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Virtually Haken surgeries on once-punctured
torus bundles

Joseph D. Masters

We describe a class C of punctured torus bundles such that, for
each M ∈ C, all but finitely many Dehn fillings on M are virtually
Haken. We show that C contains infinitely many commensurability
classes, and we give evidence that C includes representatives of
“most” commensurability classes of punctured torus bundles.

In particular, we define an integer-valued complexity function
on monodromies f (essentially the length of the LR-factorization
of f∗ in PSL2(Z)) and use a computer to show that if the mon-
odromy of M has complexity at most 5, then M is finitely covered
by an element of C. If the monodromy has complexity at most
12, then, with at most 36 exceptions, M is finitely covered by an
element of C.

We also give a method for computing “algebraic boundary
slopes” in certain finite covers of punctured torus bundles.

1. Introduction

A compact 3-manifold M is Haken if it is irreducible, and contains an
orientable, essential surface. M is virtually Haken if it is finitely covered by
a Haken manifold. One of the central problems in 3-dimensional topology is
Waldhausen’s conjecture, which states that every closed, irreducible
3-manifold with infinite fundamental group is virtually Haken.

A knot manifold is an irreducible, orientable, compact 3-manifold whose
boundary is a single torus. A knot manifold M is small if every closed
incompressible surface in M is boundary parallel. A knot manifold is hyper-
bolic if its interior admits a complete hyperbolic metric of finite volume. A
slope on a torus T is a non-trivial isotopy class of simple closed curves on
T . If M is a 3-manifold, T is a torus component of ∂M and α is a slope on
T , then M(α) denotes the manifold obtained from M by Dehn filling along
a simple closed curve representing the slope α. We say that a knot mani-
fold has property VH if M(α) is virtually Haken for all but finitely many
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slopes α on ∂M . An important special case of Waldhausen’s conjecture is
the following:

Conjecture 1.1. Let M be a hyperbolic knot manifold. Then M has
property VH.

Examples of small knot manifolds satisfying property VH have been
given in [2, 5, 7].

Let F be homeomorphic to a torus with an open disk removed. We
choose a basepoint, p ∈ ∂F , for π1F . Let x and y be generators of π1F , as
pictured in figure 1. Let Dx and Dy represent Dehn twists along simple
closed curves in int F which are isotopic to loops representing x and y,
respectively. Let M1

1 denote the mapping class group of F ; that is the group
of orientation-preserving automorphisms of F which restrict to the identity
on ∂F , modulo isotopies which fix every point of ∂F . It is well known that
M1

1 is generated by Dx and Dy. There is a natural map φ : M1
1 → SL2(Z),

whose kernel is generated by a Dehn twist around a curve parallel to the
boundary of F . We sometimes use the notation φ(f) = f∗.

Let H3 = φ−1〈Dx∗, D3
y∗〉, and let H4 = φ−1〈Dx∗, D4

y∗〉. It is a fact (see
Section 7) that H3 and H4 are both finite-index subgroups of M1

1.

Theorem 1.2. Let M be an orientable, atoroidal 3-manifold which fibers
over S1, whose fiber, F , is a compact, orientable surface of genus 1, with a
single boundary component. Let f : F → F be the monodromy, and suppose
that the mapping class of f lies in the subgroup Hi, where i= 3 or 4. Then
there are slopes β1

i , β2
i and an integer N such that M(α) is virtually Haken

whenever I(α, β1
i ) > N and I(α, β2

i ) > 1.

Since H3 and H4 have finite index, it follows that every hyperbolic
punctured torus bundle has infinitely many virtually Haken surgeries, a

Figure 1: Notation for the bundle M .
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result which was first proved by Baker [1] (see also [7]). The slopes βj
i are

computable (see Sections 6–8).
For a given monodromy f , let βj

i = βj
i (f) be slopes as in Theorem 1.2.

Let C be the set of mapping classes f of F such that f ∈H3 ∩ H4 and
{β1

3 , β2
3} ∩ {β1

4 , β2
4} = ∅.

Corollary 1.3. If f ∈ C, then M has property VH.

We shall show that there are infinitely many commensurability classes of
once-punctured torus bundles whose monodromies lie in the class C. Thus
we obtain:

Theorem 1.4. There are infinitely many pairwise non-commensurable
once-punctured torus bundles which have property VH.

Remark. 1. In the case where f ∈H4, 1.2 is a corollary of [7, Theorem
1.3]. The proof we give here is completely different.

2. Many of the bundles in C have no exceptional surgeries, and so the
techniques of [2, 5] cannot be applied.

It appears that (in some sense) “most” monodromies f have a power
which lies in C, and thus most punctured torus bundles are commensurable
to ones with property VH. We have verified this on a computer, for mon-
odromies of low complexity.

To make these statements precise, we introduce a complexity function on
monodromies. Recall that every element g ∈ SL2(Z) can be written uniquely
as a positive word in D−1

x∗ and Dy∗, times ±Id. We define the “complex-
ity” of g to be the length of this word. Similarly, if f ∈ M1

1, then we
define the complexity of f to be the complexity of f∗ in SL2(Z), and if
M is a punctured torus bundle with monodromy f , the complexity of M is
defined to be the minimum of the complexity of f among all monodromies
of bundles N which are bundle equivalent to M . Using a computer, we
can show:

Theorem 1.5. (a) Every mapping class of complexity at most 5 has a power
which lies in C. Thus every once-punctured torus bundle of complexity at
most 5 is commensurable to one with property VH.

(b) There are 745 once-punctured torus bundles of complexity at most
12; with at most 36 exceptions, these are all commensurable to bundles with
property VH.
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Idea of Proof
Our proof of Theorem 1.2 is inspired by the arguments of Cooper and

Walsh [4], who show that every fibered knot in a Z/2 homology sphere
admits infinitely many virtually Haken surgeries. The idea is to replace M
with a finite cover ˜M in which the fiber has multiple boundary components.
Then one hopes to find a non-separating surface in ˜M which is not a fiber,
so that the techniques of [3] may be applied to find an essential surface in a
cyclic cover of ˜M . Finally one must show that certain slopes on ∂M lift to
the ultimate cover.

