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Multiplier ideal sheaves and the Kähler–Ricci flow
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Multiplier ideal sheaves are constructed as obstructions to the con-
vergence of the Kähler–Ricci flow on Fano manifolds, following ear-
lier constructions of Kohn, Siu, and Nadel, and using the recent
estimates of Kolodziej and Perelman.

1. Introduction

The global obstruction to the existence of a Hermitian–Einstein metric on
a holomorphic vector bundle is well known to be encoded in a destabilizing
sheaf, thanks to the works of Donaldson [9, 10] and Uhlenbeck–Yau [27]. It
is expected that this should also be the case for general canonical metrics in
Kähler geometry. For Kähler–Einstein metrics on Fano manifolds, obstruct-
ing sheaves have been constructed by Nadel [15] as multiplier ideal sheaves,
following ideas of Kohn [11] and Siu [23]. This formulation in terms of mul-
tiplier ideal sheaves opens up many possibilities for relations with complex
and algebraic geometry [7, 19, 24, 28].

The obstructing multiplier ideal sheaves are not expected to be unique.
Nadel’s construction is based on the method of continuity for solving a
specific Monge–Ampère equation for Kähler–Einstein metrics. It has always
been desirable to construct also an obstructing multiplier ideal sheaf from
the Kähler–Ricci flow. The purpose of this note is to show that this can be
easily done, using the recent estimates of Kolodziej [12, 13] and Perelman
[18]. In effect, Kolodziej’s estimates provide a Harnack estimate for the
Monge–Ampère equation, which is elliptic, and Perelman’s estimate reduces
the Kähler–Ricci flow, which is parabolic, to the Monge–Ampère equation.
Similar ideas were exploited by Tian–Zhu [26] in their proof of an inequality
of Harnack type for the Kähler–Ricci flow.

2. The multiplier ideal sheaf

Let X be an n-dimensional compact Kähler manifold, equipped with a
Kähler form ω0 with μω0 ∈ c1(X), where μ is a constant. The Kähler–Ricci
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flow is the flow defined by

ġk̄j = −(Rk̄j − μgk̄j),(2.1)

where gk̄j = gk̄j(t) is a metric evolving in time t with initial value gk̄j(0) =
ĝk̄j , and Rk̄j = −∂j∂k̄ log detgq̄p is its Ricci curvature. Since the Kähler–
Ricci flow preserves the Kähler class of the metric, we may set gk̄j = ĝk̄j +
∂j∂k̄φ, and the Kähler–Ricci flow can be reformulated as

φ̇ = log
ωn

φ

ωn
0

+ μφ − f̂ , φ(0) = c0,(2.2)

where we have set ωφ = i
2gk̄jdzj ∧ dz̄k, and f̂ is the Ricci potential for the

metric ĝk̄j , that is, the C∞ function defined by the equation R̂k̄j − μĝk̄j =
∂j∂k̄f̂ , normalized by the condition that

∫
X

ef̂ωn
0 =

∫
X

ωn
0 ≡ V.(2.3)

Here and henceforth, R̂k̄j denotes the Ricci curvature of ĝk̄j , with similar
conventions for all the other curvatures of ĝk̄j . The initial potential c0 is a
constant, so that the initial metric coincides with ĝk̄j . The Kähler–Ricci flow
exists for all time t > 0 [3], and the main issue is its convergence. Henceforth,
we shall restrict to the case c1(X) > 0 of Fano manifolds unless indicated
explicitly otherwise, and set μ = 1.

Theorem 2.1. Let X be an n-dimensional compact Kähler manifold with
c1(X) > 0.

(i) Consider the Kähler–Ricci flow (2.2) for potentials φ, with the initial
value c0 specified by (2.10) below. If there exists some p > 1 with

supt≥0

∫
X

e−pφωn
0 < ∞,(2.4)

then there exists a sequence of times ti → +∞ with gk̄j(ti) converging
in C∞ to a Kähler–Einstein metric. If in addition X admits no non-
trivial holomorphic vector field, then the whole flows (2.1) and (2.2)
converge in C∞.

(ii) If X does not admit a Kähler–Einstein metric, then for each p > 1,
there exists a function ψ which is a L1 limit point of φ − 1

V

∫
X φωn

0 ,
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with the following property. Let the multiplier ideal sheaf J (pψ) be the
sheaf with stalk at z defined by

(2.5) Jz(pψ) =
{

f ; ∃U � z, f ∈ O(U),
∫

U
|f |2e−pψωn

0 < ∞
}

,

where U ⊂ X is open, and O(U) denotes the space of holomorphic
functions on U . Then J (pψ) defines a proper coherent analytic sheaf
on X, with acyclic cohomology, i.e.,

Hq(X, K
−[p]
X ⊗ J (pψ)) = 0, q ≥ 1.(2.6)

If X admits a compact group G of holomorphic automorphisms, and
ĝk̄j is G-invariant, then J (pψ) and the corresponding subscheme are
also G-invariant.

