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Not all boundary slopes are strongly detected
by the character variety

Eric Chesebro and Stephan Tillmann

It has been an open question whether all boundary slopes of hyper-
bolic knots are strongly detected by the character variety. The
main result of this paper produces an infinite family of hyperbolic
knots each of which has at least one strict boundary slope that is
not strongly detected.

1. Introduction

In 1983 Marc Culler and Peter Shalen introduced a method of constructing
essential surfaces in a 3-manifold using representations of the fundamental
group into SL2(C). In a nutshell, an ideal point of a curve in the character
variety gives a non-trivial action of the fundamental group on a Bass–Serre
tree, and this action is used to construct embedded essential surfaces in the
3-manifold. Some definitions and facts are recalled below; the reader may
consult [2, 5, 6, 10] for details.

Let M be a compact, orientable, irreducible 3-manifold with boundary
consisting of a single torus. A slope σ on ∂M is a pair {±s}, where s ∈
H1(∂M) is a primitive class. If a basis for H1(∂M) is chosen, then a slope
is identified with an element of Q ∪ {1/0}. A properly embedded surface S
in M is said to have slope σ if ∂S is a non-empty union of parallel, simple
closed curves in ∂M of slope σ. A slope σ is called a boundary slope of M
if there is an essential surface S in M which has slope σ. (Here, a surface is
termed essential if it is properly embedded, incompressible, orientable and
no component is boundary parallel or a sphere.) A boundary slope of M is
strict if it is the boundary slope of an essential surface which is not a fiber
or a semi-fiber. For instance, any non-zero boundary slope of the exterior
of a knot in S3 (with the standard framing) is strict. The exterior of the
knot K in S3 is the closed 3-manifold S3 \ ν(K), where ν(K) is a small open
tubular neighborhood of K. If σ is a boundary slope of the exterior of K,
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then σ is also said to be a boundary slope of K as well as of the complement
of K, S3 \ K.

Let X be an irreducible affine curve in the character variety of M, and
let ˜X be its smooth projective model. Then all but finitely many points
of ˜X correspond to characters in X. The points which do not correspond
to characters are termed ideal points. Given an ideal point x̃ ∈ ˜X, the con-
struction by Culler and Shalen associates an essential surface S in M to x̃
in a non-canonical fashion. Some topological information about S, however,
can be obtained by evaluating the following elements of the function field
C( ˜X) at x̃. Given a slope σ = {±s}, there is a regular function Iσ : X → C

defined by Iσ(χ) = χ(s), where s is the image of s under the composition
of the inverse of the Hurewicz isomorphism with the inclusion π1(∂M) →
π1(M). The function Iσ lifts to a rational function Iσ : ˜X → C ∪ {∞}. Then
either:

(1) there is a unique slope σ such that Iσ(x̃) ∈ C; or

(2) Iσ(x̃) ∈ C for every slope σ.

Accordingly, x̃ is termed of type (1) or type (2). If x̃ is of type (1) and
Iσ(x̃) ∈ C, then every essential surface associated to x̃ has slope σ, and the
boundary slope σ of M is said to be strongly detected by x̃. If x̃ is of type (2),
then the construction can be used to associate a closed essential surface to x̃.
Consequently, if there is an essential surface with boundary associated to x̃
and x̃ is of type (2), then the corresponding boundary slope is termed weakly
detected by x̃. The adverbs “strongly” and “weakly” are often omitted when
the distinction is unnecessary. Whilst there is a unique slope detected by an
ideal point of type (1), it is not known whether an ideal point of type (2)
always detects some slope and whether such a slope is necessarily unique.
Note that if M is small (i.e., M contains no closed essential surface), then
every ideal point is of type (1).

A boundary slope of M is termed detected if it is detected by an ideal
point of some curve in the character variety of M. A detected boundary
slope is strongly detected if it is strongly detected by an ideal point of some
curve, otherwise it is weakly detected. For example, given the complement
of a knot in S3 (with the standard framing), the boundary slope λ = 0/1
is strongly detected: At the ideal point x̃ of the curve X containing the
characters of all abelian representations one has Iλ(x̃) = 2 and Iμ(x̃) = ∞,
where μ = 1/0.

It is shown in [2] that the strongly detected boundary slopes of M are
precisely the slopes of the sides of the Newton polygon of the A-polynomial
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Figure 1: A weakly detected boundary slope.

(if all components of the character variety of M are considered). This result
implies that (generally speaking) strongly detected boundary slopes are quite
common. The first examples of strict boundary slopes that are not strongly
detected were given in 2001 by Schanuel and Zhang [9]. The manifolds
involved are a family of graph manifolds, and the slopes in question are
weakly detected [Xingru Zhang (personal communication)]. In particular,
two interesting questions still remained open.

Question 1.1 (Cooper and Long [3]). Is every strict boundary slope of
the complement of a knot in S3 strongly detected?

The following examples of (cylindrical) knot complements containing strict
boundary slopes which are weakly detected answer this question
negatively. Consider the connected sum K of two knots in S3 which do
not have meridians as boundary slopes: the connected sum of two small
knots will suffice (figure 1). The complement of K contains an essential
separating annulus with boundary slope 1/0. Given the decomposition of
the fundamental group of S3 \ K, it is not difficult to find a curve of charac-
ters with ideal points detecting the annulus. However, combining standard
arguments involving the limiting representations, any ideal point detecting
1/0 must be of type (2). In fact, it is not difficult to show that such an ideal
point detects a standard swallow-follow torus in S3 \ K. Thus, the strict
boundary slope 1/0 of S3 \ K is weakly detected.

Question 1.2 (Schanuel and Zhang [9]). Let M be an orientable 1-
cusped hyperbolic 3-manifold . Is every strict boundary slope of M strongly
detected?
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A negative answer to this question is given by the main result of this paper:

Theorem 1.3. The complement of the pretzel knot Kn = (3, 5, 2n + 1, 2),
n > 1, is hyperbolic and has the strict boundary slope 4(n + 4) which is not
strongly detected.

The key idea in the proof of Theorem 1.3 is to use a relationship between
certain strongly detected boundary slopes of mutants which was established
by Cooper and Long [3]. Recall that a character is termed irreducible if it
is the character of an irreducible representation; otherwise it is reducible.
Since a character can be viewed as a function from a group to the complex
numbers, its restriction to a subgroup is a character of the subgroup. Let
K be a knot in S3, and assume that Kτ is obtained from K by mutation
along the Conway sphere S4. Let X(K) denote the character variety of
S3 \ K and H = im(π1(S4) → π1(S3 \ K)). If the boundary slope σ of K is
strongly detected by an ideal point of a curve X in X(K) and there is a
character on X whose restriction to H is irreducible, then σ is a strongly
detected boundary slope of Kτ . Details can be found in [3, 11], where it is
not explicitly stated that the respective framings are standard. This can be
verified with a direct homology argument; see [1].

