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Computing linear Hodge integrals
Yon-Seo Kim

All Hodge integrals with at most one λ-class can be expressed as
polynomials in terms of lower-dimensional Hodge integrals with at
most one λ-class. Algorithm to compute any given Hodge inte-
gral with at most one λ-class is discussed and some examples are
presented.

1. Introduction

Let Mg,n denote the Deligne–Mumford moduli stack of stable curves of
genus g with n marked points. A Hodge integral is an integral of the form

∫
Mg,n

ψj1
1 . . . ψjn

n λk1
1 . . . λkg

g ,

where ψi is the first Chern class of the cotangent line bundle at the ith
marked point, and λ1, . . . , λg are the Chern classes of the Hodge bundle.
Hodge integrals arise naturally in the calculations of Gromov–Witten invari-
ants by localization techniques [21, 22, 23, 24]. Their explicit evaluations are
difficult problems. The famous Witten’s conjecture/Kontsevich’s theorem
[20, 11, 25] gives a recursive relation of Hodge integrals involving ψ classes
only;

(1.1)
∫

Mg,n

ψj1
1 . . . ψjn

n

and some of them can be computed recursively through string equation and
KdV hierarchy. In [2], Faber developed an algorithm to compute intersection
numbers of type (1.1). Also, Getzler [4] obtained recursion relations for the
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case of g = 2, one of which is given as;

〈〈τk+2(x)〉〉2 = 〈〈τk+1(x)γa〉〉0〈〈γa〉〉2 + 〈〈τk(x)γa〉〉0〈〈τ1(γa)〉〉2
− 〈〈τk(x)γa〉〉0〈〈γaγb〉〉0〈〈γb〉〉2

+
7
10

〈〈τk(x)γaγb〉〉0〈〈γa〉〉1〈〈γb〉〉1

+
1
10

〈〈τk(x)γaγb〉〉0〈〈γaγb〉〉1 − 1
240

〈〈τk(x)γa〉〉1〈〈γaγbγ
b〉〉0

+
13
240

〈〈τk(x)γaγ
aγb〉〉0〈〈γb〉〉1

+
1

960
〈〈τk(x)γaγ

aγbγ
b〉〉0 for k ≥ 0.

When the λ-classes are involved, the computation of Hodge integrals is not
easy. There was λg-conjecture which computes for the case of one top-degree
λ-class as [3];

(1.2)
∫

Mg,n

ψk1
1 . . . ψkn

n λg =
(

2g + n − 3
k1, . . . , kn

)
22g−1 − 1

22g−1
|B2g|
(2g)!

,

where B2g are Bernoulli numbers and k1 + · · · + kn = 2g − 3 + n. By using
Mariño–Vafa formula [15, 18], the case of λg−1 with one marked point can
be computed as;

(1.3)
∫

Mg,1

ψ2g−1
1 λg−1 = bg

2g−1∑
i=1

1
i

− 1
2

∑
g1+g2=g

(2g1 − 1)!(2g2 − 1)!
(2g − 1)!

bg1bg2

and the case of more than one marked points can be computed by repeatedly
applying the cut-and-join equation:

(1.4)
∂Ω
∂τ

=
√

−1λ

2

∑
i,j≥1

(
ijpi+j

∂2Ω
∂pi∂pj

+ ijpi+j
∂Ω
∂pi

∂Ω
∂pj

+ (i + j)pipj
∂Ω

∂pi+j

)

which was used in the proof of Mariño–Vafa formula [15, 16, 18], and proven
to be an effective tool in studying Hodge integrals.

The moduli space of relative stable morphisms admits a natural S1-
action induced from the S1-action on the target space. And as a result of
the localization formula applied to it, the following convolution formula is
obtained;
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Theorem 6.1. For any partition μ and e with |e| < |μ| + l(μ) − χ, we have
[
λl(μ)−χ

] ∑
|ν|=|μ|

Φ•
μ,ν(−λ)zνD•

ν,e(λ) = 0

where the sum is taken over all partitions ν of the same size as μ.

Here χ is the prescribed Euler number of domain curves,
[
λa
]

means
taking the coefficient of λa, Φ•(λ) is a generating series of double Hurwitz
numbers, and D•(λ) is a certain generating series of Hodge integrals. This
formula gives many relations between linear Hodge integrals, i.e., Hodge
integrals with at most one λ-class, and it is enough to consider the special
case of μ = (d) for some positive integers d to compute all Hodge integrals
with at most one λ-class. More precisely, the following theorem is proved in
Section 7;

Theorem 7.2. Any given Hodge integral with one λ-class:
∫

Mg,n

ψk1
1 . . . ψkn

n λj ,

where k1, . . . , kn ∈ N ∪ {0}, j ∈ {0, 1, 2, . . . , g}, is explicitly expressed as a
polynomial in terms of lower-dimensional Hodge integrals with one λ-class.
Therefore it computes all linear Hodge integrals.

The rest of the paper is organized as follows: In Section 2, we summarize
various versions of localization formulas which will be used in computing
Hodge integrals. In Section 3, the relative moduli space is defined and
the natural S1-action on it is introduced. Also the fixed locus of the S1-
action and their corresponding description in terms of graphs is discussed.
In Section 4, we compute the Euler class of the normal bundle of the fixed
locus of the S1-action in the relative moduli space. In Section 5, the double
Hurwitz numbers and its description in terms of Hodge integrals over a
certain moduli space is discussed. In Section 6, the recursion formula which
gives relations between Hodge integrals with at most one λ-class is proved.
In Section 7, the recursion formula is used prove that all Hodge integrals
with at most one λ-class is explicitly expressed as a polynomial in terms of
lower-dimensional Hodge integrals with at most one λ-class. In Section 8, an
algorithm to implement the recursion formula and to compute each Hodge
integral with at most one λ-class is discussed. In Section 9, some examples
of the algorithm in Section 8 are presented.
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2. Localization formula

In this section, I will summarize various versions of localization formulas.

2.1. Equivariant cohomology

Let G be a compact Lie group acting on M . The equivariant cohomology
of M is defined as the ordinary cohomology of the space MG obtained from
a fixed universal G-bundle EG, by the mixing construction

MG = EG ×G M

Here, G acts on the right of EG and on the left of M , and the notation means
that we identify (pg, q) ∼ (p, gq) for p ∈ EG, q ∈ M , g ∈ G. Hence MG is the
bundle with fiber M over the classifying space BG associated to the universal
bundle EG → BG. We have natural projection map π : MG → BG and
σ : MG → M/G, which fits into the mixing diagram of Cartan and Borel:

EG

��

EG × M ��

��

�� M

��
BG E ×G M

π�� σ �� M/G

If G acts smoothly on M , then we have MG 	 M/G. This is not true in
general but it turns out that MG is a better functorial construction and the
proper homotopy theoretic quotient of M by G. In any case, the equivariant
cohomology, denoted by H∗

G(M), is defined by

H∗
G(M) = H∗(MG)

and constitutes a contravariant functor from G-spaces to modules over the
base ring H∗

G := H∗
G(pt) = H∗(BG). The map σ defines a natural map

σ∗ : H∗(M/G) → H∗
G(M) which is an isomorphism if G acts freely. The

inclusion i : M → MG induces a natural map i∗ : H∗
G(M) → H∗(M).
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2.2. Atiyah–Bott localization formula

Following [1], let i : V ↪→ M be a map of compact manifolds [1]. The tubu-
lar neighborhood of V inside M can be identified with the normal bundle
of V . On the total space of the normal bundle, there is the Thom form ΦV

which has compact support in the fibers and integrates to one in each fiber.
Extending this form by zero gives a form in M , and multiplying by ΦV pro-
vides a map H∗(V ) ∼= H∗+k(M, M\V ) → H∗(M). In particular, the coho-
mology class 1 ∈ H0(V ) is sent to the Thom class and this class restricts to
be the Euler class of the normal bundle of V in M , NV/M . Hence, we see that

i∗i∗1 = e(NV/M ).

This also holds in equivariant cohomology by same argument applied to
VG, MG. The theorem of Atiyah and Bott says that an inverse of the Euler
class of the normal bundle always exists along the fixed locus of a group
action. Precisely, i∗/e(NV/M ) is the inverse of i∗ in equivariant cohomology,
i.e., for any equivariant class φ,

φ =
∑
F

i∗i∗φ

e(NF/M )

holds, where F runs over the fixed locus of the group action. In the inte-
grated form, we have

∫
M

φ =
∑
F

∫
F

i∗φ

e(NF/M )
.

