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Moment-norm gradient flow on flag manifolds
John Lorch

A geometric proof of the Matsuki orbit duality for flag manifolds
is established in [R. Bremigan and J. Lorch, Orbit duality for
flag manifolds, Manuscripta Math. 109 (2002), 233–261.] by
analyzing the gradient flow of the norm-squared of a moment
map. In the present paper, we investigate explicit formulas for
integral curves associated with this flow, leading to a correspon-
dence between certain integral curves and Cayley transforms. In
addition, an exhaustive collection of curves is presented in the
rank-one hermitian symmetric case.

1. Introduction

1.1. Purpose

One may obtain a geometric proof of the Matsuki orbit duality for flag
manifolds by analyzing the gradient flow of a moment-norm function (see
[2]). The purpose of this paper is to investigate explicit formulas for integral
curves associated with this flow, leading to a correspondence between certain
integral curves and Cayley transforms. In addition, an exhaustive collection
of curves is presented in the rank-one hermitian symmetric case.

1.2. Background and structure

In its most basic formulation, Matsuki duality is a one-to-one correspondence
between the G0− and K-orbits of a flag variety X = G/Q (for notation,
see Section 2.1). While the first proof [7] of the duality was algebraic in
nature, we are concerned with the geometric proof given in [2] employing
the moment-norm technique: Drawing motivation from [5,8,10], one begins
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with a function f+ : X → R given by the norm-squared of a moment map
μ : X → k∗

0 for an appropriate Kähler structure on X. Corresponding to f+

are a critical set C ⊂ X and an extended gradient flow Γ : [−∞,∞] × X →
X, which satisfies Γ(0, x) = x for all x ∈ X and Γ(t, c) = c for all c ∈ C.
Further, put π± : X → C, π±(x) := Γ(±∞, x). There are a finite number
of K0-orbits in the critical set C, and the inverse image in X under π+

(resp. π−) of a K0-orbit is a single G0 (resp. K) orbit. Thus, there are two
stratifications of X coming from π+ and π− which are indexed by the set
of K0-orbits in C, and these stratifications coincide with the decompositions
of X into G0- and K ′-orbits, respectively. These ideas lead naturally to the
Matsuki correspondence, with two orbits being in duality exactly when their
intersection is a K0-orbit of critical points for f+.

The analysis in [2] did not require an explicit computation of integral
curves for ∇f+. However, it is reasonable to hope that one may recover
additional information about X as a by-product of rendering these curves.
Using X = SL(2, C)/B for inspiration, we investigate curves of the form
γ(t) = Ad (es(t)Z)x, where x is a critical point for f+ in X (considered as
an Ad (Gu)-orbit in gu when convenient), s(t) is a real-valued function and
Z ∈ gu is tangent either to G0·x or to K·x and is perpendicular to K0·x.
We will see that such a curve γ(t) is an integral curve for ∇f+ if and
only if s(t) is a solution of a certain differential equation. In general, this
approach yields integral curves and associated information about X (e.g.,
Cayley transforms), but the method works best for irreducible rank-one
hermitian symmetric spaces, in which case γ(t) is an integral curve for every
reasonable choice of “direction” Z ∈ gu.

The paper is organized as follows: Section 2 contains notation and a
brief review of results needed for later in paper. Candidates for integral
curves and the differential equation determining the viability of a given
curve are given in Sections 3 and 4, respectively. In Section 5 we see that
certain integral curves for ∇f+ correspond to Cayley transforms for X.
Finally, in Section 6 we show that every appropriate Z ∈ gu gives rise to
an integral curve for ∇f+ in the case that X is hermitian symmetric of
rank one.

2. Background material

In the interest of self-contained exposition, we provide brief background
information. The results in this section, accompanied by full technical
details, may be found in [2, 4].
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2.1. Notation

Notation 2.1. (a) Let G be a connected complex semisimple Lie group with
Lie algebra g. Let κ represent the complex bilinear Killing form on g.

(b) Let θ : G → G be a Cartan involution. The group of fixed points Gu :=
Gθ is a maximal compact subgroup of G. We also write θ for the
corresponding involution of g. We have a Gu-invariant norm-squared
function on g given by Z �→‖ Z ‖2

κ:= −κ(Z, θ(Z)).

(c) Let σ : G → G be a complex conjugation commuting with θ. The sub-
group of fixed points G0 := Gσ is a real form of G.

