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In this paper, we study a generalized integral Novikov conjecture
for discrete groups containing nontrivial torsion elements and prove
it for not necessarily torsion-free arithmetic groups of reductive
algebraic groups defined over Q and virtually polycyclic groups.
For this purpose, we prove a general criterion that this generalized
integral Novikov conjecture holds for groups Γ having finite asymp-
totic dimension and satisfying suitable conditions related to actions
by finite subgroups on the universal space EFΓ for proper actions.
For arithmetic groups Γ, we show that the Borel–Serre partial com-
pactification X

BS
is a Γ-cofinite universal space for proper actions,

which is of interest independent of the application in this paper,
and satisfies these other conditions as well. For virtually polycyclic
groups Γ, we use the filtration induced from the canonical decreas-
ing commuting series to understand the structure of fixed-point
sets on a model EFΓ given by homogeneous spaces.

1. Introduction

The original Novikov conjecture is concerned with oriented homotopy invari-
ance of higher signatures of manifolds (see [27] for a survey and references).
It is known that this conjecture is equivalent to the rational injectivity of
the assembly map

(1.1) A : H∗(BΓ, L(Z)) → L∗(ZΓ),

where Γ is the fundamental group of the manifolds, and L∗(ΓZ) are the
surgery groups; the rational injectivity of A means that A ⊗ Q : H∗(BΓ,
L(Z)) ⊗ Q → L∗(ZΓ) ⊗ Q is injective. If the assembly map A is split injec-
tive, then the left side H∗(BΓ, L(Z)) can be used to compute a part of the
important but difficult right side L∗(ZΓ). The conjecture that the inte-
gral assembly map A is injective is called the integral Novikov conjecture in
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L-theory. There are also assembly maps in other theories, for example, in
the algebraic K-theory,

(1.2) A : H∗(BΓ, K(Z)) → K∗(ZΓ),

where K∗(ZΓ) are the algebraic groups of the (group) ring ZΓ. The rational
injectivity of this map A, i.e., the injectivity of A ⊗ Q, in Equation (1.2) is
called the Novikov conjecture in (algebraic) K-theory, and the injectivity of
A is called the integral Novikov conjecture in (algebraic) K-theory.

If Γ contains nontrivial torsion elements, then it is expected that in
general the assembly map A in both cases fails to be injective, and hence
the integral Novikov conjecture does not hold. On the other hand, many
natural and important groups such as SL(n, Z) are not torsion free (see [1,
Section 2]), and it is important to modify the assembly map in order to
obtain an integral Novikov conjecture for such groups.

Assume that Γ contains torsion elements. Let F be the family of all
finite subgroups of Γ. Let EFΓ be the universal space for the family F ,
i.e., for proper actions of Γ. (Note that the space EFΓ is also denoted by
EΓ.) Briefly, it is characterized as follows: (1) EFΓ is contractible. (2)
The stabilizer in Γ of any point of EFΓ is a finite subgroup of Γ. (3) For
any finite subgroup H ⊂ Γ, the fixed-point set (EFΓ)H is nonempty and
weakly contractible.

Let pt. be the trivial Γ-space consisting of one point. Then HΓ
∗ (pt.,

L(Z))) = L∗(ZΓ) and HΓ
∗ (pt., K(Z))) = K∗(ZΓ), and the constant map from

EFΓ to pt. induces assembly maps:

(1.3) A : HΓ
∗ (EFΓ, L(Z))) → L∗(ZΓ), A : HΓ

∗ (EFΓ, K(Z))) → K∗(ZΓ).

The injectivity of the assembly map A in Equation (1.3) is called the gen-
eralized integral Novikov conjecture in L-theory and K-theory, respectively.
See [28, 29, 30, 31, 32] for related results and assembly maps for groups con-
taining torsion elements. In general, for groups containing torsion elements,
the integral assembly maps in Equation (1.3) are not surjective (see [23]).To
get isomorphisms, we need to enlarge the family F to the family of virtually
cyclic subgroups (see [25, 24, 26]). For convenience, we also call this the
integral Novikov conjecture for groups containing torsion elements. When Γ
is torsion free, EFΓ is equal to EΓ, which is the universal space for proper
and fixed-point free actions and hence equal to the universal covering space
of BΓ; in this case,

(1.4) HΓ
∗ (EFΓ, L(Z)) = H∗(BΓ, L(Z)),
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and hence the generalized integral Novikov conjecture specializes to the pre-
vious integral Novikov conjecture for torsion-free groups in Equations (1.1)
and (1.2).