Proof of Theorem 1.3. It follows from work by Oertel that Kn is hyper-
bolic (see [8, Corollary 5]) and that its complement contains two essen-
tial 4-punctured spheres with meridional slope (see [8, Proposition 2.13]).
The pretzel knot Kτ

n = (5, 3, 2n + 1, 2) is obtained from Kn by performing
a mutation along the Conway sphere S4 separating the first two tangles
from the second two. An algorithm due to Hatcher and Oertel [7] is used in

Figure 2: The pretzel knot Kn = (3, 5, 2n + 1, 2).
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Section 2 to show that Kn has boundary slope 4(n + 4), but its mutant Kτ
n

does not (Proposition 2.4).
Assume that the boundary slope σ = 4(n + 4) of Kn is strongly detected.

Then there is a curve X in X(Kn) with the property that σ is strongly
detected by an ideal point x̃ of ˜X. Since σ is not a boundary slope of
Kτ

n, it follows from the above discussion of work by Cooper and Long that
the restriction to H = im(π1(S4) → π1(S3 \ Kn)) of any character on X is
reducible. The curve X is therefore contained in the closed algebraic set Y
of all characters whose restriction to H is reducible. Moreover, X must con-
tain an irreducible character of π1(S3 \ Kn) since σ �= 0/1. The main result
of Section 3 (Proposition 3.1) implies that the function Iμ associated to the
slope μ = 1/0 is constant on each algebraic component of Y which contains
an irreducible character. But then both Iμ and Iσ are finite-valued at x̃,
which implies that x̃ is not of type (1) contradicting the assumption that σ
is strongly detected by x̃. This completes the proof of the theorem. �

Remark 1.4. The above examples also show that not all boundary slopes
are strongly detected by the PSL2(C)-character variety since each represen-
tation into PSL2(C) of the fundamental group of the complement of a knot
in S3 lifts to a representation into SL2(C).

Question 1.5. Is the boundary slope 4(n + 4) of Kn weakly detected?

An answer to this question has interesting ramifications. If the slope is not
weakly detected, then there is a slope which is not detected by the character
variety. If it is, then (using the classification of closed essential surfaces
in [8]) one can show that there is an ideal point of the character variety
which weakly detects two distinct strict boundary slopes: 4(n + 4) and 1/0.

Question 1.6. Is there a small knot complement with a strict boundary
slope that is not strongly (and hence also not weakly) detected?

2. Mutants with distinct slope sets

In this section, the algorithm of [7] is used to show that the pretzel knot Kn

has the boundary slope 4(n + 4), whereas Kτ
n does not. For the remainder

of this paper, the knots will be denoted in Montesinos’ notation by

Kn = K

(

1
3
,
1
5
,

1
2n + 1

,
1
2

)

and Kτ
n = K

(

1
5
,
1
3
,

1
2n + 1

,
1
2

)

.
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This notation is used in [7]. The knot Kn is shown in figure 2. The knot Kτ
n

is a mutant of Kn by an involution τ : S4 → S4, where S4 is the 4-punctured
sphere which separates the 1/3 and 1/5 tangles from the other two tangles.

2.1. Setup from [7]

The following notation and conventions are inspired by those in [7] and will
be used throughout this subsection.

• K is a 4-tangle pretzel knot in the 3-sphere.

• M = S3 \ ν(K), where ν(K) denotes a regular neighborhood of K.

• We decompose S3 into the union of four 3-balls {Bi}3
i=0 such that each

Bi contains exactly one of the tangles of K and
⋂3

0 Bi
∼= S1 (the axis

for K).

• Let ∂Bi × [0, 1] be a collar on ∂Bi inside Bi with ∂Bi = ∂Bi × {1}.

• Ti = K ∩ Bi.

• 1/qi is the rational number corresponding to the tangle Ti.

• Pi denotes the 4-point set ∂Bi ∩ K.

• Si is the 4-punctured sphere ∂Bi \ Pi.

If a surface is properly embedded in M, it may be isotoped to be transverse
to ∂Bi for every i. We always assume that properly embedded surfaces are
so arranged.

• If F is a properly embedded surface, then we use Fi to indicate the
surface F ∩ Bi which is properly embedded in Bi. (Note that ∂Fi is a
curve system on the 4-punctured sphere Si.)

We now review the constructions from [7] which apply to our setting. Curve
systems on the 4-punctured sphere are either carried by the train track
shown in figure 3(a) or by its mirror image. We usually consider curve
systems up to projective class, so rational projective coordinates [a, b, c] ∈
QP 2 represent a projective curve system corresponding to the figure. Each
projective curve system can also be uniquely represented by an ordered pair
(u, v), where u = b/(a + b) and v = c/(a + b). The slope of the projective
curve system is v. We refer to these pairs as uv-coordinates.

A p/q-tangle, denoted 〈p
q 〉, is a projective curve system [1, q − 1, p],

written equivalently as ((q − 1)/q, p/q) in uv-coordinates. A p/q-circle,
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Figure 3: Curve systems and tangles. (a) The traintrack with projective
weights a, b and c. (b). The ∞-tangle.

denoted by 〈p
q 〉◦, is a projective curve system [0, q, p] or, equivalently, (1, p/q).

The ∞-tangle, denoted by 〈∞〉, is the projective class of the pair of vertical
arcs shown in figure 3(b), and will be represented by (−1, 0) in
uv-coordinates. Note that the tangle Ti is isotopic (rel ∂Bi) to the two
component representative for 〈 1

qi
〉 at the level Si × {0} together with the

four arcs Pi × [0, 1].
We now use the above definitions to define a graph D in the uv-plane.

Our aim is to associate surfaces in Bi \ ν(Ti) to certain paths in this graph.
The vertices of D are the uv-coordinates of the p/q-tangles and p/q-circles for
every p/q ∈ Q together with the point 〈∞〉 = (−1, 0). There are four types of
edges in D, non-horizontal edges, horizontal edges, vertical edges and infinity
edges. Two vertices 〈p

q 〉 and 〈 r
s〉 are connected by a non-horizontal edge if

|ps − qr| = 1 or, equivalently, if 〈 r
s〉 can be obtained from 〈p

q 〉 by surgery on
an arc. The horizontal edges connect the vertices 〈p

q 〉◦ to 〈p
q 〉. The vertical

edges connect 〈m〉 to 〈m + 1〉 for every m ∈ Z. Finally, the infinity edges
connect the integer vertices 〈m〉 to 〈∞〉. If x and y are vertices of D that are
connected by an edge, then we will denote this edge by [x, y]. The subgraph
S ⊂ D is defined as the portion of D with u-coordinate in the interval [0, 1].
Rational points on the graph D are the points in the set D ∩ Q

2. Rational
points on D correspond to projective curve systems according to the formula
(p/q, r/s) = [s(q − p), sp, rq]. Figure 4 shows part of the the graph D.