(d) Let K0 := G0 ∩ Gu, a maximal compact subgroup of G0; then K := Gσθ

is the complexification of K0 in G.

(e) Let Q be a parabolic subgroup of G possessing a σ, θ-stable maximal
torus T . Let t = LieT and tu = t ∩ gu.

(f) Write Q = L× RUQ, where RUQ is the unipotent radical of Q, and L
is the Levi factor containing T .

(g) Let gu, g0, q, l, k, k0 and r represent the Lie algebras of Gu, G0, Q,
L, K, K0 and RUQ, respectively.

(h) Let X denote the variety of parabolic subgroups of G that are conjugate
to Q. Given x ∈ X, we write Qx and qx for the parabolic subgroup
and subalgebra corresponding to x. Since NGQ = Q, we may identify
X 
 G/Q.

(i) Let S be a maximal torus of a parabolic Qx ⊂ G, with the unique Levi
decomposition Qx = Lx × RUQx such that S ⊂ Lx. Let Δ(g, s) be the
collection of roots of g relative to s = LieS. Recall that we may choose
a simple system Π ⊂ Δ(g, s) and Π′ ⊂ Π satisfying

lx = s ⊕
⊕

α∈ΔΠ′ (g,s)

gα and rx =
⊕

α∈Δ+(g,s)\ΔΠ′ (g,s)

gα,

where ΔΠ′(g, s) = SpanZ(Π′) ∩ Δ(g, s). We have identifications
ΔΠ′(g, s) = Δ(lx, s) and Δ+(g, s)\ΔΠ′(g, s) = Δ(rx, s).

(j) We write r̃x for θrx, which is the Lie algebra of the unipotent radical
of Qopp

x , and Z = Zr̃x
+ Zlx + Zrx to reflect the decomposition g = r̃x ⊕

lx ⊕ rx.
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2.2. Flag manifolds and adjoint orbits

The variety X = G/Q in item (h) of Notation 2.1 is a flag variety. It is
known that X is a compact complex manifold, and that Gu acts transitively
on X (see [4, 12]). It is useful to identify X with an orbit of Gu in gu. We
recall the construction here.

Lemma 2.2. There exists an element Υ ∈ tu such that α(Υ) = 0 for α ∈
Δ(l, t), and α(iΥ) < 0 for α ∈ Δ(r, t).

Lemma 2.2 together with the fact that X 
 G/Q 
 Gu/(Gu ∩ L) gives

Proposition 2.3. Let Υ ∈ tu be as in Lemma 2.2. We may identify X with
the Ad Gu

-orbit of Υ in gu via gQg−1 �→ gΥ for g ∈ Gu.

Henceforth we frequently identify x ∈ X with the corresponding point
Υx in the Gu-orbit of Υ in gu, which we denote O. We identify g/qx 

TxX 
 TΥx

O 
 gu/(lx ∩ gu). Finally, we let x0 denote the base point in X
corresponding to Q.

2.3. Almost complex structure

Observe that the mapping Ix : g/qx → gu/gu ∩ lx defined by

(2.1) Ix(Z + qx) = (Zr̃x + θZr̃x) + (gu ∩ lx)

is the inverse of the mapping gu/(gu ∩ lx) → g/qx induced by the inclu-
sion gu ⊂ g. This immediately yields an almost complex structure on Gu/
(Lx ∩ Gu) 
 O:

Z + (lx ∩ gu) = Zr̃x + Zrx + (lx ∩ gu)
Jx−→ iZr̃x − iθ(Zr̃x) + (lx ∩ gu) = iZr̃x − iZrx + (lx ∩ gu).(2.2)

2.4. Kähler structure

Recalling that any coadjoint orbit of a Lie group is a symplectic manifold,
we may put a symplectic structure on X ∼ O following the construction
given in [1]. This structure, which turns out to be Kähler, is given by

(2.3) 〈ξZ , ξW 〉x = −2iκ(Υx, [Zr̃x , θWr̃x ]),

where Z, W ∈ g, x ∈ X and ξZ denotes the vector field on X induced by Z.
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2.5. The moment-norm function f+ and its gradient

We now define a real-valued, K0-invariant function f+ on X (the energy
function of [4]) which is used in [2] to establish the Matsuki correspondence.
Ingredients include the (dual) moment map μGu

: X → gu, which is given by

(2.4) μGu
(x) = Υx,

together with the squared Killing norm:

Definition 2.4. Let f+ : X → R be given by

f+(x) = 2||proj gu

k0
(μGu

(x))||κ2 = 2||μK0(x)||κ2.