Our argument diverges from that of [4] in that we choose ˜M to have three
or four boundary components instead of two. Since we have two covers to
work with, we obtain two surfaces, which is the key to proving property VH.
Furthermore, the surfaces which we construct are disjoint from one of the
boundary components of ˜M , and thus cannot be fibers. Thus we avoid a
number of issues in [4] involving semi-bundle structures.

However, we encounter several new issues. First, it is possible that our
surfaces may become fibers after Dehn filling, and to rule this out requires
the computation of an Alexander polynomial. Secondly, and more impor-
tantly, we require that the boundary components of the non-separating sur-
face in ˜M must all project to the same slope in M . To arrange this, we
must develop techniques for constructing surfaces, and computing slopes,
explicitly. Some of these techniques (those in Section 3) may be applied
to any bundle, but some (those in Section 4) exploit special features of the
genus 1 mapping class group.

A Question
Although some of the methods in this paper apply only to punctured

torus bundles, it is conceivable Conjecture 1.1 can be attacked along broadly
similar lines. A key step would be to answer the following (presumably
difficult) question:

Question: Let M be a knot manifold. Is there a finite cover ˜M of M
which contains a non-separating surface, which is disjoint from some compo-
nent of ∂ ˜M , and whose boundary curves all project to the same slope
on ∂M?

By the results of this paper, the answer to the question is yes if M is a
punctured torus bundle.

Plan of paper
Section 2 fixes a choice of basis for H1(∂M), when M is any 3-manifold

fibering over S1. In Section 3, we show how to compute “algebraic” bound-
ary slopes of non-separating surfaces in bundles. In Section 4, we prove the
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main theorem. In Sections 5–7, we give methods for explicit computations of
slopes. Section 8 is devoted to the example of the figure eight knot exterior.
In Section 9, we prove Theorem 1.4. Finally, in Section 10, we discuss our
computer-generated data.

2. Framing convention

Let f : F → F be an automorphism of a compact, orientable surface, and
let M = F × [0, 1]/(x, 0) = (fx, 1) be the 3-manifold fibering over S1 with
monodromy f . Let λ1, . . . , λk be the boundary components of F , and
suppose that f acts trivially on ∂F , so M has torus boundary components
T1, . . . , Tk.

We wish to fix a framing for ∂M (see figure 1). For i= 1, . . . , k, we
fix a point pi ∈λi, and let the meridian, μi ⊂Ti, be the suspension of the
point pi. The orientation of μi is chosen so that the map from [0, 1] (with
standard orientation) to μi given by t → (pi, 1 − t) is orientation-preserving.
We let the longitude, λi, of Ti be given by λi × {1}. We orient λi so that
I(μi, λi) = 1, where I(·, ·) is the standard intersection pairing on H1(∂M)
(see figure 1).

Given a surface S properly embedded in M , we may specify the homol-
ogy classes of the boundary curves of S by a vector (α1, . . . , αk), where each
αi is an ordered pair of integers. We shall refer to this as the vector of “alge-
braic boundary slopes” of S. For example, if we say that S has algebraic
boundary slopes ((1, 2), (0, 0), (0, 3)), we mean that [S ∩ T1] = [μ1 + 2λ1] in
H1(T1), that [S ∩ T2] = [0]∈H1(T2) and that [S ∩ T3] = 3[λ3] in H1(T3).
Unless otherwise specified, all homology groups in this paper will be taken
with Z coefficients.

3. Homology and boundary slopes of bundles

We begin by recalling some well-known facts. If M is a manifold which fibers
over S1, with monodromy f : F → F , then there is a corresponding Wang
exact sequence

. . . −−−−→ Hj(M) θ−−−−→ Hj−1(F )
f∗−Id−−−−→ Hj−1(F )

i∗−−−−→ Hj−1(M) −−−−→ . . . ,

where θ is the map induced by intersection with F × {0} (see [8]). By
a simple modification of the proof, one can also obtain a relative version
of this sequence. A direct check shows that the relative Wang sequence
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fits with the exact sequence of a pair into the following commutative
diagram:

. . . Hj(M, ∂M) −−−−−−→ Hj−1(F, ∂F ) −−−−−−→ Hj−1(F, ∂F ) −−−−−−→ Hj−1(M, ∂M) −−−−−−→ . . .

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

. . . Hj−1(∂M) −−−−−−→ Hj−2(∂F ) −−−−−−→ Hj−2(∂F ) −−−−−−→ Hj−2(∂M) −−−−−−→ . . .

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

. . . Hj−1(M) −−−−−−→ Hj−2(F ) −−−−−−→ Hj−2(F ) −−−−−−→ Hj−2(M) −−−−−−→ . . .

In the case where M is a 3-manifold, one may use the Wang sequence
to compute that RankH2(M, ∂M ; Q) = 1 + Rank(fix(f∗); Q), where fix(f∗)
denotes the set of vectors in H1(F, ∂F ) which are fixed by f∗.

Suppose now that f acts trivially on ∂F . As described in the previous
section, for each component of ∂M , there is a canonical meridian, given by
the suspension of a point on ∂F , and longitude, given by intersection with
F . This gives a canonical basis for H1(∂M), and we have corresponding
projections μ : H1(∂M) → H0(∂F ), which sends each longitude to 0, and λ :
H1(∂M) → H1(∂F ), which sends each meridian to 0. We will fix a preferred
component 	 of ∂F , and let π� be the projection map from H1(∂F ) to H1(	).

We may define a map η : H2(M, ∂M) → fix(f∗) × H1(	) by

η[R] = ([R ∩ F × {0}], π�λ([∂R])).

We claim that η is injective. Indeed, if [R] ∈ ker(η), then R ∩ F ×
{0} is trivial in H1(F, ∂F ). Therefore, by the relative Wang sequence,
[R] ∈ i∗H2(F, ∂F ). But since [R] ∈ ker(η), then π�[∂R] is trivial in H1(	),
and so [R] = 0, and ker(η) = 0.

