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Precise asymptotics of the Ricci flow neckpinch
Sigurd B. Angenent and Dan Knopf

The best known finite-time local Ricci flow singularity is the neck-
pinch, in which a proper subset of the manifold becomes geomet-
rically close to a portion of a shrinking cylinder. In this paper,
we prove precise asymptotics for rotationally-symmetric Ricci flow
neckpinches. We then compare these rigorous results with formal
matched asymptotics for fully general neckpinch singularities.
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1. Introduction

1.1. Antecedents

In virtually all known applications of Ricci flow, it is valuable to have a good
understanding of singularity formation. Heuristically, there are at least three
reasons for this. The first is that one expects finite-time singularities to form
for a broad spectrum of initial data. Indeed, such singularities are inevitable
if the scalar curvature is ever strictly positive. The second reason is that
one expects the geometry of a solution to resemble a standard model (for
example, a self-similar solution) in a space–time neighborhood of a develop-
ing singularity. The third reason is that having a sufficiently detailed picture
of a developing singularity facilitates the geometric topological surgeries by
which Ricci flow decomposes a given manifold.

Whenever a compact solution (Mn, g(·)) of Ricci flow encounters a sin-
gularity at time T < ∞, standard short-time existence results imply that

lim
t↗T

max
x∈Mn

| Rm(x, t)| = ∞.

In fact, a finite-time singularity happens if and only if

lim sup
t↗T

max
x∈Mn

| Rc(x, t)| = ∞.
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This claim follows by a short argument from a result of Simon [31];1 recently,
Šešum gave an independent, direct proof [29]. The most interesting cases are
those where a local singularity forms, that is, where there exists an open set
Ω ⊂ Mn such that

sup
Ω×[0,T )

| Rc(x, t)| < ∞.

The first rigorous constructions of local singularities were done by Simon
[30]. Here the manifold is a noncompact warped product R ×f Sn, and a
supersolution of the Ricci flow PDE is used to prove that f vanishes in
finite time on a proper subset of R. A second class of examples is constructed
in [14]. Here the manifold is a complex line bundle C ↪→ L

n
−k → CP

n−1 with
1 ≤ k ≤ n − 1. As the singularity forms, the flow performs an algebraic–
geometric blow-down of the CP

n−1, while the rest of the manifold converges
locally smoothly to a metric cone on (Cn\{0})/Zk.

As Perelman writes, “the most natural way of forming a singularity in
finite time is by pinching an (almost) round cylindrical neck” [29]. This is the
kind of local singularity that we analyze in this paper. It is a continuation
of our earlier work [3], where we gave the first rigorous examples of local
singularity formation on compact manifolds by constructing neckpinches for
rotationally symmetric metrics on Sn+1. In that paper, we obtained local a
priori estimates for the space–time scales at which a developing neckpinch
singularity resembles the self-similarly hrinking cylinder soliton. The present
paper proves that those estimates are sharp and gives precise asymptotics
for neckpinch formation.

When considering a local singularity, two natural and important ques-
tions arise. (1) What is the nature of the set of points in space on which
the metric becomes singular? (2) What is the asymptotic behavior of the
solution near this set as the singularity time is approached? In the past
two decades, a rich literature of both rigorous and formal matched asymp-
totics has developed for analyzing the local behavior of singular solutions of

1Let (Mn, g(t)) be a solution of Ricci flow on a compact manifold. Assume g(t) is
smooth for t ∈ [0, T ), where T < ∞. If lim supt↗T (maxx∈Mn | Rc(x, t)|) < ∞, then
[21, Lemma 14.2] guarantees existence of a complete C0 limit metric g(T ). One may
then apply [31, Theorem 1.1], choosing a background metric ḡ := g(T − δ) such that
(1 − ε)ḡ ≤ g ≤ (1 + ε)ḡ, where ε = ε(n) and δ = δ(ε). Let K̄ = maxx∈Mn | Rm(ḡ)|ḡ.
Simon’s theorem implies that there exists a η = η(n, K̄) such that for any θ ∈
[0, δ], a solution ĝ(s) of harmonic-map-coupled Ricci flow exists for 0 ≤ s < η and
satisfies ĝ(0) = g(T − θ); moreover, ĝ(s) is smooth for 0 < s < η. Since harmonic-
map-coupled Ricci flow is equivalent to Ricci flow modulo diffeomorphisms, the
claim follows by taking θ = η/2.
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nonlinear PDE such as ut = Δ(log u) or ut = Δu + F (u), where F (u) = up

or F (u) = eu. Some of the many noteworthy results of this type are given
in [7, 15–20, 22, 23, 26, 27, 34]. A few results specific to geometric evolution
equations such as mean curvature flow and harmonic map flow are given
in [1, 2, 4, 5, 10,24,33].

1.2. Overview

This paper is divided into two main parts.

Rigorous asymptotics. In Section 2, we derive rigorous asymptotics for
rotationally symmetric neckpinches. The set-up is as follows. Let gcan denote
the round metric of radius 1 on Sn. Then any SO(n + 1)-invariant metric
on Sn+1 can be written as

g = ϕ2 dx2 + ψ2 gcan

on (−1, 1) × Sn, which may be naturally identified with the sphere Sn+1

with its north and south poles removed. The quantity ψ(x, t) > 0 may thus
be regarded as the radius of the hypersurface {x} × Sn at time t. It is natural
to write geometric quantities related to g in terms of the distance s (x) =∫ x
0 ϕ(x̂) dx̂ from the equator.2 Then one can write the metric in the nicer

form of a warped product

g = ds2 + ψ2 gcan,

bearing in mind that s is ultimately a function of both x and t. (Note that one
encounters the commutator [∂t, ∂s] = −nψ−1ψss ∂s when taking derivatives
with x held constant.)

In [3], we established neckpinching for a class of rotationally symmetric
data essentially described by three conditions: (1) the initial metric should
have positive scalar curvature on all of Sn+1 and positive Ricci curvature
on the “polar caps”, in the terminology of [3]; (2) its sectional curvature
should be positive on planes tangential to the spheres {x} × Sn; and (3) it
should be “sufficiently pinched”, i.e., the minimum radius should be suffi-
ciently small relative to the maximum radius. In this paper, we impose an
additional hypothesis: (4) the initial metric should be reflection symmet-
ric, i.e., ψ(s, 0) ≡ ψ(−s, 0). Under these hypotheses, the results we obtain

2This also has the effect of fixing a gauge, thereby breaking the diffeomorphism
invariance of Ricci flow and making the resulting equations strictly parabolic.
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in Section 2 (combined with results from the predecessor [3] to this paper)
imply that the solution obeys a precise asymptotic profile.

To describe this profile requires some additional notation. If T < ∞ is
the singularity time, let u = ψ/

√
2(n − 1)(T − t) be the blown-up radius

defined below in (2.2); let σ = s/
√

T − t be the rescaled distance to the neck
defined in (2.3); and let τ = − log(T − t) denote the rescaled time variable
defined in (2.5). Note that (σ, τ) are self-similar coordinates with respect to
the blown-up flow. We summarize our results as

Theorem 1.1. For an open set of initial metrics symmetric with respect
to reflection and rotation, the solution (Sn+1, g(t)) of Ricci flow becomes
singular at T < ∞. Its diameter remains bounded for all t ∈ [0, T ). The sin-
gularity occurs only on the hypersurface {0} × Sn. The solution satisfies the
following asymptotic profile.

Inner region. On any interval |σ| ≤ A, one has

u(σ, τ) = 1 +
σ2 − 2

8τ
+ o

(
1
τ

)
uniformly as τ → ∞.

Intermediate region. On any interval A ≤ |σ| ≤ B
√

τ , one has

u(σ, τ) =

√

1 + (1 + o(1))
σ2

4τ
uniformly as τ → ∞.

Outer region. For any ε > 0, there exist C < ∞ and t̄ < T such that
(

1
2
√

n − 1 − ε

)
s

√
log(1/s)

≤ ψ(s, t) ≤
(

1
2
√

n − 1 + ε

)
s

√
log(1/s)

for all points on the neck such that |σ| ≥ C
√

τ and t ∈ (t̄, T ).

Formal asymptotics. In Section 3, we derive formal matched asymp-
totics for fully general neckpinches, without any symmetry assumptions
whatsoever. These are analogous to the formal asymptotics for m = 2 (pre-
sumably typical) case of MCF singularities considered in [5]. Our method
here is to study arbitrary perturbations of the self-similar cylinder soliton.
That is, we consider g̃ = g + h, where

g = dx2 + 2(n − 1)(T − t) gcan

is the cylinder soliton on R × Sn, and h is an arbitrary (small) (2, 0)-tensor.
To accomplish our analysis, we modify the Ricci flow so that the soliton
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becomes a fixed point of an equivalent but strictly parabolic flow. Because
the linearization of that flow has a null eigenvalue, one expects to find a
center manifold. We proceed by carrying out a quadratic variational anal-
ysis in order formally to compute the dynamics of the flow on that center
manifold. That is to say, we formally analyze all solutions that exhibit the
τ−1 rate of convergence that is proved for rotationally symmetric solutions
in Theorem 1.1.

The computations involved are extensive, but the conclusion we obtain
is quite satisfying: the formal matched asymptotics suggest that the behav-
ior analyzed rigorously in Section 2 should indeed be stable for fully gen-
eral Ricci flow neckpinches. See the introduction to Section 3 for a more
complete discussion.

1.3. A diameter bound

We conclude this introduction with an observation that follows directly
from the estimates obtained in [3]. This result confirms an expectation of
Perelman (R.S. Hamilton, private communication).

Lemma 1.2. Let (Sn+1, g(t)) be any SO(n + 1)-invariant solution of Ricci
flow such that g(0) has positive scalar curvature and positive
sectional curvature on planes tangential to the spheres {x} × Sn.

Assume, in the language of [3], that the metric g(t) has at least two
bumps for all t < T . Let x = a(t) and x = b(t) be the locations of the left-
and right-most bumps, and assume that for all t < T one has ψ(a(t), t) ≥ c,
ψ(b(t), t) ≥ c for some constant c > 0.

If g(t) becomes singular at T < ∞, then diam(Sn+1, g(t)) remains
bounded as t ↗ T .

Proof. By [3, Proposition 5.4], the limit profile ψ(·, T ) exists. Let a(t) < b(t)
in (−1, 1) denote the left-most and right-most bumps, respectively. Then
a(t) → a(T ) and b(t) → b(T ). By [3, Lemma 5.6], the Ricci curvature is
positive (so distances are decreasing) on (−1, a(t)] and [b(t), 1). Hence it
will suffice to bound dist g(t)(x1, x2) for arbitrary x1 < x2 in the interval
(a(T ) − ε, b(T ) + ε) ⊂ (−1, 1).
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Equations (5) and (11) of [3] imply that

d

dt
dist g(t)(x1, x2) =

d

dt

∫ x2

x1

ϕ(x, t) dx

= n

∫ s(x2)

s(x1)

ψss

ψ
ds

= n

⎧
⎨

⎩
ψs

ψ

∣
∣
∣
∣
∣

s(x2)

s(x1)

+
∫ s(x2)

s(x1)

(
ψs

ψ

)2

ds

⎫
⎬

⎭
.

Proposition 5.1 of [3] bounds ψs uniformly, while [3, Lemma 5.5] shows that
the number of bumps and necks is nonincreasing in time. It follows that

∫ s(x2)

s(x1)

(
ψs

ψ

)2

ds ≤ C

∫ s(x2)

s(x1)

|ψs|
ψ2 ds ≤ C

[
1

ψmin(t)
− 1

ψmax(t)

]
≤ C

ψmin(t)
.

Hence [3, Lemma 6.1] allows us to conclude that
∣
∣
∣
∣
d

dt
dist g(t)(x1, x2)

∣
∣
∣
∣ ≤ C

ψmin(t)
≤ C√

T − t
,

which is integrable. �
Recalling, [3, Lemmata 7.1 and 10.1], one immediately obtains

Corollary 1.3. Assume that (Sn+1, g(t)) satisfies the hypotheses of
Lemma 1.2 and is reflection-symmetric. Then the final-time profile ψ(·, T )
has ψ(x, T ) strictly positive for all x �= 0. Because | Rm | ≤ C/ψ2, this implies
that the singularity occurs only on the hypersurface {0} × Sn.

Diameter estimates for arbitrary finite-time Ricci flow singularities are
studied from another point of view in [32]. Lower bounds for diameter are
known for certain topologies; see [25].

2. Rigorous asymptotics of the SO(Rn+1) invariant neckpinch

2.1. The blown-up radius and the linearized equation

The radius ψ satisfies

(2.1) ψt = ψss − (n − 1)
1 − ψ2

s

ψ
.
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We will assume that the solution is defined on some time interval t0 ≤ t < T ,
where the initial time t0 need not be 0. In order to construct examples of
solutions that follow our precise asymptotics, we will at some point actually
have to assume that T − t0 is “sufficiently small”.

We consider the blown-up radius

(2.2) u � ψ

Rn(t)
, where Rn(t) �

√
2(n − 1)(T − t),

in which T may or may not be the blow-up time. We also introduce the
rescaled distance to the neck

(2.3) σ � s√
T − t

.

(Here the absence of a factor n − 1 in
√

T − t is intentional and will result
in the numerically simplest equations later on.) Then we have

ψs =
√

2(n − 1) uσ, ψss =
√

2(n − 1)
uσσ√
T − t

and

ψt =
√

2(n − 1)(T − t) ut −
√

2(n − 1)
2
√

T − t
u.

This leads to the following evolution equation for u,

(2.4) uτ = uσσ +
1
2

(
u − 1

u

)
+ (n − 1)

u2
σ

u
,

where

(2.5) τ � − log(T − t).

The blown-up time variable τ takes values in the interval

τ0 ≤ τ < ∞, where τ0 � − log(T − t0).

Without loss of generality, we will assume that τ0 ≥ 1.
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Near the neck, u will be close to the self-similar radius u ≈ 1. So to
linearize, we set

(2.6) u = 1 + v

and observe that v must satisfy

(2.7) vτ = vσσ + v +
(n − 1)v2

σ − 1/2v2

1 + v
.

Here the partial derivatives ∂/∂σ and ∂/∂τ do not commute. One has instead

[∂t, ∂s] = −n
ψss

ψ
∂s,

and thus

(2.8) [∂τ , ∂σ] =
[
(T − t)∂t,

√
T − t ∂s

]
= −

{
1
2

+ n
uσσ

u

}
∂σ.

2.2. Pointwise estimates for u and v

In [3], we showed that on solutions of Ricci flow whose scalar curvature is
non-negative, the quantity

F =
K

L

{
2 + log

L

Lmin(0)

}

satisfies a maximum principle. Here

K =
ψss

ψ
and L =

1 − ψ2
s

ψ2 ,

and

Lmin(0) = inf
1 − ψ2

s

ψ2

∣
∣
∣
∣
t=0

.

The maximum principle implies that supF does not increase when it is
above n − 1.

Let us assume throughout this paper that the initial metric has non-
negative scalar curvature, and that

supF ≤ F ∗

for some fixed constant F ∗ � n − 1.
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When one writes the quantity F in terms of ψ, ψs and ψss, the estimate
F ≤ F ∗ implies the following upper bounds for ψ, ψs and ψss in terms of
the radius of the neck ψ(0, t).

