
communications in

analysis and geometry

Volume 15, Number 3, 569–587, 2007

Asymptotic spectral flow for Dirac operators
Clifford Henry Taubes

1

Let M denote a compact, oriented Riemannian manifold of odd
dimension n ≥ 3. Suppose that F → M is a principle bundle with
structure group Spin(n) ×{±1} U(k) such that F/U(k) is the prini-
ciple SO(n) bundle of orthonormal frames for TM . A connection
on the principle bundle F/Spin(n) → M determines a self-adjoint
Dirac operator on a certain associated Clifford module. This under-
stood, suppose that {As}s∈[0,1] is a differentiable path of such con-
nections. An estimate is given here for the spectral flow along the
corresponding 1-parameter family of Dirac operators.

1. Introduction

This note generalizes certain estimates from [7] for the spectral flow for a
1-parameter family of Dirac operators. In this regard, the estimates that
appear in [7] concern only SpinC Dirac operators on 3-dimensional manifolds,
whereas the techniques that prove these estimates provide analogous esti-
mates for the spectral flow for families of SpinC Dirac operators on any odd-
dimensional compact manifold, and also for twisted versions of such opera-
tors. These generalizations were not discussed in [7] as the latter addressed
a particular application. This note is meant to highlight the generalizations.

To say more, suppose that n ≥ 1 is odd and that M is a compact, ori-
ented n-dimensional Riemannian manifold. Let Fr → M denote the bundle
of oriented, orthonormal frames. Let k ≥ 1 and suppose that this bundle
lifts to a Spin(n) ×Z/2 U(k) bundle, F → M . Here Z/2 acts on Spin(n) as
its center, and it acts on U(k) ⊂ GL(k; C) as + and − times the identity
matrix. Let S denote the fundamental spinor representation of Spin(n), this
a complex vector space of dimension 2(n−1)/2. With S understood, introduce
the complex Hermitian vector bundle S → M that is associated to F via the
representation S ⊗C C

k of Spin(n) ×Z/2 U(k).
The Levi-Civita connection on Fr and a unitary connection on the prin-

ciple PU(k) = U(k)/{±1} bundle P = F/Spin(n) together give S a unitary
connection. With a unitary connection A on P chosen, use DA : C∞(M ; S) →

1Supported in part by the National Science Foundation.

569



570 C.H. Taubes

C∞(M ; S) to denote the resulting Dirac operator. The latter is obtained
by composing the covariant derivative, ∇A : C∞(M ; S) → C∞(M ; S ⊗ T ∗M)
with the endomorphism from S ⊗ T ∗M to S which is dual to the Clifford
multiplication endomorphism from T ∗M to End(S). This Dirac operator
extends to L2(M ; S) as an unbounded, self-adjoint operator with domain
L2

1(M ; S). It has purely point spectrum and each eigenvalue has finite mul-
tiplicity. Moreover, the set of eigenvalues is unbounded from below and
above, and has no accumulation points.

Let A0 and A1 denote a pair of unitary connections on P such that
neither of the A = A0 and A = A1 versions DA have eigenvalue 0. The
Dirac spectral flow from A0 to A1 is defined as follows: Fix a path of unitary
connections on P that starts at A0 and ends at A1. The Dirac spectral flow
constitutes an algebraic count of the connections on this path where the
corresponding Dirac operator has a zero eigenvalue. For those unfamiliar
with the notion of spectral flow, here is a brief definition (more is said
below): Note first that the eigenvalues vary continuously along the path.
This understood, a zero crossing of a non-degenerate eigenvalue contributes
to the count with +1 weight if the eigenvalue crosses zero from a negative
to a positive value as s increases. On the other hand, a zero crossing of a
non-degenerate eigenvalue contributes to the count with −1 if the eigenvalue
crosses zero from a positive to a negative value as s increases. If the path
is suitably generic, then only these two cases arise. The resulting count of
the crossings turns out to be path independent and so depends only on the
ordered pair (A0, A1). This count is the Dirac spectral flow function; it is
denoted in what follows by f(A0, A1).

The statement below of the main theorem refers to a differential form
on M that is constructed from the Riemannian curvature tensor. This form
is denoted by ΩÂ; it is the canonical closed form that is constructed using
the Riemannian curvature tensor so as to represent the Â-genus of M in
deRham cohomology. To elaborate, let so(n) denote the Lie algebra of
SO(n). Following the exposition in Chapter 1 of [2], define a map from so(n)
to itself by using the convergent power series for σ → sinh(σ)/σ. Now, let
R denote the Riemann curvature but viewed as a 2-form on M with values
in Fr ×ad so(n). Then j = det(sinh(R/2)/R/2) defines a differential form
on M with 0-form component equal to 1. This understood, then j−1/2 also
defines a differential form on M with 0-form component equal to 1. The
form ΩÂ is defined to be j−1/2.