The gradient of f+ at x ∈ X is

(2.5) ∇f+ = −2JξσμGu (x) = −4JξμK0 (x).

In [2], the gradient flow to infinity of f+ plays a central role in the proof of
Matsuki duality. Of particular importance are the various characterizations
of the critical set for f+ (e.g., x is a critical point if and only if lx contains
a σ, θ-stable Cartan subalgebra), as well as understanding the interaction
between ∇f+ and the tangent spaces to various orbits. Two results of this
flavor that are relevant for this paper are:

Proposition 2.5. For all x ∈ X, ∇f±(x) is tangent to the G0-orbit of X
and to the K-orbit of x.

Proposition 2.6. Let x be a critical point for f+. With respect to the
real part of the Kähler form given in (2.3), the orthogonal complement of
Tx(K0 · x) in Tx(G0 · x) is isomorphic to ad −1

iΥx
(r̃−σθ

x ), while the orthogonal
complement of Tx(K0 · x) in Tx(K · x) is isomorphic to ad−1

iΥx
(r̃−σ

x ). Further,
these two complements are orthogonal to each other.

3. A candidate for the flow

Recall that our main purpose is to produce explicit integral curves for ∇f+.
In this section, we present candidates for these curves. We will assume the
base point x0 for X is a critical point for f+, and we let Υ ∈ gu represent
the corresponding point in O. We begin with two observations.
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Proposition 3.1. For each x ∈ X, ∇f+(x) lies in the orthogonal
complement of Tx(K0 · x).

Proof. Let W ∈ Tx(K0 · x) and μ : (−ε, ε) → X be a curve in K0 · x with
μ(0) = x and μ′(0) = W . Then, since f+ is constant on K0 · x, we have

〈∇f+, W 〉x = 〈∇f+, μ′(0)〉x =
d

dt
f+(μ(t))|t=0 = 0.

�

Proposition 3.2. Let γ : R → X be a maximal integral curve for ∇f+

beginning at a noncritical point x ∈ X, and let k ∈ K0. Then k · γ is also a
maximal integral curve for ∇f+, beginning at k · x.

Proof. Applying Proposition 2.3, we identify X with an Ad (Gu)-orbit O
in gu. Let W ∈ gu and (·, ·) be the symmetric part of the Kähler form.
In this setting k · γ means Ad k ◦ γ, and it suffices to show (Ad k ◦ γ)′(0) =
∇f+(k · x), or rather, that

((Ad k ◦ γ)′(0) , ξW )k·x = ξW · f+(k · x).

Using the definition of ∇f+ together with the invariance of f+ under K0,
we obtain

((Ad k ◦ γ)′(0) , ξW )k·x = (∇f+(x) , ξAd k−1W )x

= ξAd k−1W · f+(x) = ξW · f+(k · x).

�
In view of Proposition 3.1 and Proposition 2.5, each maximal integral

curve γ(t) for ∇f+ must be tangent to G0- and K-orbits while being orthog-
onal to K0-orbits. Further, since the limiting values limt→±∞ γ(t) lie in
critical K0-orbits, Proposition 3.2 indicates that if one of these limiting
values lies in K0 · x0, then we do no harm by assuming the limiting value
is x0. The simplest candidate for a curve γ(t) that might satisfy these
conditions is

(3.1) γ(t) = Ad (es(t)Z)Υ,

where s is a (nonzero) real-valued function and Z ∈ gu is identified via
Proposition 2.6 with either an element of Tx0(G0 · x0) or Tx0(K · x0) that
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lies in the orthogonal complement of Tx0(K0 · x0). Specifically, in view of
Proposition 2.6, we consider Z ∈ gu exactly when Z lies in the set

(3.2) Z = {Z = Zr̃ + Zr ∈ gu | Zr̃ ∈ [ad −1
iΥ r̃

−σ ]̃r or Zr̃ ∈ [ad −1
iΥ r̃

−σθ ]̃r}.

In the sequel, we show:

• For certain Z ∈ Z there exists s(t) so that the curve γ(t) given by
(3.1) is a maximal integral curve for ∇f+. These curves correspond
to Cayley transforms.

• If X is a rank-one irreducible hermitian symmetric space then for
every Z ∈ Z there exists s(t) such that γ is a maximal integral curve
for ∇f+. These curves are pregeodesic in X.