If [δ] ∈ fix(f∗) ⊂H1(F, ∂F ), then [fδ − δ] = 0∈H1(F, ∂F ), and so the 1-
chain fδ − δ represents a class [x] in Image(i∗ : H1(∂F ) → H1(F )). Note
λ1, . . . , λk generate a rank k − 1 subgroup of H1(F ), and so [x] is unique, up
to adding copies of [∂F ]. Thus we may define ψ : fix(f∗) × H1(	) → H1(∂F )
uniquely, by requiring

i∗ψ([δ], m[	]) = [fδ − δ], and π�ψ([δ], m[	]) =m[	].
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We have the following diagrams:

H2(M, ∂M)
η−−−−→ fix(f∗) × H1(	)

⏐

⏐

�
φ

⏐

⏐

�
ψ

H1(∂M) λ−−−−→ H1(∂F )

and

H2(M, ∂M) −−−−→ H1(F, ∂F )
⏐

⏐

�

⏐

⏐

�

H1(∂M)
μ−−−−→ H0(∂F ),

where in the first diagram, φ is the boundary map, and in the second dia-
gram, all unlabeled maps come from the exact sequence of the pair, and the
Wang sequence.

Lemma 3.1. The above diagrams commute.

Proof. For the second diagram, note that the map μ agrees with the map
θ from the Wang sequence for ∂M . Thus the second diagram fits into the
larger diagram given at the beginning of the section, which commutes.

For the first diagram, suppose we are given a class [R] ∈H2(M, ∂M).
A 2-chain homologous to R may be constructed as follows. We let δ = R ∩
(F × {0}), and let η[R] = ([δ], m). By definition of the map ψ, we have
[δ − fδ] = − i∗ψ([δ], m). Thus there is a map g : X → F , where X is an
orientable surface with ∂X = ∂0X 	 ∂1X, such that g|∂0X is the immersed
curve δ − fδ and such that g∂1X ⊂ ∂F , with i∗[g∂1X] = i∗ψ([δ], m); since
i∗[∂F ] = 0, we may also assume that g∂1X ∩ 	 = ∅. Let ∂00X ⊂ ∂0X be the
union of arcs which map to δ, and let ∂01X ⊂ ∂0X be the union of arcs which
map to −fδ. Let σ be a properly embedded collection of separating arcs in
X, with ∂σ = ∂00X ∩ ∂01X. Let h : X − σ → {0, 1} be a continuous map,
such that h(∂00X) = 0 and h(∂01X) = 1.

Let Y be an orientable surface obtained from X − σ 	 (σ × [0, 1]), by
identifying ∂00X and ∂01X according to the map f , and identifying σ ×
∂[0, 1] with X − σ − (X − σ) in the obvious way.

Then we may construct a map j : Y → M , by the rule j(x) = (gx, hx), if
x∈X −σ, and j(x, t) = (gx, t) if (x, t) ∈σ × [0, 1]. By construction, η([jY ]) =
([δ], 0), and so η([jY ] + m[F ]) = ([δ], m) = η[R]. Thus [jY ] + m[F ] = [R].
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Also, by inspection, λφ[jY ] = [g∂1X] =ψ([δ], 0), and so

λφ[R] = λφ([jY ] + m[F ])
= ψ([δ], 0) + m[∂F ]
= ψ([δ], m)
= ψη([jY ] + m[F ])
= ψη[R]. �

Corollary 3.2. Suppose R is a properly embedded, orientable, non-
separating surface in M , and let δ = R ∩ (F × {0}). Then the algebraic
boundary slopes of R satisfy

μ([∂R]) = [δ ∩ ∂F ] ∈H0(∂F ),
λ([∂R]) = [fδ − δ] + k[∂F ] ∈H1(∂F ) for some integer k.

The following corollary employs notation introduced in Section 2.

Corollary 3.3. Suppose there is an arc δ properly embedded in F , with [δ ∩
∂F ] =

∑

ai[pi] ∈H0(∂F ), and [fδ − δ] =
∑

bi[λi] ∈H1(F ). Then there is a
non-separating, orientable surface R properly embedded in M , with algebraic
boundary slopes ((a1, b1), . . . , (ak, bk)).

Proof. By the Wang exact sequence, there is a class [R] ∈H2(M, ∂M), such
that [R ∩ F × {0}] = θ[R] = [δ] ∈H1(F, ∂F ). Then, by the previous
corollary, we have μ([∂R]) = [δ ∩ ∂F ] ∈H0(∂F ), and λ([∂R]) = [fδ − δ] +
k[∂F ] ∈H1(∂F ). Adding a multiple of [F ] to [R], we get λ[∂R] = [fδ − δ].
Since every class H2(M, ∂M) can be represented by a properly embedded
surface in M , the corollary follows. �

4. Proof of Theorem 1.2

We shall make use of the following, which can be proved by straightforward
applications of the methods of [3].

Theorem 4.1. For any compact, orientable surface, S, there is a positive
integer n = n(S), depending only on the topological type of S, such that the
following is true. Let M be any compact, orientable, irreducible, atoroidal
3-manifold, with two torus boundary components, containing a properly
embedded, orientable, incompressible, non-separating surface homeomorphic
to S, which is not a fiber in a fibration of M , with algebraic boundary slopes
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(δ1, δ2), where δi 
= 0. Then, if |I(α1, δ1)| = |I(α2, δ2)|> n(S), the manifold
obtained by Dehn filling M along α1 and α2 is virtually Haken.

Remark. By choosing the function n(S) appropriately, we may assume
that, whenever S′ is obtained by compressing S, we have n(S′) < n(S) .

We are now ready to prove the main theorem.

Proof of Theorem 1.2. Recall that the kernel of φ : M1
1 → SL2(Z) is gen-

erated by a Dehn twist along a peripheral curve in F . It follows that if
f, g ∈ M1

1, and f∗ = g∗, then Mf is bundle equivalent to Mg. Thus we may
reduce to the case where f ∈Ji = 〈Di

y, Dx〉.