The main theorem also refers to a relative Chern–Simons form; in the
present context, this is a certain differential form on M that is determined
by an ordered pair of connections on P . To set the stage for the definition,
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suppose that A is a connection on P . Let AF denote the pull-back of A to F ,
this a 1-form on F with values in the Lie algebra of U(k). Use FAF

to denote
the curvature 2-form of AF . This 2-form is obtained from the curvature
2-form of A by dividing the central component of the latter by 2. With this
notation set, let (A0, A1) denote a given ordered pair of connections on P .
Write A1F = A0F + â, where â is a 1-form on M with values in the bundle
that is associated to P by the action of U(k) on the Lie algebra of U(k). For
s ∈ [0, 1], introduce AF (s) = A0F + sâ. The relative Chern–Simons form for
the ordered pair (A0, A1) is

(1.1) chs(A0, A1) =
∫ 1

0
trCk(â ∧ exp(FAF (s)))ds.

This form has the following useful property: Let μ denote a closed form
on P . Then

∫
M (μ ∧ chs(A0, A1)) is not changed if the path of connections

s → AF (s) and the 1-form â (which is (d/ds)AF (s)) that appear in (1.1)
are simultaneously replaced by AsF and (d/ds)AsF , where s → As is any
piecewise differentiable path of connections that begins at A0 when s = 0
and ends at A1 when s = 1.

One more bit of notation and one additional remark are needed to set
the stage for the upcoming theorem. Here is the extra notation. If A is a
connection on P , the theorem uses r(A) to denote the infimum of numbers
r ∈ [1,∞) such that

(1.2) r−1|FA| + r−3/2|∇AFA| + · · · + r−n/2|(∇A)(n−1)/2FA| ≤ 1.

The promised remark concerns a certain subgroup of the group of auto-
morphisms of the bundle P . To set the stage, note that the group U(k) acts
on itself via conjugation and this action factors to an action of PU(k) on
U(k). The latter action is denoted in what follows by Ad. Any section of the
bundle P ×Ad U(k) determines an automorphism of P , and all autormor-
phisms of this type lift to give automorphisms of F that cover the identity
automorphism of the frame bundle Fr. When g denotes an automorphism
of P and A denotes a connection on P , then g · A is used to denote the
pull-back of A by the automorphism.

What follows is the principle result of this note:

Theorem 1.1. There exist constants, κ ≥ 1 and p ∈ ((n − 3)/2, (n − 1)/2)
with the following significance: Let {As}s∈[0,1] denote a differentiable path of
connections on P and set r to denote the maximum from the set
{r(As)}s∈[0,1]. Let g denote a section of P ×Ad U(k). Then f(A0, g · A1)
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differs from

(1.3)
(

1
2πi

)(n+1)/2 ∫
M

(
ΩÂ ∧ chs (A0, g · A1)

)

by at most κ(1 + rp+1 + κ
∫ 1
0 (r(As)

p(
∫
M |(d/ds)As|))ds).

Neither the expression in (1.3) nor the spectral flow function are gauge
invariant except under certain particular situations. To elaborate, suppose
that g is a section of the bundle P ×Ad U(k). Then the spectrum of Dg·A
and DA are identical. Even so, the Dirac spectral flow from A to g · A need
not vanish. However, it follows from what is done in the seminal paper by
Atiyah, Patodi and Singer [1] that f(A, g · A) is identical to the A0 = A
and A1 = g · A version of (1.3). Thus, the difference between f and the
expression in (1.3) is, in fact, gauge invariant.

Although the expression in (1.3) and the spectral flow depend only on the
endpoints of the path s → As, the error term given by the theorem depends
on the chosen path. It is not clear whether there exists a useful a priori
bound on the error term for some path between any two given connections
A0 and A1 in the case of U(k) with k > 1 that depends only on A0 and A1.
Results from [8] may have some bearing on this issue.

Here is what can be said when k = 1:

Theorem 1.2. Suppose that F is a SpinC = Spin(n) ×{±1} U(1) lift of
the frame bundle of M . There exists κ ≥ 1 and p ∈ ((n − 1)/2, (n + 1)/2)
with the following significance: Let A0 and A1 be a pair of connections
on P = F/Spin(n). Set r = max {1, r(A0), r(A1)}. Then f(A0, A1) differs
from (1/2πi)(n+1)/2 ∫

M (ΩÂ ∧ chs(A0, A1)) by at most κrp.

Theorem 1.2 suggests a question: Let P be as in Theorem 1.2, let A0
denote a connection on P and let a denote an imaginary number valued
1-form on M . What is the subleading order behavior of the spectral flow
function f(A0, A0 + ra) as r → ∞? Note that Theorem 1.2 asserts that the
leading order term is

(1.4) r(n+1)/2
(

1
4πi

)(n+1)/2 1
(1/2(n + 1))!

∫
M

(
a ∧ (da)(n−1)/2

)

Theorems 1.1 and 1.2 have a corollary that follow using the results [1].
As background for the corollary, introduce the manifold X = R × M . In
what follows, s is used to denote the standard Euclidean coordinate on R.
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Give X, the product Riemannian metric. The projection from X to M
pulls-back S to give a vector bundle over X, this also denoted by S.