Lemma 2.1. There exist constants δ > 0 and C < ∞ that only depend on
F ∗ and the dimension n such that

(2.9) 1 − C

τ
≤ u ≤ 1 + C

1 + σ2

τ
for |σ| ≤ 2

√
τ

and

(2.10) 1 − C

τ
≤ u ≤ C

|σ|√
τ

√

log
|σ|√

τ
for 2

√
τ ≤ |σ| ≤ eδτ .

For the derivative uσ, we have

|uσ| ≤ C
1 + |σ|

τ
for |σ| ≤ 2

√
τ,(2.11)

|uσ| ≤ C√
τ

√

log
|σ|√

τ
for 2

√
τ ≤ |σ| ≤ eδτ .(2.12)

In both cases, these estimates imply that |uσ| ≤ Cδ at all points with
|σ| ≤ eδτ . After decreasing δ, if necessary, we may assume that Cδ is as small
as we like. In particular, in the region we are considering, we always may
assume that

(2.13) |uσ| ≤ 1
2
.

Since v = u − 1, we immediately get estimates for v and vσ. Those for vσ

are of course the same as for uσ. For v, we have

−C

τ
≤ v ≤ C

1 + σ2

τ
for |σ| ≤ 2

√
τ,

−C

τ
≤ v ≤ C

|σ|√
τ

√

log
|σ|√

τ
for 2

√
τ ≤ |σ| ≤ eδτ ,

(2.14)

in which C is again a constant depending only on F ∗ and n.

Proof of Lemma 2.1. The upper estimates follow immediately from
[3, Lemma 9.4]. Only the lower estimate in (2.9) was not proved in [3].
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Briefly, the lower estimate follows from the boundedness of F . At the neck,
one has

K =
ψss

ψ
, L =

1
ψ2 , ψ = (1 + o(1))

√
2(n − 1)(T − t),

such that (K/L) log L ≤ C implies

0 ≤ ψss ≤ C

τψ
.

The radius ψ(0, t) of the neck satisfies

ψt = ψss − n − 1
ψ

≤ −n − 1 − C(τ−1)
ψ

,

which upon integration yields

ψ(0, t) ≥
(

1 − C̃

τ

)
√

2(n − 1)(T − t),

where C̃ only depends on F ∗ and n. This implies the lower estimates in
the lemma. �

2.3. Transition to commuting variables

On most of the neck, the quantity v = o(1). So it is natural to drop the
quadratic terms in (2.7), resulting in the deceptively simple equation

vτ = vσσ + v

for v. Here the partial derivatives ∂τ and ∂σ do not commute. To work
with commuting variables, we regard v as function of σ. In other words,
we define

(2.15) σ(x, t) =
1√

T − t

∫ x

0
ds = e−τ/2

∫ x

0
ds,

and consider a function ṽ(σ, τ) such that ṽ(σ(x, τ), τ) ≡ v(x, τ). We shall
abuse notation and write v for both quantities v and ṽ. This is only ambigu-
ous when we take time derivatives, in which case we write

∂v

∂τ

∣
∣
∣
∣
σ const

=
∂ṽ

∂τ
and

∂v

∂τ

∣
∣
∣
∣
x const

=
∂v

∂τ
.
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The two are related by

∂v

∂τ

∣
∣
∣
∣
σ const

=
∂v

∂τ

∣
∣
∣
∣
x const

− ∂σ

∂τ

∂v

∂σ
.

Lemma 2.2. Assuming reflection symmetry of the metric, i.e., ψ(−s, t) ≡
ψ(s, t), one has

∂σ

∂τ
=

σ

2
+ nJ(σ, τ),

where

J(σ, τ) =
∫ σ

0

vσσ

1 + v
dσ =

vσ

1 + v
+
∫ σ

0

v2
σ

(1 + v)2
dσ.

Proof. By definition one has σ(x, τ) = eτ/2s(x, T − e−τ ). Hence

στ =
1
2
σ + eτ/2st(x, T − e−τ )e−τ =

1
2
σ + e−τ/2st(x, T − e−τ ).

One also has [3, § 10]

∂s

∂t
=
∫ s

0

nψss

ψ
ds = n

{
ψs

ψ
+
∫ s

0

ψ2
s

ψ2 ds

}
.

Using the relations (2.2) and (2.3) between u = 1 + v and ψ, and s and σ,
one finds the stated expression for ∂τσ. �

¿From here on we will consider v as a function of σ and τ . All τ deriva-
tives are intended to be time derivatives with σ kept constant. It follows
from (2.7) that v satisfies

(2.16) vτ = vσσ − σ

2
vσ + v − nJ(σ, τ)vσ +

(n − 1)v2
σ − (1/2)v2

1 + v
.

We write this equation as

vτ = A(v) + N(v),

where A is the linear differential operator

A =
(

∂

∂σ

)2

− σ

2
∂

∂σ
+ 1,
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and N(v) represents the remaining (nonlinear) terms in (2.16),

N(v) = −nvσ

∫ σ

0

vσσ

1 + v
dσ +

(n − 1)v2
σ − (1/2)v2

1 + v
.

Integrate by parts to get

(2.17) N(v) = −nvσ

∫ σ

0

v2
σ

(1 + v)2
dσ − v2

σ + (1/2)v2

1 + v
.

Lemma 2.3. For all |σ| ≤ eδτ , one has

|N(v)| ≤ C
1 + σ4

τ2 .

Proof. This follows from Lemma 2.1. In fact, Lemma 2.1 implies that

(2.18) |v| ≤ C
1 + σ2

τ
and |vσ| ≤ C

1 + |σ|
τ

for |σ| ≤ 2
√

τ . For larger σ, one finds other estimates for v and vσ, which
are stronger than (2.18). Using (2.18) for all |σ| ≤ eδτ , one arrives at our
estimate for N(v). �

2.4. The linearized equation

If we ignore the nonlinear terms in (2.16), then we see that the small quan-
tity v satisfies vτ = A(v). Even though v is not defined for all σ ∈ R, we
know from our estimate on the neck that v is defined for |σ| ≤ eδτ , for some
δ = δ(F ∗, n). In the first analysis, we assume that v is, in fact, a solution
of the Cauchy problem vτ = A(v). The operator A is self-adjoint in the
Hilbert space

H =
{

v ∈ L2
(
R, e−σ2/4dσ

)
| v(σ) ≡ v(−σ)

}
.

It has a pure point spectrum, with eigenvalues λm = 1 − m for m = 0, 1, 2, . . ..
The eigenfunction corresponding to the eigenvalue λm is an even Hermite
polynomial of degree 2m. Normalizing the eigenfunction so that the coeffi-
cient of its highest order term is 1, we set

h2m(σ) = σ2m − (2m)!
1!(2m − 2)!

σ2m−2 +
(2m)!

2!(2m − 4)!
σ2m−4 − · · · .
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In particular,

(2.19) h0(σ) = 1, h2(σ) = σ2 − 2, h4(σ) = σ4 − 12σ2 + 12.

2.5. Eigenfunction decomposition of v

Let η ∈ C∞(R) be an even bump function with η(z) = 0 for z ≥ 11
4 and

η(z) = 1 for z ≤ 1. We then define

(2.20) V (σ, τ) = η(σe−δτ/2)v(σ, τ).

For |σ| ≥ 5
4eδτ/2, we set V ≡ 0. Then V (·, τ) ∈ H, and v ≡ V for |σ| ≤ eδτ/2.

A computation shows that

(2.21) Vτ − A(V ) = ηN(v) + E,

where the “error term” is

E =
(
ητ − ησσ +

σ

2
ησ

)
v − 2ησvσ.

Lemma 2.4. The error term E vanishes except when eδτ/2 ≤ |σ| ≤ 5
4eδτ/2.

When E �= 0, one has

|E(σ, τ)| ≤ C|σ|,

where the constant C only depends on F ∗ and n. One also has

‖E(·, τ)‖ ≤ C exp(−eδτ/2),

where the constant C again only depends on F ∗ and n.

Proof. The pointwise estimate follows from the boundedness of ητ , σησ and
ησσ, as well as the pointwise bounds for v provided by Lemma 2.1. Given
the pointwise bounds for E, one finds that

‖E‖2 ≤ C2
∫ ∞

eδτ/2

σ2e−σ2/4 dσ,

from which the H norm estimate follows. �
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For each τ , the function V (·, τ) belongs to H. So we can consider the
splitting into mutually orthogonal terms determined by

(2.22) V (σ, τ) = a0(τ)h0(σ) + a2(τ)h2(σ) + W (σ, τ).

Our pointwise estimate (2.14) for v suggests that for large τ these terms will
decay like τ−1. This turns out to be the case for the middle term a2(τ)h2(τ),
but the other two terms are in fact smaller. We will show in the next few
paragraphs that they decay like τ−2. This establishes a2(τ)h2(τ) as the
dominant term for large τ .

2.6. Easy estimates for a0 and a2

Lemma 2.1 and in particular (2.14) imply that

|V (σ, τ)| ≤ C

τ
(1 + σ2)

for all σ ∈ R, and all τ ≥ τ0. Upon taking the H-inner product with h0 and
h2 this gives us

(2.23) |a0(τ)| + |a2(τ)| ≤ C

τ

for all τ ≥ τ0.

2.7. Decay of a0

Since ‖h0‖2a0(τ) = (h0, V )H, we have

‖h0‖2a′
0(τ) = (h0, Vτ )H

= (h0, A(V ) + ηN(v) + E)H

= (h0, V )H + (h0, ηN(v) + E)H

= ‖h0‖2a0(τ) + (h0, ηN(v) + E)H.

Hence

a′
0(τ) − a0(τ) =

(
h0

‖h0‖2 , ηN(v) + E

)

H
.

In other words, a′
0(τ) = a0(τ) plus a small error term. If this error term

were absent, we would have a′
0(τ) = a0(τ), and the only possible solution
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with a0(∞) = 0 would be a0(0) ≡ 0. The presence of the error term causes
a0(τ) to deviate from zero, and we now proceed to estimate this deviation.

Using our estimates for N(v) and E, we conclude that

f0(τ) � a′
0(τ) − a0(τ)

satisfies

|f0(τ)| ≤ C(F ∗, n)
τ2 .

The variation of constants formula tells us that

a0(τ) = eτ−τ1a0(τ1) −
∫ τ1

τ
eτ−τ ′

f0(τ ′) dτ ′,

in which we can let τ1 → ∞, to get

a0(τ) = −
∫ ∞

τ
eτ−τ ′

f0(τ ′) dτ ′.

Hence

|a0(τ)| ≤ C(F ∗, n)
τ2 .

2.8. Decay of W

Since W lies in the stable space of the operator A, i.e., the space spanned
by those eigenfunctions with negative eigenvalues, we expect W to decay
according to the slowest stable eigenvalue (i.e., ∼e−τ ), or else to decay like
the “forcing term” ηN(v) + E. In this situation, the forcing term is domi-
nant, and we have the following.

Lemma 2.5. For any given τ0 > 0, one has for all τ > τ0

‖W (·, τ)‖ ≤ eτ0−τ‖W (·, τ0)‖ +
C

τ2 .

Consequently, one also has

‖W (·, τ)‖ ≤ C

τ2

(
1 + W0

)
.

Here the constant C only depends on F ∗ and n, and

W0 � eτ0‖W (·, τ0)‖.
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Proof. Since ‖W‖2 = (W, W ) = (W, V ) and (W, A(V ))H = (W, A(W ))H,
one has

‖W‖d‖W‖
dτ

=
1
2

d

dτ
‖W‖2

=
1
2

d

dτ
(W, V )H

= (W, Vτ )H
= (W, A(V ) + ηN(v) + E)H
= (W, A(W ))H + (W, ηN(v) + E)H
≤ −‖W‖2 + ‖W‖ · ‖ηN(v) + E‖,

whence

(2.24)
d‖W‖

dτ
≤ −‖W‖ + ‖ηN(v) + E‖.

¿From Lemma 2.3 we conclude that |ηN(v)| ≤ C(1 + σ4)τ−2 for all σ, and
hence that

‖ηN(v)‖ ≤ C

τ2 .

For E, we use Lemma 2.4 together with the calculus inequality Ce−eδτ/2 ≤
C ′τ−2. We apply all this to (2.24) and conclude that

d‖W‖
dτ

≤ −‖W‖ +
C

τ2 .

Therefore
d(eτ‖W‖)

dτ
≤ Ceττ−2.

Integration leads to

eτ‖W (·, τ)‖ ≤ eτ0‖W (·, τ0)‖ + C

∫ τ

τ0

eτ̃

τ̃2 dτ̃ ≤ eτ0‖W (·, τ0)‖ +
C̃

τ2 eτ ,

as claimed. The second estimate for ‖W‖ follows directly from
sup τ2e−τ < ∞. �

2.9. Derivative estimates for W

We use the regularizing effect of the heat equation to bootstrap the estimates
of Lemma 2.5 by one-space derivative.
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Lemma 2.6. Let τ0 > 0 be as in Lemma 2.5. Then for all τ > τ0 + 1, one
has

‖Wσ(·, τ)‖ ≤ C(1 + W0)τ−2,

where the constant C only depends on F ∗ and n, and as before, W0 =
eτ0‖W (·, τ0)‖.

Proof. Note that

Au = uσσ − 1
2
σuσ + u = eσ2/4(e−σ2/4uσ

)
σ

so that for u ∈ D(A) one has

−(u, Au)H =
∫

R

e−σ2/4{u2
σ − u2} dσ.

Thus

(2.25) ‖∂σu‖2 = ‖u‖2 − (u, Au).

If u ⊥ h0, h2 then (u, −Au)H ≥ 0, and we have

‖∂σu‖ ≤ ‖u‖ +
√

(u, −Au)H.

If we substitute eθAu for u in this inequality then we get

(2.26)
∥
∥
∥∂σeθAu

∥
∥
∥ ≤ C√

θ
‖u‖

for 0 < θ ≤ 1, and all u ∈ D(A). Indeed, expand u in eigenvectors of A,

u =
∞∑

k=2

ukĥ2k, ĥ2k � h2k

‖h2k‖
.

Then, with λk = 1 − k,
(
eθAu, −AeθAu

)
=
∑

k≥2

λke
−2θλk |uk|2

≤
(

sup
k≥2

λke
−2θλk

)∑

k≥2

|uk|2
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≤
(

sup
λ>0

λe−2θλ
)
‖u‖2

=
C

θ
‖u‖2,

from which (2.26) follows.
The stable component W of V satisfies

Wτ = A(W ) + f(τ), where f(τ) � P(ηN(v) + E),

where P is the H-orthogonal projection onto the space {u ∈ H | u ⊥ h0, h2}.
By the variation of constants formula one then has, for all τ ≥ τ0 + 1

W (τ) = eAW (τ − 1) +
∫ 1

0
eθAf(τ − θ) dθ.