In Part (i), once the convergence of a subsequence gk̄j(ti) has been estab-
lished and X is known to admit a Kähler–Einstein metric, it follows from
an unpublished result of Perelman that the full Kähler–Ricci flow must then
converge. An extension of Perelman’s result to Kähler–Ricci solitons is given
in Tian–Zhu [26]. For the sake of completeness, we have provided a short
self-contained proof of the Kähler–Einstein case, in our context and under
the simplifying assumption of no non-trivial holomorphic vector fields.

Part (ii) is of course exactly the same as in the method of continu-
ity for the Monge–Ampère equation used by Nadel [15], in the formulation
of Demailly–Kollár [7]. We divide the proof of Theorem 2.1 into several
lemmas.

First, we need to recall the fundamental recent result of Perelman. Let
the Kähler–Ricci flow be defined by (2.1), and for each time t, define the
Ricci potential f by

Rk̄j − gk̄j = ∂j∂k̄f,
1
V

∫
X

efωn
φ = 1.(2.7)

(In particular, at time t = 0, the Ricci potential coincides with the function
f̂ defined earlier.) Then Perelman [18] (see also [22]) has shown that

supt≥0(‖f‖C0 + ‖∇f‖C0 + ‖Δf‖C0) < +∞,(2.8)

with Laplacians and norms taken with respect to the metric gk̄j .
Next, we specify the value of the initial potential c0 in (2.2), follow-

ing Chen and Tian [5] (see also [14]). The underlying observation is that
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‖∇φ̇‖2
L2 , and hence the integral

∫ ∞

0
e−t‖∇φ̇‖2

L2 dt(2.9)

does not depend on the choice of initial value c0 for the flow (2.2). Indeed,
given a flow φ with initial value c0, the function φ̃ = φ + (c̃0 − c0)et satisfies
the same flow with initial value c̃0, and hence, by uniqueness, must coincide
with the flow with initial value c̃0. Clearly, ∇φ = ∇φ̃, hence the assertion.
Note also that the integral in (2.9) is always finite, in view of Perelman’s
estimate (2.8). Following [5], we use this common value to choose the initial
value c0 in (2.2),

c0 =
∫ ∞

0
e−t‖∇φ̇‖2

L2 dt +
1
V

∫
X

f̂ωn
0 .(2.10)

A specific choice of initial data is clearly necessary to discuss the convergence
of the Kähler–Ricci flow (2.2) for potentials, in view of the fact that different
initial data for φ lead to flows differing by terms blowing up in time. We
will see below that the choice (2.10) is the right choice.

The first indication is that, with the choice (2.10) for the initial data
(2.2), Perelman’s estimate for h implies

supt≥0‖φ̇‖C0 < ∞.(2.11)

To see this, we note that f + φ̇ is a constant, since ∂∂̄(f + φ̇) = 0. It suffices
to show then that the average α(t) ≡ 1/V

∫
X φ̇ωn

φ of φ̇ is uniformly bounded
in absolute value, since |f | already is, by Perelman’s estimate (2.8). Now
differentiating the equation (2.2) gives ∂tφ̇ = Δφ̇ + φ̇, and hence

∂t

(
1
V

∫
X

φ̇ωn
φ

)
=

1
V

∫
X

(Δφ̇ + φ̇)ωn
φ +

1
V

∫
X

φ̇Δφ̇ωn
φ

=
1
V

∫
X

φ̇ωn
φ − ‖∇φ̇‖2

L2 .(2.12)

This is a differential equation for α(t) which can be integrated, giving

e−tα(t) = α(0) −
∫ t

0
e−s‖∇φ̇(s)‖2

L2 ds

=
∫ ∞

t
e−s‖∇φ̇(s)‖2

L2 ds,(2.13)
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in view of (2.10) and the fact that at time t = 0, we have φ̇ = c0 − f̂ . It
follows that

0 ≤ α(t) =
∫ ∞

t
e−(s−t)‖∇φ̇(s)‖2

L2 ds

≤ C

∫ ∞

t
e−(s−t)ds ≤ C,(2.14)

where we have applied Perelman’s uniform bound for ‖∇φ̇‖C0 . This proves
(2.11).

More systematically, uniform bounds for φ and gk̄j are now equivalent.

Lemma 2.2. Let X be a compact Kähler manifold, with Kähler form ω0 ∈
c1(X), and consider the Kähler–Ricci flows (2.1) and (2.2) for gk̄j and φ,
respectively. Let the initial value c0 for φ be given by (2.10). Then ‖φ‖Cm

is uniformly bounded for all m if and only if ‖gk̄j‖Cm is bounded for all m
(here norms are taken with respect to a fixed reference metric, say ĝk̄j). The
flow for gk̄j converges in C∞ if and only if the flow for φ converges in C∞.