The integral Novikov conjecture was proved in [2] for all torsion-free
arithmetic subgroups of all linear algebraic groups G over Q whether G is
reductive or not. In this paper, we are mainly concerned with groups which
contain nontrivial torsion elements.

It was proved in [1] that this generalized integral Novikov conjecture
in both K- and L-theories holds for all S-arithmetic subgroups of reductive
algebraic groups G of rank 0 over a global field, i.e., either a number field or a
function field. The purpose of this paper is to remove the rank 0 assumption
and prove the conjecture for all arithmetic subgroups of reductive algebraic
groups over number fields. (See [3] for a summary of Novikov conjectures for
discrete subgroups of Lie groups and related groups, in particular, arithmetic
subgroups and S-arithmetic subgroups of algebraic groups.)

In [1], the rank 0 assumption is important in order to apply the following
result of Rosenthal [4, 5, 22].

Theorem 1.1. Assume that Γ admits a cofinite Γ-CW-complex EFΓ which
has a metrizable compactification EFΓ satisfying the following conditions:

1. The action of Γ on EFΓ extends to a continuous action on EFΓ.

2. For any finite subgroup H, the set of fixed points (EFΓ)H is con-
tractible and contains EFΓH as a dense subset. In particular, when H
is trivial, EFΓ is contractible.

3. The action of Γ is small at the infinity of EFΓ.

Then the generalized integral Novikov conjecture in both K- and L-theory
holds for Γ.

In fact, the rank 0 assumption of G is needed to give a cofinite Γ-CW-
complex EFΓ and a small compactification EFΓ. If the rank of G is positive,
it seems difficult to construct such a compactification and apply this result.
But many algebraic groups such as SL(n) have positive rank.

To overcome this difficulty, we combine the results in [4, 5, 6] and prove
the following result. When Γ is torsion free, it is reduced to the result that
asdim Γ < +∞ and the existence of a finite BΓ imply the integral Novikov
conjectures for Γ, proved in [6, 7, 8, 35, 36].

Theorem 1.2. Assume that Γ has finite asymptotic dimension and admits
a cofinite Γ-CW-complex EFΓ. For any pair of finite subgroups H, I of Γ,
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I ⊆ H, let NH(I) be the normalizer of I in H. Assume that for any such a
pair H and I, the set of fixed points (EFΓ)I and the quotient NH(I)\(EFΓ)I

are uniformly contractible and of bounded geometry. Then the generalized
integral Novikov conjecture in both K- and L-theories holds for Γ.

We recall from [9] that a metric space (X, d) is called uniformly con-
tractible if there is a positive function f(R) with f(R) ≥ R for R > 0, such
that for any x ∈ X, the ball B(x, R) can be contracted to a point in the
larger ball B(x, f(R)). It is said to be of bounded geometry (or coarsely
bounded) if there exist a positive constant ε and a positive function g(R)
such that the number of elements of any ε-separated subset in any ball
B(x, R) is bounded by g(R).

The first condition in Theorem 1.2 follows from the following result of
[2, Section 3].

Proposition 1.3. Any arithmetic subgroup Γ of a linear algebraic group
G defined over Q has finite asymptotic dimension.

In this paper, we will show that if G is reductive, then the other condi-
tions in Theorem 1.2 are also satisfied by Γ. Briefly, let X be the symmetric
space associated with the real locus G = G(R). Then the Borel–Serre par-
tial compactification X

BS in [10] is a Γ-cofinite EFΓ (Theorem 3.2). This
explicit model can be used to show that other conditions on the fixed-point
sets in Theorem 1.2 are also satisfied.

As a corollary, we obtain the result mentioned earlier (see also
Theorem 3.1 below).