Since f(τ) ⊥ {h0, h2}, we can use (2.26) to get

‖∂σW (τ)‖ ≤ ‖∂σeAW (τ − 1)‖ +
∫ 1

0

∥
∥
∥∂σeθAf(τ − θ)

∥
∥
∥ dθ

≤ C‖W (τ − 1)‖ +
∫ 1

0

C√
θ

‖f(τ − θ)‖ dθ.

The combination of Lemmas 2.3 and 2.4 again gives ‖f(τ)‖ ≤ Cτ−2. The
integral can therefore be bounded by Cτ−2. Combining this with our
previous estimate for ‖W (τ − 1)‖ from Lemma 2.5, we get the inequality
in Lemma 2.6. �

2.10. A bound for ‖σW‖

If ϕ ∈ C1
c (R), then one has the identity

∫

R

e−σ2/42ϕ(σ)σϕ′(σ) dσ =
∫

R

e−σ2/4(−2ϕ(σ)2 +
1
2
σ2ϕ(σ)2) dσ

which after rearranging leads to

‖σϕ‖2 = 4
∫

R
e−σ2/4(σϕϕ′ + ϕ2) dσ

= 4
{
(σϕ, ϕ′)H + ‖ϕ‖2}

≤ 1
2‖σϕ‖2 + 8‖ϕ′‖2 + 4‖ϕ‖2

≤ 16
{
‖ϕ′‖2 + ‖ϕ‖2}.
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An approximation argument leads to

Lemma 2.7. For any ϕ ∈ H with ϕσ ∈ H one has σϕ ∈ H, while

‖σϕ(σ)‖ ≤ 4 {‖ϕσ‖ + ‖ϕ‖}.

In particular, W satisfies

(2.27) ‖σW‖ ≤ C(1 + W0)τ−2

for all τ ≥ τ0 + 1.

2.11. Pointwise estimates for W

A Sobolev inequality says that the bound on ‖∂σW‖ implies a pointwise
bound for W . Due to the exponential weight in the norm this bound is not
uniform. One has

Lemma 2.8. Any ϕ ∈ H with ∂σϕ ∈ H is a continuous function, which
satisfies

e−σ2/8 |ϕ(σ)| ≤ C
(
‖ϕ‖ + ‖∂σϕ‖

)
.

Hence W satisfies

|W (σ, τ)| ≤ C(1 + W0)
τ2 eσ2/8.

Proof. Assuming ϕ ∈ C1
c (R) one has

e−σ2/4ϕ(σ)2 =
∫ σ

−∞
e−σ2/4[−σ

2
ϕ2 + 2ϕϕσ

]
dσ

≤ ‖σϕ‖‖ϕ‖ + ‖ϕ‖‖ϕσ‖
≤ C

{
‖ϕ‖2 + ‖ϕσ‖2}.

So the pointwise estimate holds for ϕ ∈ C1
c . By approximation it also holds

for all ϕ ∈ H with ∂σϕ ∈ H. �

Lemma 2.8 says that W decays pointwise like τ−2, and uniformly on
bounded σ intervals. The following pointwise bound for W only gives a τ−1

decay rate, but it is stronger for large values of σ. The estimate also does
not depend on W0.
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Lemma 2.9. For some constant C = C(F ∗, n) < ∞ one has for all τ >
τ0 + 1

|W (σ, τ)| ≤ C

τ
(1 + σ2).

Proof. We have, by definition, W (σ, τ) = V (σ, τ) − a0(τ)h0(σ) − a2(τ)h2(σ).
Using our pointwise bounds for V , a0, a2, and h0(σ) ≡ 1, h2(σ) ≡ σ2 − 2,
one quickly gets the stated estimate for W . �

2.12. Pointwise estimate for Wσ

By definition we have W (τ, σ) = V (τ, σ) − a0(τ)h0(σ) − a2(τ)h2(σ). Differ-
entiate and keep in mind that h′

0(σ) = 0 and h′
2(σ) = 2σ. We get Wσ =

Vσ − 2a2(τ)σ. Using the pointwise derivative bounds (2.11) and (2.12) for
u, one then gets

(2.28) |Wσ| ≤ C

τ

(
1 + |σ|

)

which holds for all τ ≥ τ0 and σ ∈ R.

2.13. An equation for a2

As with a0, we have

‖h2‖2a′
2(τ) = (h2, Vτ )H

= (h2, A(V ) + ηN(v) + E)H

= (A(h2), V )H + (h2, ηN(v) + E)H

= (h2, ηN(v) + E)H.

We use (2.17) and the identity 1/(1 + v) = 1 − v/(1 + v) to rewrite N(v) as

(2.29)

N(v) = N2(v) + N3(v), where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N2(v) = −
(
v2
σ + 1

2v2
)
,

N3(v) = −nvσ

∫ σ
0

v2
σ

(1 + v)2
dσ

+
vv2

σ + (1/2)v3

1 + v
.

.

Here, N2(v) is the purely quadratic part, while N3(v) contains the cubic and
higher order terms.
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Lemma 2.10. There is a constant C = C(F ∗, n) such that for all τ ≥ τ0

‖ηN3(v)‖ ≤ C

τ3 .

Proof. The pointwise estimates for v and vσ from (2.14) imply that

|v| ≤ C
1 + σ2

τ
, |vσ| ≤ C

1 + |σ|
τ

whenever |σ| ≤ eδτ . Hence we have

|N3(v)| ≤ C
1 + σ6

τ3 for |σ| ≤ eδτ .

(The term with v3 contributes the highest power in σ.)
This implies the lemma. �

We continue with our computation of a′
2(τ). We have

‖h2‖2a′
2(τ) = (h2, ηN(v) + E)H

= (h2, ηN2(v) + ηN3(v) + E)H

= (h2, ηN2(v))H + (h2, ηN3(v) + E)H.

The last term satisfies

|(h2, ηN3(v) + E)H| ≤ ‖h2‖ (‖ηN3(v)‖ + ‖E‖) ≤ C

τ3 .

We would now like to replace the v in the quadratic expression N2(v) by
V , and then by the dominant term in (2.22), i.e., a2(τ)h2(σ). Before we do
this, we estimate the errors produced by these replacements.

Lemma 2.11. There is a constant C = C(F ∗, n) such that for all τ ≥ τ0,
one has

‖η (N2(v) − N2(V ))‖ ≤ Ce−eδτ/2
.

In other words η (N2(v) − N2(V )) satisfies the same super-exponentially
small estimate as the error term E; see Lemma 2.4.
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Proof. Since V = η · v, a direct calculation gives

η (N2(v) − N2(V )) = η
{

(ηv)σ
2 − vσ

2
}

+
1
2
η(η2 − 1)v2.

Using the pointwise estimates for v and vσ with the fact that
η (N2(v) − N2(V )) is supported in the region eδτ/2 ≤ |σ| ≤ 5

4eδτ/2, one arrives
at the stated estimate for the H norm of η (N2(v) − N2(V )). �

We therefore have

‖h2‖2
Ha′

2(τ) = (h2, ηN2(V ))H + (h2, η (N2(v) − N2(V )))H
+ (h2, ηN3(v) + E)H .

If we write N2[v, w] = −vσwσ − 1
2vw for the natural symmetric bilinear

expression with N2(v) = N2[v, v], then the first term above can be written as

(h2, ηN2(V ))H = (ηh2, N2(a2h2 + a0h0 + W ))H
= (a2)2 (ηh2, N2(h2))H

+ 2a2 (ηh2, N2[h2, a0h0 + W ])H
+ (ηh2, N2(a0h0 + W ))H ,

which is a quadratic polynomial in a2. Adding in the omitted error terms,
we reach the following observation.

Lemma 2.12.

a′
2(τ) = K(τ)a2(τ)2 + 2L(τ)a2(τ) + M(τ),

in which

K(τ) =
1

‖h2‖2 (ηh2, N2(h2))H ,

L(τ) =
1

‖h2‖2 (ηh2, N2[h2, a0h0 + W ])H ,

M(τ) =
1

‖h2‖2 {(ηh2, N2(a0h0 + W ))H + (h2, η (N2(v) − N2(V )))H

+ (h2, ηN3(v) + E)H}.

Lemma 2.13.

K(τ) = −8 + O(e−eδτ/2
).
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Proof. Since N2(v) = −v2
σ − 1

2v2, the explicit expressions (2.19) for h0, h2,
and h4 give us

N2(h2) = −1
2
σ4 − 2 σ2 − 2 = −1

2
h4 − 8 h2 − 12 h0.

Hence (h2, N2(h2))H = −8‖h2‖2. This implies

K(τ) =
(h2, N2(h2))H

‖h2‖2 +
((1 − η)h2, N2(h2))H

‖h2‖2 .

The first term is −8. The other term can be written as the integral of a
function with fixed polynomial growth, which is supported in the region
|σ| ≥ eδτ/2. This leads quickly to the stated estimate. �

Lemma 2.14. L(τ) = O
(
τ−2

)
, i.e., there is a constant C = C(F ∗, n) such

that for all τ ≥ τ0 + 1 one has |τ2L(τ)| ≤ C.

Proof. Using (bi)linearity of N2[v, ṽ], we get

‖h2‖2L(τ) = (ηh2, N2[h2, a0h0 + W ])H
= a0(τ) (h2, ηN2(h2, h0))H + (h2, ηN2(h2, W ))H .

The first term is O(τ−2). For the other term, we have

|(h2, ηN2(h2, W ))H| =
∣
∣
∣
∣

(
ηh2, h

′
2(σ)Wσ +

1
2
h2W

)

H

∣
∣
∣
∣

≤ ‖ηh2h
′
2‖‖Wσ‖ + C‖W‖

≤ C

τ2

by our estimates for ‖W‖ and ‖∂σW‖. �

Lemma 2.15.

M(τ) ≤ C

{
eτ0−τ

τ
‖W (·, τ0)‖ +

1
τ3

}

In fact, one can show that M(τ) ≤ Cατ−(4−α) for any α > 0, but we will
only need the estimate with α = 1.

Proof. In Lemma 2.12, ‖h2‖2M(τ) is defined as the sum of three terms. We
now estimate them one by one.
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The middle term is

|(h2, η(N2(v) − N2(V )))H| ≤ ‖h2‖‖η(N2(v) − N2(V ))‖ ≤ Ce−eδτ/2
,

by Lemma 2.11.
The third term is bounded by

|(h2, ηN3(v) + E)H| ≤ C (‖ηN3(v)‖ + ‖E‖) ≤ C

τ3 ,

because of Lemma 2.10 and the super-exponential estimate for E in
Lemma 2.4.

The first term can itself be split into three terms:

(2.30)
(
ηh2, N2(a0h2 + W )

)
H

= a0(τ)2
(
ηh2, N2(h2)

)
H + 2a0(τ)

(
ηh2, N2[h2, W ]

)
H +

(
ηh2, N2(W )

)
H.

The first of these terms is O(τ−4), since a0(τ) = O(τ−2).
From

(ηh2, N2[h2, W ])H =
(

ηh2,−h′
2(σ)Wσ − 1

2
h2W

)

H

= −
(
ηh2h

′
2, Wσ

)
H − 1

2
(
ηh2(σ)2, W )H

= O (‖Wσ‖ + ‖W‖)

= O
(
τ−2)

and a0(τ) = O(τ−2), we deduce that the middle term in (2.30) is also O(τ−4).
We are left with the last term in (2.30). This term can be expanded as

(2.31)
(
ηh2, N2(W )

)
H = −

(
ηh2, W

2
σ

)
H −

(
ηh2,

1
2
W 2

)

H
.

The second term satisfies
∣
∣
∣
∣

∫

R

e−σ2/4ηh2(σ)W (τ, σ)2 dσ

∣
∣
∣
∣ ≤ C

(
‖W‖2 + ‖σW‖2)

≤ C

{
e2(τ0−τ)‖W (·, τ0)‖2 +

1
τ4

}
,

by Lemmas 2.5 and 2.7.
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We bound the first term in (2.31) as follows:

|
(
ηh2, W

2
σ

)
H| =

∣
∣
∣
∣

∫

R

e−σ2/4ηh2(σ)W 2
σ dσ

∣
∣
∣
∣

≤ C

∣
∣
∣
∣

∫

R

e−σ2/4(1 + σ2)W 2
σ dσ

∣
∣
∣
∣

≤ C‖(1 + σ)2Wσ‖‖Wσ‖.

The pointwise estimate (2.28) bounds the first factor by

‖(1 + σ)2Wσ‖ ≤ C

τ
,

while Lemma 2.6 implies

‖Wσ‖ ≤ C

{
eτ0−τ‖W (·, τ0)‖ +

1
τ2

}
.

Combined, these last two estimates imply Lemma 2.15. �

2.14. Dichotomy for the decay of a2(τ)

We have shown that

(2.32)
da2(τ)

dτ
= −8a2(τ)2 + M∗(τ),

where

|M∗(τ)| ≤ C(1 + W0)τ−3.

Hence

τ
d(τa2(τ))

dτ
= (τa2(τ)) − 8(τa2(τ))2 + τ2M∗(τ).

Lemma 2.16. The coefficient a2(τ) satisfies either

(2.33) a2(τ) ≤ C(1 + W0)τ−2

for all τ ≥ τ0 + 1, or else

(2.34) lim
τ→∞

τa2(τ) =
1
8
.
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2.15. Pinching time

We will show below that alternative (2.34) does indeed occur, namely that
there exists an open set of solutions matching the asymptotic profile we have
constructed. Our first step is to improve the estimate obtained in [3, Lemma
6.1]. Let r(t) ≡ ψ(0, t) denote the radius of the neck, and recall that

K =
ψss

ψ
and L =

1 − ψ2
s

ψ2

denote the sectional curvatures. Define λ = 2 − log Lmin(0), so that we may
write the cylindricality F as

F =
K

L
(λ + log L) =

ψψss

1 − ψ2
s

(
λ + log

1 − ψ2
s

ψ2

)
.

Recall that there exists an F ∗ ≥ n − 1 depending only on g(0) such that
0 ≤ F ≤ F ∗ on the neck. Writing the evolution equation for the radius

dr

dt
=
[
ψss − (n − 1)

1 − ψ2
s

ψ

]

s=0
= ψss − n − 1

r

in the form

(2.35)
d

dt
(r2) = −2(n − 1) + 2

F

λ + log 1/r2

then proves that

(2.36) −2(n − 1) ≤ d

dt
(r2) ≤ −2(n − 1) + 2

F ∗

λ + log 1/r2 .

This observation allows us to prove that the singularity time depends
continuously on the initial conditions.

Lemma 2.17. For rotationally symmetric metrics g(t) that develop a neck-
pinch, the pinching time T is a continuous function of the initial metric g0.

Proof. Given a metric g0, let T0 = T (g0) denote the singularity time of the
solution g(t) with initial data g0.

To prove lower semicontinuity, let T− < T0 be given. Then {g(t) : 0 ≤
t ≤ T−} is a smooth solution of Ricci flow. Because regular solutions of
parabolic equations depend continuously on their initial data, a solution
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g̃(t) will remain smooth for 0 ≤ t ≤ T−, provided that its initial data g̃0
is sufficiently close to g0. This implies that the singularity time T̃ of g̃(·)
satisfies T̃ > T−.

