ∗
x N̂ . Denote PF1(x, α(x),

∇α(x)) by PF1(α)(x) for convenience.
Let α ∈ C1

loc(Û) with ‖α‖C1
1

sufficiently small. If α ∈ C∞
λ (Û), PF1(α) ∈

C∞
2λ−2(Λ

3T ∗N̂). Moreover, for each k ∈ N, if α ∈ Ck+1
λ (Û), then PF1(α) ∈

Ck
2λ−2(Λ

3T ∗N̂) and there exists a constant ck > 0 such that

(6.6) ‖PF1(α)‖Ck
2λ−2

≤ ck‖α‖2
Ck+1

λ

.

Note. For each k ∈ N, Ck
2λ−2 ↪→ Ck

λ−1 as λ > 1.

Proof. First, by the definition of F1, F1(α)(x) relates to the tangent space
to Γα at πα(x). Note that Tπα(x)Γα depends on both α(x) and ∇α(x) and
hence so must F1(α)(x). We may then define PF1 by (6.5) such that it is a
smooth function of its arguments as claimed.

Recall the notation from the start of this section and that (0, ε) × Σi

ιi∼=Pi

⊆ R
7, where ιi is the inclusion map. We argued before Proposition 6.6 that

we may identify Φi − ιi on (0, ε) × Σi with

βi ∈ C∞
λ

(

(Λ2
+)χ∗

i (g)T
∗((0, ε) × Σi

))

for i = 1, . . . , s. Recall that

Ψ∗
i : Λ2

+T ∗(Ui \ {zi}) −→ (Λ2
+)χ∗

i (g)T
∗((0, ε) × Σi

)

is a diffeomorphism. Let α ∈ C1
λ(Û), αi = α|Ui\{zi} and γi = Ψ∗

i (αi).
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For each i, define a function FCi
(γi + βi) on (0, ε) × Σi by

(6.7) FCi
(γi + βi)(ri, σi) = F1(αi)

(

Ψi(ri, σi)
)

.

Further, define a smooth function PCi
by an equation analogous to (6.5):

FCi
(γi + βi)(ri, σi) = d(γi + βi)(ri, σi)

+ PCi

(

(ri, σi), (γi + βi)(ri, σi),∇(γi + βi)(ri, σi)
)

.(6.8)

We notice that FCi
and PCi

are only dependent on the cone Ci and, rather
trivially, on ε. Therefore, because of this fact and our choice of δ in Proposi-
tion 6.4, these functions have scale equivariance properties. We may there-
fore derive equations and inequalities on {ε} × Σi and deduce the result on
all of (0, ε) × Σi by introducing appropriate scaling factors of ri.

Now, since α = 0 corresponds to our coassociative 4-fold N̂ , F1(0) = 0.
Adopting similar notation for PCi

(βi) as for PF1(αi), we see that

(6.9) FCi
(βi) = dβi + PCi

(βi) = 0,

by (6.7). Using (6.5) to (6.9), we deduce that

PF1(αi) = dβi + PCi
(γi + βi) = dβi + PCi

(γi + βi) −
(

dβi + PCi
(βi)

)

= PCi
(γi + βi) − PCi

(βi).(6.10)

We then calculate

PCi
(γi + βi) − PCi

(βi) =
∫ 1

0

d

dt
PCi

(tγi + βi) dt

=
∫ 1

0
γi · ∂PCi

∂y
(tγi + βi) + ∇iγi · ∂PCi

∂z
(tγi + βi) dt,(6.11)

recalling that PCi
is a function of three variables x, y and z and that ∇i

is the Levi–Civita connection of the cone metric gi on Ci. Using Taylor’s
Theorem,

PCi
(γi + βi)

= PCi
(βi) + γi ·

∂PCi

∂y
(βi) + ∇iγi ·

∂PCi

∂z
(βi) + O(r−2

i |γi|2 + |∇iγi|2)(6.12)

when |γi| and |∇iγi| are small.
Since dF1|0(αi) = dαi, dFCi

|βi
(γi + βi) = dγi and hence dPCi

|βi
= 0.

Thus, the first derivatives of PCi
with respect to y and z must vanish at
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βi by (6.12). Therefore, given small ν > 0, there exists a constant A0 > 0
such that

∣
∣
∣
∣

∂PCi

∂y
(tγi + βi)

∣
∣
∣
∣
≤ A0(r−2

i |γi| + r−1
i |∇iγi|), and

∣
∣
∣
∣

∂PCi

∂z
(tγi + βi)

∣
∣
∣
∣
≤ A0(r−1

i |γi| + |∇iγi|)
(6.13)

for t ∈ [0, 1] whenever

(6.14) r−1
i |γi|, r−1

i |βi|, |∇iγi| and |∇iβi| ≤ ν.

We determine the appropriate factors of ri by considering the scaling prop-
erties of PCi

and γi under changes in ri.
By (6.4), r−1

i |βi| and |∇iβi| tend to zero as ri → 0. We can thus ensure
that (6.14) is satisfied by the βi components by making ε smaller. Hence,
(6.14) holds if ‖γi‖C1

1
≤ ν. Therefore, putting estimates (6.13) in (6.11) and

using (6.10),

(6.15) |PF1(αi)| = |PCi
(γi + βi) − PCi

(βi)| ≤ A0(r−1
i |γi| + |∇iγi|)2

whenever ‖γi‖C1
1

≤ ν. As ri → 0 the terms in the bracket on the right-
hand side of (6.15) are of order O(rλ−1

i ) by (6.4). Thus, |PF1(αi)| is of
order O(r2λ−2

i ) as ri → 0 for i = 1, . . . , s. We deduce that |PF1(α)| is of
order O(ρ2λ−2) as ρ → 0 if ‖α‖C1

1
sufficiently small. Moreover, there exists

a constant c0 such that

sup
N̂

|ρ2−2λPF1(α)| ≤ c0

⎛

⎝

1∑

j=0

sup
N̂

|ρj−λ∇jα|

⎞

⎠

2

;

that is, (6.6) holds for k = 0.
We now consider the first derivative of PF1 and, in doing so, provide the

method to tackle higher derivatives as well. Suppose α ∈ C2
λ(Û) and ‖α‖C1

1

is sufficiently small that ‖γi‖C1
1

≤ ν for all i. From (6.11) we calculate

∇i

(

PCi
(γi + βi) − PCi

(βi)
)

=
∫ 1

0
∇i

(

γi · ∂PCi

∂y
(tγi + βi) + ∇iγi · ∂PCi

∂z
(tγi + βi)

)

dt
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=
∫ 1

0
∇iγi · ∂PCi

∂y
+ γi ·

(

∇i(tγi + βi) · ∂2PCi

∂y2 + ∇2
i (tγi + βi) · ∂2PCi

∂y∂z

)

+ ∇2
i γi · ∂PCi

∂z
+ ∇iγi ·

(

∇i(tγi + βi) · ∂2PCi

∂z∂y
+ ∇2

i (tγi + βi) · ∂2PCi

∂z2

)

dt.

There exists a constant A1 > 0 such that (6.13) holds with A0 replaced by
A1 and, for t ∈ [0, 1],

∣
∣
∣
∣

∂2PCi

∂y2 (tγi + βi)
∣
∣
∣
∣
,

∣
∣
∣
∣

∂2PCi

∂y∂z
(tγi + βi)

∣
∣
∣
∣

and
∣
∣
∣
∣

∂2PCi

∂z2 (tγi + βi)
∣
∣
∣
∣
≤ A1,

since the second derivatives of PCi
are continuous functions defined on the

closed bounded set given by ‖γi‖C1
1

≤ ν. We deduce that

∣
∣∇

(

PF1(αi)
)∣
∣ =

∣
∣∇i

(

PCi
(γi + βi) − PCi

(βi)
)∣
∣ ≤ A1ri

⎛

⎝

2∑

j=0

rj−2
i |∇j

iγi|

⎞

⎠

2

.

Therefore,
∣
∣∇

(

PF1(αi)
)∣
∣ is of order O(r2λ−3

i ) as ri → 0, and (6.6) holds for
k = 1.

In general, if α ∈ Ck+1
λ (Û) with ‖α‖C1

1
sufficiently small, we have

∣
∣∇k

(

PF1(αi)
)∣
∣ ≤ Akr

k
i

⎛

⎝

k+1∑

j=0

r
j−(k+1)
i |∇j

iγi|

⎞

⎠

2

for some Ak > 0. The result follows. �
We now consider the regularity of solutions to the nonlinear elliptic equation
G1(α, β) = 0 near (0, 0). Our result is proved using a standard “bootstrap”
argument.

Proposition 6.10. Let (α, β) ∈ Lp
k+1, λ(Û) × Lp

k+1, λ(Λ4T ∗N̂) for some p >
4 and k ≥ 2. If G1(α, β) = 0 and ‖α‖C1

1
is sufficiently small, where G1 is

given by Definition 6.7, then (α, β) ∈ C∞
λ (Û) × C∞

λ (Λ4T ∗N̂).

Notes.

(a) The conditions p > 4 and k ≥ 2 ensure, by Theorem 4.4, that Lp
k+1,λ ↪→

C2
λ ↪→ C1

1 . We need to control at least the first two derivatives of forms
in the kernel of G1 since, although G1 is a first-order operator, the
proof uses a related second-order elliptic operator.
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(b) Since Û is an open subset of C1
1 and we are free to make Û smaller if

necessary, we can always ensure that α ∈ Lp
k+1, λ(Û) has small enough

C1
1 norm for Proposition 6.10 to apply.

Proof. Since F1 smoothly depends on α and ∇α, G1 is a smooth function of
α, β,∇α and ∇β. We apply [20, Theorem 6.8.1], which is a general regularity
result for C1

loc solutions of nonlinear elliptic equations, to conclude that α
and β are smooth. However, we want more than this: the derivatives of α
and β must decay at the required rates.