Corollary 1.4. Let G be a reductive algebraic group defined over Q. Then
for every arithmetic subgroup Γ ⊂ G(Q), which is not necessarily torsion
free, the generalized integral Novikov conjecture in both K- and L-theories
holds for Γ.

Another corollary (Theorem 4.1) shows that the generalized integral
Novikov conjecture holds for all virtually polycyclic groups (see [4] and
Remark 4.2 below). It is conceivable that this result allows one to remove
the assumption that G is reductive in the above corollary by using the Levi
decomposition of nonreductive algebraic groups.

A natural question is whether the same result holds for S-arithmetic
subgroups of semisimiple algebraic groups over number fields. In this case,
EFΓ can be taken as the product of a symmetric space with Bruhat–Tits
buildings. But one difficulty is to check the conditions on the fixed-point



Integral Novikov conjectures 513

sets and their quotients in Theorem 1.2. On the other hand, the rational
injectivity of the assembly map in both K- and L-theories holds for these
S-arithmetic subgroups by [11] (see [12, Proposition 3.3] and [34]); and
when the symmetric space associated with G is the real hyperbolic space,
then the generalized integral Novikov conjectures hold for every S-arithmetic
subgroup of G(k) [12, Theorem 3.2].

The rest of this paper is organized as follows. In Section 2, we prove The-
orem 1.2 by combining methods in [4, 5, 6]. In Section 3, we first show that
X

BS is a cofinite Γ-CW-complex EFΓ for arithmetic subgroups Γ. Then we
show that finite quotients of the sets of fixed points in X

BS are uniformly
contractible and of bounded geometry, and hence the generalized integral
Novikov conjecture holds for arithmetic subgroups. In Section 4, we prove
the generalized integral Novikov conjecture for virtually polycyclic groups
by using the canonical filtration of an associated simply connected solvable
group by the descending commutator series to describe the fixed-point sets
of finite subgroups on a suitable model of EFΓ.

Remark 1.5. The first version of this paper was finished in March 2006.
After sending this paper to David Rosenthal on June 6, 2006, I received
from him the paper [13] by Bartels and Rosenthal, which contains results
[13, Theorems A and B and corollaries] similar to but stronger than Theorem
1.2 in this paper. It should be stressed that this paper and [13] were carried
out completely independently of each other. It is also helpful to point out
that the result in Theorem 3.2 has been used in literature (see [14, Remark
5.5] and [33]), but the proof here is the first one written up. Similar results
in Remark 3.5 on the existence of a cofinite EFΓ-space for S-arithmetic
groups are also of independent interest.

2. The generalized integral Novikov conjecture

We first recall the notion of coarse structures and models in terms of con-
trolled algebras for both sides of the assembly map. For simplicity, we only
consider the case of algebraic K-theory. So we will construct small catagories
of modules associated with the coarse structures whose images under the
nonconnective K-theory functor, K−∞, denoted by K for simplicity in the
following, give the desired spectra. We will mostly follow the notations in [6].

Definition 2.1. Let X be a topological space. A coarse structure on X is
a collection E of subsets of X × X satisfying the following conditions:



514 Lizhen Ji

1. E is closed under finite union.

2. E is closed under composition.

3. For any E ∈ E, its inverse Eop = {(y, x) | (x, y) ∈ E} is contained in
some element of E.

4. For any E ∈ E and any compact subset K ⊂ X, the set {x | (k, x) or
(x, k) ∈ E for some k ∈ K} has a compact closure.

Definition 2.2. Let X be a topological space, and E be a coarse structure
on X. Let A be a small additive category.

1. A geometric A-module M with support contained in E consists of a
collection of objects Mx ∈ A, where x ∈ X, such that the support,
supp(M) = {x | Mx 	= 0}, is locally finite and the image of supp(M)
under the diagonal embedding into X × X is contained in some
element of E.

2. A morphism between two geometric A-modules M, N with support
contained in E is a collection of morphisms φx,y : My → Nx such that
for each fixed x (resp. y), φx,y 	= 0 for only a finite number of y
(resp. x), and

supp(φ) = {(x, y) ∈ X × X | φx,y 	= 0}

is contained in some element in E.