2.3. Functorial localization formula

Let X and Y be T -manifolds. Assume f : X → Y is a T -equivariant map,
jE : E ↪→ Y is a fixed component in Y , and iF : F ↪→ f−1(E) is a fixed
component in X. For any equivariant class ω ∈ H∗

T (X), we have the dia-
grams;

F
iF ��

g=f |F

��

X

f

��
E

jE �� Y

i∗
F (ω)

eT (F/X)

g!

��

ω
i∗
F��

f!

��
g!

[
i∗
F (ω)

eT (F/X)

]
f!(ω)

j∗
E��
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Applying the Atiyah–Bott localizatio formula with the naturality relation
f!(ω · f∗α) = f!ω · α, we obtain the functorial localization formula:

(2.1) g!

[ i∗F (ω)
eT (F/X)

]
=

j∗
Ef!(ω)

eT (E/Y )
.

2.4. Virtual functorial localization formula

The above functorial localization formula is also valid in the case where
X and F are virtual fundamental classes [7, 8]. In this paper, we will use[
M•

χ,n(P1, μ)
]vir for X, and

[
FΓ
]vir for F . Hence for any equivariant class

ω, we have:

(2.2)
∫
[
M•

χ,n(P1,μ)
]vir

ω =
∑
FΓ

∫
[
FΓ

]vir

i∗Γ(ω)
eT (FΓ/M•

χ(P1, μ))
.

3. Relative moduli space and S1-action

3.1. Moduli space of relative morphisms

For any non-negative integer m, let

P
1[m] = P

1
(0) ∪ P

1
(1) ∪ . . . ∪ P

1
(m)

be a chain of (m + 1) copies of P
1 such that P

1
(l) is glued to P

1
(l+1) at p

(l)
1 for

0 ≤ l ≤ m − 1. The irreducible component P
1
(0) is referred to as the root com-

ponent, and other irreducible components are called bubble components. Two
points p

(l)
1 �= p

(l+1)
1 in P

1
(l) are fixed. Denote by π[m] : P

1[m] → P
1 the map

which is identity on the root component and contracts all bubble compo-
nents to P

(0)
1 . Also denote by P

1(m) = P
1
(1) ∪ . . . ∪ P

1
(m) the union of bubble

components of P
1[m].

For a fixed partition μ of a positive integer d, let M•
χ,n(P1, μ) be the mod-

uli space of relative morphisms f :
(
C; x1, . . . , xl(μ), z1, . . . , zn

)
→
(
P

1[m],
p
(m)
1

)
such that

(1)
(
C; x1, . . . , xl(μ), z1, . . . , zn

)
is a possibly disconnected prestable curve

of Euler number χ with l(μ) + n marked points. Here, the marked
points are unordered.

(2) f−1(p(m)
1 ) =

∑l(μ)
i=1 μixi as Cartier divisors and deg(π[m] ◦ f) = |μ|.
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(3) The preimage of each node in P
1[m] consists of nodes of C. If f(y) = p

(l)
1

and C1 and C2 are two irreducible components of C which intersects
at y, then f |C1 and f |C2 have the same contact order to p

(l)
1 at y.

(4) The automorphism group of f is finite. Here, an automorphism of f
consists of an automorphism of the domain curve and and automor-
phism of the pointed curve

(
P

1(m), p(0)
1 , p

(m)
1

)
.

Following [12,13], M•
χ,n(P1, μ) is a separated, proper Deligne–Mumford

stack with a perfect obstruction theory of virtual dimension r = −χ + |μ| +
l(μ) + n, and hence has a virtual fundamental class of degree r.

3.2. Torus action

Consider the C
∗-action t · [z0 : z1] = [tz0 : z1] on P

1. There are two fixed
points p0 = [0 : 1] and p1 = [1 : 0]. Extend this action to the action on P

1[m]
by identifying the root component with P

1 and giving trivial actions on
bubble components. Then this extended action on P

1[m] induces an action
on M•

χ,n(P1, μ).

3.3. Fixed locus

The connected components of the fixed points set of M•
χ,n(P1, μ) under

the induced torus action can be parametrized by labeled graphs. For any
f :

(
C; x1, . . . , xl(μ), z1, . . . , zn

)
→ P

1[m] representing a fixed point of the C
∗-

action on M•
χ,n(P1, μ), the restriction of f̂ := π[m] ◦ f : C → P

1 to an irre-
ducible component of C is either a constant map to one of the C

∗-fixed points
p0, p1, or a covering of P

1 fully ramified over p0 and p1. Associate a labeled
graph Γ to the C

∗-fixed point
[
f :

(
C; x1, . . . , xl(μ), z1, . . . , zn

)
→ P

1[m]
]

as
follows:

(1) For each connected component Cv of f̂−1({p0, p1}), assign a vertex v,
a label g(v) which is the arithmetic genus of Cv, and a label i(v) ={

0 if f̂(Cv) = p0,

1 if f̂(Cv) = p1.
Denote by V (Γ)(k) the set of vertices v with i(v) =

k, for k = 0, 1. The set V (Γ) of vertices of the graph Γ will then be
the disjoint union of V (Γ)(0) and V (Γ)(1).

(2) Assign an edge e to each rational irreducible component Ce of C such
that f̂ |Ce

is not a constant map. Then f̂ |Ce
is fully ramified over p0

and p1 with degree d(e). Let E(Γ) denote the set of edges of Γ.
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(3) The set of flags is given by F (Γ) = {(v, e) : v ∈ V (Γ), e ∈ E(Γ), Cv ∩
Ce �= ∅}

(4) For each v ∈ V (Γ), define d(v) =
∑

(v,e)∈F (Γ) d(e) and let ν(v) be the
partition of d(v) determined by {d(e) : (v, e) ∈ F (Γ)}. In case m > 0,
we assign an additional label for each v ∈ V (Γ)(1): let μ(v) be the
partition of d(v) determined by the ramification of f |Cv

: Cv → P
1(m)

over p
(m)
1 .

Let Gχ(P1, μ) be the set of all the graphs associated to the C
∗-fixed points in

M•
χ,n(P1, μ). We now describe the set of fixed points associated to a given

graph Γ ∈ Gχ(P1, μ).

• Case m = 0 : Any C
∗-fixed point in M•

χ,n(P1, μ) which is represented
by a morphism to P

1[0] = P
1 is associated to a graph Γ0 ∈ G0

χ(P1, μ)
such that

V (Γ0)(0) = {v0
1, . . . , v

0
k}, g(v0

i ) = gi, k ∈ N,
∑

i

(2 − 2gi) = χ

V (Γ0)(1) = {v∞
1 , . . . , v∞

l(μ)}, g(v∞
1 ) = . . . = g(v∞

l(μ)) = 0,

E(Γ0) = {e1, . . . , el(μ)}, d(ei) = μi for i = 1, . . . , l(μ)

j(v) = number of zi’s mapped to v,
∑

V (Γ0)(0)
j(v) = n

The two end-points of the edge ei are v0
j and v∞

i for some 1 ≤ j ≤ k.
Let μ(v0

i ) = {μj |ej has v0
i as an endpoint}. Define

MΓ0 =
∏

1≤i≤k

Mgi,l(μ(v0
i ))+j(v0

i ),

where we take M0,1 = M0,2 = M1,0 = {pt}, then there is a morphism
iΓ0 : MΓ0 → M•

χ,n(P1, μ) whose image is the fixed locus FΓ0 associated
to Γ0. Hence iΓ0 induces an isomorphism MΓ0/AΓ0

∼= FΓ0 , where AΓ0

is the automorphism group of any morphism associated to the graph
Γ0, which can be obtained from the short exact sequence

1 −→
l(μ)∏
i=1

Zμi
−→ AΓ0 −→ Aut(Γ0) −→ 1.
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The virtual dimension of FΓ0 with only stable vertices is

dΓ0 = −3
2
χ + l(μ) + n.

For any vertex v ∈ V (Γ0)(0), introduce multiplicity of v, m(v), as
follows:

m(v) = |{w ∈ V (Γ0)(0) | g(v) = g(w),

μ(v) = μ(w), j(v) = j(w)}|.