4. The differential equation

Let γ(t) = Ad (es(t)Z)Υ be as in (3.1). We find that γ will be an integral
curve for ∇f+ if and only if the scaling function s(t) satisfies a certain
differential equation.

Lemma 4.1. Let γ(t) be as in (3.1), and t0 ∈R. Then γ′(t0)=ξs′(t)Z(γ(t0)).

Proof. Let f : X → C be smooth. Appealing to the Taylor’s theorem, we
have

(γ′(t0) · f)(γ(t0)) =
d

dt

∣∣∣
t=t0

f(Ad (es(t)Z)Υ)

=
d

dr

∣∣∣
r=0

f(Ad (es(t0+r)Z)Υ)

=
d

dr

∣∣∣
r=0

f(Ad (e(rs′(t0)+s(t0))Z)Υ)

=
d

dr

∣∣∣
r=0

f(Ad (ers′(t0)Z)γ(t0))

= ξs′(t0)Z · f(γ(t0)).

Therefore γ′(t0) = ξs′(t0)Z(γ(t0)). �

On the other hand, (2.5) together with (2.2) tell us that

(4.1) ∇f+(γ(t0)) = −2Jξσγ(t0)(γ(t0)) = ξ2i([σγ(t0)]rγ(t0)−[σγ(t0)]r̃γ(t0))
.
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Putting (4.1) together with Lemma 4.1, we see that γ(t) is an integral curve
for ∇f+ if and only if

(4.2) s′(t)Z ≡ 2i([σγ(t0)]rγ(t0) − [σγ(t0)]̃rγ(t0)) mod(lγ(t))

for all t ∈ R. We may simplify (4.2) as follows:

Proposition 4.2. Let γ(t) be as in (3.1) with Z ∈ Z. Then γ(t) is an
integral curve for ∇f+ if and only if s(t) satisfies

s′(t)Z = 2i([Ad (e−sZeσsZ)σΥ]r − [Ad (e−sZeσsZ)σΥ]̃r),

where r denotes rx0.

Proof. Since σ ◦ Ad g = Ad σg ◦ σ for each g ∈ G, we have

[σγ(t)]rγ(t) = [Ad (eσsZ)σΥ]rγ(t) = [Ad (esZ)Ad (e−sZeσsZ)σΥ]rγ(t)

= Ad (esZ)[Ad (e−sZeσsZ)σΥ]r,

and similarly [σγ(t)]̃rγ(t) = Ad (esZ)[Ad (e−sZeσsZ)σΥ]̃r. Therefore, (4.2)
becomes

s′(t)Z ≡ 2i
(
Ad (esZ)[Ad (e−sZeσsZ)σΥ]r

− Ad (esZ)[Ad (e−sZeσsZ)σΥ]̃r
)

mod(lγ(t)).
(4.3)

We then obtain the result by applying Ad (e−sZ) on both sides of (4.3) and
keeping in mind that Z has no contribution from l. �

5. Cayley transforms

Here we show that for Z ∈ Z that are built from a single root in Δ(r̃, t) there
exists a solution s(t) for the differential equation given in Proposition 4.2.
The corresponding integral curves are identified with Cayley transforms.

Theorem 5.1. Let α ∈ Δ(r̃, t). If Zα ∈ (gα ∩ r̃−σ) or Zα ∈ (gα ∩ r̃−σθ)
then

(a) Z = Zα + θZα ∈ Z,

(b) There exists a real-valued function s(t) so that the curve γ(t) = Ad
(es(t)Z)Υ is a maximal integral curve for ∇f+ in X.
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(c) If Zα ∈ (gα ∩ r̃−σ) then limt→∞ Ad(es(t)Z) is a Cayley transform, while
if Zα ∈ (gα ∩ r̃−σθ) then limt→−∞ Ad(es(t)Z) is a Cayley transform.

Proof. Since ad iΥ acts on gα by a real scalar (Lemma 2.2), it follows that
gα ∩ r̃−σ = gα ∩ ad −1

iΥ r̃−σ and gα ∩ r̃−σθ = gα ∩ ad −1
iΥ r̃−σθ. This establishes

part (a).
For (b) we set about examining the differential equation in Proposition

4.2. In either case listed above, one may produce Hα ∈ t such that

(5.1) [Zα, θZα] = −Hα, [Hα, Zα] = 2Zα and [Hα, θZα] = −2θZα.