Fix a pair of connections, A0 and A1, on P , and fix a differentiable path
s → A(s) from R to the space of connections on P such that A(s) = A0
for s � −1 and A(s) = A1 for s � 1. With A chosen, define the operator
D : C∞(X; S) → C∞(X; S) by

(1.5) D =
∂

∂s
+ DA(·).

The operator D defines a Fredholm operator from L2
1(X; S) to L2(X; S). As

such, D has an index, and this index is given, according to (4.3) in [1] by
the following formula:

(1.6) index(D) =
(

1
2πi

)(n+1)/2 ∫
M

(ΩÂ ∧ chs(A0, A1)) − 1
2
(ηA1 − ηA0),

where the notation is such that ηA denotes the spectral asymmetry function
of DA when A is a connection on P . This spectral asymmetry function is
defined as follows: It is the value at 0 of the analytic continuation to C of
the function on the s � 1 part of the real line that sends s to

(1.7)
∑

ς

sign(λς)|λς |−s;

here, the sum is indexed by an orthonormal basis of eigenfunctions of DA

and λ(·) denotes the eigenvalue of the indicated eigenvector. Theorem 3.10
in [1] asserts that this analytic continuation is finite at s = 0.

As noted in [1], the index of D is precisely f(A0, A1). Thus, (1.6) and
Theorems 1.1 and 1.2 have the following to say about ηA1 − ηA0 :

Corollary 1.3. There exist constants κ ≥ 1 and p ∈ ((n − 3)/2, (n − 1)/2)
with the following significance: Let {As}s∈[0,1] denote a differentiable path of
connections on P. Set r to denote the maximum from the set {r(As)}s∈[0,1].
Then the absolute value of the difference between the respective spectral asym-
metry functions of A0 and A1 obeys

|ηA1 − ηA0 | ≤ κ

(
1 + rp+1 +

∫ 1

0

(
r(As)p

(∫
M

∣∣∣∣ d

ds
As

∣∣∣∣
))

ds

)
.

In the case where k = 1, there exists p′ ∈ ((n − 1)/2, (n + 1)/2) such that
the following is true: Let A0 and A1 denote a pair of connections on P , and
set r to equal the maximum of 1, r(A0) and r(A1). Then |ηA1 − ηA0 | ≤ κrp′.
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The strategy for the proofs of Theorems 1.1 and 1.2 is the same as that
used in Section 5 of [7] to prove a 3-dimensional version of Theorem 1.2.
This strategy is outlined next, and the analysis follows.

1.1. Spectral flow

This and the next subsection review some constructions from Sections 5a
and 5b in [7]. To start, suppose that {As}s∈[0,1] is a family of connections
on P with a real analytic parametrization by [0, 1]. The spectral flow for
the family {DAs

}s∈[0,1] is defined with the help of a certain stratified, real-
analytic set in R × [0, 1]. This set is denoted by E , and its stratification is
depicted by

(1.8) E = E1 ⊃ E2 ⊃ · · ·,

where Ek consists of the set of pairs (λ, s) such that λ is an eigenvalue of
DAs

with multiplicity k or greater. Each Ek is a closed set. Moreover, as
can be proved using results in Chapter 7 of [4], each Ek∗ = Ek − Ek+1 is an
open, real analytic submanifold in R × [0, 1]. As in [7], the collection {Ek∗}
are called the smooth strata of E . When the 1-dimensional smooth strata
are oriented by the pull-back from R × [0, 1] of the 1-form ds, then the zero-
dimensional strata can be consistently oriented so that the formal, weighted
sum E∗ = E1∗ + 2E2∗ + · · · defines a locally closed cycle in R × [0, 1]. This
also follows from what is said in Chapter 7 of [4]. This means the follow-
ing: Let f denote a smooth function on R × (0, 1) with compact support.
Then

(1.9)
∑

k=1,2,...

k

∫
Ek∗

df = 0.

Sard’s theorem finds a dense, open set U ⊂ R with the property that
the respective maps from a point ∗ to R × [0, 1] that send ∗ to (λ, 0) and
to (λ, 1) are transversal to the smooth strata of E for all λ ∈ U. In this
language, the spectral flow for the family {Ls}s∈[0,1] is defined as follows:
Fix λ0 ∈ U with λ0 > 0. By Sard’s theorem, there exist smooth, oriented
paths σ ⊂ R × [0, 1] that start at (λ0, 0), end at (λ0, 1), and are transversal
to the smooth strata of E . Since both the A = A0 and A = A1 versions of DA

do not have zero as an eigenvalue, it follows that 0 ∈ U. This understood,
choose a path σ that starts at (0, 0) ends at (0, 1) and is transversal to
the smooth strata of E . Such a path has a well-defined intersection number
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with E , this being

(1.10) f =
∑

k=1,2,...