Given an edge [x, y] in D, we subdivide it as follows. For each m ∈
Z

+ and k ∈ {1, . . . , m − 1}, let k
m · x + m−k

m · y denote the point on [x, y]
corresponding to the projective curve system represented by k parallel copies
of a pair of arcs representing x together with m − k copies of a pair of arcs
representing y. It is easy to check that k

m · x + m−k
m · y is represented by a

rational point on the edge [x, y].
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Figure 4: A part of D.

An edgepath in D is a piecewise linear path [0, 1] → D which starts and
ends at rational points of D which may or may not be vertices of D. An
admissible path system γ = (γ0, . . . , γ3) for K is a 4-tuple of edgepaths in
D with the following four properties.

(E1) For each i, γi(0) lies on the horizontal edge connecting 〈 1
qi

〉◦ to 〈 1
qi

〉
and if γi(0) �= 〈 1

qi
〉, then the path γi is constant.

(E2) Every γi is minimal. That is, it never stops and retraces itself and it
never travels along two sides of a triangle in D in succession.

(E3) The points γ0(1), . . . , γ3(1) all have the same u-coordinate and their
v-coordinates sum to zero.

(E4) Each γi proceeds monotonically from right to left in the sense that
traversing vertical edges is permitted. That is, if 0 ≤ t1 < t2 ≤ 1
then the u-coordinate of γi(t1) is at least as big as the u-coordinate of
γi(t2).

Admissible edgepath systems are divided into the following three types.

• A type-I system is an admissible edgepath system γ, where each γi

stays in S and has no vertical edges.

• A type-II system is the same as a type-I system except that at least
one γi has a vertical edge.

• A type-III system is an admissible edgepath system where the γis end
to the left of S.
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To each edgepath γi of an admissible edgepath system γ, Hatcher and Oertel
show how to associate a finite number of so-called candidate surfaces Γi ⊂ Bi

with ∂Γi ⊂ Ti ∪ ∂Bi. Γi is called m-sheeted if the minimum number of inter-
section points of Γi with a small meridian circle of Ti is m. It is shown in [7]
that every essential surface in M with non-empty boundary and boundary
slope not equal to 1/0 is isotopic to a union of m-sheeted candidate surfaces
Γ = Γ0 ∪ · · · ∪ Γ3. (We refer to Γ as a candidate surface carried by γ.) For
the purpose of this paper, it suffices to describe the construction of the can-
didate surfaces for type-II and -III systems with no constant edgepaths and
with the endpoints of the γis on vertices of D. Let γ be such an admissible
edgepath system. We write γi as [xr, . . . , x0], where the xjs are the vertices
of γi and the vertex xj is followed by the vertex xj+1 as we proceed along the
edgepath. Likewise, we will interpret [xj+1, xj ] as a directed edge from xj to
xj+1. (Vertices are indexed from left to right to indicate that the edgepath
proceeds from right to left.) A complete list of candidate surfaces for γ is
described in the following paragraphs.

For any edge [xj+1, xj ] of γi and a < b, we can build a 1-sheeted can-
didate surface in Si × [a, b] as follows. Let α and β be the curve systems
with two arc components in Si that represent xj and xj+1, respectively. The
surface is

α ×
[

a,
a + b

2

)

∪ β ×
(

a + b

2
, b

]

∪ D,

where D is a regular neighborhood (saddle) of a surgery arc in Si × {(a +
b)/2} given by the existence of the edge [xj+1, xj ]. Up to level preserving
isotopy there are two choices for each saddle. One of the two possible surfaces
for [〈1〉, 〈1

2〉] is shown in figure 5. To each edgepath γi, we can now associate a
surface Γi which is properly embedded in Bi − N(Ti) by simply stacking the

Figure 5: A surface corresponding to the edge [〈1〉, 〈1
2〉].
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surfaces associated to the edges of γi in the collar Si × [0, 1]. Then Γi ∩ (Si ×
{1}) is the two component representative of the vertex xr and Γi ∩ (Si × {0})
is the two component representative of the vertex x0 and so lies on the tangle
Ti. The condition (E3) guarantees that the surfaces {Γi} fit together to give
a surface in M .

We have described the construction of 1-sheeted candidate surfaces. If
m is a positive integer, then we can construct an m-sheeted surface for γ in
a similar way. Again, for every edge [xj , xj+1] in γi, we construct a surface
in Si × [a, b]. This time we further subdivide the edge into m edges sep-
arated by the points k

m · xj + m−k
m · xj+1, where k = 1, . . . , m− 1. Starting

with the product surface α ×
[

a, (a + b)/2m
)

, we add a saddle at the level
(a + b)/2m to pass to the curve system 1

m · xj + m−1
m · xj+1. An m-sheeted

surface for [xj , xj+1] is completed by adding saddles to pass between the
product surfaces that correspond to each point k

m · xj + m−k
m · xj+1. Just as

before, we can build a surface for γ by stacking the surfaces for each edge
in each edgepath γi and finally gluing everything together to give a surface
in M. The meridian of the knot will intersect this surface m times. It is
worth noting that we have a choice between two possible saddles every time
we pass a point k

m · xj + m−k
m · xj+1. Whence there may be many different

m-sheeted candidate surfaces associated to a given admissible path system.
The question whether a candidate surface is essential or not can be stud-

ied via the admissible edgepath systems which carry them. This motivates
the following terminology. An admissible edgepath system γ is incompress-
ible if every candidate surface associated to γ is incompressible, and it is
compressible if every associated candidate surface is compressible. If there
are both compressible and incompressible candidate surfaces associated to
γ, then it is said to be indeterminate.

For an edgepath γi in γ, let e+ be the number of edges of γi which
increase slope, and e− be the number of edges which decrease slope. The
numbers e+ and e− are independent of the behavior of γi to the left of u = 0.
The twist number of γi is t(γi) = 2(e− − e+), and the twist number of γ is
t(γ) =

∑

t(γi). If F is a surface carried by γ, the twist number t(F ) of F is
defined to be t(γ). Hatcher and Oertel show that if S is the Seifert surface
for a knot and s an admissible edgepath system which carries S, then the
slope of any surface carried by γ is t(γ) − t(s).

In order to decide whether an admissible edgepath system is compress-
ible, incompressible or indeterminate, Hatcher and Oertel define the notions
of r-values and completely reversible edgepaths. The r-value of a leftward
directed non-horizontal edge is the denominator of the v-coordinate of the
point where the extension of the edge meets the line u = 1. The r-value is
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taken to be positive if the edge travels upwards, and negative if it travels
downwards. If γi is an edgepath in D, then its final r-value is the r-value
of the last edge in the path. If γ is an admissible edgepath system, then its
cycle of final r-values is the 4-tuple of final r-values for the four edgepaths
{γi}. The cycle of final r-values of γ is defined up to cyclic permutation. An
edgepath γi is completely reversible if each pair of successive edges in γi lies
in triangles that share a common edge.