Using an infinite series expansion together with the bracket relations (5.1)
and the fact that σZ = −Z, we obtain

s′(t)(Zα + θZα)=2i([Ad (e−2sZ)σΥ]r − [Ad (e−2sZ)σΥ]̃r)

=2i

([
−α(σΥ)

2
sin(4s(t))θZα

]
+

[
−α(σΥ)

2
sin(4s(t))Zα

])

=−iα(σΥ) sin(4s(t))(Zα + θZα).

This differential equations yields gudermannian solutions

(5.2) s(t) =
1
2

arctan(e−4iα(σΥ)t+C),

and consequently (b) follows from Proposition 4.2.
Finally, for item (c), we first observe that if gα ∩ r̃−σ is nontrivial then

α is a real root, iα(σΥ) < 0 (due to Lemma 2.2) and limt→∞ s(t) = π/4
(due to (5.2)). Meanwhile if gα ∩ r̃−σθ is nontrivial then α is a noncom-
pact imaginary root, iα(σΥ) > 0 and limt→−∞ s(t) = π/4. With these facts
in hand, we may conclude ([6], p. 390) that the limiting cases, namely
Ad (e(π/4)(Zα+θZα)), are Cayley transforms. �

6. Solving the differential equation in the rank-one
Hermitian symmetric case

In the case that X is an irreducible rank-one symmetric space (of compact
type), we demonstrate that all the curves γ(t) described in (3.1) are integral
curves for ∇f+ by showing that the differential equation in Proposition 4.2
possesses a solution for each Z ∈ Z. In addition, we observe that these
integral curves are pregeodesic in X. Throughout we assume that G is a
simply connected complex simple Lie group.
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6.1. Flag manifolds and symmetric spaces

Before addressing the differential equation in Proposition 4.2, we list some
facts about hermitian symmetric spaces that will be useful as we proceed.
These facts may be found, for example, in [3, 11].

Proposition 6.1. If X = Gu/(Gu ∩ L) is a hermitian symmetric space
then Δ(r, t) contains exactly one simple root.

Proposition 6.1 immediately yields the following corollaries:

Corollary 6.2. Suppose X = Gu/(Gu ∩ L) is a hermitian symmetric space,
β is the unique simple root in Δ(r, t) and α1, . . . , αn are the remaining simple
roots in Δ(g, t) (these simple roots span the l-roots). If α ∈ Δ(r, t) then α
has the form

α = β +
n∑

j=1

kjαj ,

where each kj is a non-negative integer.

Corollary 6.3. If X = Gu/(Gu ∩ L) a hermitian symmetric space then
[r, r] = 0, [r, l] ⊂ r and [r, r̃] ⊂ l.

6.2. Solving the differential equation

In a series of lemmas culminating in Theorem 6.8, we show that if X is an
irreducible hermitian symmetric of rank one and Z ∈ Z, then the curve γ
given in (3.1) is a maximal integral curve for ∇f+.

Lemma 6.4. Let Z = Zr̃ + Zr ∈ Z.

(a) [ad −1
iΥ r̃−σ ]̃r = r̃−σ and [ad −1

iΥ r̃−σθ ]̃r = r̃−σθ.

(b) σZ = −Z.

Proof. For (a), let V ∈ r̃ and write V = Vα1 + · · · + Vαn
where each αj ∈

Δ(r̃, t) and Vαj
∈ gαj . By Corollary 6.2, each αj has the form γ + βj where

−γ is the unique simple root in Δ(r, t) and βj is the negative of a sum
of simple roots in Δ(l, t). (In fact, βj ∈ Δ(l, t) in case X is of rank one.)
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Therefore, since Υ commutes with l (Lemma 2.2), we have

ad iΥV = (γ + β1)(iΥ)Vα1 + · · · + (γ + βn)(iΥ)Vαn

= γ(iΥ)Vα1 + · · · + γ(iΥ)Vαn

= γ(iΥ)V.

Further, by Lemma 2.2, γ(iΥ) > 0. Therefore, ad iΥ acts on r̃ by a nonzero
real scalar, so ad −1

iΥ preserves both r̃−σ and r̃−σθ.
Part (b) follows immediately from part (a). �

Lemma 6.5. Let Zr̃ ∈ r̃, Zr = θZr̃ and T : g → g be defined by TZr
= adZr

◦
adZr̃

. For each whole number n we have

[[Zr, Zr̃], Tn
Zr

([Zr, Zr̃])] = 0.