Recall the note after Definition 6.7, which shows that G1(α, β) = 0
implies that β = 0. Thus β ∈ C∞

λ (Λ4T ∗N̂) trivially.
For the following argument, we find it useful to work with weighted

Hölder spaces. By Theorem 4.4, α ∈ Ck, a
λ (Û) with a = 1 − 4/p ∈ (0, 1) since

p > 4. We also know that d∗(G1(α, β)
)

= d∗(F1(α)
)

= 0. Hence, if πΛ2
+

is
the projection from 2-forms to their self-dual part,

F̃1(α) = πΛ2
+

(

d∗(F1(α)
))

= 0

is a nonlinear elliptic equation at 0, since dF1|0(α) = dα.
As F̃1(α) is linear in the second derivative of α, we see that

F̃1(α)(x) = R
(

x, α(x),∇α(x)
)

∇2α(x) + E
(

x, α(x),∇α(x)
)

,

where R
(

x, α(x),∇α(x)
)

and E
(

x, α(x),∇α(x)
)

are smooth functions of
their arguments. Define

Sα(γ)(x) = R
(

x, α(x),∇α(x)
)

∇2γ(x)

for γ ∈ C2
loc(Λ

2
+T ∗N̂). Then Sα is a smooth, linear, elliptic, second-order

operator, whose coefficients depend on x, α(x) and ∇α(x). These coefficients
therefore lie in Ck−1, a

loc . We also notice that

Sα(α)(x) = −E
(

x, α(x),∇α(x)
)

∈ Ck−2, a
2λ−3 (Λ2

+T ∗N̂) ⊆ Ck−2, a
λ−2 (Λ2

+T ∗N̂),

using the fact that d∗(PF (α)
)

∈ Ck−2, a
2λ−3 by Proposition 6.9 and λ > 1. How-

ever, E
(

x, α(x),∇α(x)
)

only depends on α and ∇α and is at worst quadratic
in these quantities by Proposition 6.9, so it must in fact lie in Ck−1, a

λ−2 since
we are given control on the decay of the first k derivatives of α near the
singularities of N .

In [19], a regularity result is given for linear elliptic operators acting
between weighted Hölder spaces, whose coefficients locally lie in a suitable
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Hölder space. This result can also be found in [16, Theorem 4.12]. We deduce
that, if γ ∈ C2

λ and Sα(γ) ∈ Ck−1, a
λ−2 , then γ ∈ Ck+1, a

λ . Since k ≥ 2, α and
Sα(α) satisfy these conditions by the discussion above. Thus α ∈ Ck+1, a

λ

only knowing a priori that α ∈ Ck, a
λ . We proceed by induction to show that

α ∈ C l, a
λ for all l ≥ k. �

6.2. Problem 2: moving singularities and fixed G2 structure

For this problem, we again consider deformations of N in (M, ϕ, g) which
are CS coassociative 4-folds at s points with the same rate and cones at
the singularities, but now we allow the singular points and tangent cones at
those points to differ from those of N . However, we still assume that the
G2 structure on M is fixed. We again define the moduli space formally and
recall the notation introduced at the start of the section.

Definition 6.11. The moduli space of deformations M2(N, λ) for Prob-
lem 2 is the set of N ′ in (M, ϕ, g) which are CS coassociative 4-folds at
z′
1, . . . , z

′
s with rate λ, having cone Ci and tangent cone Ĉ ′

i at z′
i for all i,

such that there exists a diffeomorphism h : M → M , isotopic to the identity,
such that h(zi) = z′

i for i = 1, . . . , s, h|N : N → N ′ is a homeomorphism and
h|N̂ : N̂ → N ′ \ {z′

1, . . . , z
′
s} is a diffeomorphism.

Here it is more difficult to create a local description of the moduli space
which is compatible with our analytic framework. What one would consider
“intuitive” approaches do not, as far as the author is aware, bear fruit. We
therefore follow what is, at first sight, a slightly indirect route.

Let {Bi: i = 1, . . . , s} be a collection of pairwise disjoint open sets in
M such that zi ∈ Bi. Let B =

∏s
i=1 Bi. For each z′ = (z′

1, . . . , z
′
s) ∈ B, we

have a family I(z′) of choices of s-tuples ζ′ = (ζ ′
1, . . . , ζ

′
s) of isomorphisms

ζ ′
i: R

7 → Tz′
i
M identifying (ϕ0, g0) with (ϕ|Tz′

i
M , g|Tz′

i
M ). Clearly, for each

z′ ∈ B, I(z′) ∼= Gs
2. We thus make the following definition.

Definition 6.12. The translation space is

T = {(z′, ζ′): z′ ∈ B, ζ′ ∈ I(z′)}.

It is a principal Gs
2 bundle over B and hence is a smooth manifold.

We now deal with the issue that the cone ιi(Ci) in R
7 may have G2

symmetries, which means that different choices of ζ′ could give the same
set of corresponding tangent cones. Let Hi denote the Lie subgroup of G2
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preserving ιi(Ci) in R
7 and let H =

∏s
i=1 Hi ⊆ Gs

2. Then H acts freely on
T by

(z′, ζ′) �−→
(

z′, (ζ ′
1 ◦ A−1

1 , . . . , ζ ′
s ◦ A−1

s )
)

,

where (A1, . . . , As) ∈ H. Thus there exists an H-orbit through (z, ζ) in T ,
where

z = (z1, . . . , zs) and ζ = (ζ1, . . . , ζs).

Define T̂ to be a small open ball in R
n containing 0, where n = dim T −

dim H, and let hT̂ : T̂ → T be an embedding with hT̂ (0) = (z, ζ) such that
hT̂ (T̂ ) is transverse to the H-orbit through (z, ζ). Write hT̂ (t) =

(

z(t), ζ(t)
)

for t ∈ T̂ , with z(0) = z and ζ(0) = ζ.

We shall use the notation from this definition throughout the rest of the
article.

Notes.

(a) If t, t′ ∈ T̂ , with t �= t′, are such that z(t) = z(t′), the s-tuples of tan-
gent cones, {Ĉ1(t), . . . , Ĉs(t)} and {Ĉ1(t′), . . . , Ĉs(t′)}, are distinct.

(b) T̂ is an open ball in R
n ∼= T0T̂ and hence can be considered as an open

subset of T0T̂ .

We use T̂ to extend N to a family of nearby CS 4-folds and provide
an analogue to Proposition 6.4 for Problem 2. In defining N , we chose
a G2 coordinate system {χi: B(0; η) → Vi: i = 1, . . . , s} with dχi|0 = ζi for
i = 1, . . . , s. Extend this to a smooth family of G2 coordinate systems

{

{χi(t) : B(0; η) → Vi(t) : i = 1, . . . , s} : t ∈ T̂
}

,

where Vi(t) is an open set in M containing zi(t), χi(t)(0) = zi(t), dχi(t)|0 =
ζi(t), χi(0) = χi and Vi(0) = Vi for i = 1, . . . , s.

Proposition 6.13. Use the notation of Proposition 6.4 and Definition 6.12.

(a) There exists a family N = {N(t): t ∈ T̂ } of CS 4-folds in M , with
N(0) = N , such that N(t) has a singularity at zi(t), for i = 1, . . . , s,
with rate λ, cone Ci and tangent cone Ĉi(t) =

(

ζi(t) ◦ ιi
)

(Ci).

(b) Let N̂(t) = N(t) \ {z1(t), . . . , zs(t)} and write N(t) = K(t) �
⊔s

i=1
Ui(t), where K(t) is compact and Ui(t) \ {zi(t)} ∼= (0, ε) × Σi for all
i, in the obvious way, ensuring that K(0) = K and Ui(0) = Ui.
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For t ∈ T̂ , there exist open sets T̂ (t) ⊆ M containing N̂(t) and dif-
feomorphisms δ(t): Û → T̂ (t) taking the zero section to N̂(t), varying
smoothly in t, with T̂ (0) = T̂ and δ(0) = δ. Moreover, δ(t) is compat-
ible with the identifications Ui(t) \ {zi(t)} ∼= (0, ε) × Σi for all i.

Remark. N does not necessarily consist of CS coassociative 4-folds and
δ(t) is not required to be compatible with the isomorphism ν(N̂) ∼= Λ2

+T ∗N̂
for t �= 0.

Proof. Use the notation from Corollary 6.3 and the proof of Proposition 6.4.
For t ∈ T̂ , define T̂i(t) = χi(t)(Ŝi) and

Ui(t) =
(

χi(t) ◦ Φi

(

(0, ε) × Σi

))

∪ {zi(t)}

for i = 1, . . . , s. Then T̂i(t) contains Ui(t) \ {zi(t)}. Define a diffeomorphism
δi(t) such that the following diagram commutes:

(6.16)

Ûi

Ψ∗
i ��

δi(t)

��

ji(V̂i)

j−1
i

��
V̂i

ni

��
T̂i(t) Ŝi.

χi(t)��

Interpolating smoothly over K, we extend
⋃s

i=1 T̂i(t) to T̂ (t) and δi(t) to δ(t).
Let e(t) = δ(t)|N̂ and define N̂(t) = e(t)(N̂). Then e(t): N̂ → N̂(t) is

a diffeomorphism for all t ∈ T̂ and e(0) is the identity. Let N(t) = N̂(t) ∪
{z1(t), . . . , zs(t)}. We then have a family N = {N(t): t ∈ T̂ } as claimed.
Note that K(t) = e(t)(K).

By the construction of δ(t) and the family N , it is clear that the proposi-
tion is proved, where the compatibility conditions on δ(t) are given
by (6.16). �

We can now define the deformation map for Problem 2.

Definition 6.14. Use the notation of Definition 6.5 and Proposition 6.13.
For t ∈ T̂ , let fα(t) = δ(t) ◦ πα, N̂α(t) = fα(t)(N̂) and Nα(t) = N̂α(t) ∪
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{z1(t), . . . , zs(t)}. Define F2 from C1
loc(Û) × T̂ to C0

loc(Λ
3T ∗N̂) by:

F2(α, t) = fα(t)∗
(

ϕ|N̂α(t)

)

.