To prove upper semicontinuity, let T+ > T0 be given. At any time T∗ <
T0, observe that for all g̃0 sufficiently close to g0, the radius r̃ of the solution
g̃(t) satisfies r̃(T∗)2 ≤ 2r(T∗)2, and its cylindricality F̃ satisfies F̃ ≤ F̃ ∗ ≤
2F ∗. By taking T∗ close enough to T0, one may by (2.36) ensure that any
solution g̃(t) with initial data g̃0 satisfies

d

dt
(r̃2) ≤ −2(n − 1) +

4F ∗

λ + log 1/2r(T∗)2
≤ −(n − 1)

for all t ∈ (T∗, T̃ ), where T̃ is the pinching time of g̃(t). So for t ∈ (T∗, T̃ ), it
follows that

r̃(t)2 ≤ r̃(T∗)2 − (n − 1)(t − T∗)

≤ 2r(T∗)2 − (n − 1)(t − T∗)
≤ 4(n − 1)(T0 − T∗) − (n − 1)(t − T∗).

Here we used the fact that r(t)2 ≤ 2(n − 1)(T0 − t). Choose T∗ < T0 closer to
T0 if necessary such that T∗ + 4(T0 − T∗) < T+. Then if t ≥ T∗ + 4(T0 − T∗),
one has r̃(t)2 ≤ 0. This implies that T̃ ≤ T∗ + 4(T0 − T∗) < T+. �

2.16. Initial data

Given a target time T , we now construct initial data u = 1 + v at t =
t0 < T that will become singular at T and satisfy the asymptotic profile
(2.34). In the next subsection, we shall obtain appropriate estimates for the
function V (σ, τ) = η(e−δτ/2σ) · v(σ, τ) =

∑∞
k=0 a2k(τ)h2k(σ) corresponding

to this construction.
Let ε ∈

(
0, 1

4
√

n−1

)
be a constant to be chosen later. Near the developing

neckpinch, we impose the initial profile

u = 1 + α0h0(σ) + α2h2(σ),

where α0 and α2 > 0 are constants to be chosen later, and σ(s, t) = s/
√

T − t.
That is, we prescribe ψ(s, t0) = Rn(t0) · u(σ, t0) as

(2.37) ψ(s, t0) =
√

2(n − 1)
√

T − t0

[
(1 + α0 − 2α2) + α2

s2

T − t0

]
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on the region N = {s : |s| ≤ s0}, where s0 is given by

s0 = ε
√

T − t0 log
1

T − t0
.

We will require

(2.38) −ε ≤ α0 ≤ 2α2

and

(2.39)
ε

τ0
≤ α2 ≤ 1

τ0
,

where

τ0 = log
1

T − t0
� 1.

The radius of a neck of the form (2.37) is

(2.40) r0 = ψ(0, t0) =
√

2(n − 1)
√

T − t0(1 + α0 − 2α2).

Thus

ψ = r0 +
√

2(n − 1)
α2s

2
√

T − t0
.

Since

ψs = 2
√

2(n − 1)
α2s√
T − t0

,

we have |ψs| ≤ ψs(s0, t0) on N , where ψs(s0, t0) = 2ε
√

2(n − 1) · τ0α2
satisfies

ε2 ≤ ψs(s0, t0)
2
√

2(n − 1)
≤ ε.

Outside N , we extend ψ linearly with slope ψs(s0, t0) > 0 until we reach
the height ψ = 1, where we glue on a standard profile that is smooth at the
poles. As in [3, § 8], this can be done with |ψs| ≤ 1 everywhere. Notice that
the initial profile ψ(·, t0) is smooth except on ∂N ; by [31], the corresponding
solution of Ricci flow will be smooth for all t > t0 that it exists.

We next obtain a formula for the upper bound F ∗ on the cylindricality
F of a neck of the form (2.37), where α0 and α2 satisfy (2.38) and (2.39),
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respectively. Note that F ≤ 0 off N . On N , we have

ψ ≤ ψ(s0, t0) = r0 +
√

2(n − 1)
α2s

2
0√

T − t0

≤
√

2(n − 1)(1 + ε2τ0)
√

T − t0

and

ψss = 2
√

2(n − 1)
α2√

T − t0
≤ 2

√
2(n − 1)

τ0
√

T − t0
.

Independent of ε ≤ 1
4 , we may choose t∗ close enough to T so that for any

t0 ∈ [t∗, T ), the radius is bounded from below by

r0 ≥
√

2(n − 1)
√

T − t0

(
1 − ε − 2

τ0

)
≥

√
2(n − 1)

2

√
T − t0,

and so that the sectional curvature L is bounded from below on N by

L =
1 − ψ2

s

ψ2 ≥ 1 − 8(n − 1)ε2

ψ(s0, t0)2
≥ 1

4(n − 1)(T − t0)(1 + ε2τ0)2
≥ e2,

provided τ0 > τ∗
0 (n, ε). Here we used the fact that limx↘0(x log 1

x) = 0. By [3,
Lemma 9.1], the bound L ≥ e2 allows us to assume λ = 0. Combining the
estimates above, we conclude that there exists a C = C(n, t∗) such that for
any t0 ∈ [t∗, T ), one has

F =
K

L
log L =

ψψss

1 − ψ2
s

log
1 − ψ2

s

ψ2

≤ 2
1 − 8(n − 1)ε2 ψψss log

1
r0

≤ 16(n − 1)
1 + ε2τ0

τ0

(
log 2 +

τ0

2

)

≤ Cε2τ0.

Hence we may define

(2.41) F ∗ = (n − 1) + Cε2τ0.

This formula for F ∗ allows us to adjust our constants in order to force
pinching at T .
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Lemma 2.18. There exist an ε∗ and a t∗ depending only on n such that
for any ε ∈ (0, ε∗], all initial times t0 ∈ [t∗, T ), and any α2 satisfying (2.39),
there exists some α0 satisfying (2.38) such that the solution with initial pro-
file (2.37) becomes singular exactly at T .

Proof. Proposition 5.2 of [3] implies that r is monotonically decreasing. So
for all t ≥ t0 that the solution exists, one has

r(t)2 ≤ r2
0 ≤ 2(n − 1)(T − t0).

As above, we fix t∗ < T so that (2.41) holds for all t0 ∈ [t∗, T ). Then by
(2.36), there exists a c > 0 depending only on n such that

−2(n − 1) ≤ d

dt
(r2) ≤ −2(n − 1) + 2

n − 1 + Cε2τ0

τ0 − c
.

There exists a C∗ = C∗(n, t∗) such that (n − 1 + Cε2τ0)/τ0 − c ≤ C∗ε2.
Hence we may fix ε∗ = ε∗(C∗) such that for all ε ∈ (0, ε∗], one has

−2(n − 1) ≤ d

dt
(r2) ≤ −2(n − 1) (1 − ε) .

By [3, Lemma 7.1], the solution becomes singular at T̃ if and only if r(T̃ ) = 0.
It follows that

r2
0

2(n − 1)
≤ T̃ − t0 ≤ 1

1 − ε
· r2

0
2(n − 1)

.

By (2.40), this implies that

(1 + α0 − 2α2)2 ≤ T̃ − t0
T − t0

≤ (1 + α0 − 2α2)2

1 − ε
.

Thus if α0 − 2α2 > 0, then pinching occurs at T̃ > T . On the other hand,
if −1 < α0 − 2α2 < −ε, then pinching occurs at T̃ < T . By Lemma 2.17,
pinching will occur exactly at T for some α0 ∈ [2α2 − ε, 2α2]. Clearly, this
α0 satisfies (2.38). �

2.17. The dominant asymptotic profile

For τ ≥ τ0, let v(σ, τ) denote the solution of Ricci flow corresponding to the
initial data (2.37). Then

v(σ, τ0) = α0h0(σ) + α2h2(σ) for |σ| ≤ σ0 = σ(s0, t0) = ετ0.
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For τ ≥ τ0, define V (σ, τ) = η(e−δτ/2σ)v(σ, τ), noting that V (·, τ) ∈ H
admits the orthogonal decomposition

(2.42) V (σ, τ) = a0(τ)h0(σ) + a2(τ)h2(σ) + W (σ, τ).

Intuitively, one expects that a0 and a2 will be close to α0 and α2,
respectively, at τ = τ0 and for a short time thereafter. We now make this
expectation precise. Define U ∈ H by

U = V (·, τ0) − α0h0 − α2h2.

At τ = τ0, one has |Vσ| = |vσ| = |ψs|/
√

2(n − 1) ≤ ε for |σ| ≤ σ0 and |Vσ| ≤
1 everywhere. Because |α0|, α2 ∈ [0, 1], there are universal constants C (which
may change from line to line) such that

U(σ) = 0 for all |σ| < σ0,

|U(σ)| ≤ C(1 + σ2) for all |σ| ≥ σ0,

and hence such that

‖U‖2 ≤ C

∫

|σ|≥σ0

(1 + σ2)2 e−σ2/4 dσ

≤ Ce−σ2
0/5 = Ce−ε2τ2

0 /5.

Because ‖W‖2 = 〈W, W 〉 = 〈W, U〉 ≤ ‖W‖ ‖U‖ at τ = τ0, it follows that the
constant W0 introduced in Lemma 2.5 satisfies

(2.43) W0 = eτ0 ‖W (·, τ0)‖ ≤ eτ0 ‖U‖ ≤ C exp
(

τ0 − ε2

10
τ2
0

)
.

Similarly, one has

a2(τ0) =
1

‖h2‖2 〈h2, V (·, τ0)〉 = α2 +
1

‖h2‖2 〈h2, U〉 ,

and hence

(2.44) |a2(τ0) − α2| ≤ Ce−ε2τ2
0 /10.

We are now ready to prove that alternative (2.34) occurs. By (2.32), one
has

d

dτ
a2(τ) = −8a2(τ)2 + M∗(τ),
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where |M∗(τ)| ≤ C(1 + W0)τ−3. By (2.43), we may make τ0 so large that
C(1 + W0) ≤ C0. Then

−8a2(τ)2 − C0

τ3 ≤ d

dτ
a2(τ) ≤ −8a2(τ)2 +

C0

τ3 .

By (2.39) and (2.44), we may make τ0 larger if necessary such that
√

C0

8τ3
0

� ε

2τ0
≤ a2(τ0) ≤ 2

τ0
.

As long as a2(τ)2 > C0
8 τ−3, the function a2(τ) will be decreasing. For such

times, one has

d

dτ
a2(τ) ≥ −8a2(τ0)2 − C0

τ3 ≥ −32
τ2
0

− C0

τ3
0

≥ −64
τ2
0

provided that τ0 is large enough, and hence

a2(τ) ≥ a2(τ0) − 64
τ2
0

(τ − τ0) ≥ ε

2τ0
− 64

τ2
0

(τ − τ0).

In particular, given any C > 0, one can make τ0 so large that

a2(τ0 + 1) ≥ ε

2τ0
− 64

τ2
0

≥ C
1 + W0

(τ0 + 1)2
.

This justifies our assumption that a2 was decreasing for τ0 ≤ τ ≤ τ0 + 1.
Moreover, if we choose C as in (2.33) then it violates alternative (2.33).
Hence we have proved the following result.

Proposition 2.19. For any final time T , all sufficiently small ε > 0, all
initial times t0 sufficiently close to T and any α2 satisfying (2.39), there
exists an α0 satisfying (2.38) such that the solution (2.42) with initial profile
(2.37) becomes singular at T and satisfies the asymptotic profile

(2.45) a2(τ) =
1
8τ

+ o
(

1
τ

)
as τ → ∞.

2.18. The intermediate region

Consider a solution that forms a singularity at time t = T . Define u, v, etc. as
above and assume that our solution satisfies (2.45).
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We have shown that

(2.46) v(σ, τ) =
σ2 − 2

8τ
+ o

(
1
τ

)
(τ → ∞),

uniformly on any bounded interval |σ| ≤ A.
Now consider the quantity

q = u2 − 1.

Lemma 2.20. For any constants ε > 0 and B < ∞, there exist an A and
a τ̄ such that

(1 − ε)
σ2

4τ
< q(σ, τ) < (1 + ε)

σ2

4τ
whenever A ≤ σ ≤ B

√
τ and times τ ≥ τ̄ .

In other words, for 1 � σ ≤ B
√

τ one has

u =

√

1 + (1 + o(1))
σ2

4τ
≈
√

1 +
σ2

4τ
.

We shall prove this lemma by computing the evolution equation for q in
the variables τ and ρ = σ/

√
τ , and finding suitable sub- and supersolutions.

The evolution equation (2.49) turns out to be a small perturbation of a first
order linear equation, which is easily solved by following its characteristics.

2.18.1. Equation for q. Since qσ = 2uuσ and qσσ = 2uuσσ + 2u2
σ, one

has

(2.47) qτ |x = qσσ + q +
n − 2

2
q2
σ

q + 1
.

Here the time derivative is with constant x. Using Lemma 2.2, we get

(2.48) qτ |σ = qσσ − σ

2
qσ + q − nJ(σ, τ)qσ +

n − 2
2

q2
σ

q + 1
,

where qτ |σ is the derivative of q with σ held constant and where

J =
uσ

u
+
∫ σ

0

u2
σ

u2 dσ.

We now regard q as a function of the new variable ρ = σ/
√

τ . Because

qτ |σ = qτ |ρ − 1
2

ρ

τ
qρ,
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one has

(2.49) qτ |ρ − 1
τ
qρρ +

ρ

2
qρ − q =

1
τ

{
ρ

2
qρ − n

√
τJqρ +

n − 2
2

q2
ρ

q + 1

}

.

2.18.2. A subsolution for (2.49). We begin with some simple estimates.
Fix some A0 � 1 and recall that τ0 is the smallest time under consideration
in this paper. Given B > 1, we shall choose A ≥ A0 and τ1 ≥ τ0 large enough
to make everything work. The region A/

√
τ ≤ ρ ≤ B2 corresponds to A ≤

σ ≤ B2√τ . By Lemma 2.1, there exist C0 = C0(B) and C1 = C1(A0) such
that for all A ≤ σ ≤ B2√τ , one has

u ≤ 1 + C0
σ2

τ
= 1 + C0ρ

2 ≤ 1 + C0B
4

and

0 ≤ uσ ≤ C0
1 + σ

τ
≤ C1

σ

τ
= C1

ρ√
τ
.

Thus we have

0 ≤ uρ ≤ C1ρ

and

0 ≤ ρqρ = 2ρuρu ≤ C(A0, B)

for A/
√

τ ≤ ρ ≤ B2. Since u ≥ 1 − C/τ for C = C(n, F ∗), we may assume
without loss of generality that τ0 � 1 is so large that

q2
ρ

q + 1
=

q2
ρ

u2 ≤ 2q2
ρ ≤ C(A0, B)

for A/
√

τ ≤ ρ ≤ B2 and τ ≥ τ0. Since n
√

τJqρ ≥ 0 for all 0 ≤ σ ≤ eδτ , it
follows that

(2.50)
ρ

2
qρ − n

√
τJqρ +

n − 2
2

q2
ρ

q + 1
≤ C(A0, B).