(Here T 0 is the identity mapping.)

Proof. Let β denote the unique simple root in Δ(r, t), and Zβ a nonzero
element of gβ. Then

⎧
⎨

⎩[V, Zβ] | V ∈ tu +
∑

α∈Δ+(l,t)

g
α

⎫
⎬

⎭

is a subspace of r of real co-dimension one. Further, since mixed sign
combinations of simple roots never yield a root, we have [θV, Zβ] = 0 when-
ever V ∈

∑
α∈Δ+(l,t) gα , and hence [V, Zβ] = [V + θV, Zβ] in this case. We

may then conclude ad l∩gu
(Zβ) is a real co-dimension one subspace of r.

Therefore Ad Gu∩LZβ (a sphere in r) must also be of co-dimension one, and
so Ad Gu∩L(CZβ) is all of r.

Now, suppose Zr = Ad gcZβ for some g ∈ Gu ∩ L and c ∈ C. Then Zr̃ =
Ad gθ(cZβ), and since Ad g is a Lie algebra homomorphism we obtain

(6.1) [[Zr, Zr̃], Tn([Zr, Zr̃])] = Ad g[[cZβ, θcZβ], Tn
cZβ

([cZβ, θcZβ])].

Since both [cZβ, θcZβ] and Tn
cZβ

([cZβ, θcZβ]) lie in t, the right-hand side of
(6.1) is zero, thus giving the result. �

Lemma 6.6. Let Zr̃ ∈ r̃, Zr = θZr̃ and Z = Zr + Zr̃ ∈ gu. Then

[Zr̃, (Ad eZ Υ)r] = [Zr, (Ad eZ Υ)r̃].
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Proof. We first examine Ad eZ Υ. Recall that

(6.2) Ad eZ Υ = ead Z Υ =
∞∑

n=0

1
n!

(ad Z)nΥ.

Using Corollary 6.3, Lemma 6.5 and the fact that [Zr, Υ] = cZr for
some c ∈ iR (see proof of Lemma 6.4), the series on the right-hand side
of (6.2) may be expressed as

∑∞
n=1 Vn, with V1 = Υ, V2 = c(Zr − Zr̃) and

for k ≥ 1

(6.3) V2(k+1) = a2(k+1)

(
ad Zr

T k−1
Zr

([Zr, Zr̃]) + ad Zr̃
T k−1

Zr
([Zr, Zr̃])

)

and

(6.4) V2k+1 = a2k+1T
k−1
Zr

([Zr, Zr̃]),

where an ∈ iR for n > 2. Therefore

(6.5) (Ad eZ Υ)r = cZr +
∞∑

k=1

a2(k+1)ad Zr
T k−1

Zr
([Zr, Zr̃]),

while

(6.6) (Ad eZ Υ)r̃ = −cZr̃ +
∞∑

k=1

a2(k+1)ad Zr̃
T k−1

Zr
([Zr, Zr̃]).

From (6.5) and (6.6), we have

(6.7) [Zr̃, (Ad eZ Υ)r] = [Zr̃, cZr] +
∞∑

k=1

a2(k+1)ad Zr̃
ad Zr

T k−1
Zr

([Zr, Zr̃])

and

(6.8) [Zr, (Ad eZ Υ)r̃] = [Zr,−cZr̃] +
∞∑

k=1

a2(k+1)ad Zr
ad Zr̃

T k−1
Zr

([Zr, Zr̃]).

Clearly the first terms of (6.7) and (6.8) agree, and the remaining sum-
mands agree term by term by applying the Jacobi identity followed by
Lemma 6.5. �
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Lemma 6.7. Let Zr̃ ∈ r̃ Zr = θZr̃ and Z = Zr + Zr̃ ∈ gu.

(a) If Zr̃ ∈ r̃−σ, then (σAdeZ Υ)r̃ = σ((AdeZ Υ)r̃).

(b) If Zr̃ ∈ r̃−σθ, then (σAdeZ Υ)r̃ = σ((AdeZ Υ)r).

Proof. For part (a), the hypothesis together with (6.6) and the fact that
c, an ∈ iR yields

σ((Ad eZ Υ)r̃) = σ

(
−cZr̃ +

∞∑

k=1

a2(k+1)ad Zr̃
T k−1

Zr
([Zr, Zr̃])

)

= −cZr̃ +
∞∑

k=1

a2(k+1)ad Zr̃
T k−1

Zr
([Zr, Zr̃]).