Case (a) f ∈J3. In this case, f can be written as a word W in Dx and
D3

y. Let m = m3 denote the exponent sum of Dx in W . Let β = β1
3 be the

slope (3, m)/gcd(3, m) on ∂M .
Let θ : ̂F→F be the 3-fold cyclic cover of F dual to the curve x. Since

f ∈H3, then f lifts to an automorphism ̂f : ̂F → ̂F which acts trivially
on ∂ ̂F . Let π : ̂M → M be the 3-fold cover of M induced by the lift
̂f : ̂F → ̂F .

If g is a map between two surfaces with boundary, we let g	 be the
induced map on H1 rel. boundary. Let λ1, λ2, λ3 be the components of ∂ ̂F
(with pre-image orientations induced from λ), and let pi ∈λi be the pre-
images of p ∈λ. Let δi be an arc connecting λi and λi+1, oriented to point
toward λi, as pictured in figure 2(a). Let δ = δ1 − δ2. Then it is easy to see
that [δ] is a non-zero class in H1( ̂F , ∂ ̂F ) which is fixed by the lifts of Dx and
(Dy)3, and therefore by ̂f	. Moreover, [fδ − δ] = − m[λ2] ∈H1(F ).

Let τ be the covering transformation of ̂F such that τ(δ1) = δ2.

Figure 2: (a) A class in ker(p∗). (b) Fixed class [δ − τδ] in H1( ̂F , ∂ ˜F ),
corresponding to the surface S. (c) Generators for π1 ̂F .
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Lemma 4.2. There is a non-separating surface R ⊂ ̂M whose boundary
slopes are given by ((0, 0), (−3,−m), (3, m)).

Proof. We have [f(δ − τδ) − (δ − τδ)] =m[λ3] − m[λ2] ∈H1(F ), and [(δ −
τδ) ∩ ∂F ] = 0[p1] − 3[p2] + 3[p3] ∈H0(∂F ). The lemma now follows from
Corollary 3.3. �

Let Ti be the component of ∂ ̂M containing pi. By attaching annuli to
R, we may assume that R is disjoint from T1. Let α be a slope on ∂M , let
α̂i be the lift of α to Ti, so ̂M(α̂1) is a manifold with two torus boundary
components, and let S be an incompressible surface in ̂M(α̂1) obtained by
compressing R. Then S has boundary slopes which project to curves of
slope β1

3 in ∂M .
We wish to show that S is typically not a fiber, and to do so requires the

computation of an Alexander polynomial. Let N be the infinite cyclic cover
of ̂M(α̂1) which is dual to S, and let Δ(s) be the Alexander polynomial
associated to this infinite cyclic cover.

Let θ : ˜F→ ̂F be the infinite cyclic cover dual to δ − τδ. We let
x̂i = yi−1xy−(i−1) ∈π1 ̂F , and let ŷ = y3 ∈π1 ̂F (all based at p1). Let
p̃1 ∈ θ−1p1 be a basepoint for ˜F . There are two possible choices for s; we
choose s so there is a lift of x̂1 to ˜F , with boundary −p1 + sp1.

Let ˜f be the lift of f to ˜F which fixes θ−1p pointwise. Then ˜f acts
on the module H1( ˜F , θ−1p1) by an automorphism f∗, and since ˜f fixes
θ−1p1 pointwise, then Im(Id − f∗) ⊂H1( ˜F ). The map Id − f∗ has a ker-
nel containing 〈[x̂1x̂

−1
2 ]〉 (we sometimes use the same symbol for a loop in ̂F

based at p1, and its lift to ˜F based at p̃1), and so there is an induced map
Id − f∗ : H1( ˜F , θ−1p1)/〈[x̂1x̂

−1
2 ]〉→H1( ˜F ) ⊂H1( ˜F , θ−1p1).

There is a Z[s±1]-module decomposition H1( ˜F , θ−1p1) ∼= H1( ˜F ) ⊕ 〈[x̂1]〉,
coming from the exact sequence for the pair ( ˜F , θ−1p1). In fact, it is a free
Z[s±1]-module, with basis

B = ([ŷ], [x̂1x̂
−1
2 ], [x̂2

1x̂3], [x̂1]),

obtained by lifting a basis for the kernel of the corresponding map H1( ̂F ) →
Z, and then adding [x̂1].

We let [f∗] be the matrix representative for f∗ with respect to B. Then
Id − f∗ can be represented by a matrix [Id − f∗], which is obtained by delet-
ing the second column and fourth row of Id − [f∗].
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Lemma 4.3. (a) The matrix [f∗] is given by matrix W ([Dx∗], [D3
y∗]), where

[Dx∗] =

⎛

⎜

⎜

⎝

s 0 0 0
s−1 1 s − s−1 0

−s−1 0 s−1 0
0 0 0 1

⎞

⎟

⎟

⎠

,

and

[D3
y∗] =

⎛

⎜

⎜

⎝

1 0 1 + s + s2 1
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎠

,

(b) The Alexander polynomial Δ(s) is the determinant of the following
matrix:

B =

⎛

⎜

⎜

⎝

0
0 [Id − f∗]T

1 − s
p 0 −qs−1 0

⎞

⎟

⎟

⎠

.

Using Lemma 4.3 and a computer, the Alexander polynomial Δ(s) can
be easily computed. We note that Lemma 4.3 (a) will not be used until the
section on computer calculations.

Proof. Part (a) is a computation, which can be done with Fox derivatives.
We leave this to the reader.

For part (b) let ˜M be the Z-cover of ̂M which is dual to R. We begin by
computing a presentation for H1(˜M) as a Z[s±1]-module. Then Δ(s) will
be the determinant of the corresponding relation matrix.