2.2. Boundary slopes of Kn and Kτ
n

The aim of this section is to apply the machinery of the previous section to
prove that Kn has the boundary slope 4(n + 4), whereas Kτ

n does not.
Consider the admissible edgepath system s = (si) given by

s0 = [〈∞〉, 〈1〉, 〈1/2〉, 〈1/3〉] ,
s1 = [〈∞〉, 〈1〉, 〈1/2〉, 〈1/3〉, 〈1/4〉, 〈1/5〉] ,
s2 = [〈∞〉, 〈1〉, 〈1/2〉, . . . , 〈1/(2n + 1)〉] ,
s3 = [〈∞〉, 〈1〉, 〈1/2〉] .

Also let sτ = (s1, s0, s2, s3).

Lemma 2.1. A Seifert surface Σ for Kn is carried by the path system s.
Similarly, a Seifert surface Στ for Kτ

n is carried by sτ . Furthermore, the
twist numbers t(Σ) and t(Στ ) are both −(14 + 4n).

Proof. First, we need to show that s and sτ carry 1-sheeted orientable sur-
faces. Second, we compute their twist numbers.

Hatcher and Oertel explain how to do the first part on pp. 460–461 of [7].
To use their proceedure, we first make two observations about the admissible
path system s. First, the mod 2 reductions of the slopes of all vertices of every
si are either 1/0 or 0/1. Second, there are exactly four odd-integer vertices
in the admissible path system s. These observations, together with Hatcher
and Oertel’s explanation, show that s carries a Seifert surface for Kn. An
identical argument works for sτ .

We calculate the twist number using the formula t(γ) =
∑

t(γi). We have

t(s0) = 2(0 − 2) = −4,

t(s1) = 2(0 − 4) = −8,

t(s2) = 2(0 − 2n) = −4n,

t(s3) = 2(0 − 1) = −2,
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and hence

t(s) =
∑

t(si) = −4 − 8 − 4n − 2 = −(14 + 4n).

The same procedure works for Kτ
n. �

Lemma 2.2. 4(n + 4) is not a boundary slope of Kτ
n.

Proof. Since 4(n + 4) + (14 + 4n) = 2 it suffices to show that every candi-
date surface with twist number 2 is compressible. Assume that δ is an
admissible edgepath system for Kτ

n with t(δ) = 2.
We begin by stating three claims whose proofs are given separately

below.

Claim 1. If δ is a type-III system, then

δ0 = [〈∞〉, 〈0〉, 〈1/5〉] ,
δ1 = [〈∞〉, 〈1〉, 〈1/2〉, 〈1/3〉] ,
δ2 = [〈∞〉, 〈0〉, 〈1/(2n + 1)〉] ,
δ3 = [〈∞〉, 〈0〉, 〈1/2〉] .

Claim 2. Assume δ is a type-II system and let δ′ be the 4-tuple of edgepaths
(δ′

0, . . . , δ
′
3) obtained by deleting all vertical edges from the edgepaths of δ.

Then

δ′
0 = [〈0〉, 〈1/5〉] ,

δ′
1 = [〈0〉, 〈1〉, 〈1/2〉, 〈1/3〉] ,

δ′
2 = [〈0〉, 〈1/(2n + 1)〉] ,

δ′
3 = [〈0〉, 〈1〉, 〈1/2〉] .

Claim 3. δ is not a type-I system.
We now prove the lemma using the claims. By Claim 3, δ is of type III or
type II. Assume first that δ is type III. Then using Claim 1, we may assume
that δ is the admissible edgepath system listed in Claim 1. Proposition 2.5
of [7] implies that since the sum of integer vertices of δ is 1, if two of the paths
δi are completely reversible then δ is a compressible path system. Because
the triangle [〈1/5〉, 〈0〉, 〈1〉] shares an edge with the triangle [〈0〉, 〈∞〉, 〈1〉], δ0
is completely reversible. Similar arguments apply to δ2 and δ3 showing that
they are also completely reversible. Hence δ is a compressible path system
and there are no incompressible surfaces carried by δ.
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Now assume that δ is a type-II system. Using Claim 2, we may assume
that δ is of the form mentioned in the claim. In this case, the cycle of final
r-values for δ is (−4, 1,−2n, 1). Proposition 2.9 of [7] shows that there is no
incompressible surface carried by δ. �

First, we make some definitions. A basic path is a minimal path starting
at a vertex 〈p

q 〉 that proceeds monotonically to the left (without vertical
edges) ending at the left edge of S. A basic path system is a path system
made up of basic paths. Note that a basic path δi starting at 〈1

r 〉 is either

[〈1〉, 〈1/2〉, 〈1/3〉, . . . , 〈1/r〉] or [〈0〉, 〈1/r〉] .

Hence any such path ends at either 〈0〉 or 〈1〉. If it ends at 〈0〉, then t(δi) =
2(1 − 0) = 2. If it ends at 〈1〉, then t(δi) = 2(0 − (r − 1)) = 2 − 2r. If δ is a
basic path system for Kτ

n that satisfies (E1), then δ0 starts at 〈1
5〉, δ1 starts

at 〈1
3〉, δ2 starts at 〈 1

2n+1〉, and δ3 starts at 〈1
2〉. So we have

t(δ0) =

{

2 if δ0 ends at 〈0〉,
−8 if δ0 ends at 〈1〉,

t(δ1) =

{

2 if δ1 ends at 〈0〉,
−4 if δ1 ends at 〈1〉,

t(δ2) =

{

2 if δ2 ends at 〈0〉,
−4n if δ2 ends at 〈1〉,

t(δ3) =

{

2 if δ3 ends at 〈0〉,
−2 if δ3 ends at 〈1〉.