Pick one representatives from each group of identical vertices {v1, . . . ,
vl} so that

∑
m(vk) = |V (Γ0)(0)|. Denote by m(vk) = mk and now

we can find the order of automorphism group of any Γ0 ∈ G0
χ,n(P1, μ)

to be:

(3.1) |Aut Γ0| =
∏
k

mk! | j(vk)! Autμ(vk) |mk

• Case m > 0 : For any given f : (C; x1, . . . , xl(μ), z1, . . . , zn) → P
1[m],

consider f0 and f∞ which are defined as follows:
– f0: Let C0 = f−1(p(0)

0 ), {y1, . . . , yl(ν)} = f−1(p(0)
1 ), and {z1, . . . ,

zn0} mapped to C0. Then f0 : (C0; y1, . . . , yl(ν), z1, . . . , zn0) → P
1

corresponds to the case of m = 0.
– f∞: Let C∞ = f−1(P1(m)) and f∞ = f |C∞ , then f∞ corresponds

to an element of M(1)
Γ corresponding to the graph Γ described

below.
Classify the vertices of the graph Γ as follows:

V I(Γ)(0) = {v ∈ V (Γ)(0) : r0(v) = −1},

V II(Γ)(i) = {v ∈ V (Γ)(i) : ri(v) = 0}, for i = 0, 1,

V S(Γ)(i) = {v ∈ V (Γ)(i) : ri(v) > 0}, for i = 0, 1,

where r0(v) = 2g(v) − 2 + val(v) + j(v), for v ∈ V (Γ)(0),

r1(v) = 2g(v) − 2 + l(μ(v)) + l(ν(v)) + j(v), for v ∈ V (Γ)(1).

Define MΓ = M(0)
Γ ×M(1)

Γ , where M(0)
Γ =

∏
v∈V S(Γ)(0) Mg(v),val(v)+j(v) and

M(1)
Γ is the moduli space of morphisms f̂ : Ĉ → P

1(m) such that
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(1) Ĉ =
⊔

v∈V (Γ)(1) Cv

(2) For each v ∈ V (Γ)(1),
(
Cv; xv,1, . . . , xv,l(μ(v)), yv,1, . . . , yv,l(ν(v)),

z1, . . . , zj(v)
)

is a prestable curve of genus g(v) with l(μ(v)) +
l(ν(v)) + j(v) ordered marked points.

(3) As Cartier divisors, (f̂ |Cv
)−1(p(0)

1 ) =
∑l(ν(v))

j=1 ν(v)jyv,j , (f̂ |Cv
)−1

(p(m)
1 ) =

∑l(μ(v))
i=1 μ(v)ixv,i. The morphism (f̂ |Cv

)−1(E) → E is of
degree d(v) for each irreducible component E of P

1(m).

(4) The automorphism group of f̂ is finite. Here, an automorphism of
f̂ consists of an automorphism of the domain curve Ĉ and an auto-
morphism of the pointed curve (P1(m), p(0)

1 , p
(m)
1 ), which is an element

of (C∗)m.

There is a morphism iΓ : MΓ → M•
χ,n(P1, μ) whose image is the fixed

locus FΓ associated to the graph Γ. Hence iΓ induces an isomorphism
MΓ/AΓ ∼= FΓ, where AΓ is the automorphism group of any morphism asso-
ciated to the graph Γ, which can be obtained from the short exact sequence

1 −→
∏

e∈E(Γ)

Zd(e) −→ AΓ −→ Aut(Γ) −→ 1.

The virtual dimension of M(1)
Γ is given by d

(1)
Γ =

(∑
v∈V (Γ)(1) r1(v)

)
− 1.

Use the identities

−χ = −χ0 − χ∞ + 2l(ν), g =
∑

v∈V (Γ)

g(v)− | V (Γ) | + | E(Γ) | +1

to get the virtual dimension of FΓ:

dΓ = d
(0)
Γ + d

(1)
Γ = −3

2
χ0 + l(ν) − χ∞ + l(μ) + l(ν) − 1 + n∞

=
∑

v∈V S(Γ)(0)

(
3g(v) − 3 + val(v)

)
+

⎛
⎝ ∑

v∈V (Γ)(1)
r1(v)

⎞
⎠− 1 + n∞

= 2g − 3 + l(μ) +
∑

v∈V S(Γ)(0)

(
g(v) − 1

)
+ | V I(Γ)(0) | +n∞

= −1
2
χ0 − χ + l(μ) − 1 + n∞.
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By similar observation as in the case of m = 0, we find the order of auto-
morphism group of any given Γ ∈ G∞

χ (P1, μ) to be:

(3.2)

|Aut Γ| = |Aut Γ0| |Autμ |
(∏

nk!
)⎛⎝ ∏

V (Γ)(1)
j(v)! |Autμ(v)| |Aut ν(v)|

⎞
⎠ .

In this case, nk is the multiplicity of vertices in V (Γ)(1) with identical μ(v),
ν(v), j(v) and g(v). The presence of automorphism group of μ is due to the
fact that we can exchange two marked points with same ramification type
μi without changing the type of corresponding graph.

4. Computation of eT (N vir
Γ )

In this section, I will summarize the computations of eT (N vir
Γ ) in [15] which

will be needed for localization computation. Denote by (ω) the 1-dimensional
representation of C

∗ given by λ · z = λωz for λ ∈ C
∗, z ∈ C. For a given

graph Γ ∈ Gg,n(P1, μ), let

(4.1)
[
f : (C, x1, . . . , xl(μ), z1, . . . , zn) −→ P

1[m]
]

be a fixed point of the C
∗-action on M•

χ,n(P1, μ) associated to Γ. In order to
apply the virtual functorial localization formula (2.2), we need to compute
the Euler class of the virtual normal bundle N vir

Γ of [f ]. Given a flag (v, e) ∈
F (Γ), denote by q(v,e) ∈ C the node at which Cv and Ce intersect. Also let
ψ(v,e) denote the first Chern class of the cotangent line bundles over MΓ,
i.e., the fiber at the fixed point (4.1) is given by T ∗

q(v,e)Cv. The Euler class
eT (N vir

Γ ) is given by;
1

eT (N vir
Γ )

=
eT (T̂ 2)
eT (T̂ 1)

,

where T 1, T 2 are the tangent space and the obstruction space of M•
χ,n

(P1, μ), respectively. The ·̂-notation denotes the moving part, i.e. T̂ 1 and
T̂ 2 are the moving parts of the vector bundles T 1 and T 2, respectively. Here,
T 1 and T 2 can be computed through the following two exact sequences [13]:

0 −→ Ext0(ΩC(D),OC) −→ H0(D•) −→ T 1 −→ Ext1(ΩC (D),OC )

−→ H1(D•) −→ T 2 −→ 0,
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0 −→ H0(C, f∗(ωP1[m](log p
(m)
1 ))∨) −→ H0(D•) −→

m−1⊕
l=0

H 0
et(R

•
l )

−→ H1(C, f∗(ωP1[m](log p
(m)
1 ))∨) −→ H1(D•) −→

m−1⊕
l=0

H 1
et(R

•) −→ 0,

where ωP1[m] is the dualizing sheaf of P
1[m], D = x1 + · · · + xl(μ) is the

branch divisor, and for nl = the number of nodes over p
(l)
1 ;

H0
et(R

•
l ) ∼=

⊕
q∈f−1(p(l)

1 )

Tq

(
f−1(P1

(l))
) ∼= C

⊕nl

H1
et(R

•
l ) ∼=

(
Tp

(l)
1

P
1
(l) ⊗ Tp

(l)
1

P
1
(l+1)

)⊕(nl−1)
.

Recall the map π[m] : P
1[m] → P

1, and observe that for f̂ = π[m] ◦ f we
have

f∗(ωP1[m](log p
(m)
1 )

)∨ ∼= f̂∗OP1(1).

Let FΓ be the set of fixed points associated to Γ ∈ Gχ,n(P1, μ) and assume
that

[
f : (C, x1, . . . , xl(μ), z1, . . . , zn) −→ P

1[m]
]

∈ FΓ ⊂ M•
χ,n(P1, μ)

The C
∗-action on M•

χ,n(P1, μ) induces C
∗-actions on

Ext0(ΩC(D),OC), H0(C, f̂∗OP1(1)),
m−1⊕
l=0

H0
et(R

•
l ),

Ext1(ΩC(D),OC), H1(C, f̂∗OP1(1)),
m−1⊕
l=0

H1
et(R

•
l ).

The moving part of each of these groups form vector bundles over MΓ.
We will use the same notation ·̂ to denote the induced vector bundles.
In particular,

̂m−1⊕
l=0

H0
et(R•

l ) = 0, and

̂m−1⊕
l=0

H1
et(R•

l ) =

{
0 if m = 0,

H1
et(R

•
0) =

(
Tp

(0)
1

P
1
(0) ⊗ Tp

(0)
1

P
1
(1)

)⊕(n0−1) if m > 0.
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Hence we have

1
eT (N vir

Γ )
=

eT (T̂ 2)
eT (T̂ 1)

=
eT

(
̂Ext0(ΩC(D), OC)

)
eT

(
̂H1(C, f̂∗OP1(1))

)
eT

(
̂

⊕m−1
l=0 H1

et(R•
l )

)

eT

(
̂H0(C, f̂∗OP1(1))

)
eT

(
̂Ext1(ΩC(D), OC)

)

Case m = 0: For each v ∈ V (Γ0) and μv,1, . . . , μv,l(μ(v)) the ramification
type in the vertex v, we have under the convention to write μv,2 = ∞ when
g(v) = 0, l(μ(v)) = l(e(v)) = 1;

̂m−1⊕
l=0

H1
et(R•

l )v = 0.