3. The category A(E) has objects given by geometric A-modules sup-
ported in E and morphisms supported in E.

An important example of small additive categories A is the category of
finitely generated free Z-modules.

Given a collection S of subsets of X closed under finite union, there is
a coarse structure ES , called the restriction of E to S, defined by

ES = {E ⊂ X × X | E ⊂ E′ for some E′ ∈ E, and π1(E),
π2(E) ⊂ F for some F ∈ S},

where π1, π2 are the projections on the two factors. There is also an enlarge-
ment S of S by E, defined by

S = {π1(E ◦ Diag(F )) | E ∈ E, F ∈ S}.
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For any such S, there are two important categories: A(ES), the category
of geometric A-modules with support contained in ES , and the Karoubi
quotient of A(E) by A(ES), denoted by A(E)/S.

The coarse structures that we will use in this paper are the continuous
control for a topological space and the bounded control for a metric space.

Definition 2.3.

1. Let X be a proper metric space. The collection of all bounded subsets
E of X × X gives the bounded coarse structure, denoted by B(X).

2. Let X be a topological space. A subset E of (X × [0, 1))2 is said to be
continuously controlled at (x, 1) if for any neighborhood U of (x, 1) in
X × [0, 1], there is another neighborhood V of (x, 1) such that

(X × [0, 1] − U) × V ∩ E = ∅, V × (X × [0, 1] − U) ∩ E = ∅.

The collection of all subsets of (X × [0, 1))2 that are continuously con-
trolled at all points (x, 1) and for any compact subset K ⊂ X × [0, 1),
E ∩ π−1

1 (K) and E ∩ π−1
2 (K) both have compact closures forms the

continuously controlled coarse structure on X × [0, 1) and is denoted
by J(X).

3. Let X be a metric space. The coarse structure Jb(X) of continu-
ous control with bounded control in X-direction consists of all E ∈
J(X) such that the subset {x | (x, t) ∈ E for some t ∈ [0, 1)} ⊂ X is
bounded.

Since X × {1} is contained in the boundary of X × [0, 1), the continuous
control is at the boundary.

For any topological space X, let S consist of only X × {0} and define

A(J(X))∞ = A(J(X))/S.

If X is furthermore a metric space, define

A(Jb(X))∞ = A(Jb(X))/S.

It is known by [6, Lemma 3.5] that A(Jb(X))∞ = A(J(X))∞.
Let X = EFΓ be endowed with a Γ-invariant length structure. Let

A be the category of finitely generated free Z-modules. Then Γ acts on
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A(J(EFΓ))∞. It is known (see [6, Theorem 3.12]) that

HΓ
∗ (EFΓ, K(Z)) = π∗(K(A(J(EFΓ)∞))Γ) = π∗(K(A(Jb(EFΓ)∞))Γ),

K∗(ZΓ) = π∗(KA(B(EFΓ))Γ).

It is also known [6, Remark 3.8 and Equation (5.2)] that there is an
assembly map

(2.1) A : KnA(Jb(EFΓ)∞) → Kn−1A(B(EFΓ))

induced from the Karoubi sequence

A(B(EFΓ)) → A(Jb(EFΓ) → A(Jb(EFΓ)∞.

By the same proof as in [4, Proposition 6.2], we can prove

Proposition 2.4. With the above notation, K(ZΓ) ∼= KA(B(EFΓ))Γ and
hence

K∗(ZΓ) = π∗(KA(B(EFΓ))Γ).

The induced map on the sets of Γ-fixed points from Equation (2.1) gives
the assembly map in the generalized integral Novikov conjecture in Equation
(1.3):

(2.2) A : HΓ
∗ (EFΓ, K(Z)) → K∗(ZΓ).

As in [4, 6], let

S = KA(Jb(EFΓ)∞), T = KA(B(EFΓ)).

Since S, T are Γ-equivariant spectra, we have homotopy fixed sets ShFΓ, T hFΓ

with respect to the family F of finite subgroups of Γ:

ShFΓ = MapΓ(EFΓ, S), T hFΓ = MapΓ(EFΓ, T ).

When Γ is torsion free, they are the usual homotopy fixed sets

ShΓ = MapΓ(EΓ, S), T hΓ = MapΓ(EΓ, T ).