Proof of Claim 1. Let δ be a type-III path system with t(δ) = 2. Then δ
has no vertical edges, since otherwise some δi will travel along a sequence
of edges of the form [〈∞〉, 〈n ± 1〉, 〈n〉] which contradicts the fact that δi

never travels along two sides of a triangle in D in succession. Let δ′ be
the basic path system δ ∩ S. Since extending paths to 〈∞〉 does not affect
twist number, we have 2 = t(δ) = t(δ′). There are two choices for each of
the four paths, and so we have a total of 24 possible path systems δ′. The
corresponding twist numbers are in the set

{−12, −8, −6, −2, 2, 4, 8, 6 − 4n, 2 − 4n, −4n,

− 4 − 4n, −8 − 4n, −10 − 4n, −14 − 4n}.
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Since n is an integer, 2 /∈ {−4n, −4 − 4n, −8 − 4n} and using our assump-
tion n �= 1 we have 2 /∈ {6 − 4n, 2 − 4n, −10 − 4n, 14 − 4n}. Therefore, we
must have t(δ′) = 2 for every n. By listing all the possibilities for δ′, we see
that there is only one for which the equality t(δ′) = 2 is independent of n.
It extends to the system δ given in the claim. �

Proof of Claim 2. Assume that δ is a type-II path system with t(δ) = 2.
Then t(δ) is determined by the basic path system δ′ obtained by deleting all
vertical edges of δ. There are infinitely many extensions of δ′, which satisfy
(E3), formed by adding vertical edges to the ends of the individual paths.
However, even if the extensions do not satisfy the minimality condition (E2),
any two such extensions will always have the same twist number. Thus, we
may choose to work with the extension δ̃, where all paths end at 〈0〉. Then

t(δ̃i) =

{

2 if δ′
i ends at 〈0〉,

t(δ′
i) + 2 if δ′

i ends at 〈1〉.

Again there are 24 possibilities. The corresponding twist numbers are in
the set

{−6, −4, −2, 0, 2, 4, 6, 8, 8 − 4n, 6 − 4n, 4 − 4n,

2 − 4n, −4n, −2 − 4n, −4 − 4n, −6 − 4n}.

As before, we know that 2 /∈ {−4 − 4n, −4n, 4 − 4n, 8 − 4n} since n is an
integer. Again using our assumption n �= 1, we have 2 /∈ {−6 − 4n, −2 − 4n,
2 − 4n, 6 − 4n}. The only remaining possibility satisfies the conclusion of
the claim. �

Proof of Claim 3. Assume that δ is a type-I path system. Let (t0, . . . , t3)
be the 4-tuple of endpoints of the paths δi. Since δ is an admissible path
system we know that the sum of the vertical coordinates of the tis is zero.
Moreover, every point of every δi has vertical coordinate greater than or
equal to zero. Therefore ti = 0 for every i. We have

δ0 = [〈0〉, 〈1/3〉] ,
δ1 = [〈0〉, 〈1/5〉] ,
δ2 = [〈0〉, 〈1/(2n + 1)〉] ,
δ3 = [〈0〉, 〈1/2〉] .
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However, for this path system, we have

t(δ) = 2 + 2 + 2 + 2 = 8.

We have now established Claim 3. �
Next, we want to show that Kn has boundary slope 4(n + 4). Consider the
path system γ = (γi) in S given by

γ0 = [〈1〉, 〈1/2〉, 〈1/3〉] ,
γ1 = [〈0〉, 〈1/5〉] ,
γ2 = [〈0〉, 〈1/(2n + 1)〉] ,
γ3 = [〈1〉, 〈1/2〉] .

Note that γ is not an admissible edgepath system, but by adding vertical
edges to the ends of the edgepaths, γ extends to an admissible edgepath
system.

Lemma 2.3. For the knot Kn, the path system γ extends to an admissi-
ble edgepath system that carries incompressible surfaces all of which have
boundary slope 4(n + 4). Also, every admissible edgepath system that carries
this slope is a vertical extension of γ.

Proof. The cycle of final r-values for the path system γ is (1,−4,−2n, 1).
Furthermore, the final slopes of the γi have positive sum, γ satisfies (E2),
and each γi ends on the left edge of S. Therefore, by [7, Proposition 2.9],
the γis can be extended by vertical edges to form a system that carries an
incompressible surface. As in the proof of Claim 2 above, we can calculate
the twist number of any such path system by calculating the twist number
of the vertical extension γ′ given by adding the vertical edge [〈0〉, 〈1〉] to
both γ0 and γ3.

We have

t(γ′
0) = 2(1 − 2) = −2,

t(γ′
1) = 2(1 − 0) = 2,

t(γ′
2) = 2(1 − 0) = 2,

t(γ′
3) = 2(1 − 1) = 0,

giving
t(γ′) =

∑

t(γi) = −2 + 2 + 2 = 2.
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Therefore the slope of any surface carried by a vertical extension of γ is
t(γ′) − t(s) = 2 + 14 + 4n = 4(n + 4).

The uniqueness of γ follows exactly as in Lemma 2.2. �

Combining Lemmas 2.2 and 2.3 yields the following result.

Proposition 2.4. For every n > 1, 4(n + 4) is a boundary slope of Kn but
not of Kτ

n. Furthermore, every admissible edgepath system that carries this
slope is a vertical extension of γ.

3. Iμ is constant on X

The notation given in the proof of Theorem 1.3 is used throughout this
section. Recall that if 4(n + 4) is a strongly detected boundary slope of Kn,
then there is a curve X ⊂ X(Kn) with the following two properties: (1) X
contains an irreducible character, and (2) the restriction of any character on
X to H is reducible. Since the set of irreducible characters is dense on X,
the fact that Iμ is constant on X follows from the following Proposition.

Proposition 3.1. There exists a finite set Λ ⊂ C such that if χ ∈ X(Kn)
is an irreducible character with the property that χ|H is reducible, then
Iμ(χ) ∈ Λ.

The remainder of this paper is devoted to the proof of this proposition.
Three facts that will be used repeatedly and hold in a more general context
are established in the next subsection. Subsequently, a lemma pertaining to
π1(S3 \ Kn) and Proposition 3.1 are proved.

3.1. Three useful facts

Lemma 3.2. Assume that a (twist) region in a knot diagram has Wirtinger
generators {w0, w1, . . . , w2k+2} as shown in figure 6. Then for every k ≥ 0

Figure 6: The diagram for Lemma 3.2.
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we have

w2k+2 = (w0w1)−kw−1
1 (w0w1)k+1

and

w2k+1 = (w0w1)−kw1(w0w1)k.

Proof. For k = 0, the relations are the Wirtinger relation and the trivial
relation, respectively. The conclusion follows by induction. �

Lemma 3.3. Let G be a group and x, y ∈ G be elements which have iden-
tical images in the abelianization GAB of G. If ρ : G → SL2(C) is a homo-
morphism such that ρ(G) is a group of upper triangular matrices, then ρ(x)
and ρ(y) are identical along their diagonals.

Proof. Let Δ < SL2(C) be the subgroup of upper-triangular matrices and
D < SL2(C) be the abelian subgroup of diagonal matrices. Then we have
an epimorphism δ : Δ → D given by

δ

(

α β
0 1/α

)

=
(

α 0
0 1/α

)

.

Since x and y have the same image in GAB we have δρ(x) = δρ(y). �

Lemma 3.4. Let α ∈ C \ {0}. If A =
(

α 0
0 1/α

)

and B =
(

α 1
0 1/α

)

, then for
every n ∈ Z

+

(AB)n =
(

α2n pn(α)
0 α−2n

)

,

where pn(x) ∈ C(x) and pn(x) �= 1/((1 − x2)x2n−1).