∑
p∈σ∩Ek∗

(−1)o(p)k,

where o(p) ∈ {0, 1}. In the case where σ is the graph of a smooth function
from [0, 1] to R, the sign (−1)o(p) is obtained as follows: The pull-back to
a smooth, 1-dimensional stratum of E of the 1-form dλ from R × [0, 1] at a
point (λ, s) can be written as λ′ds with

(1.11) λ′ =
〈

ς, cl
(

d

ds
AsF

)
ς

〉
L2

.

Here, the notation uses ς to denote an eigenvector of DAs
with L2 norm

1 whose eigenvalue is λ, and 〈, 〉L2 denotes the inner product on L2(M ; S).
The sign of λ′ at an intersection point with the image of a graph is the factor
(−1)o(·) that appears in (1.11).

1.2. Estimating spectral flow

With f understood, what follows explains how Theorem 1.1’s estimate for
f is derived. To this end, introduce the constant r from Theorem 1.1. Fix
t ∈ (0, r−1); a specific choice is made in Section 3. With t chosen, define the
orientation preserving diffeomorphism Φ from R to (−(π/t)1/2, (π/t)1/2) by
the formula

(1.12) Φ(λ) =
∫ λ

0
e−ρ2tdρ.

Fix R ≥ 1 and set T = Φ(Rt−1/2). A specific choice for R is also made in
Section 3. Note for reference later that

(1.13)
∣∣∣∣t1/2T −

(π

4

)1/2
∣∣∣∣ ≤ 1

2R
e−R2

.

Now let S denote the circle that is obtained from the interval [−T, T ] by
identifying the endpoints. This circle has a fiducial point, T∗, that given by
{±T}, and an orientation given by the orientation of (−T, T ).

For each s ∈ [0, 1], let ns denote the maximal number of linearly
independent eigenvectors of DAs

whose eigenvalue lies in [−Rt−1/2, Rt−1/2].
Use n in what follows to denote the maximum from the set {ns}s∈[0,1]. An
estimate for the spectral flow f is obtained by considering the trajectories of
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n particles on S whose paths vary continuously and piecewise differentiably
as functions of s ∈ [0, 1].

To elaborate, introduce ER to denote the set {(λ, s) ∈ E : |λ| < Rt−1/2},
and for each k, use ER

k∗ to denote Ek∗ ∩ ER. Each point (λ, s) ∈ ER
k∗ corre-

sponds to k particles on S all at the point Φ(λ). If ER
k∗ is 1-dimensional, then

these k particles all move together near s, and the common tangent vector
to their trajectories is λ′(d/(dλ)Φ)|λ with λ′ as in (1.11). The set of all such
trajectories that limit to a given zero-dimensional stratum, ER

k′∗ as s limits
to some s∗ can be joined at this stratum to obtain a set of k′ continuous,
piecewise smooth, oriented trajectories that are defined for s near s∗. This
follows from (1.9). There is no canonical way to do this joining but any
method will suffice.

At any given value of s, what was just described accounts for at most
ns of the particles. The remaining particles are at the point T∗ ∈ S. Par-
ticles move off or onto the point T∗ at values of s for which either of the
points (−Rt−1/2, s) or (Rt1/2, s) are in the closure of ER. The particles that
move on or off T∗ and the direction in S that they move are determined by
which smooth strata of ER have (−Rt−1/2, s) or (Rt1/2, s) in their closure.
The rules for this are essentially identical to those given in the preceding
paragraph.

Granted the preceding, let s → z(s) ∈ S denote the trajectory of a given
particle. Let Δz denote z(1) − z(0); this is the net change in z as s increases
from 0 to 1. The intersection number with the point 0 ∈ S of this trajectory
is, at most, the least integer that is greater than 1/(2T )Δz, thus at most
1/(2T )Δz + 1. Meanwhile, this intersection number is at least the greatest
integer less than 1/(2T )Δz, thus at least 1/(2T )Δz − 1. In this regard, note
that where the trajectory s → z(s) is differentiable, the chain rule finds its
derivative to be

(1.14)
d

ds
z = λ′

(
d

dλ
Φ

)
(λ) = λ′e−λ2t,

where λ = Φ−1(z) is the corresponding eigenvalue and λ′ is given by (1.11).
As a consequence of what was just said, the spectral flow f differs by at

most n from the integral between 0 and 1 of the function

(1.15) ℘(s) =
1

2T

∑
ς∈Θ

(∫
M

ς†cl
(

d

ds
AsF

))
e−λ2

ς t,
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where the sum is over a basis, Θ, of orthonormal eigenvectors of DAs
whose

eigenvalue has absolute value no greater than Rt−1/2, and where the nota-
tion again uses λ(·) to denote the eigenvalue of the indicated eigenvector.
With regards to the integral of the function that sends s to ℘(s), note that
℘ varies with s as a piecewise continuous and bounded function.

The estimates in Theorem 1.1 for the spectral flow are obtained by deriv-
ing suitable estimates for the function s → ℘(s) and upper bounds for the
number n. Both of these tasks are accomplished with the help of the heat
kernel for the operator (DAs

)2. The next section supplies what is required
from the heat kernel. The results from Section 2 are put to use in Section 3
to give proofs of Theorems 1.1 and 1.2.