̂Ext0(ΩC(D),OC)v =

⎧⎨
⎩
( 1

μv,1

)
if v ∈ I,

0 if v ∈ II or S.

̂Ext1(ΩC(D),OC)v =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if v ∈ I,( 1
μv,1

+
1

μv,2

)
if v ∈ II,

l(μ(v))⊕
i=1

Tq(v,ev,i)
Cv ⊗ Tq(v,ev,i)

Cev,i
if v ∈ S.

Hence we can compute their contributions to be;

eT

⎛
⎝

̂m−1⊕
l=0

H1
et(R•

l )v

⎞
⎠ = 1.

eT

(
̂Ext0(ΩC(D),OC)v

)
=

⎧⎨
⎩

u

μv,1
if v ∈ I,

1 if v ∈ II or S.

eT

(
̂Ext1(ΩC(D),OC)v

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if v ∈ I,
u

μv,1
+

u

μv,2
if v ∈ II,

l(μ(v))∏
i=1

(
u

μv,i
− ψv,i

)
if v ∈ S.
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For the contributions from the rest, consider the normalization sequence
when v ∈ S;

0 −→ f̂∗OP1(1) −→
(
f̂ |Cv

)∗OP1(1) ⊕
l(μ(v))⊕

i=1

(
f̂ |Cev,i

)∗OP1(1)

−→
l(μ(v))⊕

i=1

OP1(1)p0 −→ 0.

The corresponding long exact sequence becomes

0 −→ H0(C, f̂∗OP1(1)
)

−→ H0(Cv, (f̂ |Cv
)∗OP1(1)

)
⊕

l(μ(v))⊕
i=1

H0(Cev,i
, (f̂ |Cev,i

)∗OP1(1)
)

−→
l(μ(v))⊕

i=1

OP1(1)p0 −→ H1(C, f̂∗OP1(1)
)

−→ H1(Cv, (f̂ |Cv
)∗OP1(1)

)
⊕

l(μ(v))⊕
i=1

H1(Cev,i
, (f̂ |Cev,i

)∗OP1(1)
)

−→ 0

and the representations of C
∗ are given by

0 −→ H0(C, f̂∗OP1(1)
)

−→ H0(Cv,OCv

)
⊗ (1) ⊕

l(μ(v))⊕
i=1

(
μv,i⊕
a=1

(
a

μv,i

))

−→
l(μ(v))⊕

i=1

(1) −→ H1(C, f̂∗OP1(1)
)

−→ H1(Cv,OCv

)
⊗ (1) −→ 0.

Hence their ratio can computed as;

eT

( ̂H1(C, f̂∗OP1(1))
)

eT

( ̂H0(C, f̂∗OP1(1))
)

=
∏
v

⎡
⎣Λ∨

g(v)(u)ul(μ(v))−1
l(μ(v))∏

i=1

(
μ

μv,i

v,i

μv,i!
u−μv,i

)⎤
⎦

which also works for the case of v ∈ I or v ∈ II.
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Case m > 0: Let ψt be the first Chern class of the line bundle over
M(1)

Γ whose fiber at
[
f̂ : Ĉ → P

1(m)
]

is T ∗
p
(0)
1

P
1(m). So ψt = νv,iψ(v,ev,i) for

v ∈ V (Γ)(1), (v, ev,i) ∈ F . By similar observation as in the case of m = 0,
we can find that

̂m−1⊕
l=0

H1
et(R•

l ) =
(
Tp

(0)
1

P
1
(0) ⊗ Tp

(0)
1

P
1
(1)

)|E(Γ)|−1
,

̂Ext0(ΩC(D),OC)v =

⎧⎪⎨
⎪⎩

(
1

νv,1

)
if v ∈ I,

0 if v ∈ II or S,

̂Ext1(ΩC(D),OC)v =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if v ∈ I,(
1

νv,1
+

1
νv,2

)
if v ∈ II,

l(ν(v))⊕
i=1

Tq(v,ev,i)
Cv ⊗ Tq(v,ev,i)

Cev,i
if v ∈ S or T.

Hence we can compute their contributions to be;

eT

⎛
⎝

̂m−1⊕
l=0

H1
et(R•

l )

⎞
⎠ =

(
− u − ψt

)|E(Γ)|−1
,

eT

(
̂Ext0(ΩC(D),OC)v

)
=

⎧⎪⎨
⎪⎩

u

νv,1
if v ∈ I,

1 if v ∈ II or S,

eT

(
̂Ext1(ΩC(D),OC)v

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if v ∈ I,
u

νv,1
+

u

νv,2
if v ∈ II,

l(ν(v))∏
i=1

(
u

νv,i
− ψv,i

)
if v ∈ S,

l(ν(v))∏
i=1

(
−u
νv,i

− ψv,i

)
if v ∈ T.
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Also consider the following normalization sequence

0 −→ f̂∗OP1(1) −→
⊕
S∪T

(
f̂ |Cv

)∗OP1(1) ⊕
⊕

e∈E(Γ)

(
f̂ |Ce

)∗OP1(1)

−→
⊕
II

OP1(1)p0 ⊕
⊕

S

⎛
⎝ ⊕

(v,e)∈F

OP1(1)p0

⎞
⎠

⊕
⊕
T

⎛
⎝ ⊕

(v,e)∈F

OP1(1)p1

⎞
⎠ −→ 0

and the corresponding long exact sequence

0 −→ H0(C, f̂∗OP1(1)
)

−→
⊕
S∪T

H0(Cv,
(
f̂ |Cv

)∗OP1(1)
)

⊕
⊕

e∈E(Γ)

H0(Ce,
(
f̂ |Ce

)∗OP1(1)
)

−→
⊕
II

OP1(1)p0 ⊕
⊕

S

⎛
⎝ ⊕

(v,e)∈F

OP1(1)p0

⎞
⎠⊕

⊕
T

⎛
⎝ ⊕

(v,e)∈F

OP1(1)p1

⎞
⎠

−→ H1(C, f̂∗OP1(1)
)

−→
⊕
ST

H1(Cv, (f̂ |Cv
)∗OP1(1)

)

⊕
⊕

e∈E(Γ)

H1(Ce, (f̂ |Ce
)∗OP1(1)

)
−→ 0

The representations of C
∗ are given by

0 −→ H0(C, f̂∗OP1(1)
)

−→
⊕

S

H0(Cv,OCv

)
⊗ (1)

⊕
⊕
T

H0(Cv,OCv

)
⊗ (0) ⊕

⊕
e∈E(Γ)

⎛
⎝

d(e)⊕
a=1

(
a

d(e)

)⎞
⎠

−→
⊕
II

(1) ⊕
⊕

S

⎛
⎝ ⊕

(v,e)∈F

(1)

⎞
⎠⊕

⊕
T

⎛
⎝ ⊕

(v,e)∈F

(0)

⎞
⎠ −→ H1(C, f̂∗OP1(1)

)

−→
⊕

S

H1(Cv,OCv

)
⊗ (1) ⊕

⊕
T

H1(Cv,OCv

)
⊗ (0) −→ 0
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from which we can compute their ratio to be;

eT

( ̂H1(C, f̂∗OP1(1))
)

eT

( ̂H0(C, f̂∗OP1(1))
) =

∏
V (Γ)(0)

[
Λ∨

g(v)(u)ul(ν(v))−1
] l(ν)∏

i=1

[
ννi

i

νi!
u−νi

]
.

After combining all the contributions, we find the following Feynman rules;

1
eT (N vir

Γ0
)

=

⎡
⎣

l(μ)∏
i=1

μμi

i

μi!
u−μi

⎤
⎦
[∏

I

u

μv,1

][∏
II

u

(u/μv,1) + (u/μv,2)

]

×

⎡
⎣∏

S

Λ∨
g(v)(u)

u

⎛
⎝

l(μ(v))∏
i=1

u

(u/μv,i) − ψv,i

⎞
⎠
⎤
⎦

1
eT (N vir

Γ )
=

−
∏

νi

u + ψt

⎡
⎣

l(ν)∏
i=1

ννi

i

νi!
u−νi

⎤
⎦
[∏

I

u

νv,1

][∏
II

u

(u/νn,1) + (u/νv,2)

]

×

⎡
⎣∏

S

Λ∨
g(v)(u)

u

⎛
⎝

l(ν(v))∏
i=1

u

(u/νv,i) − ψv,i

⎞
⎠
⎤
⎦ .

5. Double Hurwitz numbers

In this section, I will summarize some properties of double Hurwitz numbers
and their relation to Hodge integrals [15,21].