Proof. Clearly, the convergence/boundedness of the potentials φ’s implies
the convergence/boundedness of the metrics gk̄j . Conversely, the convergen-
ce/boundedness of the metrics implies the convergence/boundedness of ∂∂̄φ,
so it suffices to establish the convergence/boundedness of the averages of φ
with respect to the volume forms ωn

φ . Since the flow implies

(2.15)
1
V

∫
X

φωn
φ =

1
V

∫
X

φ̇ωn
φ − 1

V

∫
X

log
ωn

φ

ωn
0
ωn

φ +
1
V

∫
X

f̂ωn
φ ,

and |α(t)| is bounded in view of (2.14), it follows that |1/V
∫
X φωn

φ | is
bounded in either case. Assume now that gk̄j converges. We wish to show
the convergence of 1/V

∫
X φωn

φ , and thus of α(t).
The convergence of gk̄j implies that X admits a Kähler–Einstein met-

ric. By a theorem of Bando–Mabuchi [2], the Mabuchi K-energy functional
must be then bounded from below. This is well known to imply in turn
that ‖∇φ̇‖L2 → 0 as t → +∞ (see e.g., [21] equation (2.10) and subsequent
paragraph). But with the choice (2.10) for initial data for (2.2), we have the
estimate (2.14), which implies now that α(t) → 0. �

Lemma 2.3. Let X be a compact Kähler manifold, and consider the
Kähler–Ricci flow as defined by (2.1) and (2.2) with ω0 ∈ c1(X), and the
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initial value c0 for φ specified by (2.10). Then for any p > 1, we have

supt≥0

∫
X

e−pφωn
0 < ∞ ⇐⇒ supt≥0‖φ‖C0 < ∞.(2.16)

Proof. This lemma is a direct consequence of the above results of Perelman
combined with results of Kolodziej. Clearly, the uniform boundedness of the
C0 norm of φ implies the uniform boundedness of ‖e−φ‖Lp(X). To show the
converse, we consider the following Monge–Ampère equation

det (ĝk̄j + ∂j∂k̄φ) = Φ det ĝk̄j ,(2.17)

where Φ is a smooth strictly positive function. Then Kolodziej [12, 13] has
shown that, for any p > 1, the solution φ must satisfy the a priori bound

oscX φ ≡ supX φ − infX φ ≤ Cp,(2.18)

for some constant Cp which is bounded if ‖Φ‖Lp(X) is bounded. Now the
Kähler–Ricci flow (2.2) can be rewritten in the form (2.17) with Φ = exp(f̂ −
φ + φ̇). By Perelman’s estimate (2.11), ‖Φ‖Lp(X) is uniformly bounded if and
only if ‖e−φ‖Lp(X) is uniformly bounded. Combined with Kolodziej’s result,
we see that the uniform boundedness of ‖e−φ‖Lp(X) implies the uniform
boundedness of oscX φ.

To obtain a bound for ‖φ‖C0 from osc φ, it suffices to produce a lower
bound for supX φ and an upper bound for infXφ. Now, from Perelman’s
estimate, we have

C1 ef̂−φ+φ̇ωn
0 ≤ e−φωn

0 ≤ C2 ef̂−φ+φ̇ωn
0 ,(2.19)

and hence, integrating and recalling that ef̂−φ+φ̇ωn
0 = ωn

φ has the same
volume as ωn

0 ,

C1 ≤ 1
V

∫
X

e−φωn
0 ≤ C2.(2.20)

This implies at once that

supX φ ≥ − log C2, infX φ ≤ − log C1.(2.21)

The proof is complete. �
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Lemma 2.4. Let X be a compact Kähler manifold with Kähler form ω0
satifying μω0 ∈ c1(X), where μ is any constant. Let the Kähler–Ricci flow
be defined by (2.2). Then we have the a priori estimates

supt≥0‖φ‖C0 ≤ A0 < ∞ ⇐⇒ supt≥0‖φ‖Ck

≤ Ak < ∞, ∀ k ∈ N.(2.22)

Proof. This is the parabolic analogue of Yau’s and Aubin’s well-known result
[1, 29], namely, that the same statement holds for the solution φ of the
elliptic Monge–Ampère equation (2.17), with the corresponding constants
Ak depending on the C∞ norms of the right hand side Φ. Now the Kähler–
Ricci flow can be rewritten in the form (2.17), with Φ = exp(f̂ − φ + φ̇).
The hypothesis ‖φ‖C0 ≤ A0 implies control of ‖Φ‖C0 , in view of Perelman’s
estimate. However, we do not have control of all the C∞ norms of Φ, and
hence Yau’s a priori estimates cannot be quoted directly.

Thus we have to go through a full parabolic analogue of Yau’s arguments,
and make sure that it goes through without any estimate on φ̇ which is not
provided by Perelman’s result. The arguments here are completely parallel
to Yau’s, but we take this opportunity to present a more streamlined version.
The parabolic analogues of several key identities are also made more explicit.
They turn out to be quite simple, and may be more flexible for future work.