We introduce the linear differential operator

L[f ] � fτ |ρ − 1
τ
fρρ +

ρ

2
fρ − f.
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Then (2.49) and (2.50) imply that q = u2 − 1 satisfies

|L[q]| ≤ C(A0, B)
τ

.

whenever A/
√

τ ≤ ρ ≤ B2 and τ ≥ τ0.
Let Q be a smooth function with support in [0, 1] such that Q(r) ≤ r2/4,

and define

K0 = max
0≤r≤1

|Q′′(r)|.

For τ1 ≥ τ0, define

(2.51) q0(ρ, τ) = ρ1(τ)2Q
(
ρ/ρ1(τ)

)
,

with

ρ1(τ) � e(τ−τ1)/2 A√
τ1

.

This function is almost in the nullspace of the linear operator L; indeed, a
straightforward computation shows that

L[q0] = −1
τ

∂2q0

∂ρ2 = −1
τ
Q′′(ρ/ρ1(τ)

)
,

so that |L[q0]| ≤ K0/τ .
Now for K ≥ K0 to be determined and any θ ∈ (1/2, 1), consider

(2.52) q−(ρ, τ) = θq0(ρ, τ) +
K

τ
.

One then has

L[q−] = θL[q0] + KL[τ−1] < θ
K0

τ
− K

τ
<

K0 − K

τ
≤ 0,

so that q− is a subsolution for all τ ≥ τ0. Moreover, if we choose K ≥ K0 +
C(A0, B), then

(2.53) L[q− − q] ≤ C(A0, B) + K0 − K

τ
≤ 0

for A/
√

τ ≤ ρ ≤ B2 and τ ≥ τ0.
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Define the region

(2.54) Ω =
{

(ρ, τ) :
A√
τ

≤ ρ ≤ ρ1(τ), τ1 ≤ τ ≤ ω

}
,

where ω is determined by ρ1(ω) = B2, i.e.,

ω = τ1 + log
(
B4τ1/A

2).

We will choose A and τ1 so that B4τ1 > A2. First, we compare the values of
q and q− along the parabolic boundary of Ω.

Along the left edge ρ = A/
√

τ , τ ≥ τ1, it follows from (2.46) that

(2.55) q(A/
√

τ , τ) = u2(A, τ) − 1 =
A2 − 2

4τ
+ o

(
1
τ

)
≥ (1 − ε0)

A2

4τ
,

where ε0 = ε0(A0, τ1). On the other hand, there exists an ε1 = ε1(A, K, τ0)
such that

q−(ρ, τ) ≤ θ

4
ρ2 +

K

τ
≤ (1 + ε1)

θ

4
ρ2

for ρ ≥ A/
√

τ . So q− < q at (A/
√

τ , τ) provided that

1
2

≤ θ <
1 − ε0

1 + ε1
.

Along the right edge ρ = ρ1(τ), one has

q−(ρ1(τ), τ) = ρ1(τ)2Q(1) +
K

τ
=

K

τ
,

because Q is supported in [0, 1]. But since qρ ≥ 0, estimate (2.55) implies
that

q(ρ1(τ), τ) = q(e(τ−τ1)/2A/
√

τ1, τ) ≥ q(A/
√

τ , τ) ≥ 1 − ε0

4
A2

τ
,

where ε0 = ε0(A0, τ1). So q− ≤ q at (ρ1(τ), τ) provided that

A ≥ 2
√

K

1 − ε0
.

The bottom of Ω is the single point (A/
√

τ1, τ1). So the choice θ < (1 −
ε0)/(1 + ε1) ensures that q− < q there as well.
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Now choose K depending on A0, B and K0 to satisfy K ≥ K0 + C(A0, B).
Take τ1 ≥ τ0 large enough so that ε0 < 1/2 and choose A ≥ A0 depending
on K so that A ≥

√
8K and so that ε1 > 0 is as small as desired. Then

increase τ1 if necessary so that τ1 ≥ A2/B4, making ε0 as small as desired.
These choices make it possible to take θ ∈ (1/2, 1) as close to 1 as one wishes
and still satisfy θ < (1 − ε0)/(1 + ε1). Furthermore, they ensure that q− ≤ q
along the parabolic boundary of Ω. Because e(τ−τ1)/2A/

√
τ1 ≤ B2 for all

τ ≤ ω, it follows from (2.53) that q ≥ q− throughout Ω. Since for any ε, one
may take Q(r) = r2/4 for r ∈ (ε, 1 − ε), this implies in particular that

q(ρ, τ) > θ
ρ2

4

for all points ρ such that A/
√

τ ≤ ρ ≤ B and times τ such that

2 log (B
√

τ1/A) ≤ τ − τ1 ≤ 2[log (B
√

τ1/A) + log B].

Our estimates only improve if we increase τ1 (without altering any other
choices); in particular, θ does not decrease. Since τ = τ1 + o(τ1) as τ1 → ∞,
we have proved the lower estimate in Lemma 2.20.

2.18.3. A supersolution. A slight modification of the preceding con-
struction will give an upper barrier for q on the same domain Ω. One begins
with the a priori bound

u ≤ C(1 + σ2/τ) = C(1 + ρ2) and hence q ≤ C(1 + ρ2)ρ2 = C0(B)ρ2,

(2.56)

which holds for A0/
√

τ ≤ ρ ≤ B2.
Choose a smooth function Q̂ which satisfies Q̂(r) ≥ r2/4, and define

K̂0 = max[0,1] |Q̂′′|. Instead of requiring Q̂ to be supported in [0, 1], we
impose

Q̂(1) = 2C0(B) with C0(B) as in (2.56).

For τ ≥ τ1, one introduces q̂0(ρ, τ) = ρ1(τ)2Q̂
(
ρ/ρ1(τ)

)
, as in (2.51), and

finds that |L[q̂0]| ≤ K̂0/τ . For K̂ ≥ K̂0 and any θ ∈ (1, 3
2), define

q+(ρ, τ) = θq̂0(ρ, τ) − K̂/τ.

Choosing K̂ ≥ K̂0 + C(A0, B), one finds, as in (2.53), that L[q+ − q] ≥ 0 for
τ ≥ τ0 and A/

√
τ ≤ ρ ≤ B2. Thus q+ is a supersolution, provided q+ ≥ q on

the parabolic boundary of Ω.
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On the left edge of Ω, one has, as in (2.55), q ≤ (1 + ε0)A2/4τ . One also
has q+ ≥ (1 − ε1)θA2/4τ , where ε1 = ε1(A, K).

Hence one will have q ≤ q+ on the left edge if θ satisfies

1 + ε0

1 − ε1
< θ <

3
2
.

On the right edge of Ω one has ρ = ρ1(τ), and thus

q+(ρ, τ) = θρ1(τ)2Q̂(1) − K̂/τ ≥ θ
(
1 − K̂/A2)Q(1)ρ1(τ)2Q(1)ρ1(τ)2,

provided A is chosen so large that θ(1 − K̂/A2) > 1. On the other hand we
know that q ≤ C0(B)ρ1(τ)2 holds on the right edge of Ω. Hence our condition
Q̂(1) > C0(B) implies that q+ > q on the right edge.

It now follows that q ≤ q+ on Ω, and as with the subsolution, this implies
that q(ρ, τ) < θρ2/4 for all ρ ∈ [A/

√
τ , B] and τ ≥ τ1 + o(τ1).

2.19. Convergence in the outer region

Let B and ε > 0 be given constants. Define A = A(ε, B) and τ̄ = τ̄(ε, B) as
in Lemma 2.20. Then we have shown that when

(2.57) σ = B
√

τ , i.e., when s2 =
B2

4
(T − t) log

1
T − t

,

one has
√

1 + (1 − ε)B2/4 ≤ u ≤
√

1 + (1 + ε)B2/4.

For ψ = Rn(t)u, this therefore means that

√
T − t

√
1 + (1 − ε)B2/4 ≤ ψ

√
2(n − 1)

≤
√

T − t
√

1 + (1 + ε)B2/4

(2.58)

for all t ∈ [t̄, T ), where t̄ = T − e−τ̄ .
We define the outer region (with parameter B) to be the portion of

space–time given by

ΓB =
{

(x, t) : τ̄ ≤ τ < T, s(x, t)2 ≥ B2

4
(T − t) log

1
T − t

}
.

The boundary ∂ΓB of ΓB is given by (2.57).
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For any given t∗ ∈ [t̄, T ), we let x∗ be the x coordinate of the point on
∂ΓB with t = t∗. We will now show that s(x∗, t) and ψ(x∗, t) change very
little for t∗ ≤ t < T . This will directly imply the asymptotic description of
ψ(s, T ) for s → 0 in the introduction. Fix some B0 > 1. We begin with a
simple uniform estimate for ψs in the region B0

√
τ ≤ σ ≤ ηeδτ .

Lemma 2.21. For any B0 > 1, there exist constants γ, δ > 0 and C < ∞
depending only on B0 and the initial data such that

0 ≤ ψs(s, t) ≤ C√
τ

for all τ ≥ τ̄(B0) and B0
√

τ ≤ σ(s) ≤ γeδτ .

Proof. Define r(t) = ψ(0, t). By (2.45), we have

r =
√

2(n − 1)(T − t)
{

1 − 1
4τ

+ o
(

1
τ

)}
.

By (2.58), we have

ψ(s, t) ≥ ψ(s̄, t) ≥
√

2(n − 1)(T − t)
√

1 − B2
0/8

for all s ≥ s̄(B0) = B0τ
√

T − t and τ ≥ τ̄(B0) ≥ τ0. Now restricting our atten-
tion to the region of the neck where ψ ≤ 1/B0 and 0 ≤ ψs ≤ 1/B0, we may
apply estimate (34) of [3], obtaining C depending on B0 and F ∗

such that

ψ2
s ≤ C log

(
log r

log ψ

)
.

This estimate holds as long as σ ≤ γeδτ , i.e., as long as s ≤ γ(
√

T − t)1−2δ ≤
r1−2δ. Let c1 = log

√
1 − B2

0/8. Then

log r

log ψ
≤ log

√
2(n − 1) − τ/2 − 1/4τ + o(1/τ)
log

√
2(n − 1) − τ/2 + c1

= 1 +
2c1

τ
+ o

(
1
τ

)
.

Hence τψ2
s ≤ Cτ log(log r/log ψ) = C(2c1 + o(1)). �

We are now ready to describe s(x∗, t) and ψ(x∗, t).
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Lemma 2.22. For any x∗ the limits

lim
t→T

s(x∗, t) and lim
t→T

ψ(x∗, t)

exist. Furthermore, a constant C < ∞, which does not depend on B ≥ B0
or x∗, exists for which one has

|s(x∗, t) − s(x∗, t∗)| ≤ C
{
B−3 + | log(T − t∗)|−3/2} s(x∗, t∗)(2.59)

and

|ψ(x∗, t) − ψ(x∗, t∗)| ≤ C

B2 ψ(x∗, t∗)(2.60)

for all t ∈ [t∗, T ).

Proof. To estimate the change in s(x∗, t) we use

(2.61)
∂s

∂t

∣
∣
∣
∣
x=x∗

= n
ψs(x∗, t)
ψ(x∗, t)

+ n

∫ s(x∗,t)

0

(
ψs

ψ

)2

ds,

as in the proof of Lemma 1.2. Let t′ ∈ (t∗, T ) be given, and let x′ be such
that s(x′, t′) lies on ∂ΓB.

sT

t

t∗
t′

s(x′, t′)
s(x∗, t′)
s(x∗, t∗)

∂ΓB

Then at time t′, Lemma 2.21 implies that

(2.62) 0 ≤ ψs(s, t′) ≤ C
√

log 1/(T − t′)
for all s ≤ s′.

Since x∗ ≥ x′, we then get

∫ s(x∗,t′)

0

(
ψs

ψ

)2

ds =
∫ s(x′,t′)

0

(
ψs

ψ

)2

ds +
∫ s(x∗,t′)

s(x′,t′)

(
ψs

ψ

)2

ds.
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In the first term, we use (2.62) to get

∫ s(x′,t′)

0

(
ψs

ψ

)2

ds ≤ C
√

ln 1/(T − t∗)

∫ s(x′,t′)

0

ψs

ψ2 ds

≤ C
√

ln 1/(T − t∗)
1

ψ(0, t′)

≤ C
√

(T − t′) ln 1/(T − t∗)
.

In the second term, we have x′ < x < x∗ such that

ψ ≥ ψ(x′, t′) ≥
√

2(n − 1)(T − t′)
(
1 + (1 − ε)B2/4

)
≥ CB

√
T − t′,

with C independent of t or B ≥ B0. On the other hand, we also have ψs ≤ 1
such that

∫ s(x∗,t′)

s(x′,t′)

(
ψs

ψ

)2

ds ≤
∫ s(x∗,t′)

s(x′,t′)

(
ψs

ψ2

)
ds

≤ 1
ψ(x′, t′)

≤ C

B
√

T − t′
.

For the first term in (2.61), one has the same estimate, so that at any time
t′ ∈ (t∗, T ], one has

0 ≤ ∂ts(x∗, t
′) ≤ C

{
B−1 + | log(T − t∗)|−1/2}(T − t′)−1/2.

This is integrable in t′ ∈ (t∗, T ), so that limt→T s(x∗, t) must exists. Integra-
tion with t∗ < t′ < t then leads to

|s(x∗, t) − s(x∗, t∗)| ≤ C
{
B−1 + | log(T − t∗)|−1/2}√T − t∗.

Recall (2.57), apply a2b, ab2 ≤ a3 + b3 to a = B−1 and b = | log(T − t∗)|−1/2,
and conclude

|s(x∗, t) − s(x∗, t∗)| ≤ C
{
B−1 + | log(T − t∗)|−1/2} s(x∗, t∗)

B
√

ln 1/(T − t∗)

≤ C
{
B−3 + | log(T − t∗)|−3/2}s(x∗, t∗),

which proves the estimate (2.59) for s.
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To establish the other estimate, we recall from [3, Proposition 5.3] that
there is a constant C which only depends on the initial data and the dimen-
sion n such that

|2ψψt| ≤ C

always holds. In particular, the constant C does not depend on our choice of
B. In [3], we used this estimate to show that limt→T ψ(x∗, t) exists. It also
implies that

(2.63) |ψ(x∗, t)2 − ψ(x∗, t∗)2| ≤ C(t − t∗)

and hence, using (2.58), that

|ψ(x∗, t) − ψ(x∗, t∗)| ≤ C(t − t∗)
ψ(x∗, t) + ψ(x∗, t∗)

≤ C

B

√
T − t∗ ≤ C

B2 ψ(x∗, t∗)

for all t ∈ (t∗, T ). �

2.20. Asymptotics in the outer region

Using (2.58) and (2.60), we compute that

ψ(x∗, t) =
(
1 + O(B−2)

)
ψ(x∗, t∗)

=
(
1 + O(B−2)

)√
2(n − 1)

[
1 + (1 + θε)B2/4

]
(T − t∗)

=
(
1 + O(B−2 + ε)

)
√

n − 1
2

B
√

T − t∗

for some |θ| ≤ 1.
¿From the definition (2.57), we see that s = s(x∗, t∗) satisfies

B
√

T − t =
s

√
− log(T − t)

.