Since SΓ = MapΓ(pt., S), TΓ = MapΓ(pt., T ), the map from EFΓ to a point
pt. induces two maps

(2.3) SΓ → ShFΓ,
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(2.4) TΓ → T hFΓ.

The assembly map in Equation (2.1) also induces a map on the homotopy
fixed sets:

(2.5) ShFΓ → T hFΓ.

If the maps SΓ → ShFΓ and ShFΓ → T hFΓ are isomorphism, then the assem-
bly map in Equation (2.2), A : π∗(SΓ) → π∗(TΓ), is a split injection, and
hence the generalized integral Novikov conjecture is proved.

In [6, Theorem 6.1, Proposition 5.5], the following result is proved.

Proposition 2.5. If EFΓ is a proper geodesic space of finite asymptotic
dimension, uniformly contractible and of bounded geometry, then the assem-
bly map A : S → T in Equation (2.1) is an isomorphism.

Corollary 2.6. If Γ has finite asymptotic dimension and EFΓ is a cofinite
Γ-CW-complex, then A : S → T is an isomorphism.

Proof. Under the assumption, EFΓ is a geodesic space (or admits a
length structure) induced from a metric on the quotient Γ\EFΓ. Since
Γ\EFΓ is a finite CW-complex, EFΓ is uniformly contractible and of bounded
geometry. Since Γ is coarsely equivalent to EFΓ and has finite asymptotic
dimension, EFΓ has also finite asymptotic dimension. Hence all the condi-
tions in the above proposition are satisfied, and the assembly map A : S → T
is an isomorphism. �

By the same proof as in [4, Theorem 6.3 and Corollary 6.4], we can prove

Proposition 2.7. With the above notation, the map in Equation (2.3) is
an isomorphism SΓ ∼= ShFΓ.

The most difficult step is to show that the map in Equation (2.5) is an
isomorphism:

ShFΓ ∼= T hFΓ.

The proof is similar to the proof of [4, Theorem 7.1]. We outline the
proof in [4, Theorem 7.1] and mention the modifications needed. The basic
ingredient is the following result [4, Lemma 4.1].

Proposition 2.8. Let A : S → T be an equivariant map between two spec-
tra with Γ-action. Assume that EFΓ is a cofinite Γ-CW-complex. If for
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every finite group G ∈ F , the induced map on the fixed sets AG : SG → TG

is a weak homotopy equivalence, then ShFΓ ∼= T hFΓ.

In [4, Theorem 7.1], the proof goes as follows. For each finite subgroup
G, there is a G-equivariant filtration of X = EFΓ by G-conjugacy classes of
subsets of fixed points of subgroups contained in G. Note that for the trivial
group, the fixed set is X, and for G, it is XG, the smallest subspace in this
filtration.

This induces filtrations of SG and TG, and the isomorphism between SG

and TG is proved by induction on the strata of these filtrations. In the proof,
the contractibility of XH (or rather unions of suitable G-conjugacy classes of
XH), H ⊂ G, together with the fact that the quotient of XH by NG(H), the
normalizer of H in G, has the trivial reduced Steenrod homology is crucial,
due to [4, Proposition 5.4].

In our case, these conditions are replaced by

1. XH is uniformly contractible and of bounded geometry,

2. each quotient NG(H)\XH is also uniformly contractible and of bounded
geometry.

Then Corollary 2.6 above replaces [4, Proposition 5.4] and the proof of
[4, Theorem 7.1] goes through and Theorem 1.2 is proved.

3. Arithmetic groups

In this section, we apply Theorem 1.2 to prove the following result.

Theorem 3.1. Let G be a reductive algebraic group defined over Q, Γ ⊂
G(Q) any arithmetic subgroup. Then the generalized integral Novikov con-
jecture in both K- and L-theories holds for Γ.

As mentioned earlier, it was proved in [2] that for every torsion-free
arithmetic subgroup of any linear algebraic group defined over Q which is
not necessarily reductive, the integral Novikov conjecture holds. Hence, the
new case occurs when Γ contains nontrivial torsion elements.