Let ∇, Δ = ∇p̄∇p̄, Rq̄p
l
m, etc. and ∇̂, Δ̂, R̂q̄p

l
m, etc. be the connec-

tions, laplacians, and curvatures with respect to the metrics gk̄j and ĝk̄j ,
respectively. It is most convenient to formulate all the identities we need in
terms of the endomorphism h = hα

β defined by

hα
β = ĝαλ̄gλ̄β(2.23)

For example, the difference between the connections and curvatures with
respect to gk̄j and ĝk̄j can be expressed as

∇mVl − ∇̂mVl = −Vα(∇mh h−1)α
l,

∇mV l − ∇̂mV l = (∇mh h−1)l
αV α

R̂k̄j
α

β − Rk̄j
α

β = ∂k̄(∇jh h−1)α
β(2.24)

In particular, taking Vl → gk̄l, we find

φjk̄m ≡ ∇̂m∂k̄∂jφ = gk̄α(∇mh h−1)α
j .(2.25)
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Henceforth, all indices are raised and lowered with respect to the metric gk̄j ,
unless indicated explicitly otherwise. We also set

G = log
ωn

φ

ωn
0
.(2.26)

Proof of the C2 estimates. The basic identity for this step is the following,

(Δ − ∂t) log Trh =
1

Tr h
{Δ̂(G − φ̇) − R̂} +

1
Tr h

gpq̄gm̄j ĝ
rm̄R̂q̄p

j
r

+

{
ĝδk̄φδγ̄pφk̄

γ̄p

Tr h
− gδk̄∂k̄Tr h ∂δTr h

(Tr h)2

}
(2.27)

This identity follows from another well-known identity [29], which will also
be of later use,

ΔTr h = Δ̂G − R̂ + ĝδk̄φγk̄pφ
γ

δ
p + gpq̄gm̄j ĝ

rm̄R̂q̄p
j
r,(2.28)

and can be seen as follows: ΔTr h = Δ̄Tr h = gpq̄∇q̄Tr {(∇ph h−1)h}, and
thus

ΔTr h = gpq̄Tr{∇q̄(∇ph h−1)h} + gpq̄Tr{(∇ph h−1)∇q̄h}(2.29)

The second term on the right hand side can be recognized as ĝδk̄φγk̄pφ
γ

δ
p

using (2.25), while, using (2.24), the first term can be rewritten as

gpq̄Tr{∇q̄(∇ph h−1)h} = gpq̄R̂q̄p
α

βhβ
α − Rα

βhβ
α

= gpq̄gλ̄αR̂q̄p
α

β ĝβλ̄ − Rα
βhβ

α.(2.30)

But the Ricci curvature Rγ̄β can be expressed in terms of G, Rγ̄β = R̂γ̄β −
∂β∂γ̄G. Substituting in gives (2.28). Taking the log and subtracting the
simple identity ∂t log Tr h = (Δ̂φ̇)(Tr h)−1 gives (2.27).

So far the discussion has been general. Let now φ evolve by the Kähler–
Ricci flow,

φ̇ − G = μφ − f̂ ,(2.31)

so that the term Δ̂(φ̇ − G) in (2.27) can be replaced by the more tractable
term μΔ̂φ − Δ̂f̂ . In [29], it was shown that the expression in brackets
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in (2.27) was always non-negative, while the curvature tensor term was
bounded by

−gpq̄gmj̄R̂
j
pq̄αĝαm̄ = −

n∑
i,j=1

1 + φīi

1 + φj̄j

R̂īij̄j

≥ −C (Tr h)
∑

j

1
1 + φj̄j

,(2.32)

in a system of local holomorphic coordinates where both gk̄j and ĝk̄j were
diagonal, and ĝk̄j was the identity matrix at a given point. Thus we have

(Δ − ∂t) log Trh ≥ −μ − C1
1

Tr h
− C2

n∑
j=1

1
1 + φj̄j

≥ −μ − C3

n∑
j=1

1
1 + φj̄j

.(2.33)

Let A be any constant. Since

Δφ =
n∑

j=1

φj̄j

1 + φj̄j

= n −
n∑

j=1

1
1 + φj̄j

,(2.34)

we can write

(Δ − ∂t)(log Trh − Aφ
)

≥ C4φ̇ − C5 + C6

n∑
j=1

1
1 + φj̄j

,

with A = C4, C5 = μ + An, and C6 = A − C3 > 0 for A large enough. In
view of Perelman’s estimate (2.11), we conclude

(Δ − ∂t)(log Trh − Aφ) ≥ −C7 + C6

n∑
j=1

1
1 + φj̄j

.(2.35)

Let now [0, T ] be any time interval, and (z0, t0) a point in X × [0, T ] where
the function log Trh − Aφ attains its maximum. If this point is not at time
t = 0, then the left hand side of the above equation is ≤ 0, and we obtain
the estimate

1
1 + φj̄j

≤ C8, 1 ≤ j ≤ n.(2.36)
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But then, at the point (z0, t0),

Tr h = Tr h

(
det ĝk̄j

det gk̄j

)
ef̂−φ+φ̇ = ef̂−φ+φ̇

n∑
i=1

(1 + φīi)
n∏

j=1

1
1 + φj̄j

= ef̂−φ+φ̇
n∑

i=1

∏
j �=i

1
1 + φj̄j

≤ C9,(2.37)

using the boundedness of ‖φ‖C0 and again Perelman’s estimate. But now
we have

supX×[0,T ]Tr h ≤ eA‖φ‖C0 exp
(
log Tr h − Aφ

)
(z0, t0)

≤ C10.(2.38)

Since T is arbitrary, this establishes the boundedness of the trace of ĝk̄j +
∂j∂k̄φ, and since the matrix is positive, of all its entries. The proof of the
C2 estimate is complete.