We choose the point p1 as a basepoint for π1 ̂M . We have π1 ̂F ⊂π1 ̂M ,
and we let ̂t ∈π1 ̂M be the lift of the longitude μ pictured in figure 1. We
have the following presentation for π1(̂M) (the relators are written in non-
reduced form for future convenience):

π1 ̂M = 〈ŷ, x̂1, x̂1x̂
−1
2 , x̂ 2

1 x̂3,̂t |R1, R2, R3, R4〉,
R1 = ̂t ŷ ̂t−1ŷ −1(ŷ ̂f∗ ŷ −1),

R2 = ̂t x̂1 ̂t−1 x̂−1
1 (x̂1 ̂f∗ x̂−1

1 ),

R3 = ̂t x̂1 x̂−1
2

̂t−1(x̂1 x̂ −1
2 )−1(x̂1 x̂−1

2
̂f∗(x̂1 x̂−1

2 )−1),

R4 = ̂t x̂2
1 x̂3 ̂t−1(x̂2

1 x̂3)−1 (x̂2
1 x̂3 ̂f∗(x̂2

1 x̂3)−1).
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The group H1(˜M) also has the structure of a Z[s±1]-module, where
again s is chosen so that the lift of x̂1 to ˜M based at p̃1 has boundary
−p̃1 + sp̃1. Then, as a Z[s±1]-module, H1(˜M) has an ordered generating set
B′ = ([̂t], [ŷ], [x̂1x̂

−1
2 ], [x̂2

1x̂3]).
The relators of H1(˜M ) (as a Z[s±1]-module) may be obtained from the

relators R1, . . . , R4 of π1 ̂M . We have:

R1 = ̂tŷ̂t−1ŷ −1(ŷ ̂f∗ŷ
−1)

⇒ [ŷ ̂f∗ŷ
−1] = 0

R2 = ̂tx̂1̂t
−1x̂−1

1 (x̂1 ̂f∗x̂
−1
1 )

→(1 − s)[̂t] + [x̂1 ̂f∗x̂
−1
1 ] = 0

R3 = ̂t(x̂1x̂
−1
2 )̂t−1( ̂f∗x̂1x̂

−1
2 )−1

= ̂t(x̂1x̂
−1
2 )̂t−1(x̂1x̂

−1
2 )−1(since x1x

−1
2

is homologous to a boundary component)

⇒ 0 = 0

R4 = ̂t(x̂2
1x̂3)̂t−1(x̂2

1x̂3)−1((x̂2
1x̂3) ̂f∗(x̂2

1x̂3)−1)

⇒ [(x̂2
1x̂3) ̂f∗(x̂2

1x̂3)−1] = 0.

Thus a presentation matrix for H1(˜M), in terms of B′, is given by:

A =

⎛

⎝

0
0 Id − f∗

T

1 − s

⎞

⎠ .

The presentation matrix for H1(N) is obtained from A by adding a sin-
gle relator of the form [tp(x−1yxy−1)q] = 0, where p, q ∈ Z. This yields the
relator p[̂t ] − qs−1[x1x

−1
2 ] = 0. Thus the presentation matrix for

H1(N) is:

⎛

⎜

⎜

⎝

0
0 Id − f∗

T

1 − s
p 0 −qs−1 0

⎞

⎟

⎟

⎠

,

and so Δ(s) is the determinant of this matrix. �
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Corollary 4.4. There is a slope β2
3 such that, if I(α, β2

3) > 1, then S is not
a fiber in a fibration of ̂M(α̂1).

Proof. It is well known that, if an infinite cyclic cover of a compact
3-manifold is dual to a fiber in a fibration, then the corresponding Alexan-
der polynomial is monic. By Lemma 4.3 (b), Δ(s) = pDetM1 + qDetM2 for
some matrices M1 and M2 with entries in Z[s±1]. Thus the leading term of
Δ(s) is pn1 + qn2, for some integers n1, n2. We let β2

3 = (−n2, n1)/gcd(n2, n1).
Then if |I(α, β2

3)| 
= 1, Δ(s) is non-monic. �

Let n be a positive integer. By Thurston’s hyperbolic Dehn surgery
theorem, we may assume that n is chosen large enough so that ̂M(α̂1)
is hyperbolic whenever I(α, β1

3) > n. We also assume that n is larger than
the integer n(R) given by Theorem 4.1, and hence also bigger
than n(S).

Suppose |I(α, β1
3)| = k > n, and that |I(α, β2

3)|> 1. Since k > n, then
̂M(α̂1) is hyperbolic, and since |I(α, β2

3)|> 1 then, by Corollary 4.4, S is not
a fiber in a fibration of ̂M(α̂1). Let α̂2, α̂3 be the lifts of α to the components
of ̂M(α̂1). Then |I(α̂2, ∂S)| = |I(α̂3, ∂S)| = k > n≥n(S), so by Theorem 4.1,
the Dehn filling of ̂M(α̂1) along α̂2 and α̂3 is virtually Haken. Since this
manifold covers M(α), then M(α) is virtually Haken.

Case (b): f ∈J4. The argument is similar to the argument for Case (a)
Let β = β1

4 = (2, m)/gcd(2, m), where m = m4 is the exponent sum of Dx in
the word W (Dx, D4

y) which represents f . We let ̂F be the 4-fold cyclic
cover dual to x, and let ̂M be the corresponding cover of M . We fix
a basepoint p1 ∈ ∂ ̂M , and let pi be the translate of p1 by the covering
translation corresponding to yi−1. We let Ti be the component of ∂ ̂M
containing pi.

We define arcs δ1 and δ2 in ̂F as pictured in figure 3, and let δ = δ1 − δ2.
In this case, the non-separating surface R corresponding to [δ] − [τ2δ] has
boundary slopes ((0, 0), (−2,−m), (0, 0), (2, m)) 
= ((0, 0), (0, 0), (0, 0), (0, 0)).
By compressing R, we obtain a properly embedded, orientable, non-
separating, incompressible surface S in ̂M(α̂1, α̂3), whose boundary curves
all project to curves of slope β on ∂M .

Let N be the infinite cyclic cover of ̂M(α̂1, α̂3) dual to S, and let Δ(s)
be the corresponding Alexander polynomial. Let θ : ˜F→ ̂F be the infinite
cyclic cover of ̂F dual to δ − τ2δ. We let x̂i = yi−1xy−(i−1) ∈ ̂F , and let
ŷ = y4 ∈ ̂F .
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Figure 3: (a) A class in ker(p∗). (b) A fixed class in H1( ̂F , ∂ ˜F ), correspond-
ing to the surface S.