Hence, taking logarithms and abbreviating ω = T − t,

log B +
1
2

lnω = log s − 1
2

ln | log ω|,

so that

log ω = 2 ln s − log | log ω| − 2 lnB = O(log s)

= 2 ln s + O(log | log s|)

= (2 + o(1)) log s
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We therefore find that

B
√

ω = (1 + o(1))
s√

−2 ln s
.

Thus as t∗ → T , one has

ψ =
(
1 + O(B−2 + ε)

)
(

1
2
√

n − 1 + o(1)
)

s√
− log s

for all t ∈ [t∗, T ] and x∗ for which s = s(x∗, t∗) satisfies (2.57). Since B and
ε can be chosen arbitrarily, this implies

Lemma 2.23. For any δ > 0 there exist a B > 0 and a t̄ < T such that
(

1
2
√

n − 1 − δ

)
s√

− log s
≤ ψ ≤

(
1
2
√

n − 1 + δ

)
s√

− log s

in the region (T − t)| log(T − t)| ≤ s2/B2, t̄ ≤ t ≤ T .

3. Formal matched asymptotics for general neckpinches

The usual starting point for obtaining matched asymptotic expansions near a
stationary solution of a nonlinear PDE is to linearize around that solution.
This method encounters two obstacles when applied to Ricci flow, both
of which can already be seen in our rigorous treatment of the symmetric
neckpinch in Section 2.

The first challenge is the well-known fact that Ricci flow is only weakly
parabolic. This deficiency stems from its invariance under the full diffeomor-
phism group of the underlying manifold.

In Section 2, we overcame this problem by using the geometrically defined
quantity s as a new coordinate, which led us to the parabolic PDE (2.16).
For the general neckpinch without symmetry, we could find no simple ana-
log of the s variable; and so, instead, we shall use a variant of the DeTurck
trick [11, 12]. This motivates our choice of Y in Section 3.4 below, a choice
which is equivalent to the Bianchi gauge, as adopted in the elliptic context
by Biquard [7] and others. Note that solutions of DeTurck flow are equivalent
to solutions of Ricci flow, modulo diffeomorphisms.

The second challenge is the fact that the linearized PDE possesses a
null eigenvalue, suggesting the presence of a center manifold. This phe-
nomenon also occurs in neckpinches of the mean curvature flow [5], and in
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Figure 1: Renormalized Ricci flow near the cylinder.

generic singular solutions to the reaction diffusion equation ∂tu = Δu + up

(see [15, 22, 23]). The null eigenvalue appears as follows. After introducing
a renormalized Ricci flow for which the cylinder is a stationary solution,
we find that the deviation h � g − gcyl from the straight cylinder satisfies a
nearly linear equation of the form

(3.1) ∂τh = Ah + N(h),

where A is a symmetric linear operator and N(h) contains the higher-order
nonlinear terms (cf. (2.16) for the symmetric case in which we had v instead
of h). Here τ = − log(T − t), and T is the blow-up time.

The operator A is diagonalizable. It has a finite number of positive eigen-
values, an unbounded sequence of negative eigenvalues, and it also has zero
as an eigenvalue. To guess what solutions near the cylinder, i.e., small solu-
tions of (3.1), will do, we imagine for a moment that (3.1) is a system of
ODE. In that situation one would use the decomposition into eigenfunctions
of A to split h into stable, unstable and neutral components, corresponding
to positive, negative and zero eigenvalues, respectively. The linear part of
the Equation (3.1) will cause the unstable part to grow exponentially and
the stable part to decay exponentially. The evolution of the neutral part is
determined by the nonlinear terms. (See figure 1 for a caricature.)

Most solutions may get close to the stationary state h = 0 but will even-
tually veer off along the exponentially growing unstable direction (“U” in
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figure 1). These solutions of (3.1) correspond to solutions of Ricci flow which
do not form a neck pinch at the time T or at the location on Sn+1 about
which we renormalized the flow. However, for suitable initial data, the unsta-
ble component of h will never grow. For such solutions one expects the neu-
tral components to be dominant. If they decay to zero, then they will do so
more slowly than exponentially (∼ τ−1 in our case). The stable and unsta-
ble components will then also decay at a less than exponential rate, due to
the nonlinear coupling in (3.1). Such solutions are marked “G” in figure 1,
and these are the solutions which we attempt to describe with the formal
computations below. There is a third possibility, namely, that for certain
exceptional choices of initial data, the unstable components are always the
largest. In this case, h will decay exponentially. Such solutions are marked
“E” in figure 1. In the case of the neck pinch for mean curvature flow, such
exceptional solutions were rigorously constructed in [5].

To compute the “generic singular solutions G” we assume the solution
is of the form h̄ + Φ

(
h̄
)
, where h̄ belongs to the kernel of the linearized

operator A, and Φ(h̄) ⊥ h̄ is at least quadratic in its dependence on h̄. (See
Section 3.9.) To compute the formal dynamics, we substitute this Ansatz
into the dilated Ricci flow, project onto the kernel of the linearization, and
compute the purely quadratic terms, yielding an ODE on the kernel. The
errors introduced by this method should be smaller than the order of the
solution, namely O(τ−2).

In summary, we assume in what follows that a singularity forms at
a given place and time. We then construct approximate solutions which
become singular at the given space–time point and exhibit a (presumably
generic) τ−1 rate of singularity formation. We derive matched asymptotics
for these approximate solutions. These agree with our rigorous results for
the rotationally symmetric solutions studied in Section 2 above. A rigorous
justification of the matched asymptotics derived below without symmetry
assumptions would require one to show, e.g., by adapting the methods of [5],
that suitably small perturbations of our approximate solutions become bona
fide solutions.

We now proceed to pursue the method summarized above. The com-
putations required are extensive, but the conclusion obtained is eminently
simple. The formal matched asymptotics we derive here tell us that the
asymptotics obtained rigorously in Section 2 for rotationally symmetric solu-
tions should be stable for fully general solutions. (As noted above, “stable”
is to be understood modulo the choices of time and location about which
one renormalizes.)
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3.1. The cylinder soliton

Recall that a Ricci soliton is a tuple (Mm, g, X), where Mm is a smooth
manifold, g is its Riemannian metric and X is a complete vector field on
Mm such that the identity

−2 Rc(g) = LXg + λg

holds for some λ ∈ {−1, 0, 1}. It is well known that each Ricci soliton gives
rise to a self-similar solution ḡ (t) of Ricci flow

∂

∂t
ḡ = −2 Rc(ḡ)

defined by
ḡ (t) = (T + λt) (ϕ∗

t g) ,

where ϕt is the 1-parameter family of diffeomorphisms generated by the
vector fields (T + λt)−1X.

Now consider the manifold R × Sn with local coordinates
(
y0; y1, . . . , yn

)
,

where y0 ≡ x ∈ R and
(
y1, . . . , yn

)
≡ y ∈ Sn. Let ĝ ≡ gcan denote the round

metric of unit radius on Sn. Define a product metric g on R × Sn by

(3.2) g = dx ⊗ dx + 2 (n − 1) ĝ,

noting that its Ricci curvature satisfies

Rc(g) = (n − 1) ĝ.

Let X be the vector field on R × Sn defined by

(3.3) X = grad
(

x2

4

)
=

x

2
∂

∂x
,

noting that the Lie derivative of g with respect to X is

LXg = dx ⊗ dx.

It is then easy to see that

(3.4) −2 Rc(g) = LXg − g,

and hence that (R × Sn, g, X) is a shrinking gradient Ricci soliton. We call
this the cylinder soliton.
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For later use, we observe that the Levi–Civita connection of g is given
in local coordinates

(
y0; y1, . . . , yn

)
by the Christoffel symbols

(3.5) Γk
ij =

{
Γ̂k

ij if 1 ≤ i, j, k ≤ n,

0 otherwise.

Here and throughout the remainder of this paper, a hat designates a geo-
metric quantity associated to the round unit sphere (Sn, ĝ). The components
Rijk
 = g
mRm

ijk of the Riemannian curvature of g are

Rijk
 =

{
2 (n − 1) R̂ijk
 = 2 (n − 1) (ĝi
ĝjk − ĝikĝj
) if 1 ≤ i, j, k, � ≤ n,

0 otherwise,

(3.6)

and those of its Ricci tensor are

(3.7) Rij =

{
R̂ij = (n − 1) ĝjk if 1 ≤ i, j ≤ n

0 otherwise.

3.2. Dilated Ricci flow

Motivated by the rigorous results obtained in Section 2, we want to study
finite-time local singularities of Ricci flow that are modeled on the cylinder
soliton (figure 2). Accordingly, let (Mm, G (t)) be a solution of Ricci flow

∂

∂t
G = −2 Rc(G)

that exists for 0 ≤ t < T < ∞. Given any vector field X on Mm, let ϕt be
the family of diffeomorphisms solving

∂

∂t
ϕ (·, t) =

1
T − t

X (ϕ (·, t)) .

Then the blow-up of G at T modified by X is the metric g (t) defined by

(3.8) G (t) = (T − t) (ϕ∗
t g (t)) .

Observing that

∂

∂t
(ϕ∗

t g) =
1

T − t
ϕ∗

t (LXg) + ϕ∗
t

(
∂

∂t
g

)
,



822 Sigurd Angenent & Dan Knopf

Figure 2: Approximating X near an almost cylindrical neck.

one computes that

ϕ∗
t (−2 Rc(g)) = −2 Rc(G) =

∂

∂t
G = ϕ∗

t

(
−g + LXg + (T − t)

∂

∂t
g

)
.

Thus if one regards g as a function of the rescaled time variable

(3.9) τ = log
1

T − t
,

then (Mm, g (τ) , X) becomes a solution of the dilated Ricci flow:

(3.10)
∂

∂τ
g = −2 Rc(g) − LXg + g.

The following is an immediate consequence of Equations (3.4) and (3.10).

Lemma 3.1. The cylinder soliton (R × Sn, g, X) is a stationary solution
of the dilated Ricci flow.

3.3. First and second order variation formulas

If h is a symmetric (2, 0)-tensor on a Riemannian manifold (Mm, g), its
Lichnerowicz Laplacian Δ
h is defined by

(3.11) Δ
hij = Δhij + 2Ripqjh
pq − Rk

i hkj − Rk
j hik,

where Δh is the rough Laplacian. Its divergence δh is defined by

(3.12) (δh)j = −∇ihij .

The following variation formulas are proved by direct calculation. Note
that first-order variation formulae are standard and are found, for instance,
in [9] or [6].
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Lemma 3.2. Let (Mm, g) be a Riemannian manifold; let h be a symmetric
(2, 0)-tensor on Mm; and let ε be small enough that

g̃ = g + εh

is a Riemannian metric.

(1) In local coordinates, the Christoffel symbols Γ̃ of the Levi–Civita
connection of g̃ are

Γ̃k
ij = Γk

ij +
ε

2

(
∇ih

k
j + ∇jh

k
i − ∇khij

)

− ε2

2
hk




(
∇ih



j + ∇jh



i − ∇
hij

)
+ O

(
ε3).

(2) In local coordinates, the Riemann tensor R̃m of g̃ is

R̃

ijk = R


ijk +
ε

2

(
∇i∇kh



j − ∇i∇
hjk − ∇j∇kh



i + ∇j∇
hik

+ R

ijmhm

k − Rm
ijkh



m

)

+
ε2

2
h


m

(
∇i∇mhjk − ∇j∇mhik − ∇i∇kh

m
j + ∇j∇kh

m
i

)

+
ε2

4
(∇ih

m
k + ∇kh

m
i − ∇mhik)

(
∇jh



m + ∇
hjm − ∇mh


j

)

− ε2

4
(
∇jh

m
k + ∇kh

m
j − ∇mhjk

) (
∇ih



m + ∇
him − ∇mh


i

)

+
ε2

2
h


p

(
Rq

ijkh
p
q − Rp

ijqh
q
k

)
+ O

(
ε3).

(3) In local coordinates, the Ricci tensor R̃c of g̃ is

R̃ij = Rij − ε

2

[
Δ
hij + ∇i∇jH + ∇i (δh)j + ∇j (δh)i

]

+
ε2

2
hpq (∇p∇qhij + ∇i∇jhpq − ∇i∇phqj − ∇j∇phqi)

+
ε2

2

(
1
2
∇ih

q
p∇jh

p
q + ∇ph

q
i ∇phqj − ∇ph

q
i ∇qh

p
j

)

+
ε2

2

(
1
2
∇kH + (δh)k

)(
∇ih

k
j + ∇jh

k
i − ∇khij

)

+
ε2

2
hpq

(
hk

i Rjpkq + hk
j Ripkq + 2hk

qRipkj

)
+ O

(
ε3).
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(4) If X and Y are vector fields on Mm and X̃ = X + εY , then

LX̃ g̃ = LXg + ε (LY g + LXh) + ε2LY h;

in particular,

(
LX̃ g̃

)
ij

= ∇iXj + ∇jXi

+ ε
[
(∇iYj + ∇jYi) +

(
Xk∇khij + ∇iX

khkj + ∇jX
khik

)]

+ ε2
(
Y k∇khij + ∇iY

khkj + ∇jY
khik

)
.

3.4. Arbitrary perturbations of a stationary solution

Let (Mm, g, X) be any stationary solution of the dilated Ricci flow (3.10),
and let h be an arbitrary symmetric (2, 0)-tensor small enough that the
perturbation

(3.13) g̃ = g + h

is a Riemannian metric on Mm. Denote the trace of h with respect to g by

(3.14) H = trgh.

Let Y be the vector field metrically dual to the 1-form 1
2dH + δh, namely

(3.15) Y =
(

1
2
dH + δh

)�

,

and form the perturbation

(3.16) X̃ = X + Y

of the vector field X. The role of Y is to implement a DeTurck trick [11,12]
that makes the linearization of the dilated Ricci flow (3.10) strictly parabolic.
Now applying Lemma 3.2 gives the following result.

Lemma 3.3. The metric g̃ (τ) will be a solution of dilated Ricci flow (3.10)
for the vector field X̃ if and only if h evolves by the nonlinear system

(3.17)
∂

∂τ
h = Ah + Q (h) + C (h),
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where A is the linear elliptic operator defined by

(3.18) Ah = Δ
h − LXh + h,

the quadratic term Q (h) is defined by

[Q (h)]ij = hp
i ∇j∇qh

q
p + hp

j∇i∇qh
q
p

(3.19a)

+ hpq (∇i∇phqj + ∇j∇phqi − ∇p∇qhij − ∇i∇jhpq)(3.19b)

− 1
2

(
hk

i ∇j∇kH + hk
j ∇i∇kH + ∇ih

k
j ∇kH + ∇jh

k
i ∇kH

)
(3.19c)

+ ∇ih
p
j∇qh

q
p + ∇jh

p
i ∇qh

q
p + ∇ph

q
i ∇qh

p
j(3.19d)

− ∇ph
q
i ∇phjq − 1

2
∇ih

q
p∇jh

p
q(3.19e)

+ hpq
(
hk

i Rjpqk + hk
j Ripqk − 2hk

qRipkj

)
,(3.19f)

and C (h) is at least third-order in h and its covariant derivatives.