2. The heat kernel

The heat kernel for the square of the Dirac operator proves its worth in
two ways. First, it provides an upper bound for n. Second, it provides
an estimate for the function ℘(s) that appears in (1.15). This subsection
summarizes some basic facts about the heat kernel that are needed for these
applications.

2.1. Bounds on the heat kernel

To start the story, fix a connection, A, on P. Let πL and πR denote the
respective projections from (0,∞) × M × M to the left-and right-hand fac-
tors of M . The heat kernel for D2

A is the smooth section Hom(πR
∗
S, πL

∗
S)

over (0,∞) × M × M given by

(2.1) EA(t; x, y) =
∑

ς

ς(x)ς†(y)e−λ2
ς t,

where the sum is indexed by a complete, orthonormal basis of eigenvectors
for DA. As a function of t and x with y fixed, the heat kernel obeys the
equation

(2.2)
∂

∂t
EA = −D2

AEA.

Furthermore, the t → 0 limit of Et exists as a bundle valued measure:

(2.3) lim
t→0

EA(t, ·, y) = I δy(·),
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where I denotes the identity homomorphism in End(S), and δy denotes the
Dirac measure with mass at x. Note that integration, η →

∫
M EA(t; x, ·)η(·)

defines EA|t as a bounded operator on L2(M ; S) whose t → 0 limit is the
identity operator.

The following proposition gives estimates for the heat kernel. This
proposition introduces FA to denote the curvature 2-form for A. Note that
the norms of FA and FAF

differ by at most a factor of 2.

Proposition 2.1. There exists a constant κ ≥ 1 with the following signi-
ficance: Let A denote a connection on P and let r ≥ 1 be such that
supM |FA| ≤ r. Then

(2.4) |EA(t; x, y)| ≤ κ

(
1

4πt

)n/2

e−dist(x, y)2/4teκrt.

Proof. The proof starts with the Bochner–Weitzenboch identity for the
operator D2

A:

(2.5) DA
2 = ∇A

† ∇A +
1
4
R + cl(FAF

).

Here, R denotes the scalar curvature of M . To prove the inequality, fix y
and set h(t, x) = |EA(t; x, y)|. By virtue of (2.5), this function obeys the
differential inequality

(2.6)
(

∂

∂t

)
h ≤ −d†dh + c0(1 + r)h.

Here, and in what follows c0 is used to denote a constant that depends only
on the Riemannian metric on M and the integer k. The precise value can dif-
fer at each appearance. With (2.6) understood, set h′(t, x) = e−c(1+r)th(t, x).
The latter obeys

(2.7)
(

∂

∂t

)
h′ ≤ −d†dh′.

It follows from (2.7) and (2.3) using the maximum principle that

(2.8) h′(t; x) ≤ c0H0(t; x, y),

where H0 is the heat kernel for the Laplacian d†d. The bound asserted by
Proposition 2.1 follows from (2.8) given the bounds from [5] or [6] for H0. �
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2.2. Upper bounds for a version of n

The first application of the heat kernel enters into the proof of the following
proposition.

Proposition 2.2. There exists a constant, κ ≥ 1, with the following
significance: Suppose that A is a connection on P and that supM |FA| ≤ r.
For λ > 0, let nA(λ) denote the number of linearly independent eigenvec-
tors of DA whose eigenvalue has absolute value less than λ. Then nA(λ) ≤
κ(λ + r1/2)n.

Proof. The argument mimics an argument first used by Chen and Li in [3]
to obtain bounds on the number of linearly independent eigenvectors for
the Laplacian d†d with eigenvalue less than a given positive number. To
start, note that by virtue of (2.1), the trace on End(S) of the endomorphism
EA(t; x, x) obeys

(2.9)
∫

M
trS(EA(t; x, x)) ≥ e−λ2t

nA(λ)

What with Proposition 2.1, this implies that

(2.10) nA(λ) ≤ c

(
1

4πt

)n/2

e(λ2+cr)t

Here, c is independent of λ, t and A. Taking t = (λ2 + cr)−1 gives the bound
claimed by the proposition. �

2.3. Estimating a version of ℘

Let A denote a connection on P and let â denote a 1-form on M with values
in the vector bundle that is associated to P by the adjoint representation of
PU(k) on its Lie algebra. Fix λ > 1. This subsection explains how the heat
kernel for DA

2 is used to derive an estimate for

(2.11) p(λ) =
∑

ς∈Θ(λ)

(∫
M

ς†cl(â)ς
)

e−λ2
ς t,

where Θ(λ) here denotes an orthonormal basis of eigenvectors of DA whose
eigenvector has absolute value less than λ.
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Proposition 2.3. There exists a constant κ ≥ 1 with the following signi-
ficance: Let A denote a connection on P and let r ≥ 1 be such that∑

0≤j≤(n−1)/2 r−(1+j/2)|(∇A)jFA| ≤ 1. Let â denote a 1-form on M with
values in the bundle that is associated to F via the adjoint representation of
U(k) on its Lie algebra. Fix λ > 1 and define p as in (2.11) with t chosen
so that rt ≤ 1. Then

p(λ) = π1/2
(

1
2πi

)(n+1)/2

t−1/2
∫

M

(
ΩÂ ∧ trF×adCk (â ∧ ch (FAF

))
)

+ r,

where |r| ≤ κ(t1/2r(n+1)/2 + t−n/2eκrte−λ2t/2)
∫
M |â|.