5.1. General result of Hurwitz numbers

Let X be a Riemann surface of genus h. Given n partitions η1, . . . , ηn

of d, denote by HX
d (η1, . . . , ηn)• and HX

d (η1, . . . , ηn)◦ the weighted counts
of possibly disconnected and connected Hurwitz covers of type (η1, . . . , ηn),
respectively. The following Burnside formula is well known:

HX
d (η1, . . . , ηn)• =

∑
|ρ|=d

(
dim Rρ

d!

)2−2h n∏
i=1

| Cηi | χρ(Cηi)
dim Rρ

5.2. Double Hurwitz numbers

Consider a cover C → P
1 of genus g, ramification type ν, μ at two points

p0 and p1, respectively, and ramification type (2) at r other points. By
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Riemann–Hurwitz formula, we have r = 2g − 2 + l(ν) + l(μ). Let η1 = · · · =
ηr = (2) and introduce notations

H◦
g (ν, μ) = HP

1

d (ν, μ, η1, . . . , ηr)◦, H•
χ(ν, μ) = HP

1

d (ν, μ, η1, . . . , ηr)•

By applying Burnside formula, we obtain

H•
χ(ν, μ) =

∑
|ξ|=d

(
| C(2) |

χξ(C(2))
dim Rξ

)r
χξ(Cν)

zν

χξ(Cμ)
zμ

=
∑
|ξ|=d

fξ(2)r χξ(Cν)
zν

χξ(Cμ)
zμ

.

Define generating series of double Hurwitz numbers as follows:

Φ◦
ν,μ(λ) =

∑
g≥0

H◦
g (ν, μ)

λ2g−2+l(ν)+l(μ)

(2g − 2 + l(ν) + l(μ))!

Φ◦(λ; p0, p∞) =
∑
ν,μ

Φ◦
ν,μ(λ)p0

νp
∞
μ ,

Φ•
ν,μ(λ) =

∑
χ

H•
χ(ν, μ)

λ−χ+l(ν)+l(μ)

(−χ + l(ν) + l(μ))!

Φ•(λ; p0, p∞) = 1 +
∑
ν,μ

Φ•
ν,μ(λ)p0

νp
∞
μ .

We will need the following initial value formula of double Hurwitz numbers;

Lemma 5.1.

Φ•
ν,μ(0) =

1
zν

δν,μ

Proof. This is a direct consequence of the orthogonal relations for characters
of Sd

∑
ξ

χν(Cξ)χμ(Cξ)
zξ

= δν,μ, and
∑
|ξ|=d

χξ(Cν)χξ(Cμ) = zνδν,μ �

5.3. Relating double Hurwitz numbers with Hodge integrals

We can extend the notion of P
1[m] to have bubble components on both

directions. Denote by

P
1[m0, m∞] = P

1
(−m0) ∪ · · · ∪ P

1
(−1) ∪ P

1
(0) ∪ P

1
(1) ∪ · · · ∪ P

1
(m∞).
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As before, we call P
1
(0) the root component, P

1
0(m0) = P

1
(−m0) ∪ · · · ∪ P

1
(−1)

the bubble component at 0, and P
1
∞(m∞) = P

1
(1) ∪ · · · ∪ P

1
(m∞) the bubble

component at ∞. Define M•
χ,n(μ0, μ∞) as the moduli space of morphisms

f : C → P
1[m0, m∞] such that

(1)
(
C; x1, . . . , xl(μ∞), y1, . . . , yl(μ0)

)
is a possibly-disconnected prestable

curve with l(μ0) + l(μ∞) unordered marked points.

(2) χ =
∑

i(2 − 2gi) where gi is the genus of each connected component
of C.

(3) As Cartier divisors, f−1(p(−m0)
0 ) =

∑l(μ0)
j=1 μ0

jyj , f
−1(p(m∞)

1 ) =
∑l(μ∞)

i=1
μ∞

i xi.

(4) The automorphism group of f is finite. Here, an automorphism of
f consists of an automorphism of the domain curve C and automor-
phisms of the pointed curves (P1

0(m0), p
(−m0)
0 , p

(−1)
1 ) and (P1

∞(m∞),
p
(1)
0 , p

(m∞)
1 ), which is an element of (C∗)m0 and (C∗)m∞ , respectively.

We can extend the standard action t · [z, w] = [tz, w] on P
1 to P

1[m0, m∞]
by trivial action on the bubble components at 0 and ∞. Then this action
induces C

∗-action on M•
χ(P1, μ0, μ∞). Let π[m0, m∞] : P

1[m0, m∞] → P
1

be the projection which contracts both bubble components and fr = π[m0,
m∞] ◦ f . Denote by ν the partition of d = |μ0| = |μ∞| by the degrees of fr on
each rational irreducible components. For any morphism f :

(
C, xi, yj

)
→

P
1[m0, m∞] which represents a fixed point of M•

χ(P1, μ0, μ∞) under this
action, one of the following four cases must hold:

• m0 = m∞ = 0: We have f = fr, μ0 = μ∞ = ν.

• m0 = 0, m∞ > 0: Let χ∞ =
∑

(2 − 2g∞
i ), where g∞

i is the genus of
each connected component of f−1(P1

∞(m∞)). In this case, we have
μ0 = ν, χ∞ = χ, χ0 = 2l(ν).

• m0 > 0, m∞ = 0: Let χ0 =
∑

(2 − 2g0
j ), where g0

j is the genus of each
connected component of f−1(P1

0(m0)). In this case, we have μ∞ = ν,
χ0 = χ, χ∞ = 2l(ν).

• m0 > 0, m∞ > 0: We have χ = χ0 + χ∞ − 2l(ν).

Hence, we can see that χ0, χ∞, ν determines each connected component
of M•

χ(P1, μ0, μ∞)C
∗
. Consider the branch morphism

Br : M•
χ(P1, μ0, μ∞) −→ Sym−χ+l(μ0)+l(μ∞)

P
1 ∼= P

−χ+l(μ0)+l(μ∞)
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The double Hurwitz numbers for possibly disconnected covers of P
1 can be

defined by

H•
χ(μ0, μ∞) =

1
| Aut(μ0) || Aut(μ∞) |

∫
[
M•

χ(μ0,μ∞)
]vir

Br∗(H−χ+l(μ0)+l(μ∞))

under the assumption −χ + l(μ0) + l(μ∞)> 0 where H ∈H2(P−χ+l(μ0)+l(μ∞))
is the hyperplane class. We want to compute this integration by virtual local-
ization. The connected components of M•

χ(P1, μ0, μ∞)C
∗

can be described
as follows:

• m0 = 0, m∞ > 0 : F(ν; 2l(ν), χ) ∼=
(
M•

χ(P1, ν, μ∞)//C
∗
)
/
∏

Zμ∞
i

.

• m0 > 0, m∞ = 0 : F(ν; χ, 2l(ν)) ∼=
(
M•

χ(P1, μ0, ν)//C
∗
)
/
∏

Zμ0
j
.

• m0 > 0, m∞ > 0 : F(ν; χ0, χ∞) ∼=
((

M•
χ0

(P1, μ0, ν)//C
∗)

×
(
M•

χ∞
(P1, ν, μ∞)//C

∗))/
(

Aut(ν)
l(ν)∏
i=1

Zνi

)
.

Let N vir
ν;χ0,χ∞

be the pull-back of the virtual normal bundle of F(ν, χ0, χ∞)
in M•

χ(P1, μ0, μ∞). By computations similar to those eT (N vir
Γ ), we obtain

1
eT

(
N vir

ν;2l(ν),χ

) =
−aν

u + ψ0 ,
1

eT

(
N vir

ν;χ,2l(ν)

) =
aν

u − ψ∞ ,

1
eT

(
N vir

ν;χ0,χ∞

) =
−Aν

u + ψ0 × aν

u − ψ∞ ,

where ψ0 and ψ∞ are the first Chern classes of the cotangent line bundle
T ∗

p
(0)
0

P
1[m0, m∞] and T ∗

p
(0)
1

P
1[m0, m∞], respectively. Let r = −χ + l(μ0) +

l(μ∞) and observe that

Br(F(ν; χ0, χ∞)) =
(
−χ∞ + l(ν) + l(μ∞)

)
p1

+
(
−χ0 + l(μ0) + l(ν)

)
p0 ∈ P

ri∗ν,χ0,χ∞

Br∗
(

r∏
k=1

(
H − wk

))
=

(
r∏

k=1

(
− χ0 + l(μ0) + l(ν) − wk

))
ur

By taking special values for w:

w = (0, 1, . . . ,−χ + l(μ0) + l(μ∞) − 1) and

w = (1, 2, . . . ,−χ + l(μ0) + l(μ∞)),
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we can compute to obtain

H•
χ(μ0, μ∞)

(−χ + l(μ0) + l(μ∞))!