The automorphism ̂f induces an automorphism f∗ of H1( ˜F , θ−1p1 ∪ p3).
There is an induced map

Id−f∗ :H1( ˜F , θ−1(p1∪p3))/〈[x̂1x̂
−1
2 ], [x̂3x̂

−1
4 ]〉

−→ H1( ˜F )⊂H1( ˜F , θ−1(p1 ∪ p3)).

The Z[s±1]-module H1( ˜F , θ−1(p1 ∪ p3)) is free, with basis

B = ([ŷ 4], [x̂1x̂3], [x̂1], [ŷ2], [x̂1x̂
−1
2 ], [x̂3x̂

−1
4 ]).

We let [f∗] be the matrix representing f∗, in terms of the basis B. Then
Id − f∗ is represented by a matrix [Id − f∗] obtained from Id − [f∗] by delet-
ing the 5th and 6th columns, and the 3rd and 4th rows.

Lemma 4.5. (a) The matrix [f∗] is given by W ([Dx∗], [D4
y∗]), where

[Dx∗] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

s 0 0 0 0 0
−(1 + s−1) s−1 0 −s−1 0 0

0 0 1 0 0 0
0 0 0 1 0 0

s−1 1 − s−1 0 s−1 1 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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and

[D4
y∗] =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 + s 1 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(b) The Alexander polynomial Δ(s) is the determinant of the following
matrix:

B =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 0 0

1 − s 0 0 0 0
p 0 0 0 −qs
p 0 0 −qs−1 0

⎞

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎝

0
0 Id − f∗

T

0
0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

·

⎛

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 p 0
0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

,

and Δ(s) is divisible by q.

Proof. The proof of part (a) is an elementary application of Fox calculus.
In fact, all that is important for our applications is the last row of these
matrices.

For part (b), let ˜M be the infinite cyclic cover of ˜M dual to S. We choose
an ordered generating set B′ = (̂t, ŷ 4, x̂1x̂3, x̂1x̂

−1
2 , x̂3x̂

−1
4 ) for the Z[s±1]-

module H1(˜M).
The relators for π1 ̂M give the following relations for H1(˜M):

R1 = ̂tŷ 4
̂t−1ŷ −4(ŷ 4

̂f∗ŷ
−4)

⇒ [ŷ 4
̂f∗ŷ

−4] = 0

R2 = ̂tx̂1x̂
−1
2

̂t−1(x̂1x̂
−1
2 )−1(x̂1x̂

−1
2

̂f∗(x̂1x̂
−1
2 )−1)

⇒ 0 = 0

R3 = ̂tx̂1x̂3̂t
−1(x̂1x̂3)−1(x̂1x̂3 ̂f∗(x̂1x̂3)−1)

⇒ [x̂1x̂3 ̂f∗(x̂1x̂3)−1] = 0
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R4 = ̂tx̂1̂t
−1x̂−1

1 (x̂1 ̂f∗x̂
−1
1 )

→(1 − s)[̂t ] + [x̂1 ̂f∗x̂
−1
1 ] = 0

R5 = ̂tx̂3x̂
−1
4

̂t−1(x̂3x̂
−1
4 )(x̂3x̂

−1
4

̂f∗(x̂3x̂
−1
4 )−1)

⇒ 0 = 0.

The module H1(N) has two additional relators, R6 : [tp(x−1yxy−1)q] = 0,
and R7 : [y2tpy−2y2(x−1yxy−1)qy−2] = 0. The relator R6 can be written as
p[̂t ] − qs−1[x̂1x̂

−1
2 ] = 0. For R7, we have

0 = p[y2ty−2] + q[y2(x−1yxy−1)y−2]

= p[(y2ty−2t−1)t] − qs[x1x
−1
2 ]

= p[̂t ] + p[y2f∗y
−2] − qs[x1x

−1
2 ]

= p[̂t ] + p[Id − f∗ y2] − qs[x1x
−1
2 ].

Thus the presentation matrix for H1(N), with respect to B, is
⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 0 0

1 − s 0 0 0 0
p 0 0 0 −qs

p 0 0 −qs−1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0

0 Id − f∗
T

0
0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

·

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 p 0
0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

We then observe that the last column of Id − f∗
T is all 0s. Therfore

the last column of the presentation matrix for H1(N) has a single non-zero
entry, namely −qs. Thus Δ(s) is divisible by q. �

Corollary 4.6. Let β2
4 = (1, 0). If I(α, β2

4) > 1, then S is not a fiber in a
fibration of ̂M(α̂1, α̂3).

Proof. By Lemma 4.5, Δ(s) is divisible by q. If |q| = |I(α, (1, 0))|> 1, then
Δ(s) is non-monic.
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Now, as in Case (a), an application of Theorem 4.1 shows that ̂M(α̂1, α̂2,
α̂3, α̂4) has a Haken cyclic cover, provided that |I(α, β2

4)|> 1 and |I(α, β1
4)|

is large enough. �

5. Computations: framings

In the proof of Theorem 1.2, we used the fact that if f, g ∈ M1
1, and f∗ =

g∗ ∈ SL2(Z), then Mf is bundle equivalent to Mg. In this section, we shall
show how to compute the effect of this equivalence on the framings.

Let Dλ be a Dehn twist about a peripheral curve in F . Suppose f ∈ M1
1,

and that f∗ = Id. Then f is equivalent in M1
1 to Dn

λ for some integer n. We
define the twist of f by the formula t(f) = n.

Lemma 5.1. Suppose that, f, g ∈ M1
1, with f∗ = g∗. Then there is a home-

omorphism h : Mf → Mg, such that, with respect to the standard framings
on ∂Mf and ∂Mg, h(1, 0) = (1, t(fg−1)) and h(0, 1) = (0, 1).