The cubic term C (h) will not be important in the formal asymptotic
analysis that follows.

3.5. The linearization at the cylinder soliton

In the case that the stationary solution of the dilated Ricci flow is the
cylinder soliton (R × Sn, g, X) introduced in Section 3.1, the linear operator
A defined in (3.18) can be written in a more useful form. To see this, we
again work in the coordinate system

(
y0; y1, . . . , yn

)
, with y0 ≡ x ∈ R and(

y1, . . . , yn
)

≡ y ∈ Sn. Recalling formula (3.7), it is easy to see that

hij −
(
Rk

i hkj + Rk
j hik

)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

h00 if i = j = 0,
hi0

2
if 1 ≤ i ≤ n,

h0j

2
if 1 ≤ j ≤ n,

0 if 1 ≤ i, j ≤ n.
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This observation allows one to write the Lie derivative of h with respect
to X as

(LXh)ij =
x

2
∂

∂x
hij +

1
2
hij

(
δ0
i + δ0

j

)

=
x

2
∂

∂x
hij + hij −

(
Rk

i hkj + Rk
j hik

)
.

Then using the simple identity

Ri
Rjk − RikRj
 =
n − 1

2
Rijk
,

one reaches the following conclusion.

Lemma 3.4. On the cylinder soliton, the linear operator A defined in
(3.18) is given by

(3.20) (Ah)ij = Δhij − x

2
∂

∂x
hij +

4
n − 1

(RijRpq − RiqRpj) hpq,

where Δh denotes the rough Laplacian.

3.6. An upper bound for the spectrum of the linearization

Since the manifold R × Sn is noncompact, it is not necessarily the case that
the formally elliptic operator A has discrete point spectrum. For our opera-
tor A, the first-order term −1

2x∂x makes this happen, as we will
now show.

We consider the bundle S2 of (2, 0)-tensors on R × Sn and the space
C∞

0 (S2) of smooth compactly supported sections of this bundle. The oper-
ator A maps this space to itself. We define the inner product

(h, k) �
∫

R

∫

Sn

hijkije
−x2/4 dθ dx,

where dθ is the volume form on Sn. We write ‖h‖ =
√

(h, h) for the
corresponding norm. The completion of C∞

0 (S2) with respect to this norm
is L2(S2; e−x2/4 dθ dx), which we abbreviate to L2. (See [13], for instance.)

Lemma 3.5. The closure of the densely defined operator A is a self-adjoint
operator with compact resolvent. A is bounded from above. Its spectrum con-
sists of discrete finite multiplicity point spectrum.
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Proof. One can write A as

(3.21)
(
Ah

)
ij

= ex2/4 ∂

∂x

{
e−x2/4 ∂hij

∂x

}
+ 1

2(n−1)Δ̂hij + Vijpqh
pq

in which Δ̂ is the rough Laplacian in the direction tangential to the spheres
{x} × Sn and

Vijpq � 4
n − 1

(RijRpq − RiqRjp).

By integration by parts, one finds that for any h, k ∈ C∞
0 (S2) one has

(h, −Ak) =
∫

R

∫

Sn

{
∂xhij∂xkij + 1

2(n−1)∇̂
hij∇̂
kij − Vijpqhijkpq

}
e−x2/4 dθ dx,

(3.22)

from which it is evident that A is symmetric. Boundedness of Vijpq implies
that there is a constant C0 such that

(3.23) (h, −Ah) ≥
∫

R

∫

Sn

|∇h|2e−x2/4 dθ dx − C0‖h‖2

holds for all h ∈ C∞
0 (S2).

Let H1 = H1(S2) be the completion of C∞
0 (S2) for the norm correspond-

ing to the inner product

〈h, k〉 �
∫

R

∫

Sn

{
∇ihpq∇ikpq + hpqkpq

}
e−x2/4 dθ dx.

(Again, see [13].) Then the standard Hilbert space arguments show that for
all λ > C0, the equation λh − Ah = k has a distributional solution h ∈ H1

for any k ∈ L2. It follows that the closure of A is a self-adjoint operator in
L2 whose domain

D(A) = {(λ − A)−1k | k ∈ L2}

is contained in H1. (Here it makes no difference which λ > C0 one chooses.)
In fact, the inequality (3.23) implies that the H1 norm is equivalent with the
norm |||h|||2 = 〈h, (λ − A)h〉, so that H1 is the form domain of A, i.e., H1 =
D(

√
λ − A)

The inequality (3.23) tells us that the spectrum of A is contained in the
interval (−∞, C0].
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To see that A has compact resolvent, we recall Lemma 2.7, which implies

‖xh‖2 ≤ C

∫

R

∫

Sn

{|∂xh|2 + |h|2}e−x2/4 dθ dx ≤ C‖h‖2
H1 .

Hence

‖h‖2 + ‖xh‖2 + ‖∇h‖2 ≤ C(h, (λ − A)h).

This inequality together with the Rellich–Kondrachov theorem imply that
the imbedding H1 ⊂ L2 is compact. Since H1 is the form domain of A, we
conclude that A indeed has compact resolvent, so that its spectrum is pure
point spectrum. �

Remark. More generally, the linearization of the modified Ricci flow
operator at any gradient Ricci soliton (Mn, g) will be self-adjoint in
L2(Mn, g; e−ϕ dμ) if dμ is the measure naturally associated to g and one
takes ϕ to be the soliton potential function.

3.7. A decomposition into invariant subspaces

In order to compute the spectrum of A, we split the space L2(S2) into a
number of A-invariant subspaces.

It is a standard fact that any (2, 0)-tensor h on a Riemannian manifold
(Mm, g) admits the decomposition

h = h∨ + h◦,

where

h∨ = (trgh) g

is a multiple of the metric, and

h◦ = h − 1
m

h∨

is trace free.
One can exploit the product structure of the cylinder soliton

(R × Sn, g, X) to obtain a more refined decomposition. Again using coor-
dinates

(
y0; y1, . . . , yn

)
and adopting the convention that Roman indices lie

in the range 0 . . . n while Greek indices lie in 1 . . . n, we decompose a given
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symmetric (2, 0)-tensor h on R × Sn as

h = M dx ⊗ dx + Nα (dx ⊗ dyα + dyα ⊗ dx) +
(
O∨

αβ + O◦
αβ

)
dyα ⊗ dyβ

(3.24a)

= M dx ⊗ dx + Nα (dx ⊗ dyα + dyα ⊗ dx) + (P ĝαβ + Qαβ) dyα ⊗ dyβ.

(3.24b)

Here one should regard M as a scalar function on R × Sn, N (x, ·) as a
1-parameter family of 1-forms defined on the spheres {x} × Sn, P as the
scalar function

P =
2 (n − 1)

n
(H − M) ,

and Q (x, ·) as the 1-parameter family of trace-free (2, 0)-tensors defined on
the spheres {x} × Sn by

Qαβ = hαβ − P ĝαβ .

The utility of this decomposition is that it exhibits a set of invariant
subspaces for A. To demonstrate this, it will be helpful to fix additional
notation. Let Δ̂ denote the rough Laplacian of the canonical sphere metric
ĝ. Let −Δ̂dR denote its Hodge–de Rham Laplacian, recalling that Δ̂dR acts
on a 1-form N by

Δ̂dRNα = − [(dδ + δd) N ]α = Δ̂Nα − R̂β
αNβ = Δ̂Nα − (n − 1) Nα.

Let Δ̂
 denote the Lichnerowicz Laplacian of ĝ, which acts on a trace-free
tensor Q by

Δ̂
Qαβ = Δ̂Qαβ − 2nQαβ .

Finally, let B denote the differential operator defined by

(3.25) B =
∂2

∂x2 − x

2
∂

∂x
= ex2/4 ∂

∂x
e−x2/4 ∂

∂x
.
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Using these conventions, one computes using Equation (3.20) that the decom-
position of Ah corresponding to (3.24(a)/(b)) is

(Ah)00 =
[
B +

1
2 (n − 1)

Δ̂
]

M

(Ah)α0 =
[
B +

1
2 (n − 1)

Δ̂
]

Nα =
[
B +

1
2 (n − 1)

Δ̂dR +
1
2

]
Nα

(Ah)∨
αβ =

{[
B +

1
2 (n − 1)

Δ̂ + 1
]

P

}
ĝαβ

(Ah)◦
αβ =

[
B +

1
2 (n − 1)

Δ̂ − 1
n − 1

]
Qαβ .

This calculation proves the following result.

Lemma 3.6. On the cylinder soliton, the operator A given by (3.20) may
be represented schematically with respect to the decomposition (3.24) as

(3.26) A :

⎛

⎜
⎜
⎝

M
N
P
Q

⎞

⎟
⎟
⎠ �−→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[
B +

1
2 (n − 1)

Δ̂
]

M
[
B +

1
2 (n − 1)

Δ̂dR +
1
2

]
N

[
B + 1

2(n−1)Δ̂ + 1
]
P

[
B + 1

2(n−1)Δ̂ − 1
n−1

]
Q

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The only contribution to the spectrum of A comes from its four
component operators: B + 1/(2 (n − 1))Δ̂ and B + 1/(2 (n − 1))Δ̂ + 1 act-
ing on scalar functions, B + 1/(2 (n − 1))Δ̂dR + 1/2 acting on 1-forms and
B + 1/(2 (n − 1)) Δ̂ − 1/(n − 1) acting on trace-free (2, 0)-tensors.

3.8. The spectrum of the linearization

The decomposition obtained in Lemma 3.6 allows us to analyze the spectrum
of A using separation of variables. To illustrate the idea, suppose that

M (x, y) = h (x) F (y),

where h is an eigenfunction of B with eigenvalue λ, and F is an eigenfunction
of 1/2 (n − 1)Δ̂ with eigenvalue μ. Then

[
B +

1
2 (n − 1)

Δ̂
]

M = (λ + μ) M.
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This line of argument leads easily to the following observation.

Lemma 3.7. All eigenvalues of A : D(A) → L2 have the form λ + μ, where
λ is an eigenvalue of B acting on h = L2(R; e−x2/4), and μ is an eigen-
value of either 1/2 (n − 1)Δ̂ or 1/2 (n − 1)Δ̂ + 1 acting on C∞ (Sn), of
1/2 (n − 1)Δ̂dR + 1/2 acting on Ω1 (Sn), or of 1/2 (n − 1)Δ̂ − 1/n − 1
acting on the space of smooth trace-free (2, 0)-tensors on Sn.

To make this result useful, we need some simple facts about the compo-
nent operators that appear in (3.26).

The operator B = ∂2/∂x2 − (x/2)(∂/∂x) acting on scalar functions. The
Hermite polynomials {hk}∞

k=0 constitute a complete orthogonal family for
the operator B on the weighted Hilbert space

h = L2
(
R, e−x2/4 dx

)
.

Moreover, one has

(B + 1) hk =
(

1 − k

2

)
hk,

so that the spectrum of B is
{
0,−1

2 ,−1,−3
2 , . . .

}
. (Notice that h is a larger

space than we defined in Section 2, since we are not restricting to even
functions here.)

The operator 1/2 (n − 1)Δ̂ acting on scalar functions. It is well known
that the spectrum of Δ̂ acting on C∞ (Sn) is {λk}k≥0, where

λk = −k (n + k − 1).

In particular, the only non-negative eigenvalue of 1/2 (n − 1)Δ̂ is λ0 = 0. Its
eigenspace consists of the constant functions.

The operator 1/2 (n − 1)Δ̂ + 1 acting on scalar functions. If k ≥ 2, then

λk + 2 (n − 1) = (2 − k) (n − 1) − k2 ≤ −k2 < 0.

Hence the only possible non-negative eigenvalues of 1/(2 (n − 1))Δ̂ + 1 are

λ0 + 2 (n − 1)
2 (n − 1)

= 1

and
λ1 + 2 (n − 1)

2 (n − 1)
=

1
2

n − 2
n − 1

∈
[
0,

1
2

)
.
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The eigenspace corresponding to 1 consists of constants. The eigenspace
corresponding to 1/2(n − 2)/(n − 1) consists of the spherical harmonics: the
restrictions to Sn of the linear functions on R

n+1.
The operator 1/2 (n − 1)Δ̂dR + 1/2 acting on 1-forms. It is shown in [8]

that the spectrum of Δ̂dR acting on the space Ω1 (Sn) of smooth 1-forms is

{λk}k≥1

⋃
{λk + 2 − n}k≥1.

If k ≥ 1, then λk + n − 1 ≤ −1. Because λk + 2 − n ≤ λk in all dimensions
n ≥ 2, it follows that 1

2(n−1)Δ̂dR + 1
2 is negative definite.

The operator 1/2 (n − 1)Δ̂ − 1/(n − 1) acting on trace-free (2, 0)-tensors.
The operator 1/(2 (n − 1))Δ̂ − 1/(n − 1) is clearly negative definite.

Combining these observations with Lemma 3.7 leads to the following
conclusion.

Lemma 3.8. On the cylinder soliton, the only possible non-negative eigen-
values of the linearization A are 0, 1/2(n − 2)/(n − 1), 1/2, and 1.

• The eigenspace corresponding to 1 consists of constant multiples of ĝ.

• The eigenspace corresponding to 1/2 consists of multiples of ĝ that are
linear in x ∈ R.

• The eigenspace corresponding to 1/2(n − 2)/(n − 1) consists of
spherical harmonics.

• The eigenspace corresponding to 0 consists of constant functions and of
multiples of ĝ that are quadratic in x ∈ R. (When n = 2, the spherical
harmonics also belong to this eigenspace.)

Remark. The results above can be obtained in another way. Since all geo-
metric data of the metric (3.2) are independent of x ∈ R, one has the simple
commutator [

A,
∂

∂x

]
=

1
2

∂

∂x
.

So if Ah = λh, a straightforward induction argument shows that

A
(

∂k

∂xk
h

)
=
(

λ +
k

2

)(
∂k

∂xk
h

)

for all integers k ≥ 0. Since Lemma 3.5 proves that the spectrum of A
is bounded from above, it follows readily that for every eigentensor h of
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A, there exists some integer κ = κ(h) ≥ 0 and a family of (2, 0)-tensors
ĥ1, . . . , ĥκ independent of x ∈ R such that

h =
κ∑

k=0

xkĥk.

3.9. Our Ansatz

The analysis in Section 3.8 shows that any eigenvalues of A corresponding
to trace-free (i.e., nonrotationally symmetric) perturbations of the cylinder
soliton are all strictly negative. As we explained in the introduction to this
section, the only perturbations relevant to our formal center-manifold com-
putation are those corresponding to null eigenvalues of the linearization.
Therefore, we adopt the Ansatz that

h = M dx ⊗ dx + Nα (dx ⊗ dyα + dyα ⊗ dx) + (P ĝαβ + Qαβ) dyα ⊗ dyβ

has the special form

(3.27) h (x, y, τ) = u (x, τ) dx ⊗ dx + {v (x, τ) + w (y, τ)} ĝ,

where once again, τ denotes rescaled time, x denotes a point in R, and y
denotes a point in Sn. Specifically — continuing to let {hk}∞

k=0 denote the
Hermite polynomials — we assume that M ≡ u, where

(3.28) u (x, τ) = u0 (τ) h0 (x) = u0 (τ).