The linearization of F2 at (0, 0) acts as

dF2|(0,0): (α, t) �−→ dα + L2(t),

where α ∈ C1
loc(Λ

2
+T ∗N̂), t ∈ T0T̂ and L2 is a linear map into the space of

smooth exact 3-forms on N̂ since ϕ is exact near N̂ .

Remark. By construction F2(α, 0) = F1(α), where F1 is given in Defini-
tion 6.5.

Clearly, KerF2 is the set of α ∈ C1
loc(Û) and t ∈ T̂ such that N̂α(t) is

coassociative. However, we have not yet encoded the information that Nα(t)
is CS with rate λ. This is the subject of the next proposition.

Proposition 6.15. In the notation of Definitions 6.11 and 6.14, M2(N, λ)
is locally homeomorphic to Ker F2 = {(α, t) ∈ C∞

λ (Û) × T̂ : F2(α, t) = 0}.

Proof. For each t ∈ T̂ , we are in the situation of Problem 1 in the sense that
we want coassociative deformations N̂α(t) of N̂(t), defined by a self-dual
2-form α, which have the same singular points, cones and tangent cones as
N̂(t). It is thus clear that α ∈ C∞

λ (Û) by Proposition 6.6. �

We now introduce an associated map G2 to F2.

Definition 6.16. Use the notation of Definition 6.14. Define G2: C1
loc(Û) ×

C1
loc(Λ

4T ∗N̂) × T̂ → C0
loc(Λ

3T ∗N̂) by

G2(α, β, t) = F2(α, t) + d∗β,

so that dG2|(0,0,0): (α, β, t) �−→ dα + d∗β + L2(t).

We then have an analogous result to Proposition 6.8, which follows in exactly
the same fashion because F2(α, t) is exact.

Proposition 6.17.

Ker F2 ∼= {(α, β, t) ∈ C∞
λ (Û) × C∞

λ (Λ4T ∗N̂) × T̂ : G2(α, β, t) = 0}.
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The next result studies the regularity of the kernel of G2 near (0, 0, 0)
and is the analogue of Proposition 6.10.

Proposition 6.18. Let (α, β, t) ∈ Lp
k+1, λ(Û) × Lp

k+1, λ(Λ4T ∗N̂) × T̂ , where
p > 4 and k ≥ 2. If G2(α, β, t) = 0, where G2 is given in Definition 6.16,
and ‖α‖C1

1
and t are sufficiently small, then (α, β) ∈ C∞

λ (Û) × C∞
λ

(Λ4T ∗N̂).

Note. We can always ensure that t is sufficiently small by shrinking T̂ .

Proof. Recall the proof of Proposition 6.10 and Definition 6.16.
First, d

(

G2(α, β, t)
)

= Δβ = 0 since F2(α, t) is exact. Thus, β = 0 by
the maximum principle, so it is trivially smooth.

Note that d∗(G2(α, β, t)
)

= d∗(F2(α, t)
)

= 0. Hence,

F̃2(α, t) = πΛ2
+

(

d∗(F2(α, t)
))

= 0

is a nonlinear equation on α which is linear in ∇2α. We can thus write

F̃2(α, t)(x) = Rt

(

x, α(x),∇α(x)
)

∇2α(x) + Et

(

x, α(x),∇α(x)
)

,

where Rt and Et are smooth functions of their arguments. If we define

S(α, t)(γ)(x) = Rt

(

x, α(x),∇α(x)
)

∇2γ(x),

then S(α, t) is a linear differential operator acting on γ ∈ C2
loc(Λ

2
+T ∗N̂), with

coefficients which lie in Ck−1, a
loc . The ellipticity of Sα = S(α, 0) results from

the coassociativity of N̂ . Ellipticity is an open condition so, although N̂(t) is
not necessarily coassociative, the fact that it is “close” to being coassociative
means that S(α, t) is elliptic, as long as t is sufficiently small.

Since F2(α, t) depends smoothly on t and N̂(t) is asymptotically coasso-
ciative near the singular points, we can apply the elliptic regularity theory
from [19] to S(α, t) as in the proof of Proposition 6.10. Moreover, as E0 = E

maps into Ck−1, a
λ−2 and F2 varies smoothly with t, Et maps into Ck−1, a

λ−2 for t
sufficiently small. We can thus follow the proof of Proposition 6.10 to give
the result. �
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6.3. Problem 3: moving singularities and varying G2 structure

For our final problem, we consider CS deformations N ′ of N as in Problem
2, except now we allow N ′ to be coassociative under a deformation of the
G2 structure on the ambient 7-manifold M .

Before we can define the moduli space, we need to choose a suitable fam-
ily of nearby G2 structures to (ϕ, g) on M . To achieve this end, we discuss
the third cohomology of a tubular neighbourhood of N . Recall the notation
from the start of this section and denote by Hm

cs (N̂) the mth compactly sup-
ported cohomology of N̂ ; that is, the quotient of closed compactly supported
m-forms by the derivatives of compactly supported (m − 1)-forms.

Proposition 6.19. Use the notation of Proposition 6.4. Let

T = T̂ ∪
s⋃

i=1

Vi ⊇ N.

By making T̂ and Vi, for i = 1, . . . , s, smaller if necessary, T retracts onto
N . There exists an isomorphism Ξ: H3

dR(T ) → H3
cs(N̂).

Proof. Let [ξ] ∈ H3
dR(T ) and use the notation from the start of this section.

Since Vi retracts onto {zi} for i = 1, . . . , s, ξ can be chosen such that ξ|Vi
= 0.

Therefore, ξ|Ui\{zi} = 0 which implies that the support of ξ|N̂ is contained
in K, which is compact. Hence [ξ|N̂ ] is a well-defined element of H3

cs(N̂).
Define Ξ by [ξ] �→ [ξ|N̂ ]. We show that Ξ is well defined. Suppose that

ξ′ = ξ + dυ, for υ ∈ C∞(Λ2T ∗T ), such that ξ′|Vi
= 0 for all i. Then dυ|Vi

= 0
for all i. Since Vi retracts onto {zi}, we can choose υ such that υ|Vi

=
0 without affecting dυ by smoothly interpolating over T̂ . Thus, υ|N̂ is
compactly supported and ξ|N̂ + d(υ|N̂ ) = ξ′|N̂ . Hence Ξ is well-defined and
injective.

Any closed form on N̂ with support in K can be extended smoothly to
a closed form on T which vanishes on Vi for all i. Thus, any cohomology
class in H3

cs(N̂) has a representative γ that can be lifted to a form ξ on T
such that Ξ([ξ]) = [γ], which implies that Ξ is surjective. �

Notes. The reason for this result is 2-fold.

(a) The condition Ξ([ϕ|T ]) = 0 in H3
cs(N̂) is implied by the coassociativity

of N̂ and it forces [ϕ|N̂ ] = 0 in H3
cs(N̂). This is stronger than the seem-

ingly more natural condition of [ϕ|N̂ ] = 0 in H3
dR(N̂), which would be

the correct requirement if N̂ were compact by the work of McLean [17].
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(b) If a G2 structure (ϕ′, g′) on M is such that Ξ([ϕ′|T ]) �= 0, then ϕ′|N̂ ′ �= 0
for any deformation N̂ ′ of N̂ in T , so there are no coassociative defor-
mations.

From these observations, it is clear that Proposition 6.19 allows us to
define a suitable distinguished family of “nearby” G2 structures to (ϕ, g).

Definition 6.20. Let F̂ be a small open ball about 0 in R
m for some m

and let Ξ be given by Proposition 6.19. Let

F = {(ϕf , gf ): f ∈ F̂}

be a smooth family of torsion-free G2 structures, with (ϕ0, g0) = (ϕ, g), such
that Ξ([ϕf |T ]) = 0 in H3

cs(N̂) and the map hF̂ : F̂ → F given by hF̂ (f) =
(ϕf , gf ) is an embedding.

This is again notation which we shall use for the rest of the paper.

Note. F̂ can be considered as an open subset of T0F̂ .

We are now able to define the moduli space for Problem 3.

Definition 6.21. The moduli space of deformations M3(N, λ) for Prob-
lem 3 is the set of pairs (N ′, f) of f ∈ F̂ and N ′ in (M, ϕf , gf ) which are CS
coassociative 4-folds at z′

1, . . . , z
′
s with rate λ, having cone Ci and tangent

cone Ĉ ′
i at z′

i for all i, such that there exists a diffeomorphism h: M → M ,
isotopic to the identity, such that h(zi) = z′

i for i = 1, . . . , s, h|N : N → N ′

is a homeomorphism and h|N̂ : N̂ → N ′ \ {z′
1, . . . , z

′
s} is a diffeomorphism.

We have a projection map πF̂ : M3(N, λ) → F̂ , with πF̂ (N ′, f) = f ,
whose fibres π−1

F̂ (f) are equal to the moduli space for Problem 2 defined
using the G2 structure (ϕf , gf ).

To incorporate the variation of the singular points and tangent ones,
one might naively take the product of the translation space T with F , then
embed T̂ × F̂ into it in the obvious way. Unfortunately, the changing G2
structure means we must adapt T before we proceed. This is tackled in the
next definition.

Definition 6.22. Use the notation of Definitions 6.12 and 6.20. For f ∈ F̂
and z′ ∈ B, let If (z′) denote the family of choices of s-tuples ζ′ = (ζ ′

1, . . . , ζ
′
s)

of isomorphisms ζ ′
i: R

7 → Tz′
i
M identifying (ϕ0, g0) with (ϕf |Tz′

i
M , gf |Tz′

i
M ).
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The translation space corresponding to F̂ is

T F̂ = {(z′, ζ′, f): z′ ∈ B, f ∈ F̂ , ζ′ ∈ If (z′)}.

It is a principal Gs
2 bundle over B × F̂ .

There is a natural free action of H on T F̂ and hence an H-orbit through
(z, ζ, 0). Therefore, we may embed T̂ × F̂ into T F̂ by hT̂ ×F̂ : (t, f) �→
(

z(t, f), ζ(t, f), f
)

such that hT̂ ×F̂ (T̂ × F̂) is transverse to this H-orbit,
hT̂ ×F̂ (t, 0) = hT̂ (t) for all t and z(0, f) = z for all f .