Proof of the C3 estimates. This step was established in [3] when c1(X) = 0
or c1(X) < 0, and in [18] for c1(X) > 0. We shall give below a simpler proof
for all cases with completely explicit formulas.

The main ingredient is a parabolic analogue of the Yau, Aubin, and
Calabi identities for the third derivatives of the Monge–Ampère equation.
In their case, the Ricci curvature is pre-assigned and hence all its deriva-
tives can be controlled. In the present case, we cannot control as yet the
derivatives of the Ricci curvature, and it is crucial that they cancel out in
the desired identity. We show this by a completely explicit formula, the
main technical innovation being the use of the endomorphism hα

β instead
of the potential φ itself. The squared terms in the Calabi identity arise
naturally as the familiar squared terms in a formula of Bochner–Kodaira
type.

Let S be defined as in [29] by

S = gjr̄gsk̄gmt̄φjk̄mφr̄st̄(2.39)

In terms of hα
β, S is just the square of the norm of the gk̄j connection,

S = gmγ̄gμ̄βglᾱ(∇mh h−1)β
l(∇γh h−1)μ

α = |∇h h−1|2(2.40)
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and its Laplacian leads immediately to a formula of Bochner-Kodaira type,

ΔS = gmγ̄gμ̄βglᾱ(Δ(∇mh h−1)β
l(∇γh h−1)μ

α

+ (∇mh h−1)β
lΔ̄(∇γh h−1)μ

α)

+ |∇̄(∇h h−1)|2 + |∇(∇h h−1)|2(2.41)

where, more explicitly, |∇̄(∇h h−1)|2 =gqp̄gjm̄gβδ̄gγ̄α∇p̄(∇jh h−1)α
β∇q̄(∇mh

h−1)γ
δ, etc. The relation between Δ̄ and Δ follows from commuting the ∇q

and the ∇p̄ derivatives,

(Δ̄(∇jh h−1))γ
α = (Δ(∇jh h−1))γ

α − Rγ
μ(∇γh h−1)μ

α

+ Rμ
α(∇jh h−1)γ

μ + Rμ
j(∇μh h−1)γ

α(2.42)

Thus we have

ΔS = gmγ̄gμ̄βglᾱ(Δ(∇mh h−1)β
l}(∇γh h−1)μ

α

+ (∇mh h−1)β
lΔ(∇γh h−1)μ

α) + |∇̄(∇h h−1)|2

+ |∇(∇h h−1)|2 + (∇mh h−1)β
l(gmγ̄gμ̄βRlρ̄(∇γh h−1)μ

ρ

− gmγ̄Rρ̄βglᾱ(∇γh h−1)ρ
α + Rmρ̄gμ̄βglᾱ(∇ρh h−1)μ

α)(2.43)

In the case of the elliptic Monge–Ampère equation, this equation suffices
already to establish the desired inequality ΔS ≥ −C1S − C2. This is because
the Ricci tensor Rᾱβ is known in that case, and the Laplacian of ∇h h−1

can be readily reduced to ∇Rᾱβ , using (2.24) and the Bianchi identity,

Δ(∇jh h−1)l
m = ∇p̄∂p̄(∇jh h−1) = −∇p̄Rp̄j

l
m + ∇p̄R̂p̄j

l
m

= −∇jR
l
m + ∇p̄R̂p̄j

l
m

Since the connection ∇p̄ is manifestly O(∇h h−1) = O(
√

S), the desired
lower bound follows at once. The full expression for ΔS in terms of Rᾱβ

may also be of interest,

ΔS = −gmγ̄gμ̄βglᾱ(∇mRβ
l(∇γh h−1)μ

α + (∇mh h−1)β
l∇γRμ

α)

+ |∇̄(∇h h−1)|2 + |∇(∇h h−1)|2

+ (∇mh h−1)β
l(gmγ̄gμ̄βRlρ̄(∇γh h−1)μ

ρ

− gmḡRρ̄βglᾱ(∇γh h−1)ρ
α + Rmρ̄gμ̄βglᾱ(∇ρh h−1)μ

α)

+ gmγ̄gμ̄βglᾱ(∇p̄R̂p̄m
β

l(∇γh h−1)μ
α + (∇mh h−1)β

l∇p̄R̂p̄γ
μ

α).(2.44)
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In the parabolic case, we do not have control of Rᾱβ and its derivatives,
and need to eliminate these terms using the time derivative Ṡ of S. We
begin by giving a general formula for Ṡ in terms of h−1ḣ, so that it is valid
for all evolutions. First, note that the derivatives of the connection are
given by