Proof. Since fg−1 = D
t(fg−1)
λ , then fg−1 is isotopic to the identity, by an

isotopy which twists t(fg−1) times around the boundary of F . Using this
isotopy, one may construct a bundle equivalence between Mf and Mg, and
verify that the effect on the framings is as claimed. �

Thus, given elements f, g ∈ M1
1, in terms of Dx and Dy, with f∗ = g∗, we

require a method for computing the twist t(fg−1).

Lemma 5.2. Let f, g ∈ M1
1 be given as words Wf , Wg in Dx and Dy, and

suppose that f∗ = g∗. Then t(fg−1) is equal to 1/12 of the total sum of the
exponents of Dx and Dy in the word fg−1 = Wf (Dx, Dy)W−1

g (Dx, Dy).

Proof. We use the following well-known presentation for SL2(Z):

SL2(Z) ∼= 〈a, b, τ |τ = (ab)3 = (aba)2, τ2 = [τ, a] = [τ, b] = id〉,

where the map sending Dx∗ to a and Dy∗ to b is an isomorphism. Thus if
f∗ = g∗, then fg−1 = W (Dx, Dy) is a product of conjugates of the
elements R1 = (DxDy)3(DxDyDx)−2, R2 = (DxDy)3Dx(DxDy)−3D−1

x ,
R3 = (DxDy)3Dy(DxDy)−3D−1

y and R4 = (DxDy)6. By computing the effect
of these automorphisms on π1F , one may check directly that each one is triv-
ial in M1

1 except for R4, and that t(R4) = 1. Therefore t(fg−1) is equal to
the (signed) number of conjugates of R4 in Wf (Dx, Dy)W−1

g (Dx, Dy). Since
the sum of the exponents is 12 on R4, and zero on each of R1, R2 and R3,
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then we see that t(fg−1) is simply 1/12 of the total sum of the exponents
of WfW−1

g . �

6. Computations: subgroups of SL2(Z)

The following lemma is known. It can be proved directly, using standard
combinatorial group theory algorithms (as implemented, for example, on the
program GAP). In fact, φ(H3) can be identified with the pre-image of the
upper-triangular matrices in PSL2(Z/3) under the natural reduction map,
and φ(H4) is conjugate in SL2(R) to the kernel of the map to PSL2(Z/2).
It follows that H3 has index 8, and H4 has index 12. For variety, we shall
give a proof based on the Euclidean algorithm.

Lemma 6.1. The subgroups H3 and H4 have finite index in M1
1.

Proof. We shall prove the statement for H4, the proof for H3 being entirely
analogous.

Given an ordered pair of relatively prime, non-zero integers (m, n), we
may generate a sequence (m0, n0), . . . , (mk, nk) recursively, as follows:

Let (m0, n0) = (m, n). Suppose (mi, ni) has been defined. If |ni ± mi|<
|ni|, then let (mi+1, ni+1) = (mi, ni ± mi); if |ni + mi| ≥ |ni| and |ni−
mi| ≥ |ni| and |mi ± 4ni|< |mi|, then let (mi+1, ni+1) = (mi ± 4ni, ni); if
neither of these conditions holds, then terminate the sequence at (mi, ni).

Claim. For any pair of relatively prime, non-zero integers (m, n), the above
rule defines a finite sequence terminating in (±1, 0) or (0,±1).

Proof of claim. Suppose that (mi, ni) has been defined, that neither mi nor
ni is zero, and that |ni + mi| and |ni − mi| are both as big as |ni|. Then
|mi| ≥ 2|ni|. Since m and n are relatively prime, it follows that mi and ni

are relatively prime, and thus we have strict inequality |mi|> 2|ni|, and so
|mi ± 4ni|< |mi|. So the sequence continues until we reach (j, 0) or (0, j).
In this case, both m and n are divisible by j, so we have j = ± 1. This
proves the claim.
Now, SL2(Z) acts on the hyperbolic plane, and there is an induced action
on the circle at infinity, which is identified with R ∪ {∞}.

Identifying the rational number m/n with the vector ( m
n ), and ∞ with

( 1
0 ), the action of 〈Dx∗, D4

y∗〉 on Q ∪ ∞ is given by

(

1 ±1
0 1

) (

m

n

)

=

(

m ± n

n

)

and

(

1 0
±4 1

) (

m

n

)

=

(

m

±4m + n

)

.
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Therefore, by the claim, the orbit 〈Dx∗, D4
y∗〉{0,∞} is dense in R ∪ {∞}.

Thus the domain of discontinuity of 〈Dx∗, D4
y∗〉 is empty, and so 〈Dx∗, D4

y∗〉
is a finite-index subgroup of SL2(Z). Thus H4 has finite index in M1

1. �

Computation of exponent sums. Given an element g ∈ M1
1, let mi be the

smallest positive integer such that gmi ∈Hi. Thus there is word W
(not necessarily unique) such that gmi∗ = W (Dx∗, Di

y∗). Let ni be the
exponent sum of Dx∗ in W . The numbers mi and ni can be computed on
GAP, by using Reidemeister–Schreier style algorithms for subgroup
presentations.

The computation of mi is quite straightforward. The computation of
Wi (and hence ni) requires a slightly more complicated, but standard,
procedure. The idea is to have GAP compute a presentation for the sub-
group of SL2(Z) generated by Dx∗, Di

y∗ and gni∗ . After simplifying, GAP
finds that the generator gni∗ is redundant and returns the word W . Details
can be found in the source code at www.math.buffalo.edu/∼jdmaster.

7. Computations: slopes

Given an arbitrary f ∈ M1
1, we may associate slopes β1

3 , β2
3 and β1

4 , β2
4 for

the boundary of a cyclic cover Mfm , as follows.
To compute the slopes β1

i , We first compute an integer m such
that fm ∈H3 ∩ H4. We then compute words W3 and W4 such that
fm

∗ = Wi(Dx∗, Di
y∗), as described in the previous section, and let ni be the

exponent sum of Dx∗ in Wi. We then let gi = Wi(Dx, Di
y) ∈ M1

1. Since
gi ∈Ji, then by the proof of Theorem 1.2, we see that associated to the
bundle Mgi

are slopes β1′
3 = (3, n3)/gcd(3, n3), β1′

4 = (2, n4)/gcd(2, n4) and
β2′

4 = (1, 0).
We use Lemma 5.2 to compute t(fmg−1

i ), and then use Lemma 5.1 to
compute that

β1
3 =

(3, n3 − 3(t(fmg−1
3 )))

gcd(3, n3)
,

β1
4 =

(2, n4 − 2(t(fmg−1
4 )))

gcd(2, n4)
,

β2
4 = (1,−t(fmg−1

4 )).