Proof. First we establish a recursive formula for pn(x).
Claim 1. p1(x) = x and pn(x) = x3−2n + x2pn−1(x).
For n = 1 we calculate

AB =
(

α2 α
0 α−2

)

to see that p1(x) = x as claimed. Now assume that

(AB)n−1 =
(

α2n−2 pn−1(α)
0 α2−2n

)

.
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Multiplying this by AB we see that

(AB)n =
(

α2n α2 pn−1(α) + α3−2n

0 α−2n

)

.

Hence, Claim 1 is true.
Claim 2. x2n−3pn(x) ∈ C[x].
Again, we establish this by induction. For n = 1

x−1p1(x) = x−1 · x = 1 ∈ C[x].

Now assume that x2n−5pn−1(x) ∈ C[x]. Then, using Claim 1, we have

x2n−3pn(x) = x2n−3(x3−2n + x2 pn−1(x)
)

= 1 + x2n−1 pn−1(x).

This is in C[x] by the inductive assumption.
Finally, we see that pn(x) �= 1/((1 − x2)x2n−1) because

x2n−3 · 1
(1 − x2)x2n−1 =

1
(1 − x2)x2 /∈ C[x].

The lemma follows. �

3.2. A lemma and a calculation

To simplify notation, let M = S3 \ Kn throughout the remainder of this
section. A Wirtinger presentation for π1(M) can be obtained from figure 2
with generating set {a, b, c, d, e, f} given by the labels in the figure. We single
out the following relations which will be used repeatedly in the arguments
that follow:

(R1) ae = eb, and

(R2) d = ab−1c.

Also, by applying Lemma 3.2 to T0 and T1, we get

(R3) b−1 = faf−1a−1f−1 (⇔ faf = bfa), and

(R4) c = (fd)−2d−1(fd)3 (⇔ d(fd)2c = (fd)3).

Denote by χρ the character of ρ ∈ R(M); thus, if γ ∈ π1(M) then χρ(γ) =
trace(ρ(γ)). Since generators in a Wirtinger presentation are conjugate, we



Detection of boundary slopes 713

have χρ(a) = χρ(b) = χρ(c) = χρ(d) = χρ(e) = χρ(f) for every ρ ∈ R(M).
This will be used implicitly.

Lemma 3.5. If ρ ∈ R(M) with ρ(a) = ρ(b−1) and χρ(a) �= ±2 then
χρ(a) = 0.

Proof. Since χρ(a) �= ±2 we may conjugate ρ to assume that ρ(a) is diagonal.
Let

ρ(a) =
(

α 0
0 1/α

)

and ρ(e) =
(

w x
y z

)

.

The lemma follows from the relation (R1), ae = eb. We have

ρ(ae) =
(

αw αx
y/α z/α

)

and

ρ(eb) = ρ(ea−1) =
(

w/α αx
y/α αz

)

.

Then αw = w/α. This implies that either α2 − 1 = 0 or w = 0. The first
possibility is ruled out by assumption, and hence w = 0. Similarly we have
z = 0. Therefore χρ(a) = χρ(e) = 0. �

The Conway sphere S4 separates M into two submanifolds M1 and M2. Let
M1 be the piece that contains the tangles T0 and T1. Choose a basepoint in
S4 for π1(M) and write Γi = im(π1(Mi) → π1(M)). For the convenience of
the reader, Proposition 3.1 is stated again:

Proposition 3.1. There exists a finite set Λ ⊂ C such that if χ ∈ X(Kn)
is an irreducible character with the property that χ|H is reducible, then
Iμ(χ) ∈ Λ.

Proof. Since a ∈ π1(M) is a meridian, it suffices to find a finite set Λ ⊂ C

with the following property. If ρ ∈ R(M) is irreducible and ρ|H is reducible,
then χρ(a) ∈ Λ. The strategy is to use the relations of the Wirtinger pre-
sentation of π1(M) to calculate all conjugacy classes of such representations
and to show that the eigenvalues of ρ(a) must satisfy one of finitely many
polynomial equations.

Assume that ρ ∈ R(M) is irreducible and that ρ|H is reducible. Set
Λ = {0,±2}. Finitely many values are added to Λ as we proceed through
the proof.
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We may replace ρ by a conjugate (which again will be denoted by ρ)
with the property that its restriction to H is upper triangular. To simplify
notation, given g ∈ π1(M), ρ(g) will be denoted by g. Thus, the matrices
a, b, c and d are all upper triangular. Moreover, we assume that Tr(a) /∈ Λ =
{0,±2}.

Case 1. ρ|H is abelian.

Since Tr(a) �= ±2, we can conjugate ρ to assume that a is diagonal. Since
ρ(H) is abelian we have b, c, d ∈ {a±1}. Lemma 3.5 implies b = a, and hence
relation (R1) yields ae = ea. Thus, e is diagonal. Since Γ2 is generated by
{a, b, c, d, e}, ρ(Γ2) is diagonal, and hence ρ|Γ1 must be irreducible. Relation
(R2) implies that d = c and so (R3) yields faf = afa and (R4) yields cfcfc =
fcfcf. Consider the possibilities c ∈ {a±1} separately:

Subcase 1(A). c = a.
Relation (R4) yields afafa = fafaf. Using (R3) we have

afafa = fa(faf)
= fa(afa).

Whence af = fa, so f is diagonal which contradicts the fact that ρ|Γ1

is irreducible.

Subcase 1(B). c = a−1.
Since ρ|Γ1 is irreducible, one may conjugate ρ further so that

a =
(

α 1
0 1/α

)

and f =
(

β 0
r 1/β

)

,

where β ∈ {α±1} and r �= 0.

If β = α, then (R3) implies 1 = α2 + r + 1
α2 and (R4) implies r2 − 3r +

1 = 0. There are at most eight simultaneous solutions to these two equations.
The corresponding finite number of values of Tr(a) are adjoined to Λ.

If β = 1/α, then (R3) forces r = −1. Together with (R4), this implies
that α satisfies the equation α8 + α6 + α4 + α2 + 1 = 0. Again, a finite num-
ber of values is added to Λ to account for these representations.

Case 2. ρ|H is non-abelian and ρ|Γ2 is reducible.
It may be assumed that a is diagonal and b, c, d and e are upper triangular.
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Subcase 2(A). [a, b] = I.
Then b ∈ {a±1}, and Lemma 3.3 yields b = a. Relation (R1) gives [a, e] = I
and e is diagonal. Also, (R2) implies d = c. Since ρ(H) is non-abelian, c

cannot be diagonal. Up to conjugation, we may assume that

e =
(

α 0
0 1/α

)

and c =
(

β 1
0 1/β

)

,

where β ∈ {α±1}. Since c and e have the same image in ΓAB
2 and ρ|Γ2 is

reducible, Lemma 3.3 implies that c and e are identical along their diagonals.
Hence β = α.
Lemma 3.2 gives (ec)ne = c(ec)n and Lemma 3.4 yields

(ec)n =
(

α2n pn(α)
0 α−2n

)

,

where pn(x) ∈ C(x) and pn(x) �= 1/((1 − x2)x2n−1).
Equating the upper-right entries of the matrices (ec)ne and c(ec)n gives

α pn(α) + α−2n =
1
α

pn(α).