=
1

| Aut(μ0) || Aut(μ∞) |

∫
[
M•

χ(P1,μ0,μ∞)//C∗
]vir

(
ψ0)−χ+l(μ0)+l(μ∞)−1

=
1

| Aut(μ0) || Aut(μ∞) |

∫
[
M•

χ(P1,μ0,μ∞)//C∗
]vir

(
ψ∞)−χ+l(μ0)+l(μ∞)−1

.

6. Recursion formula

In this section, I will summarize the results from previous sections to prove
the following recursion formula on Hodge integrals. Let e = (k1, . . . , kn) be
a partition, where ki’s are allowed to be zero.

Theorem 6.1. For any partition μ and e with |e| < |μ| + l(μ) − χ, we have

(6.1)
[
λl(μ)−χ

] ∑
|ν|=|μ|

Φ•
μ,ν(−λ)zνD•

ν,e(λ) = 0,

where the sum is taken over all partitions ν of the same size as μ.

Here
[
λa
]

means taking the coefficient of λa. Let me first introduce some
notations;

Dg,ν,e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

νν1−2
1
ν1!

if
(
g, l(ν) + l(e)

)
=
(
0, 1

)
,

1
|Aut ν|

νν1
1 νν2

2
ν1!ν2!

1
ν1 + ν2

if
(
g, l(ν), l(e)

)
=
(
0, 2, 0

)
,

νν1
1

ν1!

e1∑
k=0

1
ν1+k
1

(
e1

k

)
if
(
g, l(ν), l(e)

)
=
(
0, 1, 1

)
,

1
l(e)! | Aut ν |

[
l(ν)∏
i=1

ννi

i

νi!

]

×
∫
Mg,l(ν)+l(e)

Λ∨
g (1)

l(e)∏
j=1

(1 − ψj)ej

l(ν)∏
i=1

(
1 − νiψi

) otherwise.
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D(λ, p, q) =
∑
|ν|≥1

∑
g≥0

λ2g−2+l(ν)pνqeDg,ν,e

D•(λ, p, q) = exp
(
D(λ, p, q)

)
=:

∑
|ν|≥0

λ−χ+l(ν)pνqeD•
χ,ν,e

=
∑
|ν|≥0

pνqeD•
ν,e(λ),

where pi, qj ’s are formal variables with pν = pν1 × · · · × pνl(ν) and qe = qe1 ×
· · · × qel(e) .

Proof. For any given μ and χ such that |μ| + l(μ) > χ, applying the local-
ization formula to the class

∏n
j=1 ψ

kj

j ev∗
jH, where H is the hyperplane class

of P
1 yields;

0 =
∫

Mχ,n(P1,μ)

n∏
j=1

ψ
kj

j ev∗
jH since deg

n∏
j=1

ψ
kj

j ev∗
jH < dim Mχ,n(P1, μ)

Applying localization formula on the equivariant-lift of the above integral
yields

0 =
∑

Γ0∈G0
χ,n(P1,μ)

1
|AΓ0 |

∫
MΓ0

∏n
j=1(u − ψj)kjev∗

jHT

eT (N vir
Γ0

)

+
∑

Γ∈G∞
χ,n(P1,μ)

1
|AΓ|

∫
MΓ

∏n
j=1(u − ψj)kjev∗

jHT

eT (N vir
Γ )

.

Here HT is the lift of H to the equivariant hyperplane class. Choose H
in such a way that H(0) = 0 and H(∞) = u, then we have HT (0) = u and
HT (∞) = 0. Also let u = 1 for simplicity, then the formula reduces to:

∑
Γ0∈G

0
χ,n(P1,μ)

1
|AΓ0 |

∫
MΓ0

∏n
j=1(1 − ψj)kj

eT (N vir
Γ0

)

+
∑

Γ∈G
∞
χ,n(P1,μ)

1
|AΓ|

∫
MΓ

∏n
j=1(1 − ψj)kj

eT (N vir
Γ )

= 0,

where G
0
χ,n and Gχ,n are the set of graphs corresponding to fixed locus

with m = 0 and m > 0 with all the marked points z1, . . . , zn concentrated
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on the vertices in V (Γ0)(0) and V (Γ)(0), respectively. We can compute the
summand for Γ0 as follows:

∫
MΓ0

∏n
j=1(1 − ψj)kj

eT (N vir
Γ0

)

=

⎡
⎣

l(μ)∏
i=1

μμi

i

μi!

⎤
⎦
[∏

I

∫
{pt}

1
μv,1

][∏
II

∫
{pt}

1
(1/μv,1) + (1/μv,2)

]

×

⎡
⎣∏

S

∫
Mg(v),l(μ(v))+l(e(v))

Λ∨
g(v)(1)

∏j(v)
j=1(1 − ψv,j)kv,j

∏l(μ(v))
i=1

(
(1/μv,i) − ψv,i

)
⎤
⎦

=
∏

V (Γ0)

zμ(v)j(v)!Dg(v),μ(v)

Similarly, we can compute the summand for Γ as follows:

∫
MΓ

∏n
j=1(1 − ψj)kj

eT (N vir
Γ )

=

⎡
⎣

l(ν)∏
i=1

ννi

i

νi!

⎤
⎦
[∏

I

∫
{pt}

1
νv,1

][∏
II

∫
{pt}

1
(1/νn,1) + (1/νv,2)

]

×

⎡
⎣∏

S

∫
Mg(v),l(ν(v))+l(e(v))

Λ∨
g(v)(1)

∏j(v)
j=1(1 − ψv,j)kv,j

∏l(ν(v))
i=1

(
(1/νv,i) − ψv,i

)
⎤
⎦
[∫

M(1)
Γ

−
∏

νi

1 + ψt

]

=

⎡
⎣ ∏

V (Γ0)

zν(v) j(v)! Dg(v),ν(v),e(v)

⎤
⎦

×

⎡
⎣(−1)−χ+l(μ)+l(ν)

l(ν)∏
i=1

νi

⎤
⎦
∫
[
M(1)

Γ

]vir

(
ψt
)−χ∞+l(μ)+l(ν)−1

.
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And the integration over M(1)
Γ can be related to double Hurwitz numbers

as follows:

|Autμ| |Aut ν| H•
χ∞

(μ, ν) =
(
−χ∞ + l(μ) + l(ν)

)
!

×
∫

[M•
χ∞ (P1,μ,ν)//C∗]vir

(ψ0)−χ∞+l(μ)+l(ν)−1

=

(
−χ∞ + l(μ) + l(ν)

)
!(∏

nk!
)(∏

V (Γ)(1) |Autμ(v)| |Aut ν(v)|
)

×
∫
[
M(1)

Γ

]vir

(
ψt
)−χ∞+l(μ)+l(ν)−1

,

since marked points in M(1)
Γ are ordered. Recall that |AΓ0 | and |AΓ| are

given by:

|AΓ0 | =

⎛
⎝

l(μ)∏
i=1

μi

⎞
⎠∏

k

mk!
(
j(vk)! | Autμ(vk) |

)mk

|AΓ| =

⎛
⎝

l(ν)∏
i=1

νi

⎞
⎠
(∏

k

mk!
(
j(vk)! | Aut ν(vk) |

)mk

)
|Autμ |

×
(∏

nk!
)⎛⎝ ∏

V (Γ)(1)
j(v)! | Autμ(v)| |Aut ν(v)|

⎞
⎠ .

Also observe that

∏
V (Γ0) zμ(v) j(v)! Dg(v),μ(v),e(v)(∏l(μ)

i=1 μi

)∏
k mk!

(
j(v)! | Autμ(vk) |

)mk

=
1

|V (Γ0)|!

(
|V (Γ0)|

m1, . . . , ml

)∏
k

Dg(vk),μ(vk),e(vk)
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which is the coefficient of λ−χ+l(μ)pμqe in the expansion of D•(λ, p, q). Now
the original equation can be simplified as follows;

0 =
∑

Γ0∈G
0
χ,n(P1,μ)

1
|AΓ0 |

∫
MΓ0

∏n
j=1(1 − ψj)kj

eT (N vir
Γ0

)

+
∑

Γ∈G
∞
χ,n(P1,μ)

1
|AΓ|

∫
MΓ

∏n
j=1(1 − ψj)kj

eT (N vir
Γ )

= D•
χ,μ,e +

∑
ν

∑
−χ∞+l(μ)+l(ν) �=0

(−1)−χ∞+l(μ)+l(ν)H•
χ∞

(μ, ν)
(−χ∞ + l(μ) + l(ν))!

zνD•
χ0,ν,e

=
∑

ν

∑
χ0,χ∞

(−1)−χ∞+l(μ)+l(ν)H•
χ∞

(μ, ν)
(−χ∞ + l(μ) + l(ν))!

zνD•
χ0,ν,e,

where χ = χ0 + χ∞ − 2 l(ν) and the initial value formula for double Hurwitz
numbers is used at the last equality. Summing over χ yields that we have
for all |e| + χ < |μ| + l(μ)

[
λl(μ)−χ

] ∑
|ν|=|μ|

Φ•
μ,ν(−λ)zνD•

ν,e(λ) = 0. �

As a remark, the above recursion formula contains the single Hurwitz num-
ber formula and the ELSV formula which can be observed by comparing the
recursion type and the initial values [5, 9, 10, 14, 17, 19].