To compute β2
3 , we first use Lemmas 4.3 and 4.5 to compute the

Alexander polynomial for the relevant cover of the manifold Mg3 . Then,
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as in the proofs of Corollaries 4.4 and 4.6, we obtain the slope β2′
3 . Finally,

using Lemma 5.1, we compute the slope β2
3 for the manifold Mfm .

If {β1
3 , β2

3} ∩ {β1
4 , β2

4} = ∅, then we report “success,” meaning that Mf

has a finite cover satisfying property VH.

8. Example

Let f = D−1
x Dy, so Mf is the figure-eight knot exterior. We shall show that

f12 has property VH. Using GAP, we compute: m = 12, so f12 ∈H3 ∩ H4;
also W3(a, b) = (a−1baba−1bab)3 and W4(a, b) = (a−2b−1a−1b−1a−1)4, and so
n3 = 0 and n4 = − 16. We have f12

∗ = W3(Dx∗, D3
y∗) = W4(Dx∗, D4

y∗). Let-
ting gi = Wi(Dx, Di

y), then the slopes associated to Mgi
are β1′

3 = (1, 0),
β1′

4 = (1,−8) and β2′
4 = (1, 0).

The Alexander polynomial, Δ3(s), for the relevant cover of Mg3 is
given by:

Δ3(s) = qs4+3qs3+2qs2+2qs−q+qs−1−2qs−2−2qs−3−3qs−4−qs−5.

This polynomial is non-monic whenever |q|> 1. Thus, associated to Mg3 is
the slope β2′

3 = (1, 0). We use Lemma 5.2 to compute that t(f12g−1
3 ) = −3

and t(f12g−1
4 ) = 4.

Then

β1
3 =

(3, n3 − 3(t(fmg−1
3 )))

gcd(3, n3)
,

= (1, 3)

β2
3 = (1,−t(fmg−1

3 ))
= (1, 3)

β1
4 =

(2, n4 − 2(t(fmg−1
4 )))

gcd(2, n4)
,

= (1,−12)

β2
4 = (1,−t(fmg−1

4 ))
= (1,−4)

Since {β1
3 , β2

3} ∩ {β1
4 , β2

4} = ∅, then Mf12 has property VH.
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9. An infinite family with property VH

Proof of Theorem 1.4. Let fn = (D−1
x Dy)12D12n

y . It may easily be checked
that the induced map on H1(F ) has trace bigger than 3, and so the cor-
responding bundle Mfn

is atoroidal. For f0, a computation (see previous
section) gives β1

3 = (1, 3), β2
3 = (1, 3), β1

4 = (1,−12) and β2
4 = (1,−4).

The element fn is equivalent in SL2(Z) to the element

gn = (D−1
x D3

yDxD3
yD

−1
x D3

yDxD3
y)

3D12n
y .

One checks that the Alexander polynomial for the relevant cover of Mgn
is

equivalent mod n to the Alexander polynomial for the relevant cover of the
bundle with monodromy D−1

x D3
yDxD3

yD
−1
x D3

yDxD3
y. One computes that

the leading coefficient of the latter polynomial is q, and thus the leading
coefficient of the former polynomial is divisible by q. Thus for the manifold
Mgn

we have slopes β1′
3 = β2′

3 = (1, 0). One computes t(gnf−1
n ) = −3, and so

for fn, we have β1
3 = β2

3 = (1, 3).
Also, fn is equivalent in SL2(Z) to the element hn = (D−2

x D−4
y D−1

x D−4
y

D−1
x )4D12n

y . For the manifold Mhn
we have β2′

4 = (1, 0), and we compute
β1′

4 = (1,−8). We compute t(hnf−1
n ) = 4, and so for fn, we have β1

4 =
(1,−12), and β2

4 = (1,−4).
Since {β1

3 , β2
3} ∩ {β1

4 , β2
4} = ∅, then for all n > 0, the manifold Mfn

is
finitely covered by a bundle with property VH, by Theorem 1.2. Further-
more, the manifolds Mfn

are all obtained by doing surgery on the same
hyperbolic knot K ⊂Mf0 . Therefore, by the results of [7, Section 3], it
follows that there are infinitely many non-commensurable manifolds in the
family {Mfn

}. �

10. Computer results

For every monodromy of complexity at most 5, the computer verified that
a “success” criterion was met, and so the associated bundle is commensu-
rable to one with property VH. The data for monodromies of complexity at
most 5 is given below. Since we are only considering bundles up to com-
mensurability, we have left out monodromies which are proper powers and
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monodromies with negative trace. Also, we have only included words up to
cyclic permutations. The “n” in column two is the smallest positive integer
such that fn ∈H3 ∩ H4.

From table 1 we see that every bundle of complexity at most five is
commensurable to a bundle with property VH.

We considered all cyclically reduced, primitive, positive words on D−1
x

and Dy of length at most 12, representing hyperbolic monodromies. There
are 745 of these. We verified that all but 36 of the associated bundles are
finitely covered by a bundle with property VH. Here we have not distin-
guished conjugate classes in SL2(Z), so these words do not all correspond to
distinct bundles. The monodromy of smallest complexity which we cannot
handle is D−3

x D3
y, for which β1

3 = β1
4 = (1,−3).

The routine runs quickly on words of rather large size. For example, for
the monodromy f = D11

x D3
yDxD6

yD
−4
x (DyD

−1
x )4Dy, a few seconds’ computa-

tion gives f4 ∈H3 ∩ H4, with associated slopes β1
3 = (1,−17), β2

3 = (1,−15)
and β1

4 = (1,−18), β2
4 = (1,−18). Thus Mf4 has property VH.
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