To prove this theorem, we start with the construction of EFΓ. Let G =
G(R) be the real locus of G, K ⊂ G a maximal compact subgroup. Then
X = G/K with a G-invariant Riemannian metric is a symmetric space of
nonpositive curvature (i.e., no compact factor). Since X is simply connected
and nonpositively curved, it is diffeomorphic to an Euclidean space. It is
known that Γ acts properly on X. Using the fact that X is nonpositively
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curved, it is easy to see that for any finite subgroup H of Γ, its set of
fixed points XH is a nonempty totally geodesic submanifold, in particular
simply connected and nonpositively curved (see [1, Lemma 4.13]), and hence
contractible. This implies that X is a EFΓ space.

It is known that Γ\X is compact if and only if the Q-rank of G is zero.
When Γ\X is compact, the existence of Γ-equivariant triangulation of X
(see [15] or other references in [1]) shows that X is a cofinite Γ-CW-complex
EFΓ. If Γ\X is noncompact, we need the Borel–Serre compactification to
construct a cofinite Γ-CW-complex EFΓ.

Assume that the Q-rank of G is positive. Let X
BS be the Borel–Serre

partial compactification of X [10] (see also [16]), which is obtained by adding
at infinity the boundary faces e(P) of Q-parabolic subgroups P:

X
BS = X ∪

∐

P

e(P),

where P runs over all (proper) Q-parabolic subgroups of G. It should be
emphasized that X

BS is not compact and hence not a compactification. It is
often called the Borel–Serre bodification. More specifically, for each (proper)
parabolic subgroup P of G, its boundary component e(P) is defined as
follows: Let P = P(R) be the real locus of P, and NP the real locus of the
unipotent radical NP of P. For each basepoint x0 ∈ X or a corresponding
maximal compact subgroup K of G, there is a Q-Langlands decomposition
of P :

P = NP AP,x0MP,x0
∼= NP × AP,x0 × MP,x0 ,

where AP,x0 is the lift of a Q-split component AP of P/NP(R) into P ,
which is stable under the Cartan involution associated with K. Similarly,
MP = MP(R), and MP,x0 is a lift into P , which is also stable under the
Cartan involution associated with K. (Note that P/NP is an algebraic
group defined over Q.) It is known that

(3.1) P ∩ K = MP,x0 ∩ K,

and it is a maximal compact subgroup of the reductive group MP,x0 , which
is often denoted by KP,x0 . Define the boundary symmetric space XP asso-
ciated with P by

XP = MP,x0/KP,x0 .
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The subscript x0 is often dropped if the reference to the base-point x0 is
clear. Then the boundary component e(P) is defined by

e(P) = NP × XP.

The Langlands decomposition of P induces the horospherical decomposition
of X:

X ∼= NP × AP × XP.

A sequence of points in X converges to a boundary point in e(P) if and
only if the components in NP and XP converge to those components of the
boundary point, and the AP-component goes to infinity through the positive
chamber associated with P and the distance to the chamber walls goes to
infinity (see [16]).

Example.
A simple but important example to keep in mind is the case when

G = SL(2), and X = SL(2, R)/SO(2) ∼= H, the upper half plane. Clearly
X has a natural boundary R ∪ {∞}. There is an one-to-one correspondence
between the rational boundary points in Q ∪ {∞} ⊂ R ∪ {∞} and proper
Q-parabolic subgroups of SL(2).

It is known that X
BS is a real analytic manifold with corners, and the

Γ-action on X extends to a proper real analytic action on X
BS. Under this

action, for any γ ∈ Γ, a boundary component e(P) is mapped to e(γP). If Γ
is torsion free, then the quotient Γ\X

BS is a compact real analytic manifold
with corners. Consequently, the inclusion Γ\X ↪→ Γ\X

BS is a homotopy
equivalence.

In the above example of X = SL(2, R)/SO(2) = H, Γ\X
BS is a surface

with boundary, which is obtained by adding a circle to every end (or cusp)
of Γ\X.

Theorem 3.2. For an arithmetic subgroup Γ as above, the Borel–Serre
partial compactification X

BS is a cofinite Γ-CW-complex EFΓ.