(∇jh)̇ = ∇j(h−1ḣ)h + (∇jh)(h−1ḣ),

(∇jh h−1)̇ = ∇j(h−1ḣ).(2.45)

Indeed, note that ġᾱβ = g0ᾱμḣμ
β = gᾱν(h−1ḣ)ν

β = (gh−1ḣ)ᾱβ , and (gβb̄)̇ =
−(ġ)βb̄ = −(h−1ḣ)β

νg
νb̄ = −(h−1ḣg−1)βb̄. Writing

(2.46) {(∇jh)̇}p
q = gb̄qg

pā∂j(gβb̄gāαhα
β) = {g−1∂j(ghg−1)g}p

q

differentiating with respect to time, and substituting in the preceding for-
mulas for ġᾱβ and (ḡᾱβ )̇ gives at once (∇jh)̇ = −h−1ḣ∇jh + (∇jh)(h−1ḣ) +
∇j(h−1ḣh), from which the desired formula for (∇jh)̇ follows. The formula
for (∇jhh−1)̇ is a simple consequence of the one for (∇jh)̇. Next, differen-
tiating S gives

Ṡ = +gmγ̄gμ̄βglᾱ(∂t((∇mh h−1)β
l)(∇γh h−1)μ

α

+ (∇mh h−1)β
l)∂t(∇γh h−1)μ

α)

− (∇mh h−1)β
l((h−1ḣ)mγ̄gμ̄βglᾱ(∇γh h−1)μ

α

+ gmγ̄(h−1ḣ)μ̄βglᾱ(∇γh h−1)μ
α − gmγ̄gμ̄β(h−1ḣ)lᾱ(∇γh h−1)μ

α)(2.47)

Combining with (2.43), we obtain the following general heat equation,

(Δ − ∂t)S = |∇̄(∇h h−1)|2 + |∇(∇h h−1)|2

+ gmγ̄gμ̄βglᾱ
{
(Δ − ∂t)(∇mh h−1)β

l(∇γh h−1)μ
α

+ gmγ̄gμ̄βglᾱ
{
(∇mh h−1)β

l(Δ − ∂t)(∇γh h−1)μ
α

+ {(h−1ḣ + R)mγ̄gμ̄βglγ̄ − gmγ̄(h−1ḣ + R)μ̄βglᾱ

+ gmγ̄gμ̄β(h−1ḣ + R)lᾱ} × (∇mh h−1)β
l(∇γh h−1)μ

α(2.48)

We can now specialize to the Kähler–Ricci flow, where

(h−1ḣ)β
l = −(Rβ

l − μ δβ
l),(2.49)
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and hence, using again (2.24),

(h−1ḣ + R)β
λ = μ δβ

λ

(Δ − ∂t)(∇jh h−1)l
m = ∇q̄R̂q̄j

l
m.(2.50)

Substituting this in the previous formula for (Δ − ∂t)S, we obtain the fol-
lowing simple and completely explicit parabolic analogue of the C3 identity
of Yau, Aubin, and Calabi,

(Δ − ∂t)S = |∇̄(∇h h−1)|2 + |∇(∇h h−1)|2 + μ|∇h h−1|2

+ gmγ̄∇q̄R̂q̄m
β

l(∇γh h−1)β̄
l̄ + gmγ̄(∇mh h−1)μ̄

ᾱ∇q̄R̂q̄γ
μ

α(2.51)

Note that the terms in Rk̄j and its derivatives have cancelled out. Since
R̂q̄m

l
β is a fixed tensor, we obtain immediately the estimate

(2.52) (Δ − ∂t)S ≥ |∇̄(∇h h−1)|2 + |∇(∇h h−1)|2 − C1 S − C2.

The C3 estimates for φ can now be established by the standard arguments:
by the C2 estimates, the metric gk̄j is known to be equivalent to ĝk̄j . Thus
S is of the same size as the expression ĝδk̄φγk̄pφ

γ
δ
p. In view of the identity

(2.28), we have for A sufficiently large,

(Δ − ∂t)(S + AΔ̂φ) ≥ C3S − C4,(2.53)

with C3 > 0. The maximum principle implies now that S is bounded by a
fixed positive constant. This completes the proof of the C3 estimates.

The remaining part of the proof of Lemma 2.4 is standard: the uni-
form C0 and C2 estimates for φ imply uniform C1 estimates, and together
with the uniform C3 estimates, we can deduce that the flow (2.2) is a
parabolic equation with uniform C1 coefficients. The general theory of
parabolic PDE’s can then be applied to give uniform Ck estimates for all
orders k. �
Proof of Theorem 2.1. Part (i). By Lemmas 2 and 3, the uniform estimate
(2.4) implies uniform estimates for ‖φ‖Cm for each m ∈ N. The Arzela–
Ascoli theorem implies the existence of times ti → +∞ with φ(ti) and gk̄j(ti)
converging in C∞.