Use the notation introduced before Proposition 6.13. Extend the G2
coordinate system used to define N to a smooth family of G2 coordinate
systems

{

{χi(t, f): B(0; η) −→ Vi(t, f): i = 1, . . . , s}: (t, f) ∈ T̂ × F̂
}

such that Vi(t, f) is an open set in M containing zi(t, f), χi(t, f)(0) =
zi(t, f), dχi(t, f)|0 = ζi(t, f), χi(t, 0) = χi(t), Vi(0, f) = Vi and Vi(t, 0) = Vi(t)
for i = 1, . . . , s. This extends the family of G2 coordinate systems introduced
for Problem 2. Furthermore, the conditions zi(0, f) = zi and Vi(0, f) = Vi

are natural because (0, f) corresponds to the moduli space for Problem 1
in (M, ϕf , gf ). We cannot expect ζi(0, f) to equal ζi because they iden-
tify different G2 structures with the standard G2 structure on R

7. This
trend continues in the statement of the next result, which is the analogue of
Proposition 6.13.

Proposition 6.23. Use the notation from the start of this section, from
Propositions 6.4 and 6.13, and from Definition 6.22.

(a) There exists a family N F̂ = {N(t, f): (t, f) ∈ T̂ × F̂} of CS 4-folds
in M , with N(0, f) = N and N(t, 0) = N(t), such that N(t, f) has a
singularity at zi(t, f), for i = 1, . . . , s, with rate λ, cone Ci and tangent
cone Ĉi(t, f) =

(

ζi(t, f) ◦ ιi
)

(Ci).

(b) Let N̂(t, f) = N(t, f) \ {z1(t, f), . . . , zs(t, f)} and write N(t, f) =
K(t, f) �

⊔s
i=1 Ui(t, f), where K(t, f) is compact and Ui(t, f) \

{zi(t, f)} ∼= (0, ε) × Σi for all i, in the obvious way, ensuring that
K(0, f) = K, K(t, 0) = K(t), Ui(0, f) = Ui and Ui(t, 0) = Ui(t).

For (t, f) ∈ T̂ × F̂ , there exist open sets T̂ (t, f) ⊆ M containing
N̂(t, f) and diffeomorphisms δ(t, f): Û → T̂ (t, f) taking the zero
section to N̂(t, f), varying smoothly in t and f , with T̂ (0, f) = T̂ ,
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T̂ (t, 0) = T̂ (t) and δ(t, 0) = δ(t). Moreover, δ(t, f) is compatible with
the identifications Ui(t, f) \ {zi(t, f)} ∼= (0, ε) × Σi for i = 1, . . . , s.

The proof is almost identical to that of Proposition 6.13 so we omit it.
The compatibility conditions on δ(t, f) are given by commutative diagrams
like (6.16).

Remark. δ(t, f) is not required to be compatible with the isomorphism
ν(N̂) ∼= Λ2

+T ∗N̂ for (t, f) �= (0, 0).

We proceed by defining our final deformation map.

Definition 6.24. Use the notation of Definition 6.5 and Proposition 6.23.
For (t, f) ∈ T̂ × F̂ , let fα(t, f) = δ(t, f) ◦ πα, N̂α(t, f) = fα(t, f)(N̂) and
Nα(t, f) = N̂α(t, f) ∪ {z1(t, f), . . . , zs(t, f)}. Define F3 on C1

loc(Û) × T̂ ×
F̂ by:

F3(α, t, f) = fα(t, f)∗
(

ϕf |N̂α(t,f)

)

∈ C0
loc(Λ

3T ∗N̂).

The linearization of F3 at (0, 0, 0) acts as

dF3|(0,0,0): (α, t, f) �−→ dα + L2(t) + L3(f),

where α ∈ C1
loc(Λ

2
+T ∗N̂), (t, f) ∈ T0T̂ ⊕ T0F̂ , L2 is given in Definition 6.14

and L3 is a linear map into the space of smooth exact 3-forms on N̂ by the
condition imposed on ϕf in Definition 6.20.

Note. F3(α, t, 0) = F2(α, t) as given in Definition 6.14.

Clearly, KerF3 corresponds to N̂α(t, f) on which ϕf vanishes, and we
have the analogue of Proposition 6.15 by considering its proof.

Proposition 6.25. In the notation of Definitions 6.20 and 6.24, M3(N, λ)
is locally homeomorphic to Ker F3 = {(α, t, f) ∈ C∞

λ (Û) × T̂ × F̂ :
F3(α, t, f) = 0}.

We again associate a map to our deformation map.

Definition 6.26. Use the notation of Definition 6.24. Define G3: C1
loc(Û) ×

C1
loc(Λ

4T ∗N̂) × T̂ × F̂ → C0
loc(Λ

3T ∗N̂) by

G3(α, β, t, f) = F3(α, t, f) + d∗β,

so that dG3|(0,0,0,0): (α, β, t, f) �−→ dα + d∗β + L2(t) + L3(f).
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The next result is analogous to Propositions 6.8 and 6.17 and may be imme-
diately deduced from the exactness of F3(α, t, f), which follows from the
choice of ϕf in Definition 6.20.

Proposition 6.27.

Ker F3 ∼= {(α, β, t, f) ∈ C∞
λ (Û) × C∞

λ (Λ4T ∗N̂) × T̂ × F̂ : G3(α, β, t, f) = 0}.

The argument used to prove the regularity result Proposition 6.18 is
easily generalized to the map G3, so we end the section with the following.

Proposition 6.28. Let (α, β, t, f) ∈ Lp
k+1,λ(Û) × Lp

k+1,λ(Λ4T ∗N̂) × T̂ × F̂ ,
where p > 4 and k ≥ 2. If G3(α, β, t, f) = 0, where G3 is given in
Definition 6.26, and ‖α‖C1

1
, t and f are sufficiently small, (α, β) ∈ C∞

λ (Û) ×
C∞

λ (Λ4T ∗N̂).

Note. We are free to make F̂ smaller, so we can make f as small as
necessary.

7. The deformation and obstruction spaces

The scheme we use in this section, for each of our deformation problems in
turn, is the following. First we get an analytic description of the infinitesimal
deformation and obstruction spaces: the deformation space is the kernel of
the linearization of the deformation map at zero, and the obstruction space is
a distinguished subspace of the cokernel of the linearization, both in suitable
weighted Banach spaces. We then use the implicit function theorem to show
that the set of self-dual 2-forms whose image under the deformation map
lies in the obstruction space is locally diffeomorphic to the infinitesimal
deformation space. Finally, since the moduli space is locally characterized
as the kernel of the deformation map, the projection from this set of self-dual
2-forms to the obstruction space is a smooth map between smooth manifolds
whose fibre at zero is locally homeomorphic to the moduli space.

We recollect the common notation introduced in § 6, particularly at the
start. In addition, fix some p > 4 and integer k ≥ 2 so that we can use the
regularity results in § 6 for the kernels of the deformation maps in Lp

k+1,λ.

7.1. Problem 1

Recall the maps F1 and G1 given in Definitions 6.5 and 6.7, respectively.
Their kernels, which are isomorphic, give a local description for the moduli
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space M1(N, λ) by Propositions 6.6 and 6.8. Therefore the kernels of dF1|0
and dG1|(0,0) describe the infinitesimal deformations.

Definition 7.1. The infinitesimal deformation space for Problem 1 is

I1(N, λ) = {(α, β) ∈ Lp
k+1, λ(Λ2

+T ∗N̂ ⊕ Λ4T ∗N̂): dα + d∗β = 0}.

Therefore, I1(N, λ) is finite-dimensional.
To see that this is a reasonable choice, Proposition 6.10 gives that

I1(N, λ) = {(α, β) ∈ C∞
λ (Λ2

+T ∗N̂ ⊕ Λ4T ∗N̂): dα + d∗β = 0}
∼= {α ∈ C∞

λ (Λ2
+T ∗N̂): dα = 0},

where the equivalence follows from the maximum principle.

We turn to possible obstructions and start by describing the image of
F1. The proof is long but the basic idea is that ϕ is exact near N , so F1(α)
is the derivative of a 2-form. The technical issue is that the 2-form is not
guaranteed to lie in the correct weighted Sobolev space. This is resolved
by specifying its behaviour near the singularities and then considering the
cokernel of d + d∗.

Proposition 7.2. In the notation of Proposition 6.4 and Definition 6.5,
the map F1 takes Lp

k+1, λ(Û) into d
(

Lp
k+1, λ(Λ2T ∗N̂)

)

⊆ Lp
k, λ(Λ3T ∗N̂).

Remark. The closure is a technicality forced upon us because a certain
map is not guaranteed to be Fredholm and so may not have closed image.

Proof. Let α ∈ Lp
k+1,λ(Û), recall the notation from the start of § 6 and let

T be as in Proposition 6.19. As noted after that proposition, [ϕ|T ] = 0 in
H3

dR(T ) and hence ϕ|T is exact. Thus, ϕ|T = dψ for some ψ ∈ C∞(Λ2T ∗T ).
However, we want to select ψ in a particular way near the singularities. On
B(0; η) ⊆ R

7,
χ∗

i (ϕ) = ϕ0 + O(ri).

If v is the dilation vector field on R
7, given in coordinates (x1, . . . , x7) by

v = x1
∂

∂x1
+ · · · + x7

∂

∂x7
,

then calculation shows that d(v · ϕ0) = 3ϕ0. Thus, we can choose ψ to satisfy

χ∗
i (ψ) =

1
3
(v · ϕ0) + O(r2

i )
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on Vi, then extend ψ smoothly to a form on T such that dψ = ϕ|T . Note
that

(v · ϕ0)|ιi(Ci) = v · (ϕ0|ιi(Ci)) = 0

as v ∈ T
(

ιi(Ci)
)

. Hence χ∗
i (ψ) = O(r2

i ) on ιi(Ci), for all i, and similar results
hold for the derivatives of ψ. In the notation of Definition 6.5, define

H1(α) = f∗
α

(

ψ|N̂α

)

so that F1(α) = d
(

H1(α)
)

. Note that χ∗
i (ψ)|ιi(Ci) = O(r2

i ) is dominated by
O(rλ

i ) terms as ri → 0 since λ < 2. Further, H1(α) has the same growth as
χ∗

i (ψ)|(Φα)i((0,ε)×Σi) as ri → 0, using the notation preceding Proposition 6.6.
Continuing to use the aforementioned notation, we see that

χ∗
i (ψ)|(Φα)i((0,ε)×Σi) = χ∗

i (ψ)|((Φα)i−ιi)((0,ε)×Σi) + χ∗
i (ψ)|ιi((0,ε)×Σi).