We further assume that N ≡ 0, that Q ≡ 0, and that P ≡ v + w, where

(3.29) v (x, τ) = v2 (τ) h2 (x) = v2 (τ)
(
x2 − 2

)

and

(3.30) w (y, τ) =

⎧
⎪⎨

⎪⎩

3∑

i=1

ωi (τ) Ωi (y) if n = 2,

0 otherwise.

Here (Ω1, Ω2, Ω3) is a basis for the space of spherical harmonics on S2.
(Recall that w corresponds to a positive eigenvalue of the linearization
whenever the total dimension n + 1 is at least 4.)



834 Sigurd Angenent & Dan Knopf

To implement our formal center-manifold analysis, we shall study
the flow

(3.31)
∂

∂τ
h = Ah + Q (h)

that models Equation (3.17) up to second order. To do so requires us to ana-
lyze the quadratic term Q (h) at the cylinder soliton in a manner analogous
to what was done above for the linearization A. To simplify the notation, we
again use coordinates

(
y0; y1, . . . , yn

)
and assume that Roman indices lie in

the range 0 . . . n while Greek indices lie in 1 . . . n. If f is a smooth function,
we further adopt the convention that fx = ∂f/∂x and fα = ∂f/∂yα.

We shall begin with computations that are more general than what
we need at the moment. To wit, we assume only that h has the form
given by (3.27), without imposing the specific assumptions (3.28)–(3.30).
One then verifies readily that all first-covariant derivatives of the tensor h
vanish except

∇0h00 = ux

∇0hαβ = vx ĝαβ

∇γhαβ = wγ ĝαβ .

All second-covariant derivatives of h vanish except

∇0∇0h00 = uxx

∇0∇0hαβ = vxx ĝαβ

∇γ∇δhαβ = ∇̂γ∇̂δw ĝαβ .

Moreover, the only nonvanishing derivatives of the trace

H = gijhij = u +
n

2 (n − 1)
(v + w)

are

∇0H = ux +
n

2 (n − 1)
vx,

∇γH =
n

2 (n − 1)
wγ
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and

∇0∇0H = uxx +
n

2 (n − 1)
vxx,

∇γ∇δH =
n

2 (n − 1)
∇̂γ∇̂δw.

Using these formulas, a straightforward calculation reveals that the first
component of the quadratic term

[Q (h)]00 = 2h00∇0∇0h00 − hαβ∇0∇0hαβ − h00∇0∇0H

− ∇0h00∇0H +
3
2

(∇0h00)
2 − 1

2
∇0h

β
α∇0h

α
β

may be written as

[Q (h)]00 = uuxx − n

4 (n − 1)2
vxx [2(n − 1)u + v + w](3.32a)

+
1
2
u2

x − n

8(n − 1)2
vx [4(n − 1)ux + vx] .(3.32b)

Then using the fact that

gγδ∇̂γ∇̂δw =
1

2 (n − 1)
Δ̂w = − n

2 (n − 1)
w,

one computes that the remaining components

[Q (h)]αβ = hγ
α∇β∇δh

δ
γ + hγ

β∇α∇δh
δ
γ − h00∇0∇0hαβ

+ hγδ (∇α∇γhδβ + ∇β∇γhδα − ∇γ∇δhαβ − ∇α∇βhγδ)

− 1
2

(
hγ

α∇β∇γH + hγ
β∇α∇γH + ∇αhγ

β∇γH + ∇βhγ
α∇γH

)

+ ∇αhγ
β∇δh

δ
γ + ∇βhγ

α∇δh
δ
γ + ∇γhδ

α∇δh
γ
β

− ∇0h
γ
α∇0hβγ − ∇δh

γ
α∇δhβγ − 1

2
∇αhδ

γ∇βhγ
δ

+ hγδ
(
hη

αRβγδη + hη
βRαγδη − 2hη

δRαγηβ

)
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are given by

[Q (h)]αβ = − 1
2 (n − 1)

{
2 (n − 1) uvxx + v2

x

}
ĝαβ(3.33a)

− 1
4 (n − 1)2

{∣
∣
∣∇̂w

∣
∣
∣
2

ĝ
− nw (v + w)

}
ĝαβ(3.33b)

− n − 2
8 (n − 1)2

{
4 (v + w) ∇̂α∇̂βw + 3wαwβ

}
.(3.33c)

3.10. The inner layer |x| = o (
√

τ)

We now derive a formal profile of a solution

g̃ (x, y, τ) = g (x, y) + h (x, y, τ)

near a singularity modeled on the cylinder soliton g. We assume that (3.27)
and (3.28)–(3.30) hold. These assumptions force h to belong to the kernel
of the linearization of equation (3.17), because

Ah = [Bu] dx ⊗ dx + [(B + 1) v] ĝ = 0.

Recall that w vanishes by assumption if n > 2. In this context,
(3.32) becomes

[Q (h)]00 = −
{

v2w +
n

(n − 1)2
[
(n − 1) u0v2 + v2

2
]
}

h0 −
{

n

(n − 1)2
v2
2

}
h2.

(3.34)

And (3.33) reduces to

[Q (h)]αβ = P ĝαβ ,

where

P =
{

1
2
w2 − 1

4

∣
∣
∣∇̂w

∣
∣
∣
2

ĝ
− 2u0v2 − 4

n − 1
v2
2

}
h0 +

{
1
2
v2w − 2

n − 1
v2
2

}
h2.

(3.35)

In order to derive ODE efficiently for the functions u0, v2, and ω1, ω2, ω3
from Equations (3.34) and (3.35), it is helpful to adopt some additional
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notation: if f is a function of y ∈ Sn, we define

‖f‖2
Sn =

∫

Sn

f (y)2 dμ̂;

and if X and Y are symmetric (2, 0)-tensors on R × Sn, we define

〈〈X, Y 〉〉 =
∫ ∞

−∞
〈X, Y 〉x e−x2/4 dx,

where 〈X, Y 〉x =
∫
{x}×Sn 〈X, Y 〉ĝ dμ̂. By using the fact that {hk}∞

k=0 is an
orthogonal family for h, it is then easy to see that

u′
0 (τ) · ‖h0‖2

h ‖1‖2
Sn =

d

dt
〈〈h, h0 dx2〉〉

= 〈〈Q (h) , h0 dx2〉〉
= − n

(n − 1)2
[
(n − 1) u0v2 + v2

2
]
· ‖h0‖2

h ‖1‖2
Sn

and

v′
2 (τ) · n ‖h2‖2

h ‖1‖2
Sn =

d

dt
〈〈h, h2 ĝ〉〉

= 〈〈Q (h) , h2 ĝ〉〉

= − 2
n − 1

v2
2 · n ‖h2‖2

h ‖1‖2
Sn .

Similarly, for any i ∈ {1, 2, 3}, we find when n = 2 that

ω′
i (τ) · 2 ‖h0‖2

h ‖Ωi‖2
S2 =

d

dt
〈〈h, Ωi ĝ〉〉 = 〈〈Q (h), Ωi ĝ〉〉 = 0.

This calculations let us derive a formal profile of h in the inner layer
|x| = o (

√
τ).

Lemma 3.9. For perturbations of the form

h = {u0 (τ) h0 (x)} dx ⊗ dx +

{

v2 (τ) h2 (x) +
3∑

i=1

ωi (τ) Ωi (y)

}

ĝ,
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the flow (3.31) is equivalent to the system of ODE

d

dτ
u0 = − n

(n − 1)2
[
(n − 1) u0v2 + v2

2
]

(3.36)

d

dτ
v2 = − 2

n − 1
v2
2(3.37)

d

dt
ωi = 0 (i = 1, 2, 3)(3.38)

whose solutions, up to an error term of o(τ−1) as τ → ∞, are

u0 (τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− log (2τ)
2τ

+
c

τ
if n = 2,

− n

2 (n − 2)
1
τ

otherwise

(3.39)

v2 (τ) =
n − 1
2τ

(3.40)

ωi (τ) = ωi (0) (i = 1, 2, 3).(3.41)

Formally, this is the profile of h in the region |x| = o (
√

τ).

Proof. If v2 is not identically zero, Equation (3.37) has the explicit solution

v2 (τ) =
n − 1
c + 2τ

.

Then Equation (3.36) becomes

d

dτ
u0 (τ) +

(
n

c + 2τ

)
u0 = − n

(c + 2τ)2
.

An integrating factor for this linear ODE is (c + 2τ)n/2, whence one obtains

u0 (τ) =

⎧
⎪⎪⎨

⎪⎪⎩

− log (c + 2τ)
c + 2τ

+
C

c + 2τ
if n = 2,

− n

n − 2
1

c + 2τ
+

C

(c + 2τ)n/2 otherwise.
�

Remark. To compare the formal results above with those obtained rigor-
ously in Section 2, observe that our choices of dilating factors imply that
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the quantity a2 (τ) appearing in Section 2 and the quantity v2 (τ) appearing
above are related by

a2 (τ) ≈ v2 (τ)
4 (n − 1)

≈ 1
8τ

,

because in the inner layer, we have x ≈ σ and
{
2 (n − 1) + v2 (τ) h2 (x) + o(τ−1)

}
ĝ

= 2 (n − 1)
[
1 + a2 (τ) h2 (σ) + o(τ−1)

]2
ĝ

=
{
2 (n − 1) + 4 (n − 1) a2 (τ) h2 (σ) + o(τ−1)

}
ĝ.

Remark. By modifying g̃ by an initial conformal diffeomorphism, one may
make all ωi vanish. Therefore, throughout the remainder of this paper, we
will assume that ωi ≡ 0 for i = 1, 2, 3.

3.11. The intermediate layer |x| = O (
√

τ)

In order to study the region where |x| = O (
√

τ), we replace the coordinates
(x, τ) with (ξ, τ), where

(3.42) ξ =
x√
τ
.

If f is a smooth function of (x, τ), we define F (ξ, τ) = f (x, τ) . Then one
has the formulas

fτ = Fτ − ξ

2τ
Fξ and fx =

1√
τ
Fξ.

Let
U (ξ, τ) = u (x, τ) and V (ξ, τ) = v (x, τ) ,

where u and v are the quantities that appear in the simple Ansatz (3.27).
Then substituting formulas (3.32) and (3.33) into the PDE (3.31), one
computes that

Uτ = −ξ

2
Uξ +

1
τ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + U) Uξξ +
ξ

2
Uξ +

1
2
U2

ξ

− n

4 (n − 1)2
Vξξ [2 (n − 1) U + V ]

− n

8 (n − 1)2
Vξ [4 (n − 1) Uξ + Vξ]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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and

Vτ = V − ξ

2
Vξ +

1
τ

{
Vξξ (1 − U) +

ξ

2
Vξ − 1

2 (n − 1)
V 2

ξ

}
.

Recalling Lemma 3.9, we will construct an approximate solution by consid-
ering the equations

Uτ = −ξ

2
Uξ + o(τ−1)

and

Vτ = V − ξ

2
Vξ + O(τ−2).

These equations suggest that the solution is modeled by the time-independent
profiles U (ξ) ≡ C1 and V (ξ) = C2ξ

2, respectively. Matching this layer with
the results of Lemma 3.9 determines C1 and C2, yielding the following result.

Lemma 3.10. In the intermediate layer |x/
√

τ | = |ξ| = O (1), the formal
solution is modeled by

u (x, τ) ≈ U

(
x√
τ

)
≡ 0 and v (x, τ) ≈ V

(
x√
τ

)
=

n − 1
2

x2

τ
.

To wit,

g̃ ≈ dx ⊗ dx + 2 (n − 1)
[
1 + (ξ/2)2

]
ĝ.

3.12. The outer layer |x| = o
(
1/

√
T − t

)

To describe the outer layer, we first introduce the “blown-down” coordinate

(3.43) s = e−τ/2x =
√

T − t · x,

which should be compared to the metric distance s defined in Section 2.
If one were to follow the method above by defining Ū (s, τ) = u (x, τ)

and V̄ (s, τ) = v (x, τ), an easy computation would show that

Ūτ = O (T − t) and V̄τ = V + O (T − t).

Unfortunately, the steady-state solutions to these equations fail to convey
enough useful information.

Instead, we proceed as follows. Fix a large number Ξ > 0. For each s,
let ts be the time such that |ξ| = Ξ at ts, where ξ is defined by (3.42). Let
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τs = log 1/(1 − ts). Then

Ξ = |ξ| =
|x|
√

τs
=

|s|
√

(T − ts) τs

.

This shows that

τs = log
(
Ξ2) + log

1
s2 + log τs,

hence that

(3.44) τs = [2 + o (1)] log
1
|s| as |s| → 0.

Now we “blow-down” the solution of the dilated (“blown-up”) Ricci
by defining

u (s, τ) = e−τu (x, τ) and v (s, τ) = e−τv (x, τ).

Then at time ts, we compute that

v (s, τs) = e−τsV

(
x

√
τs

)
=

n − 1
2

s2

τs
.

When |s| is small and Ξ is large, the undilated solution v cannot change
much in the short time ts ≤ t < T . Hence (3.44) implies that as |s| → 0,
one has

v (s, τs) =
n − 1

2
s2

[2 + o(1)] log 1/|s| [1 + o(1)]

=
n − 1

2
s2

log 1/s2 [1 + o(1)].

Since u (s, τ) = e−τU (x/
√

τ) ≡ 0, we have obtained the following result.

Lemma 3.11. In the outer layer |x| = o
(

1√
T−t

)
, the formal solution is

modeled by

u (x, τ) ≈ 1
T − t

u (s, τ) and v (x, τ) ≈ 1
T − t

v (s, τ),

where

u (s, τ) ≡ 0 and v (s, τ) =
n − 1

2
s2

log 1/s2 [1 + o(1)] .
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To wit,

v (x, τ) ≈ n − 1
2

x2

τ + log 1/x2 .
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[29] N. Šešum, Curvature tensor under the Ricci flow, Amer. J. Math. 127
(6) (2005), 1315–1324.

[30] M. Simon, A class of Riemannian manifolds that pinch when evolved
by Ricci flow, Manuscripta Math. 101 (1) (2000), 89–114.

[31] M. Simon, Deformation C0 Riemannian metrics in the direction of their
Ricci curvature, Comm. Anal. Geom. 10 (5) (2002), 1033–1074.

[32] P. Topping, Diameter control under Ricci flow, Comm. Anal. Geom. 13
(5) (2005), 1039–1055.

[33] J.B. van den Berg, J. Hulshof and J.R. King, Formal asymptotics of
bubbling in the harmonic map heat flow, SIAM J. Appl. Math. 63 (5)
(2003), 1682–1717 (electronic).

[34] F.B. Weissler, Single point blow-up for a semilinear initial value
problem, J. Differential Equations 55 (2) (1984), 204–224.

University of Wisconsin

Madison

Wisconsin

USA

E-mail address: angenent@math.wisc.edu
URL: http://www.math.wisc.edu/˜angenent/

University of Texas at Austin

Austin

Texas

USA

E-mail address: danknopf@math.utexas.edu
URL: http://www.ma.utexas.edu/˜danknopf

Received May 25, 2006