To show that the limit of the subsequence gk̄j(ti) is a Kähler–Einstein
metric, we observe that the uniform boundedness of ‖φ‖Cm for each m ∈
N implies that the metrics gk̄j are all equivalent along the Kähler–Ricci
flow, and that their curvature tensors and their derivatives are all uniformly
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bounded. This is easily seen to imply that the Mabuchi K-energy νω0(φ) is
bounded along the flow, since νω0(φ) can be written explicitly as

νω0(φ) =
1
V

∫
X

{
log

(
ωn

φ

ωn
0

)
ωn

φ − φ

(
Ric(ω0)

n−1∑
i=0

ωi
0ω

n−1−i
φ

− n

n + 1

n∑
i=0

ωi
0ω

n−i
φ

)}
.(2.54)

(see also [4, 8] for alternative expressions). Next, the lower bound for
the Mabuchi energy and the uniform boundedness of the curvature tensor
together imply ([21], Theorem 1)

‖Rk̄j − gk̄j‖L2 → 0, t → +∞,(2.55)

where the L2-norm is with respect to gk̄j . Since gk̄j is uniformly equivalent
to ĝk̄j , this holds also for the L2 norm with respect to ĝk̄j . Returning to the
subsequence gk̄j(ti) converging in C∞, the limit is then a smooth metric g∞

k̄j
with R∞

k̄j
− g∞

k̄j
= 0, as was to be proved.

To show the full convergence of the Kähler–Ricci flow when X does not
admit non-trivial holomorphic vector fields, we show first that, under the
assumption of uniform bounds for ‖φ‖Cm (and hence for ‖gk̄j‖Cm) for each
m ∈ N, the functions φ̇ converge in C∞. We already know that ∂j∂k̄φ̇ =
−(Rk̄j − gk̄j) → 0 in all Sobolev norms if the curvature is bounded and the
Mabuchi energy is bounded from below ([21], Theorem 1). Since the metrics
gk̄j are all equivalent, and all their derivatives are bounded, it follows that
∂∂̄φ̇ → 0 in C∞. Next, from the lower boundedness of the Mabuchi energy
and the proof of Lemma 2.2, the averages α(t) = (1/V )

∫
X φ̇ωn

φ of φ̇ converge
to 0 as t → ∞. To deduce the convergence of φ̇ from the convergence of its
averages, we write for any constants δ, A,

φ̇(z) =
1
V

∫
X

(G(z, w) + A)(−Δφ̇(w) + δ)ωn
φ

− δ A +
1
V

∫
X

φ̇ωn
φ ,(2.56)

where G(z, w) is the Green’s function with respect to gk̄j . Since Rk̄j → gk̄j

in C∞, by a theorem of Cheng–Li [6], it follows that we can choose a fixed
A > 0 so that G(z, w) + A > 0 for all t. For any ε > 0, we can choose T
large enough so that 0 ≤ (1/V )

∫
X φ̇ωn

φ < (ε/2) and −Δφ̇ + (ε/2A) > 0 for
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all t > T . It follows from the preceding identity with δ = ε/2A that

infX φ̇ ≥ − ε

2
, t > T.(2.57)

The same argument with φ̇ replaced by −φ̇ gives the bound supX φ̇ ≤ ε, and
thus we have shown that φ̇ → 0 in C0. Together with the convergence of
∂∂̄φ̇ to 0 in C∞, this implies that φ̇ → 0 in C∞.

Next, note that the operator Δ(t) + 1 is uniformly bounded away from
0, where Δ(t) = ∇p̄∇p̄ is the scalar Laplacian defined by the evolving metric
gk̄j(t). Indeed, assume otherwise. Then there exists a subsequence ti → +∞
with Laplacians Δ(ti) + 1 admitting eigenvalues λ(ti) → 0. By going to a
subsequence, we may assume that the corresponding metrics gk̄j(ti) converge
in C∞ to a metric g∞

k̄j
which is Kähler–Einstein, by the preceding discussion.

The Laplacian Δ(∞) + 1 admits then a zero eigenvalue. The corresponding
eigenfunction u(z) defines then a non-trivial holomorphic vector field V j =
g∞jk̄∂k̄u, which contradicts our assumption.

Fix now t, and consider the equation in ψ

log
(ωφ(t) + (i/2)∂∂̄ψ)n

ωn
φ(t)

+ ψ = h(2.58)

The linearization of the left-hand side at ψ = 0 is Δ(t) + 1. Since this opera-
tor is invertible, with uniform bounds in t, and since the higher order deriva-
tives of the left-hand side, viewed as a functional in ψ, are also uniformly
bounded, it follows that there exist constants εm > 0, Am < ∞, independent
of t, so that

‖ψ‖Cm+1 ≤ Am ‖h‖Cm , when ‖h‖Cm < εm.(2.59)

Finally, let t, s >> 1. Then the function ψ ≡ φ(s) − φ(t) satisfies the
equation (2.58), with right hand side h given by

h = φ̇(t) − φ̇(s).(2.60)

For any ε > 0, we have ‖φ̇(t) − φ̇(s)‖Cm < ε for s, t large enough since φ̇ → 0
in Cm. It follows from (2.59) that ‖φ(s) − φ(t)‖Cm+1 ≤ Amε. This estab-
lishes the convergence of the Kähler–Ricci flow (2.2), and hence also of (2.1).