The first term on the right-hand side depends on |(Φα)i − ιi| and hence is
O(rλ

i ) as ri → 0. This dominates the second term by our observation above.
Hence, H1(α) ∈ Lp

k, λ because H1 depends on α and ∇α. Notice that H1(α)
has one degree of differentiability less than expected.

We deduce that F1(α) ∈ d
(

Lp
k, λ(Λ2T ∗N̂)

)

and so lies in the image of
d + d∗: Lp

k, λ(Λ2T ∗N̂ ⊕ Λ4T ∗N̂) → Lp
k−1, λ−1(Λ

3T ∗N̂), where we include a
projection to 3-forms. Therefore, as the dual of a Sobolev space on N̂ with
weight μ has weight −4 − μ, F1(α) is L2-orthogonal to the kernel K3 of the
adjoint map

d + d∗: Lq
l+1, −3−λ(Λ3T ∗N̂) −→ Lq

l,−4−λ(Λ2T ∗N̂ ⊕ Λ4T ∗N̂),

where q > 1 such that 1/p + 1/q = 1 and l ∈ N. (By elliptic regularity, we
are free to choose any l ∈ N as K3 is independent of l.) We show below that

d
(

Lp
k, λ(Λ2T ∗N̂)

)

⊕ d∗(Lp
k, λ(Λ4T ∗N̂)

)

⊆ Lp
k−1, λ−1(Λ

3T ∗N̂)

is characterized as the subspace which is L2-orthogonal to K3. Given this,
as K3 is independent of k, the same holds with k replaced by k + 1. Since
F1(α) ∈ Lp

k, λ−1, we deduce that F1(α) is the limit of a sequence dαn + d∗β

for some (αn, β) ∈ Lp
k+1, λ(Λ2T ∗N̂ ⊕ Λ4T ∗N̂). As F1(α) is exact, the usual

maximum principle argument applied to the harmonic 4-form β forces it to
be zero and the result is proved.

Recall that λ /∈ D, so that the map (5.1), for μ = λ, discussed in §5
is Fredholm. Therefore, its image, which is d(Lp

k, λ(Λ2
+T ∗N̂)) ⊕ d∗(Lp

k, λ
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(Λ4T ∗N̂)) by the now familiar maximum principle argument, is closed, so
each constituent part is closed as it is a direct sum. Consider

(7.1) d + d∗: Lp
k, λ(ΛevenT ∗N̂) → Lp

k−1, λ−1(Λ
oddT ∗N̂).

This elliptic map has image whose closure comprises precisely of those ele-
ments of Lp

k−1, λ−1(Λ
oddT ∗N̂) which are L2-orthogonal to the kernel K of

d + d∗: Lq
l+1, −3−λ(ΛoddT ∗N̂) → Lq

l, −4−λ(ΛevenT ∗N̂).

The space K can be written as the direct sum K = K1 ⊕ K3 ⊕ Km, where

Kj = K ∩ Lq
l+1, −3−λ(ΛjT ∗N̂)

for j = 1 and 3 and Km is some transverse subspace. Recall that, in Lp
k−1, λ−1,

the image of d∗ on 4-forms is closed, and exact and coexact forms meet only
at zero by the maximum principle. Thus, the projection of the image of
(7.1) to 3-forms has closure

d
(

Lp
k, λ(Λ2T ∗N̂)

)

⊕ d∗(Lp
k, λ(Λ4T ∗N̂)

)

= {α3: ∃α1 such that (α1, α3) ∈ K⊥}.

Note that the projection π1(Km) of Km onto the space of 1-forms must meet
K1 in the zero form since, if (α1, α3) ∈ Km and α1 ∈ K1, then α3 ∈ K3, which
contradicts the direct sum decomposition of K. Therefore, π1(Km) and K1

are transverse finite-dimensional subspaces of Lq
l+1,−3−λ(Λ1T ∗N̂). Hence,

there exists a space A of smooth compactly supported 1-forms on N̂ which is
L2-orthogonal to K1 and such that A × Km → R given by (γ, ξ) �→ (γ, 0) · ξ
is a dual pairing. If α3 ∈ Lp

k−1, λ−1(Λ
3T ∗N̂) such that α3 ∈ (K3)⊥, there

exists a unique α1 ∈ A such that (α1, 0) · ξ = −(0, α3) · ξ for all ξ ∈ Km,
which implies that (α1, α3) ∈ (Km)⊥. We conclude that

(K3)⊥ = {α3 ∈ (K3)⊥: ∃α1 ∈ (K1)⊥ such that (α1, α3) ∈ (Km)⊥}
= {α3: ∃α1 such that (α1, α3) ∈ K⊥}

= d
(

Lp
k, λ(Λ2T ∗N̂)

)

⊕ d∗(Lp
k, λ(Λ4T ∗N̂)

)

⊆ Lp
k−1, λ−1(Λ

3T ∗N̂)

as required. �
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We deduce from Propositions 6.6, 6.8, 6.10 and 7.2 that M1(N, λ) is
locally homeomorphic to the kernel of

G1: Lp
k+1, λ(Û) × Lp

k+1, λ(Λ4T ∗N̂)

−→ d
(

Lp
k+1, λ(Λ2T ∗N̂)

)

⊕ d∗(Lp
k+1, λ(Λ4T ∗N̂)

)

⊆ Lp
k, λ−1(Λ

3T ∗N̂).

By the implicit function theorem (Theorem 4.5), the regularity result Propo-
sition 6.10 and Definition 7.1, if the target space of G1 equals the image of

dG1|(0,0): Lp
k+1, λ(Λ2

+T ∗N̂ ⊕ Λ4T ∗N̂) −→ Lp
k, λ−1(Λ

3T ∗N̂)

(α, β) �−→ dα + d∗β,

then M1(N, λ) is a smooth manifold of dimension dim I(N, λ). Therefore,
our deformation theory will be obstructed if and only if the map

d: Lp
k+1, λ(Λ2

+T ∗N̂) −→ d
(

Lp
k+1, λ(Λ2T ∗N̂)

)

is not surjective. This leads us to the next result and definition.

Proposition 7.3. There exists a finite-dimensional subspace O1(N, λ) of
Lp

k, λ−1(Λ
3T ∗N̂) such that

d
(

Lp
k+1, λ(Λ2T ∗N̂)

)

= d
(

Lp
k+1, λ(Λ2

+T ∗N̂)
)

⊕ O1(N, λ).

Proof. As noted in the proof of Proposition 7.2, the Fredholmness of (5.1) for
μ = λ /∈ D implies that each part of d(Lp

k+1,λ(Λ2
+T ∗N̂)) ⊕ d∗(Lp

k+1,λ

(Λ4T ∗N̂)) is closed. Moreover, the sum has finite codimension in Lp
k, λ−1

(Λ3T ∗N̂). Since

d
(

Lp
k+1,λ(Λ2

+T ∗N̂)
)

⊕ d∗(Lp
k+1,λ(Λ4T ∗N̂)

)

⊆ d
(

Lp
k+1,λ(Λ2T ∗N̂)

)

⊕ d∗(Lp
k+1,λ(Λ4T ∗N̂)

)

,

the latter has finite codimension in Lp
k,λ−1(Λ

3T ∗N̂), and the former has finite
codimension in the latter. Thus, O1(N, λ) can be chosen as stated. �

Definition 7.4. The obstruction space for Problem 1 is

O1(N, λ) ∼=
d
(

Lp
k+1,λ(Λ2T ∗N̂)

)

d
(

Lp
k+1,λ(Λ2

+T ∗N̂)
) .
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We now have all the ingredients necessary to apply the implicit function
theorem. Use the notation introduced in § 6 and this section. Define

U1 = Lp
k+1,λ(Û) × Lp

k+1,λ(Λ4T ∗N̂),

X1 = Lp
k+1,λ(Λ2

+T ∗N̂ ⊕ Λ4T ∗N̂),

Y1 = O1(N, λ) ⊆ Lp
k,λ−1(Λ

3T ∗N̂) and

Z1 = d
(

Lp
k+1,λ(Λ2T ∗N̂)

)

⊕ d∗(Lp
k+1,λ(Λ4T ∗N̂)

)

⊆ Lp
k,λ−1(Λ

3T ∗N̂).

Then X1, Y1 and Z1 are Banach spaces: X1 by definition, Y1 because it
is a finite-dimensional subspace of a Banach space and Z1 because it is a
closed subspace of a Banach space as noted in the proof of Proposition 7.2.
Further, U1 is an open neighbourhood of (0, 0) in X1 because Lp

k+1,λ ↪→ C1
1

by Theorem 4.4 and Û is an open subset of C1
1 by Proposition 6.4. Thus,

W1 = U1 × Y1 is an open neighbourhood of
(

(0, 0), 0
)

in X1 × Y1. Define
G1: W1 → Z1 by:

G1
(

(α, β), γ
)

= G1(α, β) + γ.

Then G1 is well-defined by Propositions 7.2 and 7.3 and its derivative at
(

(0, 0), 0
)

acts surjectively from X1 × Y1 to Z1 as

dG1|((0,0),0):
(

(α, β), γ
)

�−→ dα + d∗β + γ.

Using Definition 7.1 and the fact that (d + d∗)(X1) ∩ Y1 = {0}, we see that

Ker dG1|((0,0),0) =
{(

(α, β), γ
)

∈ X1 × Y1: dα + d∗β + γ = 0
}

∼= {(α, β) ∈ X1: dα + d∗β = 0} = I1(N, λ).