Proof. The first step is to approximate ℘ by the expression that is obtained
from the right-hand side of (2.20) by removing the eigenvalue restriction for
the sum. This amounts to writing

(2.12) p(λ) =
∫

M
trS(cl(â)|xEA(t; x, x)) −

∑
ς

(∫
M

ς†cl(â)ς
)

e−λ2
ς t,

where the sum on the far right is indexed by an orthonormal basis of eigen-
vectors of DA whose eigenvalue has absolute value no less than λ. To esti-
mate the far right sum in (2.12), remark that it is, in any event, no greater
than

(2.13) supM

(∑
ς

|ς|2e−λ2
ς t

)∫
M

|â|,

where the sum here is also indexed by an orthonormal basis of eigenvectors of
DA whose eigenvalue has absolute value no less than λ. According to (2.1),
the sum that appears in (2.13) is no greater than e−λ2t/2trS(EA(1

2 t; x, x)).
This understood, an appeal to Proposition 2.1 bounds the sum that appears
on the right-hand side of (2.12) by

(2.14) c0t
−n/2eκrte−λ2t/2

∫
M

|â|.

Granted this bound for the sum that appears on the right-hand side in
(2.12), the next task is to obtain an estimate for the integral that appears
on the right-hand side of (2.12). The next proposition gives the desired
estimate, and with (2.14), implies Proposition 2.3. �
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Proposition 2.4. There exists a constant κ ≥ 1 with the following signi-
ficance: Let A denote a connection on P and let r ≥ 1 be such that∑

0≤j≤(n−1)/2 r−((1+j)/2)|(∇A)jFA| ≤ 1. Let â denote a 1-form on M with
values in the bundle that is associated to F via the adjoint representation of
U(k) on its Lie algebra. If t > 0 and rt ≤ 1, then

trS(cl(â|x)EA(t; x, x)) = π1/2t−1/2
(

1
2πi

)(n+1)/2

∗
(
ΩÂ ∧ trCk (â ∧ ch (FAF

))
)

+ r,

where |r| ≤ c0 t−1/2r(n−1)/2(rt)|â|. Here, ∗ denotes the metric’s Hodge dual
operator.

Proof. There are well-known techniques for generating small time asymp-
totics of the heat kernel. See, for example Chapter 4 in [2]. However, the
standard asymptotics must be augmented with explicit bounds on the error.
These bounds are derived in what follows.

To start, fix a Gaussian coordinate chart φ : B → M and use φ to iden-
tify B with φ(B). This done, introduce the Euclidean coordinates
x = (x1, . . . , xn) on B. Use parallel transport out from the origin along
Euclidean rays via the Levi-Civita connection and via the connection A to
trivialize the bundle F over B. With this trivialization understood, the
connection AF appears as AF = αν dxν where the convention is such that
repeated indices are summed. Here, each αν is a function on B with values
in the Lie algebra of U(k), each vanishes at the origin, and xναν = 0. Note
for future reference that {αν} is determined by the curvature FA via

(2.15) αν |x =
∫ 1

0
τdτxμ(FA)μυ|τx,

�
Granted this notation, then the operator D2

A can be written as

(2.16) DA
2 = ∂ν∂ν + cl(FAF

) + V,

where V has the following schematic form:

(2.17)
V = γνμ∂ν∂μ + (δνμ + γνμ)(2αν∂μ + ∂ναμ + αν(αμ + γμ) + 2Γν∂μ) + Γ0.

Here, {γνμ, γν} are functions on B with |γνμ| ≤ c0|x|2 and |γν | ≤ c0|x|. To
say more about {Γν} and Γ0, remark that they are functions on B with
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values in the endomorphisms of the spinor bundle S. Furthermore, both lie
in the image of the extended Clifford homorphism on Λ∗T ∗M of the even
forms. In particular, Γ0 lies in the image of the forms of degree 4 or less, and
each Γν lies in the image of the forms of degree 2 or less. They depend only
on the Riemannian metric, and are such that |Γν | ≤ c0|x| and |Γ0| ≤ c0.