Since α /∈ {0,±1}, we have

pn(α) =
1

(1 − α2)α2n−1 .

This equation has finitely many solutions because pn(x) �= 1/((1 − x2)x2n−1).
The corresponding values of α + α−1 are added to Λ.

Subcase 2(B). [a, b] �= I.
Recall that a is diagonal and ρ(Γ2) is upper triangular. Since [a, b] �= I,
the upper-right entry of b is non-zero, and we can conjugate by diagonal
matrices to assume this entry is 1. As above, Lemma 3.3 implies that a and
b are identical along their diagonals, giving:

a =
(

α 0
0 1/α

)

and b =
(

α 1
0 1/α

)

.



716 Eric Chesebro & Stephan Tillmann

Since ρ is irreducible, the lower-left entry of f is non-zero, and using Tr(f) =
Tr(a) = α + 1/α, we obtain

f =

⎛

⎜

⎜

⎝

x
1

αy
(−αx2 + α2x + x − α)

y
1
α

(−αx + α2 + 1)

⎞

⎟

⎟

⎠

,

where y �= 0.
Relation (R3) implies faf = bfa. Equating the lower-left entries gives:

αxy +
y

α2 (−αx + α2 + 1) = 0.

Then y �= 0 yields x = −1/(α(α2 − 1)). Making this substitution and equat-
ing the upper-left entries of faf and bfa, we arrive at the contradiction
yα = 0.

Case 3. ρ|H is non-abelian and ρ|Γ2 is irreducible.

Conjugating ρ so that a is diagonal and b, c and d are upper triangular, we
know that the lower left entry of e must be non-zero.

First, note that [a, b] �= I. Since a is diagonal and not parabolic, if a

and b commute, then b = a−1 or b = a. The first possibility is ruled out
by Lemma 3.5. If a = b, then (R1) implies that a and e commute which is
not possible because the lower left entry of e is non-zero. We may therefore
assume that

a =
(

α 0
0 1/α

)

and b =
(

β 1
0 1/β

)

,

where β ∈ {α±1}. As argued for f in Subcase 2(B), there is y �= 0 so that:

e =

⎛

⎜

⎜

⎝

x
1

αy
(−αx2 + α2x + x − α)

y
1
α

(−αx + α2 + 1)

⎞

⎟

⎟

⎠

.

The lower-right entries of ae and eb are equal due to (R1). If β = α, this
yields:

1
α2 (−αx + α2 + 1) = y +

1
α2 (−αx + α2 + 1),

which implies y = 0, a contradiction. We therefore have

b =
(

1/α 1
0 α

)

.
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Comparing the upper-right entries of ae and eb gives x = 0. Substituting for
x, the lower-right entries of ae = eb imply y = α−2(1 − α4), and hence

e =

⎛

⎜

⎜

⎝

0
α2

α4 − 1
1 − α4

α2
α2 + 1

α

⎞

⎟

⎟

⎠

.

Since c is upper triangular and Tr(c) = Tr(a), put

c =
(

γ r
0 1/γ

)

,

where γ ∈ {α±1} and r ∈ C. Formally assign the matrix Θ ∈ SL2(C) to
represent the product (ec)n.

Applying Lemma 3.2 to the tangle T2, we get the relation h = (ec)−n

c(ec)n, and from T3 we have h = aea−1, where h is the generator shown in
figure 2. We thus conclude that Θ satisfies the relation

Θ−1
c Θ = aea

−1. (R5)

Moreover, Θ commutes with ec, whence

Θ ec = ec Θ. (R6)

Using (R5) and det(Θ) = 1, Θ can be expressed in terms of α, γ, r, and a new
independent variable z. By comparing the matrices in (R6), r is written as a
function in α, γ and z. If γ = α then the upper-right entries in (R5) give the
equality 0 = α6 − α4 − α2 + 1 = (α − 1)2(α + 1)2(α2 + 1).1 But this implies
Tr(a) ∈ Λ. Thus, γ = 1/α and both c and Θ are given in terms of α and z:

c =
(

1/α r
0 α

)

and Θ =

⎛

⎜

⎜

⎝

α4 − z2

α4z

αz

α4 − 1
z(1 − α4)

α5 z

⎞

⎟

⎟

⎠

,

where r = (α4 + α2z2 − z2)/z2(α4 − 1). Put

f =
(

p q
s t

)

1The authors thank one of the referees for factoring this polynomial.
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and consider the consequences of (R3). Equating the upper-right entries
of faf and bfa yields q(α3p + αt − 1) − αt = 0. If q = 0, then t = 0 and
hence det(f) = 0; a contradiction. So q �= 0 and solving det(f) = 1 for s
gives s = pt−1

q . Substituting this and looking at the lower-right entries yields
an expression for p in terms of α and t. Comparing the lower-left entries
gives (α − t)(α2t − t − α) = 0. There is one subcase for each factor of this
polynomial.

Subcase 3(A). t = α (ρ|Γ1 is reducible).

We have f in terms of α and q. Using (R3), one can solve for q giving:

f =

⎛

⎝

1/α
α2

2α2 − 1
0 α

⎞

⎠.

Relation (R4) then yields the polynomial equation

(6α8 − 17α6 + 13α4 + 2α2 − 4)z2 − 6α8 + 7α6 − 2α4 = 0.

By adding {α + α−1|6α8 − 17α6 + 13α4 + 2α2 − 4 = 0} to Λ, we may solve
for z2 to get

z2 =
α4 (6α4 − 7α2 + 2)

6α8 − 17α6 + 13α4 + 2α2 − 4
.

The only remaining relation is Θ = (ec)n. Although the expression for Θ in
terms of α and z does contain odd powers of z, the resulting expression for
Θ2 only contains even powers of z. Thus, Tr(ec) and Tr(Θ2) can be written
as rational functions in α:

Tr(ec) =
(α2 + 1)(10α4 − 15α2 + 6)

α4 (2α2 − 1)(3α2 − 2)

and

Tr(Θ2) =
(α2 + 1)(72α12 − 288α10 + 446α8 − 278α6 − 25α4 + 108α2 − 36)

α4 (2α2 − 1)(3α2 − 2)(6α6 − 11α4 + 2α2 + 4)
.