The conclusion, by implementing the implicit function theorem (Theorem
4.5), is that KerG1 is a smooth manifold near zero locally diffeomorphic
to an open neighbourhood M̂1(N, λ) of (0, 0) in I1(N, λ). Formally, if
we write X1 = I1(N, λ) ⊕ A for some closed subspace A of X1, there exist
open sets M̂1(N, λ) ⊆ I1(N, λ), VA ⊆ A, VY ⊆ Y1, all containing zero, with
M̂1(N, λ) × VA ⊆ U1, and smooth maps VA: M̂1(N, λ) → VA and VY :
M̂1(N, λ) → VY such that

Ker G1 ∩
((

M̂1(N, λ) × VA

)

× VY

)

=
{((

x,VA(x)
)

,VY (x)
)

: x ∈ M̂1(N, λ)
}

.

Define a smooth map π1: M̂1(N, λ) → O1(N, λ) by π1(x) = VY (x). Its ker-
nel is locally homeomorphic to the kernel of G1 and it can be considered as
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a projection from a subset of the infinitesimal deformation space onto the
obstruction space. Hence, the moduli space M1(N, λ) near N is homeomor-
phic to the kernel of π1 near 0. We write this result as a theorem.

Theorem 7.5. Use the notation of Definitions 6.1, 7.1 and 7.4. There exist
a smooth manifold M̂1(N, λ), which is an open neighbourhood of (0, 0) in
I1(N, λ), and a smooth map π1: M̂1(N, λ) → O1(N, λ), with π1(0, 0) = 0,
such that an open neighbourhood of 0 in Ker π1 is homeomorphic to an open
neighbourhood of N in M1(N, λ).

We deduce that, if the obstruction space is zero, the moduli space for Prob-
lem 1 is a smooth manifold near N of dimension equal to that of the infinites-
imal deformation space. We expect the obstruction space to be zero for
generic choices of N and the G2 structure on M .

7.2. Problem 2

Recall the notation introduced in Definitions 6.12, 6.14 and 6.16. We begin
by defining the infinitesimal deformation space for this problem.

Definition 7.6. The infinitesimal deformation space for Problem 2 is

I2(N, λ)

= {(α, β, t) ∈ Lp
k+1,λ(Λ2

+T ∗N̂ ⊕ Λ4T ∗N̂) ⊕ T0T̂ : dα + d∗β + L2(t) = 0},

which is finite-dimensional.
Using Proposition 6.18 and the maximum principle,

I2(N, λ) = {(α, β, t) ∈ C∞
λ (Λ2

+T ∗N̂ ⊕ Λ4T ∗N̂) ⊕ T0T̂ : dα

+ d∗β + L2(t) = 0}
∼= {(α, t) ∈ C∞

λ (Λ2
+T ∗N̂) ⊕ T0T̂ : dα + L2(t) = 0},

since dα + L2(t) is exact by Definition 6.14.

Note. There is a subspace of I2(N, λ) which is isomorphic to I1(N, λ).

To start our consideration of obstructions, we have the easy generaliza-
tion of Proposition 7.2.

Proposition 7.7. The map F2 given in Definition 6.14 takes Lp
k+1, λ(Û) ×

T̂ into d
(

Lp
k+1,λ(Λ2T ∗N̂)

)

⊆ Lp
k,λ−1(Λ

3T ∗N̂).
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Proof. Use the notation from Proposition 6.13 and its proof and from the
proof of Proposition 7.2. Recall that we have an open set T ⊇ T̂ in M con-
taining N , which retracts onto N , and ψ ∈ C∞(Λ2T ∗T ) such that
dψ = ϕ|T .

Let T (t) = T̂ (t) ∪
⋃s

i=1 Vi(t). By making T̂ (t) and Vi(t) smaller if nec-
essary, T (t) is an open set in M , varying smoothly in t, which retracts onto
N . We may choose ψ(t) to vary smoothly with t such that

χi(t)∗(ψ(t)
)

=
1
3

(v · ϕ0) + O(r2
i )

on Vi(t) and then extend smoothly to a form ψ(t) ∈ C∞(

Λ2T ∗T (t)
)

such
that dψ(t) = ϕ|T (t). Notice that ψ(0) = ψ and T (0) = T . Define

H2(α, t) = fα(t)∗
(

ψ(t)|N̂α(t)

)

.

Then d
(

H2(α, t)
)

= F2(α, t). Moreover, by the same reasoning that showed
H1(α) ∈ Lp

k, λ in the proof of Proposition 7.2, H2(α, t) lies in Lp
k,λ. There-

fore, F2(α, t) lies in d
(

Lp
k,λ(Λ2T ∗N̂)

)

. However, because F2(α, t) ∈ Lp
k,λ−1

(Λ3T ∗N̂), the proof of Proposition 7.2 implies the result. �
We now define the obstruction space.

Definition 7.8. From Propositions 7.3 and 7.7, since L2 is a linear map on
a finite-dimensional vector space, there exists a finite-dimensional subspace
O2(N, λ) of Lp

k,λ−1(Λ
3T ∗N̂), contained in O1(N, λ), such that

d
(

Lp
k+1, λ(Λ2T ∗N̂)

)

=
(

d
(

Lp
k+1, λ(Λ2

+T ∗N̂)
)

+ L2(T0T̂ )
)

⊕ O2(N, λ).

We define O2(N, λ) to be the obstruction space for Problem 2.

Following the scheme for Problem 1, we let

U2 = Lp
k+1,λ(Û) × Lp

k+1,λ(Λ4T ∗N̂) × T̂ ,

X2 = Lp
k+1,λ(Λ2

+T ∗N̂ ⊕ Λ4T ∗N̂) ⊕ T0T̂ ,

Y2 = O2(N, λ) ⊆ Lp
k,λ−1(Λ

3T ∗N̂) and

Z2 = d
(

Lp
k+1,λ(Λ2T ∗N̂)

)

⊕ d∗(Lp
k+1, λ(Λ4T ∗N̂)

)

⊆ Lp
k,λ−1(Λ

3T ∗N̂).

Recall that T̂ ⊆ R
n ∼= T0T̂ is open. As for Problem 1, X2, Y2 and Z2 are

Banach spaces, U2 is an open neighbourhood of (0, 0, 0) in X2 and hence
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W2 = U2 × Y2 is an open neighbourhood of
(

(0, 0, 0), 0
)

in X2 × Y2. Define
G2: W2 → Z2 by:

G2
(

(α, β, t), γ
)

= G2(α, β, t) + γ.

From Definition 7.8, dG2|((0,0,0),0): X2 × Y2 → Z2 acts surjectively as

(

(α, β, t), γ
)

�−→ dα + d∗β + L2(t) + γ.

Using the fact that the image of dG2|(0,0,0) meets Y2 at 0 only,

Ker dG2|((0,0,0),0) =
{(

(α, β, t), γ
)

∈ X2 × Y2: dα + d∗β + L2(t) + γ = 0
}

∼= {(α, β, t) ∈ X2: dα + d∗β + L2(t) = 0} = I2(N, λ).

As for Problem 1, Theorem 4.5 then gives us the following theorem.

Theorem 7.9. Use the notation of Definitions 6.11, 7.6 and 7.8. There
exist a smooth manifold M̂2(N, λ), which is an open neighbourhood of
(0, 0, 0) in I2(N, λ), and a smooth map π2 : M̂2(N, λ) → O2(N, λ), with
π2(0, 0, 0) = 0, such that an open neighbourhood of zero in Ker π2 is home-
omorphic to an open neighbourhood of N in M2(N, λ).

We deduce that, if O2(N, λ) = {0}, the moduli space for Problem 2 is a
smooth manifold near N of dimension dim I2(N, λ) = dim I1(N, λ) + dim T̂ ,
which we expect to occur for generic choices of N and the torsion-free G2
structure on M . In § 9, we see that if we choose a generic closed G2 structure
on M , within a certain family, we may drop the genericity assumption on
N and still obtain a smooth moduli space.

7.3. Problem 3

We presume in this section that the reader is sufficiently familiar with the
schemata we have used in § 7.1 and 7.2 to be able to generalize them to
Problem 3. This allows us to present a tidier treatment of the problem.

Recall the notation of Definitions 6.20, 6.24 and 6.26.
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Definition 7.10. The infinitesimal deformation space I3(N, λ) for Prob-
lem 3 is

I3(N, λ) = {(α, β, t, f) ∈ Lp
k+1,λ(Λ2

+T ∗N̂ ⊕ Λ4T ∗N̂) ⊕ T0T̂ ⊕ T0F̂ : dα

+ d∗β + L2(t) + L3(f) = 0}.

By Proposition 6.28 and the maximum principle,

I3(N, λ) = {(α, β, t, f) ∈ C∞
λ (Λ2

+T ∗N̂ ⊕ Λ4T ∗N̂) ⊕ T0T̂ ⊕ T0F̂ : dα

+ d∗β + L2(t) + L3(f) = 0}
∼= {(α, t, f) ∈ C∞

λ (Λ2
+T ∗N̂) ⊕ T0T̂ ⊕ T0F̂ : dα

+ L2(t) + L3(f) = 0}.

We then have the generalization of Propositions 7.2 and 7.7, which is
proved in a similar manner.

Proposition 7.11. In the notation of Definition 6.24,

F3
(

Lp
k+1,λ(Û) × T̂ × F̂

)

⊆ d
(

Lp
k+1,λ(Λ2T ∗N̂)

)

⊆ Lp
k, λ−1(Λ

3T ∗N̂).

This result leads us to define our final obstruction space.

Definition 7.12. Use the notation of Definitions 6.26 and 7.8. From
Propositions 7.3 and 7.11, there exists a finite-dimensional subspace
O3(N, λ) of Lp

k,λ−1(Λ
3T ∗N̂), contained in O2(N, λ), such that

d
(

Lp
k+1,λ(Λ2T ∗N̂)

)

=
(

d
(

Lp
k+1,λ(Λ2

+T ∗N̂)
)

+ L2(T0T̂ ) + L3(T0F̂)
)

⊕ O3(N, λ).