Fix a smooth function, χ, from [0,∞) to [0, 1] that has value 1 on
[0, 1/16] and vanishes on [1/8,∞). Let χρ denote the function on R

n whose
value at x is χ(ρ−1|x|). For x ∈ B, introduce as shorthand h(t, x) =
EA(t; x, 0). Use h to denote χρh. View h as a function with compact sup-
port on B with values in End(S ⊗C U(k)). By virtue of (2.11), this function
obeys

(
d

dt

)
h = ∂ν∂νh + cl(FAF

)χ4ρh + χρV h + χρV (1 − χρ)h

+ (∂ν∂νχρ)h + 2(∂νχρ)∂νh.(2.18)

Of interest here is the trace of cl(â)h in S ⊗C C
k at x = 0.

To obtain a useful approximation for h, introduce the Euclidean heat
kernel,

(2.19) K(t; x, y) =
(

1
4πt

)n/2

e−|x−y|2/4t.

If ψ is a map from (0, 1) × R
n to S ⊗C C

k with compact support along R
n,

introduce K ∗ ψ to denote the map whose value at (t, x) is

(2.20) (K ∗ ψ)(t, x) =
∫ t

0

(∫
Rn

K(s; x, ·)χ4ρ(cl(FAF
) + χρV )ψ(s, ·)

)
ds,

Set k0 to denote K(t; x, 0), and set

(2.21)

k1 = k0 +
∫ t

0

(∫
Rn

K(s; x, ·)(χρV (1 − χρ)h + (∂ν∂νχρ)h + 2(∂νχρ)∂νh

)
ds.

By virtue of (2.18), the endomorphism h obeys

(2.22) h = k1 + K ∗ k1 + (K∗)2k1 + · · · + (K∗)(n−1)/2k1 + (K∗)(n+1)/2h.

The next lemma takes the first step towards the goal of estimating
trS(cl(â)h)|x=0.
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Lemma 2.5. There exists κ > 0 which is independent of A, r and t, and
it has the following significance: Define h0 by replacing k1 in (2.22) by k0.
Then

|h1 − h0|x=0 ≤ e−κ/t.

Proof. The proof exploits four of the various ingredients that enter the
definition of K∗. Here is the first: The operator V can be written so that
each derivative operator that appears in V is multiplied by a term that van-
ishes at x = 0. This is to say that when a given derivative ∂ν appears, it
appears as σ(x)∂ν , with σ a smooth function that obeys σ(0) = 0. For the
terms in V with second derivatives, the derivative of σ is uniformly bounded.
The terms in V with a single derivative have a version of σ with |dσ| ≤ c0r.
Here is a second property: For any m ≥ 0, there exists a constant cm that
is independent of x, y ∈ R

n and t > 0 such that

• |(∇mK)(t; x, y)| ≤ cmt−m/2K(2t; x, y),

• |x|mt−m/2K(t; 0, x)| ≤ cmK(2t; x, 0).
(2.23)

What follows is a third property: For any m ≥ 0 and p > 0, there exists cm,p

that is independent of x ∈ R
n and t > 0 such that

∫ t

0

∫
Rn

K(t − s; 0, y)|y|mK(ps; y, x)dy ds ≤ cm,p t(1+m)/2K((1 + p)t; 0, x).

(2.24)

The final property is a consequence of Proposition 2.1:

(2.25)
∫ t

0

(∫
Rn

K(s; 0, y)(1 − χρ)h + (∂ν∂νχρ)h + 2(∂νχρ)∂νh

)
ds ≤ e−c/t,

where c > 0 is independent of A, r and t. �
Granted these four properties, integrate by parts so that the derivative

operators in the factors of V that appear in

(2.26) (K∗)j(k1 − k0)

act to the left. Now perform the indicated integrals starting from the left-
most and working towards the right until only the right-most integral has
yet to be done. The inequalities in (2.23) and (2.24) can be used to bound
each successive integral in an iterative fashion by a constant multiple of the
integral on the left side of (2.14). Note in this regard that the constant in
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each case is bounded by a factor c0(rt(1 + rt))j for a suitable constant c0.
Once this is done, the final integral has the form of that in (2.25) times a
factor that is bounded by c0(rt)j(1 + rt)j .

With Lemma 2.5 in hand, the next lemma supplies an upper bound to
the norm at x = 0 of the right-most term in (2.22).

Lemma 2.6. There exists κ ≥ 1 which is independent of A, r and t, and
it is such that

|(K∗)(n+1)/2h|x=0 ≤ κr(n+1)/2t1/2eκrt.