7. Computing linear Hodge integrals

It is enough to consider the case of μ = (d) for some positive integers d
to compute all linear Hodge integrals. And in this case, we have a closed
formula for the double Hurwitz numbers as follows;

Theorem 7.1. ([6], Theorem 3.1.)Let r = rg
(d),β. For g ≥ 0, and β � d with

n parts,

Hg
(d),β = r!dr−1[t2g

]∏
k≥1

(sinh(kt/2)
kt/2

)ck

=
r!dr−1

22g

∑
λ�g

ξ2λS2λ

|Autλ| ,

where r = 2g − 1 + l(β) and c1 = (number of 1’s in β) − 1, ck = (number of
k’s in β) for k > 1.

[
t2g
]

means taking the coefficient of t2g.
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Here the double Hurwitz number is counted with multiplicity, hence in
our notation it will read as follows

(7.1)
H•

χ∞
((d), ν)

(−χ∞ + 1 + l(ν))!
=

d−χ∞+l(ν)

|Aut ν|
[
t2g
]∏

k≥1

(
sinh(kt/2)

kt/2

)ck

.

And in this case, (6.1) can be written as

(7.2)∑
|ν|=d

∑
χ0,χ∞

D•
χ0,ν,ezν(−1)−χ∞+1+l(ν) d

−χ∞+l(ν)

|Aut ν|
[
t2g
]∏

k≥1

(
sinh(kt/2 )

kt/2

)ck

= 0.

Now fix ν and consider the case where there are m vertices in V (Γ)(0). Then
we have splitting of χ0, ν, and e into {g1, . . . , gm}, {ν(v1), . . . , ν(vm)}, and
{e(v1), . . . , e(vm)} such that e(vi)’s are allowed to be empty and

m∑
i=1

(2 − 2gi) = χ0,
⋃

i=1,...,m

ν(vi) = ν,
⋃

i=1,...,m

e(vi) = e.

Each vertex will correspond to a certain Hodge integral on Mg(v),l(ν(v))+l(e(v))
with dimension 3g(v) − 3 + l(ν(v)) + l(e(v)). There are conditions on m,
χ, χ0, χ∞, l(e(v)), and l(ν(v)): let g(v) denote

∑
w �=v g(w),

m ≤ l(ν), l(ν(v)) ≤ l(ν) − m + 1, χ = χ0 + χ∞ − 2l(ν), l(e(v))≤ l(e),

χ∞ ≤ 2 min{l((d)), l(ν)} = 2, χ0 =
m∑

i=1

(2 − 2g(vi)) = 2m − 2g(v) − 2g(v).

From these conditions, we can deduce that

3g(v) = 3m − 3g(v) − 3
2
χ0 = 3m − 3g(v) − 3

2
χ +

3
2
χ∞ − 3l(ν)

≤ −3
2
χ + 3m − 3

2
(
2l(ν) − χ∞

)
.
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where equality holds if and only if g(v) =
∑

w �=v g(w) = 0. Now we can find
the upper bound for the dimension of Hodge integral as follows.

3g(v) − 3 + l(ν(v)) + l(e(v))

≤ −3
2
χ + 3m − 3 − 3

2
(
2l(ν) − χ∞

)
+ l(ν(v)) + l(e)

≤
[
3g − 3 + l(e) + 1

]
+
[
3m − 3 − 3l(ν) +

3
2
χ∞ + l(ν) − m

]

≤
[
3g − 3 + l(e) + 1

]
+
[
2
(
m − l(ν)

)
+

3
2
(
χ∞ − 2

)]
≤ 3g − 2 + l(e)

and the equality holds if and only if

m = l(ν), χ∞ = 2, e(w) = ∅ for all w �= v, g(w) = 0 for all w �= v,

i.e., when each part of ν is splitted into separate vertices, and all the marked
points other than the ramification divisor as well as all genuses are concen-
trated on one vertex on the 0th side. Now we can compute any linear Hodge
integral as follows: Say we want to compute Hodge integrals of the form

∫
Mg,n+1

ψk0
0 . . . ψkn

n λj

where j +
∑n

i=0 ki = 3g − 2 + n. Assume 0 ≤ k0 ≤ . . . ≤ kn and let e =
(k1, . . . , kn) and χ = 2 − 2g. Then for any positive integer d such that
d > χ + |e| − 1, the recursion formula (7.2) expresses the top-dimensional
Hodge integrals in terms of lower-dimensional Hodge integrals as follows:

∑
|ν|=d

⎡
⎣
⎛
⎝

l(ν)∏
i=1

ννi−1
i

νi!

⎞
⎠ (−1)l(ν)−1dl(ν)−2

n!

×
l(ν)∑
i=1

ν2
i

|Aut ν̂i|

∫
Mg,n+1

Λ∨
g (1)

∏n
j=1(1 − ψj)kj

1 − νiψ0

⎤
⎦

= terms consisting of lower-dimensional Hodge integrals only,
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where Aut ν̂i is the automorphism group of the partition ν̂i = (ν1, . . . , ν̂i, . . . ,
νl(ν)). In this expression, the Hodge integral term expands to:

∫
Mg,n+1

Λ∨
g (1)

∏n
j=1(1 − ψj)kj

1 − νiψ0

=
∫

Mg,n+1

(
1 − λ1 + λ2 + · · · + (−1)gλg

)( ∞∑
a0=0

νa0
i ψa0

0

)

×
n∏

j=1

⎡
⎣

kj∑
aj=0

(−1)aj

(
kj

aj

)
ψ

aj

j

⎤
⎦

=
∑

k+aj=3g−2+n

(−1)3g−2+n

⎡
⎣νa0

i

n∏
j=1

(
kj

aj

)⎤
⎦
∫

Mg,n+1

ψa0
0 × · · · × ψan

n λk.

Hence the previous expression can be written as

∑
k+aj=3g−2+n

Cd(k, (aj))
∫

Mg,n+1

ψa0
0 × · · · × ψan

n λk

= lower-dimensional terms,(7.3)

where Cd(k, (aj)) are constants defined as follows:

Cd

(
k, (aj)

)
=
∑
|ν|=d

⎡
⎣
⎛
⎝

l(ν)∏
i=1

ννi−1
i

νi!

⎞
⎠ (−1)l(ν)−1dl(ν)−2

n!

×
l(ν)∑
i=1

ν2
i

|Aut ν̂i|

⎛
⎝νa0

i

n∏
j=1

(
kj

aj

)⎞
⎠
⎤
⎦ .

Now we have infinitely many linear relations of finitely many linear Hodge
integrals of fixed dimension 3g − 2 + n since equation (7.3) holds for all
positive integers d such that d > 1 − 2g +

∑
kj . Moreover the coefficients

Cd(k, (aj)) form Vandermonde-type matrices and it can be proved that one
can always find a set of positive integers {d1, . . . , dl} which will give linearly
independent relations to solve for all the linear Hodge integrals of given
dimension 3g − 2 + n in terms of the values of lower-dimensional Hodge
integrals with at most one λ-class. So we just proved the following theorem;
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Theorem 7.2. Any given linear Hodge integral

(7.4)
∫

Mg,n

ψk1
1 . . . ψkn

n λj ,

where k1, . . . , kn ∈ N ∪ {0}, j ∈ {0, 1, 2, . . . , g}, is explicitly expressed as a
polynomial in terms of lower-dimensional Hodge integrals with one λ-class.
Therefore it computes all Hodge integrals with one λ-class.

8. Algorithm to compute Hodge integrals with one λ-class

In this section, I will derive explicit formula to compute all linear Hodge inte-
grals that can be implemented through computer algorithm. It is clear that
Theorem 7.2 can be implemented using computer: We can use formula (7.1)
to compute double Hurwitz numbers. For error-free computational purpose,
there are well-developed C++ libraries for multi-precision computing, for
example GNU MP.

For any given linear Hodge integral

∫
Mg,n

ψk1
1 . . . ψkn

n λj .