We define O3(N, λ) to be the obstruction space for Problem 3.

The use of the implicit function theorem (Theorem 4.5) in the derivation
of Theorems 7.5 and 7.9 can be easily generalized to give the following.

Theorem 7.13. Use the notation of Definitions 6.21, 7.10 and 7.12. There
exist a smooth manifold M̂3(N, λ), which is an open neighbourhood of (0, 0,
0, 0) in I3(N, λ), and a smooth map π3: M̂3(N, λ) → O3(N, λ), with π3(0, 0,
0, 0) = 0, such that an open neighbourhood of zero in Ker π3 is homeomorphic
to an open neighbourhood of (N, 0) in M3(N, λ).
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Hence, if O3(N, λ) = {0}, M3(N, λ) is a smooth manifold near (N, 0) of
dimension dim I3(N, λ) = dim I2(N, λ) + dim F̂ . Moreover, the projection
map πF̂ : M3(N, λ) → F̂ is smooth near (N, 0). We expect this to occur for
generic choices of N and the torsion-free G2 structure on M . We show in § 9
that if we work with closed G2 structures, then we may drop our genericity
assumptions on N and (ϕ, g) and get a smooth moduli space.

8. Dimension calculations

By Theorems 7.5, 7.9 and 7.13, the expected dimension of the moduli space
for each problem is the difference between the dimension of the infinitesimal
deformation space and the obstruction space. In this section, we first relate
the expected dimension of the moduli space for Problem 1 to the index of
(5.1) as discussed in § 5.2. We can then deduce an explicit lower bound for
the dimension of the moduli space for each of our deformation problems.

Recall the notation introduced at the start of § 6 and § 7. In particular,
we fix λ ∈ (1, 2) \ D, where D is given by Proposition 5.1, p > 4 and k ≥ 2,
and let ρ be a radius function on N̂ as in Definition 3.2.

Definition 8.1. Define

Hm = {ξ ∈ L2(ΛmT ∗N̂): dξ = d∗ξ = 0}.

The Hodge star maps H2 into itself, so there is a splitting H2 = H2
+ ⊕ H2

−,
where H2

± = H2 ∩ C∞(Λ2
±T ∗N̂).

Let J = j
(

H2
cs(N̂)

)

, where j: H2
cs(N̂) → H2

dR(N̂) is the inclusion map.
If [α], [β] ∈ J , there exist compactly supported closed 2-forms ξ and η such
that [α] = j([ξ]) and [β] = j([η]). We define a product on J × J by

(8.1) [α] ∪ [β] =
∫

N̂
ξ ∧ η.

Suppose that ξ′ and η′ are also compactly supported with [α] = j([ξ′]) and
[β] = j([η′]). Then there exist 1-forms χ and ζ such that ξ − ξ′ = dχ and
η − η′ = dζ. Therefore,

∫

N̂
ξ′ ∧ η′ =

∫

N̂
(ξ − dχ) ∧ (η − dζ) =

∫

N̂
ξ ∧ η − dχ ∧ η − ξ′ ∧ dζ

=
∫

N̂
ξ ∧ η − d(χ ∧ η) − d(ξ′ ∧ ζ) =

∫

N̂
ξ ∧ η,
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as both χ ∧ η and ξ′ ∧ ζ have compact support. The product (8.1) on J × J
is thus well-defined and is a symmetric topological product with a signature
(a, b). By [14, Example 0.16], H2 ∼= J and the isomorphism is given by
ξ �→ [ξ]. Thus, dimH2

+ = a and hence is a topological number.

We use the notation of the next two definitions for the rest of this section.

Definition 8.2. For convenience, we introduce the notation

(d+ + d∗)λ = d + d∗: Lp
k+1,λ(Λ2

+T ∗N̂ ⊕ Λ4T ∗N̂) −→ Lp
k,λ−1(Λ

3T ∗N̂).

By Definition 7.1, I1(N, λ) = Ker (d+ + d∗)λ. Define the adjoint map by

(d∗
+ + d)−3−λ = d∗

+ + d: Lq
l+1, −3−λ(Λ3T ∗N̂)

−→ Lq
l, −4−λ(Λ2

+T ∗N̂ ⊕ Λ4T ∗N̂),

where q > 1 such that 1/p + 1/q = 1 and l ≥ k. (Since we are only concerned
with the kernel of this map, which is independent of l ∈ N by elliptic regu-
larity, we are free to select l.) Then Coker (d+ + d∗)λ

∼= Ker (d∗
+ + d)−3−λ.

We now study the dimension of the kernel and cokernel of (d+ + d∗)μ to
calculate its index. We begin with the kernel.

Proposition 8.3. The kernel of (d+ + d∗)−2 is isomorphic to H2
+. Further-

more, if μ > −2 is such that (−2, μ] ∩ D = ∅, dim Ker (d+ + d∗)μ = dimH2
+.

Proof. Using (4.1) and the maximum principle,

H2
+ = {α ∈ L2(Λ2T ∗N̂) ∩ C∞(Λ2

+T ∗N̂): dα = d∗α = 0}
= {α ∈ L2

0,−2(Λ
2
+T ∗N̂) ∩ C∞(Λ2

+T ∗N̂): dα = 0}
∼= {(α, β) ∈ L2

0,−2(Λ
2
+T ∗N̂ ⊕ Λ4T ∗N̂) : α ∈ C∞(Λ2

+T ∗N̂),

dα + d∗β = 0}.

This gives the first part of the proposition by elliptic regularity.
If −2 /∈ D, [−2, μ] ∩ D = ∅ and thus, by Proposition 5.6, dim Ker (d+ +

d∗)μ = dim Ker (d+ + d∗)−2.
Suppose now that −2 ∈ D, so that the kernel of (d+ + d∗)ν decreases, or

its cokernel increases, as ν crosses −2 from below by Proposition 5.5. Recall
the notation from the start of § 6. Suppose further that (α, β) corresponds to
a self-dual 2-form and 4-form on N̂ which are subtracted from the kernel. By
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the work in [15, § 3 and § 4] this occurs if and only if (α, β) is asymptotic to an
O(r−2) form ξ on (0, ε) × Σi

∼= Ui \ {zi}, for some i, satisfying (d + d∗)ξ = 0.
(The form ξ is determined by an element of D(−2, i), using the notation of
Proposition 5.2.) Therefore, (α, β) is of order O(ρ−2) as ρ → 0 and thus lies
in L2. We deduce that (α, β) ∈ Ker (d+ + d∗)−2, implying that the function
k(ν) = Ker (d+ + d∗)ν is upper semi-continuous at −2 by Proposition 5.6.
The second part of the proposition is thus proved. �

Proposition 8.4. If μ < −1 is such that [μ,−1) ∩ D = ∅, the cokernel of
(d+ + d∗)μ is isomorphic to H1

dR(N̂).

Proof. Recall the final part of the proof of Proposition 7.2 where we discussed
the map d + d∗ acting on even forms, and its adjoint map which has kernel K.
Since μ < −1, −3 − μ > μ − 1 so K ⊆ Lp

k,μ−1(Λ
oddT ∗N̂) since Lq

l+1,−3−μ ↪→
Lp

k+1, μ−1 by Theorem 4.4 (using l ≥ k). Moreover, Lq
l+1,−3−μ ↪→ L2

0, −2 =
L2, which implies that K is graded and closed under the Hodge star.

Therefore,

Lp
k,μ−1(Λ

oddT ∗N̂) = (d + d∗)
(

Lp
k+1, μ(ΛevenT ∗N̂)

)

⊕ K.

If γ ∈ Lp
k, μ−1(Λ

3T ∗N̂) then (−∗γ, γ) ∈ Lp
k, μ−1(Λ

oddT ∗N̂) and hence there
exist sequences (γm

n ) in Lp
k+1, μ(ΛmT ∗N̂), for m = 0, 2, 4, and η ∈ K such

that

(−∗γ, γ) = η + lim
n→∞

(d + d∗)(γ0
n, γ2

n, γ4
n).

By applying the Hodge star,

(∗γ, γ) = ∗η + lim
n→∞

(d − d∗)(∗γ4
n, ∗γ2

n, ∗γ0
n).

Adding the above formulae and averaging gives:

γ = η̃ + lim
n→∞

d

(
γ2

n + ∗γ2
n

2

)

+ lim
n→∞

d∗
(

γ4
n − ∗γ0

n

2

)

where η̃ ∈ K3 by the properties of K. We deduce that

d
(

Lp
k+1, μ(Λ2

+T ∗N̂)
)

+ d∗(Lp
k+1, μ(Λ4T ∗N̂)

)

= d
(

Lp
k+1, μ(Λ2T ∗N̂)

)

+ d∗(Lp
k+1, μ(Λ4T ∗N̂)

)
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because μ /∈ D implies that the left-hand side is closed. In other words, the
image of (d+ + d∗)μ is equal to the closure of the image of

(8.2) (d + d∗)μ = d + d∗: Lp
k+1, μ(Λ2T ∗N̂ ⊕ Λ4T ∗N̂) → Lp

k,μ−1(Λ
3T ∗N̂).

Thus, Coker (d+ + d∗)μ is isomorphic to the kernel of the adjoint map
of (8.2):

(d∗ + d)−3−μ = d∗ + d: Lq
l+1, −3−μ(Λ3T ∗N̂) −→ Lq

l,−4−μ(Λ2T ∗N̂ ⊕ Λ4T ∗N̂).
(8.3)

Using (4.1) as in the proof of Proposition 8.3, the kernel of (d∗+ d)−3−(−1)

= (d∗ + d)−2 is isomorphic to H3. By [14, Example 0.16], H3 ∼= H1
dR(N̂)

and the isomorphism is given by γ �→ [∗γ]. Since [μ,−1) ∩ D = ∅, there are
no changes in the cokernel in [μ,−1) by Proposition 5.6. Moreover, the
dimension of the cokernel is lower semi-continuous in μ at −1; this fact can
be demonstrated using similar methods to those employed in the proof of
Proposition 8.3. �

By Proposition 5.3, (−2,−1] ∩ D = ∅. Therefore, for any μ ∈ (−2,−1],

dim Ker (d+ + d∗)μ = dimH2
+ and dim Coker (d+ + d∗)μ = b1(N̂),

using Propositions 8.3 and 8.4. Knowing the index of (d+ + d∗)μ for
μ ∈ (−2,−1], we can calculate it for all growth rates using Theorem 5.5
and hence derive our first estimate of the expected dimension of the moduli
space. For the rest of this section, we recall the quantity d(μ) for μ ∈ D,
introduced in Definition 5.4, which appears in the statement of Theorem 5.5.