Proof. The strategy is much like that used in the previous proof. To elabo-
rate, once again evaluate the integrals starting with the left-most. Use (2.23)
and (2.24) to successively bound each integral. This scheme eventually pro-
duces a bound that reads

|(K∗)(n+1)/2h|x=0 ≤ c0(tr)(n−1)/2(1 + rt)(n−1)/2

×
∫ t

0

(∫
Rn

K(p(t − s); 0, y)(r + r2|y|2)|h(s, y)|dy

)
ds.(2.27)

where p ≥ 1 is a constant that is independent of t, r and A. To continue,
use the bound in (2.4) as an upper bound to |h(s, y)| so as to replace (2.27)
with

|(K∗)(n+1)/2h|x=0 ≤ c0(tr)(n−1)/2ec0rt

∫ t

0

(∫
Rn

K(p(t − s); 0, y)(r + r2|y|2)K(s; y, 0)dy

)
ds.(2.28)

Use (2.23) to bound the integral on the right side of (2.28). Doing so gives
the bound stated by the lemma. �

According to these last two lemmas,

(2.29) |h|x=0 = k0 + K ∗ k0 + (K∗)2k0 + · · · + (K∗)(n−1)/2k0 + p,

where |p| ≤ c0r
(n+1)/2 t1/2ec0rt. The next step is to evaluate the trace of cl(â)

with the various terms {(K∗)jk0}0≤j≤(n−1)/2 that appear in (2.29). This is
done just as in Chapter 4 of [2]. Here, one uses the fact that |(∇A)jFA| ≤
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r(1+j)/2. The result is
(2.30)

trS(cl(â)h)x=0 = π1/2t−1/2
(

1
2πi

)(n+1)/2

∗ (ΩÂ ∧ trCk(â ∧ ch(FAF
))) + r,

where |r| ≤ c0t
−1/2r(n−1)/2(rt)ec0rt|â|. The approximation in (2.30) with

(2.14) establish what is claimed by Proposition 2.4.

3. The proofs of Theorems 1.1 and 1.2

This last section uses the results from the previous section to prove Theorems
1.1 and 1.2.

Proof of Theorem 1.1. To start , suppose that t ∈ (0, r−1/2) and R ≥ 1 have
been chosen for use as described in Section 1.1. For each s ∈ [0, 1], let ns

denote the maximal number of linearly independent eigenvectors of DAs

whose eigenvalue has absolute value no greater than Rt−1/2. Let n denote
the maximum from the set {ns}s∈[0,1]. According to Proposition 2.2, this
number n obeys n ≤ κRnt−n/2.

For s ∈ [0, 1], introduce ℘(s) as in (1.13). As explained in Section 1.1,
the spectral flow f(A0, A1) differs from the integral of ℘ over the interval
[0, 1] by no more than n. Thus,

(3.1)
∣∣∣∣f(A0, A1) −

∫ 1

0
℘(s)ds

∣∣∣∣ ≤ κRnt−n/2.

According to Proposition 2.3,

(3.2)

℘(s) =
(

1
2πi

)(n+1)/2 ∫
M

(
ΩÂ ∧ trF×ad Ck

(
d

ds
AFs ∧ ch (FAs

)
))

+ r1,

where

(3.3) |r1| ≤ c0(r(As)(n+1)/2t + t−(n−1)/2e−R2/2)
∫

M

∣∣∣∣ d

ds
As

∣∣∣∣ .

It is now time to choose values for t and R. To this end, let r denote the
maximum from the set {r(As)}s∈[0,1]. Fix q ∈ (0, 1

n+1), and set t = r−(1+q)

and R = ln r. It then follows from (3.1)–(3.3) that f(A0, A1) differs from
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the expression in (1.3) by no more than

(3.4) cq

(
1 + (ln r)nr(n+nq)/2 +

∫ 1

0
r(As)(n−1)/2−q

(∫
M

∣∣∣∣ d

ds
As

∣∣∣∣
)

ds

)
,

where cq is a constant that depends on the choice of q. This gives the
statement of Theorem 1.1 with p = (n − 1)/2 − q + ε for any sufficiently
small but positive ε. �

Proof of Theorem 1.2. The proof of Theorem 1.2 exploits the fact that the
difference between the expression in (1.3) and f(A0, A1) is gauge invariant.
In particular, replace A1 in (1.3) and in f(A0, A1) with A′

1 = g · A1, where
g is a map from M to U(1) with the following properties: First, g has even
degree on all generators of H1(M ; Z). Second, g · A1 = A0 + â, where â
is a coclosed, i-valued 1-form. In addition, the norm of the L2-orthogonal
projection of â to the space of harmonic 1-forms has norm bounded by c0
where c0 depends only on the Riemannian metric. With A′

1 so defined, write
â = â′ + ν, where ν is a harmonic 1-form and where â′ is L2-orthogonal to the
space of harmonic 1-forms. Because ν is harmonic with uniformly bounded
L2 norm, it obeys |ν| ≤ c0.

Now, let G denote the Green’s function for the operator d + d∗ on the
space of forms that are L2-orthogonal to the harmonic forms. Since dâ′ =
FA1 − FA0 and d∗â′ = 0, the 1-form â′ is equal to

(3.5) â′|x =
∫

M
Gx(FA1 − FA0).

Here Gx(·) is smooth except at x, and near x it obeys |Gx(y)| ≤
c0

(
1

dist(x,y)

)n−1
. In particular, |Gx| is integrable and so |â′| ≤ c0r. Since

|ν| ≤ c0, it then follows that |â| ≤ c0r as well.
Granted this estimate, take the path s → As, where As = A0 + sâ and

invoke Theorem 1.1 to obtain Theorem 1.2. �
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