Let e = (k1, . . . , kn−1) and χ = 2 − 2g. Start with d = χ − 1 + |e|, . . . and
find linear relations (6.1) as follows: Run over partitions ν of size d. For a
fixed ν, run over pairs (χ0, χ∞) which satisfies χ = χ0 + χ∞ − 2 l(ν), χ∞ ≤
2, χ0, χ∞ ∈ 2 Z. Now for a fixed pair (χ0, χ∞), we can compute double
Hurwitz number D•

χ∞
( (d) , ν) as follows: When c1 ≥ 0, i.e., when there are

one or more 1’s in ν, we have

[
t2g
]∏

k≥1

(sinh(kt/2)
kt/2

)ck

=
∑
(bk)

∏
bk �=0

∑
(ak

j )

k2bk

22bk
∏

j(2ak
j + 1)!

,

where bk = 0 if ck = 0 and χ∞ = 2 − 2g∞,
∑

k bk = g∞,
∑

j=1,...,ck
ak

j = bk

with bk, a
k
j ∈ N ∪ {0}. When c1 = −1, i.e., when there is no 1 in ν, let h be



662 Yon-Seo Kim

the minimum numbered part of ν. Then we have ch ≥ 1 and
(

sinh(t/2)
t/2

)−1(sinh(ht/2)
ht/2

)
=

1
h

(
e(h−1)t/2 + e(h−3)t/2 + · · · + e(−h+1)t/2

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
m=0

[ 1
h 22m−1(2m)!

(∑
l

l2m
)]

t2m

when h is even, l = 1, 3, . . . , h − 1,

1
h

+
∞∑

m=0

[ 1
h 22m−1(2m)!

(∑
l

l2m
)]

t2m

when h is odd, l = 2, 4, . . . , h − 1.

Hence we have

∏
k≥1

(
sinh(kt/2)

kt/2

)ck

=
(

sinh(t/2)
t/2

)−1(sinh(ht/2)
ht/2

)(
sinh(ht/2)

ht/2

)ch−1 ∏
k>h

(
sinh(kt/2)

kt/2

)ck

=

(
1
h

δh,odd +
∞∑

m=0

[
1

h 22m−1(2m)!

(∑
l

l2m

)]
t2m

)(
sinh(ht/2)

ht/2

)ch−1

×
∏
k>h

(
sinh(kt/2)

kt/2

)ck

and in this case, for g > 0;

[
t2g
]∏

k≥1

(
sinh(kt/2)

kt/2

)ck

=
∑
(bk)

[
1

h 22b1−1(2b1)!

(∑
l

l2b1

)]

×
∏

bk �=0, k≥h

∑
(ak

j )

k2bk

22bk
∏

j(2ak
j + 1)!

,

where bh = 0 if ch = 1 and bk = 0 if ck = 0 for k �= h. Using these formulas
and (7.1), we can compute double Hurwitz numbers. In order to compute[
λl(ν)−χ0

]
D•

ν,e(λ), first run over the number of vertices m = 1, 2, . . . , l(ν).
For each m, find all possible groupings of ν, e, and all possible splittings
of χ0. Note that e admits groupings with empty components. Now find
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all triples (ν(v), e(v), g(v)) according to the equivalence condition of ver-
tices discussed in Section 3. Then the contribution of

[
λl(ν)−χ0

]
D•

ν,e(λ) will
be the product of the combination factor 1/

∏
mi! and the expansions of

Dg(v),ν(v),e(v) which can be obtained by

∫
Mg,l(ν)+l(e)

Λ∨
g (1)

∏l(e)
j=1

(
1 − ψj

)ej

∏l(ν)
i=1

(
1 − νiψi

)

=
∫

Mg,l(ν)+l(e)

[
1 − λ1 + · · · + (−1)gλg

] l(e)∏
j=1

⎡
⎣∑

(l̃j)

(−1)l̃j

(
ej

l̃j

)
ψ

l̃j
j

⎤
⎦

×
l(ν)∏
i=1

⎡
⎣∑

li

νli
i ψli

i

⎤
⎦

=
∑

k,(li),(l̃j)

(−1)k+
∑

l̃j

⎡
⎣

l(e)∏
j=1

(
ej

l̃j

)⎤
⎦
⎡
⎣

l(ν)∏
i=1

νli
i

⎤
⎦
∫

Mg,l(ν)+l(e)

λk

l(ν)∏
i=1

ψli
i

l(e)∏
j=1

ψ
l̃j
j ,

where li ≥ 0, 0 ≤ l̃j ≤ ej , 0 ≤ k ≤ g, and k +
∑

i li +
∑

j l̃j = 3g − 3 +
l(ν) + l(e). Some of them will have maximum dimension 3g − 3 + n for
the situations described in Section 7. Those are treated as unknowns and
all others are lower-dimensional Hodge integrals or initial values which are
already computed. Summing over all pairs (χ0, χ∞) and ν will give a lin-
ear relation between Hodge integrals of the dimension 3g − 3 + n. Now we
can follow same step as above for other values of d and obtain more linear
relations. Observe that the number of unknowns are independent of d and
actually bounded by the number of partitions of 3g − 3 + n, and hence we
will have a system of linear relations which can be solved by simple Gaussian
elimination method. Thus in each dimension, it amounts to solve a matrix
equation of size N × N when N is, at worst case, the number of partitions
of dimension.

9. Examples

In this section, I will illustrate how the algorithm developed in this paper
works and show that the results match with previously known methods.
There are 16 possible combinations of linear Hodge integrals in moduli space
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dimension 4; namely

∫
M0,7

ψ4,

∫
M0,7

ψ3ψ1,

∫
M0,7

ψ2ψ2,

∫
M0,7

ψ2ψ1ψ1,

∫
M0,7

ψ1ψ1ψ1ψ1,

∫
M1,4

ψ3λ1,

∫
M1,4

ψ4,

∫
M1,4

ψ2ψ1λ1,

∫
M1,4

ψ3ψ1,

∫
M1,4

ψ1ψ1ψ1λ1,

∫
M1,4

ψ2ψ1ψ1,

∫
M1,4

ψ2ψ2,

∫
M1,4

ψ1ψ1ψ1ψ1,

∫
M2,1

ψ2λ2,

∫
M2,1

ψ3λ1,

∫
M2,1

ψ4.

The first 13 integrals can be computed by applying the algorithm to the
triples:

(d, g, e) = (3, 0, (0, 0, 0, 0, 0, 0)), (4, 0, (1, 0, 0, 0, 0, 0)), (5, 0, (2, 0, 0, 0, 0, 0)),
(2, 1, (1, 0, 0)), (5, 0, (1, 1, 0, 0, 0, 0)), (6, 0, (1, 1, 1, 0, 0, 0)),
(1, 1, (0, 0, 0)), (2, 1, (0, 0, 0)), (3, 1, (1, 0, 0)), (3, 1, (1, 1, 0)),
(4, 1, (1, 1, 0)), (3, 1, (2, 0, 0)), (4, 1, (1, 1, 1)).

It is straightforward to solve the resulting linear systems and to show that
they match with known values. The last 3 integrals can be computed using
(d, g) = (1, 2), (2, 2), and (3, 2) with e = ∅. The resulting linear system is

∫
M2,1

ψ2λ2 −
∫

M2,1

ψ3λ1 +
∫

M2,1

ψ4 = 0,

7
∫

M2,1

ψ2λ2 − 15
∫

M2,1

ψ3λ1 + 31
∫

M2,1

ψ4 =
1

240
,

25
∫

M2,1

ψ2λ2 − 90
∫

M2,1

ψ3λ1 + 301
∫

M2,1

ψ4 =
5
48

.

One can solve this linear system to obtain the solution set

∫
M2,1

ψ2λ2 =
7

5760
,

∫
M2,1

ψ3λ1 =
1

480
,

∫
M2,1

ψ4 =
1

1152
.
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The first value matches with λg-formula (1.2), since we have

m∑
k=0

(
m + 1

k

)
Bk = 0, for m > 0 =⇒ B4 = − 1

30(
2 ∗ 2 + 1 − 3

2

)
22∗2−1 − 1

22∗2−1
|B2∗2|
(2 ∗ 2)!

=
7

5760
.

The second value matches with (1.3), since we have

bg =
22g−1 − 1

22g−1
|B2g|
(2g)!

, for g > 0 =⇒ b1 =
1
24

, b2 =
7

5760

bg

2g−1∑
i=1

1
i

− 1
2

∑
g1+g2=g

(2g1 − 1)!(2g2 − 1)!
(2g − 1)!

bg1bg2 =
7

5760

(
1 +

1
2

+
1
3

)

− 1
2

1
3!

( 1
24

)2
=

1
480

.

And the last value matches with the result in [26, p. 36].
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