Proposition 8.5.

ind (d+ + d∗)λ = dimH2
+ − b1(N̂) −

∑

μ∈(−1,λ)∩D
d(μ).

Since the obstruction space O1(N, λ) is a subspace of Coker (d+ + d∗)λ,
by relating their dimensions we can improve our estimate.

Proposition 8.6. In the notation of Definition 7.4,

dim O1(N, λ) ≤ dim Coker (d+ + d∗)λ − b1(N̂).
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Proof. From the proof of Proposition 7.2, the closure of the image of (8.2),
for μ = λ, is characterized as the subspace of Lp

k, λ−1(Λ
3T ∗N̂) which is L2-

orthogonal to the kernel L of (d∗ + d)−3−λ defined by (8.3). Furthermore,
as noticed in the proof of Proposition 7.3, Image (d + d∗)λ has finite codi-
mension in Lp

k, λ−1(Λ
3T ∗N̂). Therefore, we may choose a finite-dimensional

space C of smooth compactly supported 3-forms on N̂ such that

Lp
k,λ−1(Λ

3T ∗N̂) = Image (d + d∗)λ ⊕ C

and so that the product C × L → R given by (γ, η) �→ 〈γ, η〉L2 is nonde-
generate.

As (d+ + d∗)λ is Fredholm, its image is the closed subspace of Lp
k,λ−1

(Λ3T ∗N̂) which is L2-orthogonal to the kernel L′ of (d∗
+ + d)−3−λ. Then

L′ ⊇ L and L consists of closed and coclosed 3-forms, whereas L′ consists
of 3-forms η such that dη = d∗

+η = 0. Hence, we may choose a subspace L′′

of L′, transverse to L, comprising 3-forms which are not coclosed and such
that L′ = L ⊕ L′′.

The next stage is to extend C to a space C′ = C ⊕ C′′, where C′′ consists
of smooth exact compactly supported 3-forms on N̂ , such that

Lp
k, λ−1(Λ

3T ∗N̂) = Image (d+ + d∗)λ ⊕ C′

and the product C′′ × L′′ → R given by (γ, η) �→ 〈γ, η〉L2 is nondegenerate,
which is possible as L′′ comprises forms which are not coclosed. By con-
struction, C′′ is a valid choice for O1(N, λ) by the proofs of Propositions 7.2
and 7.3. Therefore,

dim O1(N, λ) = dim C′ − dim C = dim Coker (d+ + d∗)λ − dim L.

If γ lies in the kernel of (8.3) for rate μ = −1, then it also lies in the kernel
for μ = λ by Theorem 4.4. Thus, the map from L to H1

dR(N̂) given by
γ �→ [∗γ] is surjective. This gives the result. �

We may now calculate a lower bound for the expected dimension of
M1(N, λ) using Propositions 8.5 and 8.6.

Proposition 8.7. Using the notation of Definitions 7.1 and 7.4,

dim I1(N, λ) − dim O1(N, λ) ≥ dim H2
+ −

∑

μ∈(−1,λ)∩D
d(μ).
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Recalling that the dimension of T given in Definition 6.12 is 21s, we derive
analogous results for our other problems.

Proposition 8.8. In the notation of Definitions 6.12, 6.20, 7.6, 7.8, 7.10
and 7.12,

dim I2(N, λ) − dim O2(N, λ) ≥ dim H2
+ + 21s − dim H −

∑

μ∈(−1,λ)∩D
d(μ).

and

dim I3(N, λ) − dim O3(N, λ) ≥ dim H2
+ + 21s − dim H

+ dim F̂ −
∑

μ∈(−1,λ)∩D
d(μ).

We note that Propositions 5.3, 8.4, 8.6 and 8.7 imply the following bound
on dimO1(N, λ).

Proposition 8.9. Using the notation of Definition 7.4,

dim O1(N, λ) ≤
∑

μ∈(−1,λ)∩D
d(μ).

In Problem 2, we remove the obstructions corresponding to translations
of the singularities and G2 transformations of the tangent cones. These
obstructions occur, respectively, at rates 0 and 1. Hence, d(0) ≥ 7s, d(1) ≥
14s − dim H and we have the following stronger bound on the dimension of
O2(N, λ).

Proposition 8.10. In the notation of Definitions 6.12 and 7.8,

dim O2(N, λ) ≤ −21s + dim H +
∑

μ∈(−1,λ)∩D
d(μ).

9. ϕ-Closed 7-manifolds

For our deformation problems, we have assumed that N is a CS coasso-
ciative 4-fold in a G2 manifold (M, ϕ, g); that is, ϕ satisfies dϕ = d∗ϕ = 0.
However, the results of McLean [17] we have used, which are based upon
the linearization of the map we denoted F1 in Definition 6.5, still hold if
this condition on ϕ is relaxed to just dϕ = 0. Thus, our deformation theory
results hold if (M, ϕ, g) is a ϕ-closed 7-manifold in the sense of Definition 2.5.
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Remark. The effect of ∗ϕ not being closed on M means that coassociative
4-folds in M are no longer necessarily volume minimizing in their homology
class.

The use of ϕ-closed 7-manifolds M is that closed G2 structures occur in
infinite-dimensional families, since the set of closed definite 3-forms on M ,
given in Definition 2.3, is open. Thus, if m = dimO1(N, λ), we show that we
can always choose a family F of closed G2 structures on M , parameterized
by F̂ ⊆ R

m, such that O3(N, λ) = {0}. Hence, by Theorem 7.13, M3(N, λ)
is a smooth manifold and the projection πF̂ : M3(N, λ) → F̂ is a smooth
map near (N, 0).

Sard’s theorem [12, p. 173] states that, if h: X → Y is a smooth map
between finite-dimensional manifolds, the set of y ∈ Y with some x ∈ h−1(y)
such that dh|x: TxX → TyY is not surjective is of measure zero in Y . There-
fore, h−1(y) is a submanifold of X for almost all y ∈ Y .

Thus, by Sard’s theorem, π−1
F̂ (f) is a smooth manifold near (N, f) for

almost all f ∈ F̂ . As observed in Definition 6.21, π−1
F̂ (f) corresponds to the

moduli space of deformations for Problem 2 defined using the G2 structure
(ϕf , gf ). We deduce that, for any given N , a generic perturbation of the
closed G2 structure within F ensures that M2(N, λ) is smooth near N .

We thus conclude with a generic smoothness result for the CS
coassociative deformation theory in ϕ-closed 7-manifolds. This is similar
to [7, Theorem 9.1] concerning CS special Lagrangian deformations in almost
Calabi–Yau manifolds.

Theorem 9.1. Let (M, ϕ, g) be a ϕ-closed 7-manifold and let N be a CS
coassociative 4-fold in M at s points with rate λ ∈ (1, 2) \ D, where D is
given in Proposition 5.2. Use the notation of Definitions 5.4, 6.12, 7.4, 7.12
and 8.1. Let m = dimO1(N, λ) and let F̂ be a small open ball about 0 in R

m.
There exists a smooth family F = {(ϕf , gf ): f ∈ F̂} of closed G2 struc-

tures on M such that O3(N, λ) = {0}. Hence, the moduli space of deforma-
tions for Problem 3 is a smooth manifold near (N, 0) with dimension

dim M3(N, λ) ≥ dim H2
+ + 21s − dim H + dimO1(N, λ) −

∑

μ∈(−1,λ)∩D
d(μ).

Moreover, for generic f ∈ F̂ , the moduli space of deformations in (M, ϕf , gf )
for Problem 2 is a smooth manifold near N with dimension

dim M2(N, λ) ≥ dim H2
+ + 21s − dim H −

∑

μ∈(−1,λ)∩D
d(μ).
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Proof. Use the notation in the proof of Proposition 8.6. Recall that we
have a subspace L′′ of Lq

l+1, −3−λ(Λ3T ∗N̂) consisting of forms η such that
dη = d∗

+η = 0 but d∗η �= 0. Moreover, O1(N, λ) can be chosen to be a space
of smooth compactly supported exact 3-forms γ such that if 〈γ, η〉L2 = 0 for
all η ∈ L′′ \ {0}, then γ = 0. Therefore, L′′ ∼=

(

O1(N, λ)
)∗ and hence has

dimension m.
Let {η1, . . . , ηm} be a basis for L′′ and choose a basis {dυ1, . . . , dυm} for

O1(N, λ), where υj is a smooth compactly supported 2-form for all j, such
that 〈dυi, ηj〉L2 = δij . This is possible because the L2 product on O1(N, λ) ×
L′′ is nondegenerate. For f = (f1, . . . , fm) ∈ R

m define υf =
∑m

j=1 fjυj .
Using the notation of Proposition 6.19, define (ϕf , gf ), for f ∈ F̂ , to

be a closed G2 structure on M such that Ξ([ϕf |T ]) = 0 in H3
cs(N̂) and

ϕf |N̂ = dυf .
Recall from Definition 6.24 that we have a linear map L3: T0F̂ ∼= R

m →
Lp

k, λ−1(Λ
3T ∗N̂) arising from dF3|(0,0,0). By construction, L3(f) = dυf for

f ∈ R
m and hence L3 maps onto O1(N, λ). Proposition 7.3 and Defini-

tion 7.12 imply that O3(N, λ) = {0} as required.
The latter parts of the theorem now follow directly from the discussion

preceding it and Proposition 8.8. �
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