Meanwhile, from the proof of Lemma 6.6 we have σAd eZ Υ =
∑∞

n=1 σVn,
where σV1 = σΥ, σV2 = c(Zr − Zr̃), and for k ≥ 1

(6.9) σV2(k+1) = a2(k+1)

(
ad Zr

T k−1
Zr

([Zr, Zr̃]) + ad Zr̃
T k−1

Zr
([Zr, Zr̃])

)

and

(6.10) σV2k+1 = −a2k+1T
k−1
Zr

([Zr, Zr̃]).

Therefore, upon extracting the r̃ part we have

(σAd eZ Υ)r̃ = −cZr̃ +
∞∑

k=1

a2(k+1)ad Zr̃
T k−1

Zr
([Zr, Zr̃]),

and we conclude that (σAd eZ Υ)r̃ = σ((Ad eZ Υ)r̃).
The proof for part (b) is similar to that for part (a). (In part (b) one

needs the fact that T k−1
Zr

([Zr, Zr̃]) = T k−1
Zr̃

([Zr, Zr̃].) This follows by induction
using Lemma 6.5.) �

Theorem 6.8. If Z = Zr + Zr̃ ∈ Z and γ(t) is the corresponding curve in
X described in (3.1), then γ(t) is a maximal integral curve for ∇f+.

Proof. For Z ∈ Z, let WZ(t) ∈ (r + r̃)u ⊂ gu denote the right-hand side of
the differential equation in Proposition 4.2. Observe that the differential
equation possesses a solution if and only if WZ(t) is a real scalar multiple of
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Z for each t ∈ R. In case X is symmetric of rank one, WZ(t) is a real scalar
multiple of Z if and only if [Z, WZ(t)] = 0. So, it remains for us to show
that [Z, WZ(t)] = 0.

To begin, Lemma 6.4 implies that WZ(t) simplifies to

WZ(t) = 2i
(
[Ad e−2sZ σΥ]r − [Ad e−2sZ σΥ]̃r

)
,

and from this it follows that

(6.11) [Z, WZ(t)] = 0 ⇐⇒ [Zr, (Ad e−2sZ σΥ)r̃] = [Zr̃, (Ad e−2sZ σΥ)r]

We finish the proof by verifying the right-hand Equation in (6.11). By
Lemma 6.4, there are two cases to consider. First, suppose that Zr̃ ∈ r̃−σ.
Applying Lemmas 6.6 and 6.7, we have

[Zr̃, (Ad e−2sZ σΥ)r] = [Zr̃, (σ(Ad e2sZ Υ))r] = [Zr̃, σ((Ad e2sZ Υ)r)]

= σ[−Zr̃, (Ad e2sZ Υ)r] = σ[−Zr, (Ad e2sZ Υ)r̃]

= [Zr, σ((Ad e2sZ Υ)r̃)] = [Zr, (σ(Ad e2sZ Υ))r̃]

= [Zr, (Ad e−2sZ σΥ))r̃].

Similarly, if Zr̃ ∈ r̃−σθ, then

[Zr̃, (Ad e−2sZ σΥ)r] = [Zr̃, (σ(Ad e2sZ Υ))r] = [Zr̃, σ((Ad e2sZ Υ)r̃)]

= σ[−Zr, (Ad e2sZ Υ)r̃] = σ[−Zr̃, (Ad e2sZ Υ)r]

= [Zr, σ((Ad e2sZ Υ)r)] = [Zr, (σ(Ad e2sZ Υ))r̃]

= [Zr, (Ad e−2sZ σΥ))r̃].

�
Recall (see, for example, [9]) that if G/H is a naturally reductive homo-

geneous space with subspace with m the associated complementary subspace
to h in g, then geodesics starting at o = eH have the form

ΓdπX(t) = α(t) · o = πα(t),

where α(t) is the one-parameter subgroup in G corresponding to X ∈ m ⊂ g,
and π : G → G/H. Specializing to our situation (with o = Υ and the adjoint
action of Gu on X) we conclude that geodesics in X starting at Υ have the
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form Ad (etZ)Υ where Z ∈ (r + r̃). Therefore, upon re-parameterization and
Theorem 6.8 we have:

Corollary 6.9. For each Z ∈ Z the integral curves γ for ∇f+ given in
(3.1) are pre-geodesic in X.
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