Part (ii). We follow here closely the arguments of Nadel [15] and
Demailly–Kollár [7]. If X does not admit a Kähler–Einstein metric, then by
part (i) of the theorem, for any p > 1, there must exist a sequence φ(ti) in
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the Kähler–Ricci flow with

lim
i→∞

∫
X

e−pφ(ti)ωn
0 = ∞.(2.61)

Let ψ be an L1 limit point of the sequence φ(ti) − 1
V

∫
X φ(ti)ωn

0 . Then by
the Demailly–Kollár theorem on the semi-continuity of complex singularity
exponents ([7], Main Theorem), ‖e−ψ‖Lp(X) = +∞, and hence the multiplier
ideal sheaf J (pψ) is non-trivial. Equivalently, the corresponding subscheme
of structure sheaf OX/J (pψ) is non-empty. Since pψ is strictly plurisub-
harmonic with respect to ([p] + 1)ω0, by the theorem of Nadel [15], in the
formulation of Demailly and Kollár ([7], Theorem 4.1 and Corollary 6.6),
the multiplier ideal sheaf J (pψ) is a coherent analytic sheaf in OX with
K

−[p]
X ⊗ J (pψ) having acyclic cohomology, with the G-invariance property

stated if the metric ĝk̄j is G-symmetric. �

3. Remarks

We conclude with a few simple remarks.

• The estimate (2.20) implies that the functionals Fω0(φ) and F 0
ω0

(φ)
defined by

Fω0(φ) = F 0
ω0

(φ) − log
(

1
V

∫
X

ef̂−φωn
0

)

F 0
ω0

(φ) = Jω0(φ) − 1
V

∫
X

φωn
0(3.1)

where Jω0(φ) = 1/2V
∫
X φ(ωn

0 − ωn
φ) is the Aubin–Yau functional, are

bounded by one another along the Kähler–Ricci flow, up to additive
constants,

−C3 + F 0
ω0

(φ) ≤ Fω0(φ) ≤ C4 + F 0
ω0

(φ).(3.2)

This may be of some practical use, since while the functional Fω0(φ)
decreases along the Kähler–Ricci flow, it is the functional F 0

ω0
(φ) which

is more directly linked to Chow–Mumford stability (see e.g.,
[17, 20, 30]).

• Since the functional Fω0(φ) decreases along the Kähler–Ricci flow,
Fω0(φ) and hence F 0

ω0
(φ) are bounded from above. Thus, along the
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Kähler–Ricci flow, we have

Jω0(φ) ≤ 1
V

∫
X

φ ωn
0 + C.(3.3)

• The Harnack inequality along the Kähler–Ricci flow proved by Tian–
Zhu [26] is the following,

oscX φ ≤ C5 Jω0(φ)n+δ + C6,(3.4)

where δ is any positive number less or equal to 1. As shown in [26],
Perelman’s bound for ‖φ̇‖C0 allows arguments similar to the proof of
the Harnack inequality for the Monge–Ampère equation ωn

φ = eF−tφωn
0

[23, 25] to take over and establish (3.4).

• The C0 estimate ‖φ‖C0 ≤ C along the Kähler–Ricci flow is now seen
to be equivalent to the following estimate on the averages of φ,

1
V

∫
X

φ ωn
0 ≤ C.(3.5)

Indeed, this inequality together with the inequalities (3.3) and (3.4)
imply that oscXφ is uniformly bounded, which implies in turn that
‖φ‖C0 is uniformly bounded, in view of the crude bounds (2.21) for
supX φ and infX φ. The condition ωn

φ ≥ C ωn
0 along the Kähler–Ricci

flow introduced by Pali [16] can be interpreted in this light: by Perel-
man’s estimate, this condition is equivalent to e−φ ≥ C1 > 0, and hence
supXφ ≤ C2, which implies (3.5).

• The application of Kolodziej’s theorem to the Kähler–Ricci flow con-
firms that in his theorem, p cannot be taken to be 1: indeed, e−φ

is uniformly in L1(X) by the estimate (2.20), so that if the theo-
rem holds for p = 1, it would follow from the above arguments that
the Kähler–Ricci flow always admits a subsequence converging to a
Kähler–Einstein metric on a Kähler manifold X with c1(X) > 0, which
is known not to be the case.

• In the applications of multiplier ideal sheaves to the existence of
Kähler–Einstein metrics, only the non-existence of non-trivial acyclic
multiplier ideal sheaves has played a role so far, and not the value of
p. It is conceivable that the value of p can carry information. If so,
then the multiplier ideal sheaves arising from the Kähler–Ricci flow
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may carry more information than their counterparts from the method
of continuity: indeed, as noted above, the condition p > 1 for the
Kähler–Ricci flow is sharp, while this is not known for the condition
(n/n + 1) < p < 1 for the method of continuity.
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