Consider the relation

(�) Tr(Θ2) = Tr
(

(ec)2n
)

.
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Using standard trace identities, Tr(Θ2) = P
(

Tr(ec)
)

where P (x) ∈ Z[x] is a
monic polynomial of degree 2n. It suffices to show that there are at most
finitely many α satisfying this equation. This is equivalent to showing that
the rational functions Tr(Θ2) and P

(

Tr(ec)
)

are not identically equal. To
this end, note that Tr(Θ2) has a pole at the roots of the polynomial 6x6 −
11x4 + 2x2 + 4 whilst P

(

Tr(ec)
)

takes a finite value at each of these roots,
since any pole of P

(

Tr(ec)
)

is a pole of Tr(ec). These rational functions are
therefore not identically equal and there are only finitely many values for α
that satisfy equation (�). We add the corresponding traces to Λ.

Subcase 3(B). t = α
α2−1 (ρ|Γ1 is irreducible).

Just as in Subcase 3(A), relation (R3) yields:

f =

⎛

⎜

⎜

⎝

α4 − α2 − 1
α(α2 − 1)

α2

(α2 + 1)(α2 − 1)2

α4 − α2 − 2
α2

α

α2 − 1

⎞

⎟

⎟

⎠

.

After adding ±
(

21/2 + 2−1/2
)

to Λ, relation (R4) implies:

(−α12 + 8α10 − 22α8 + 23α6 − 3α4 − 9α2 + 4)z4

+ (2α12 − 12α10 + 22α8 − 11α6 − 3α4 + 2α2)z2

− α12 + 4α10 − 4α8 = 0.(3.1)

Let C ⊂ C
2 be the zero set of this polynomial. Setting the variables

(3.2) T = Tr(Θ) =
α4z2 + α4 − z2

α4z
(α4z2 + α4 − z2 − α4zT = 0)

and

(3.3) E = Tr(ec) =
α4z2 − α4 + z2

α2z2 (α4z2 − α4 + z2 − α2z2E = 0),

we have a corresponding projection

φ : C −→
{

(T, E) ∈ C
2}.

Denote the left-hand sides in the polynomial equations in (3.1)–(3.3) by
F1(α, z), F2(α, z, T ) and F3(α, z, E), respectively. Then successively taking
resultants to first eliminate the variable z and then the variable α gives a
polynomial Q(E, T ) ∈ Z[E, T ] with Q = 0 on the image of φ. For details
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on elimination theory see [4]. The polynomial Q factors as Q(E, T ) =
Q1(E, T )Q2(E, T ); the factors are given below. As before, we can express T
as a monic polynomial of degree n, P (E) ∈ Z[E]. The one variable polyno-
mial equation Q

(

E, P (E)
)

= 0 holds on Im(φ). As long as this polynomial
is not identically zero, the image of φ is 0-dimensional. We show that this is
true by showing that the degree of each factor is bigger than zero. We have:

Q1(E, T ) = (−193 + 130E + 17E2 − 25E3 + 4E4) T 10 + (1804 − 918E

− 183E2 − 21E3 + 69E4 + 17E5 − 15E6 + 2E7) T 8

+ (−6148 + 1732E + 1019E2 + 874E3 − 653E4 − 21E5 + 48E6

− E7 − E8) T 6 + (9120 + 96E − 2676E2 − 2308E3 + 1805E4

− 22E5 − 253E6 − 14E7 + 92E8 − 35E9 + 4E10) T 4

+ (−5440 − 1472E + 3984E2 + 1088E3 − 4280E4 + 992E5

+ 1960E6 − 832E7 − 338E8 + 270E9 − 57E10 + 4E11) T 2

+ 1024 − 512E − 4800E2 + 2496E3 + 6992E4 − 4064E5

− 3024E6 + 2464E7 + 24E8 − 440E9 + 148E10 − 20E11 + E12,

Q2(E, T ) = (1024E4 − 10912E3 + 37440E2 − 46944E + 13856) T 10

+ (−512E7 + 10832E6 − 108328E5 + 608826E4 − 1905305E3

+ 3168848E2 − 2476309E + 620777) T 8 + (7648E8 − 175067E7

+ 1678461E6 − 8518512E5 + 23936306E4 − 35788057E3

+ 24138626E2 − 3643367E − 294154) T 6

+ (−1024E10 + 28320E9 − 450643E8 + 4975482E7

− 35933695E6 + 162677046E5 − 452556067E4 + 752595598E3

− 706177725E2 + 334806036E − 65721092) T 4

+ (−2112E11 + 32176E10 − 117141E9 − 107672E8

− 5360670E7 + 92118286E6 − 551970416E5 + 1726044320E4

− 3064767392E3 + 3052536872E2 − 1557218384E

+ 318285440)T 2 − 256E12 + 7520E11 − 61817E10 − 151884E9

+ 4699044E8 − 20745512E7 − 22921896E6 + 499387232E5

− 1903989328E4 + 3615547616E3 − 3720895056E2

+ 1944891072E − 400960576.
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Writing Qj as a polynomial in Z[E][T ], we get

Qj(E, T ) =
5

∑

i=0

qi(E) · T 2i

where

deg
(

q0(E)
)

= 12 =⇒ deg
(

q0(E) · P (E)0
)

= 12

deg
(

q1(E)
)

= 11 =⇒ deg
(

q1(E) · P (E)2
)

= 11 + 2n

deg
(

q2(E)
)

= 10 =⇒ deg
(

q2(E) · P (E)4
)

= 10 + 4n

deg
(

q3(E)
)

= 8 =⇒ deg
(

q3(E) · P (E)6
)

= 8 + 6n

deg
(

q4(E)
)

= 7 =⇒ deg
(

q4(E) · P (E)8
)

= 7 + 8n

deg
(

q5(E)
)

= 4 =⇒ deg
(

q5(E) · P (E)10) = 4 + 10n.

Since n > 1, the degree 4 + 10n term in q5(E) · P (E)10 is the unique term
of highest degree in Qj

(

E, P (E)
)

. Therefore,

deg
(

Qj

(

E, P (E)
)

= 4 + 10n > 0.

We have now established that Im(φ) is a finite set of points. The proof
will be complete if we show that the fibers of φ are finite. Using Equa-
tions (3.2) and (3.3),

z =
α2T

2α2 − E
.

This, together with Equation (3.3), implies that

0 = (T 2 − 4)α4 + (4E − T 2E)α2 − E2 + T 2.

Therefore, the fibers are finite over every (E, T ) unless T 2 = 4 and E2 = 4.
These points are not in the image of φ, since the system of equations

F1(α, z) = F2(α, z, T ) = F3(α, z, E) = 0

has no solution when T 2 = 4 and E2 = 4.
Since in every case at most finitely many possibilities for χρ(a) are

encounted, it follows that there is a finite set Λ with the property that
if ρ is an irreducible representation in R(M) such that ρ|H is reducible, then
χρ(a) ∈ Λ. �
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