Proof. The existence of Γ-equivariant triangulation [15] shows that X
BS

has the structure of a cofinite Γ-CW-complex. We need to show that for
any finite subgroup H of Γ, the set of fixed points (XBS)H is contractible.

If H is trivial, then (XBS)H = X
BS. Since X

BS is a manifold with
corners whose interior is equal to X and X is contractible, it is clear that
X

BS is contractible.
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Assume that H is a nontrivial finite subgroup. Since X is simply con-
nected and nonpositively curved, XH is a nonempty totally geodesic sub-
manifold (see [1, the proof of Proposition 4.5]). If H does not fix any
boundary point, then (XBS)H = XH and is hence contractible. Suppose
that H does fix a boundary point z ∈ e(P) for some Q-parabolic subgroup
P. It follows from the construction of X

BS that for any element γ ∈ Γ, γ
maps a boundary component e(P) to e(γP). Since P is equal to its nor-
malizer, it follows that H ⊂ P . Pick any point x0 ∈ XH . Then H fixes
x0 and hence H is contained in the maximal subgroup Kx0 of G that fixes
x0. By Equation (3.1), H ⊂ P ∩ K = KP,x0 ⊂ MP,x0 . This implies that
H ⊂ Γ ∩ MP,x0 .

The above discussion implies that for any Q-parabolic subgroup P, H
fixes a point in e(P) if and only if H ⊂ MP,x0 for any point x0 ∈ XH . Let
ZNP

H be the subspace of elements of NP that commute with H, and (XP)H

be the set of fixed points of H in XP. It can be shown that ZNP
H × (XP)H

is the set e(P)H of fixed points in e(P).
Since AP,x0 commutes with MP,x0 , it can be shown that the fixed-point

set XH contains the following subset:

ZNP
H × AP,x0 × (XP)H .

This implies that the boundary fixed points e(P)H can be contracted into
XH along the direction of AP,x0 .

Since
(XBS)H = XH ∪

∐

P

e(P)H ,

where P runs over all Q-parabolic subgroups containing H, it follows that
the boundary points of (XBS)H can be contracted into the interior XH ,
which is contractible. Therefore, (XBS)H is contractible. �

Remark 3.3. The retraction of the boundary points of X
BS into X and

hence the boundary points of (XBS)H into XH can be written down explic-
itly. See [17] for details. It can also be shown that (XBS)H is a manifold
with corners.

Remark 3.4. This theorem was mentioned in [14, Remark 5.8], attributed
to Borel and Prasad, but without any indication of their proof. Since it
is difficult to find the original correspondences between Adem, Borel and
Prasad, we give a proof here.
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Remark 3.5. The result in Theorem 3.2 can be generalized to S-arithmetic
subgroups over number fields such as SL(n, Z[ 1

p1
, . . . , 1

pm
]). Briefly, let Γ be

an S-arithmetic subgroup of a reductive algebraic group G defined over a
number field k. For every finite place p in S, i.e., p ∈ Sf , there is a Bruhat–
Tits building Xp associated with G(kp). To the set S∞ of all the infinite
places, there is associated a symmetric space X∞. Define

XS = X∞ ×
∏

p∈Sf

Xp.

Since every of X∞ and Xp is a proper CAT(0)-space, it follows that XS is
also a proper CAT(0)-space (see [1, 12] for more details about Xp and XS).
This implies that XS is a EFΓ-space. If the k-rank of G is equal to 0, then
Γ\XS is compact. By [1, Proposition 2.13], XS is a cofinite Γ-CW-complex.
On the other hand, if the k-rank of G is positive, then there is a Borel–Serre
partial compactification

X
BS
S = X

BS
∞ ×

∏

p∈Sf

Xp

such that the quotient Γ\X
BS
S is compact. By the same arguments as in the

proof of Theorem 3.2, we can show that X
BS
S is a EFΓ-space. Arguments

similar to those in the proof of [1, Proposition 2.13] show that X
BS
S has the

structure of a cofinite Γ-CW-complex. Therefore, X
BS
S is a model of EF

given by a cofinite Γ-CW-complex.

Next we show that (1) EFΓ = X
BS is metrizable, (2) with respect to a

suitable metric, it is a proper geodesic space, uniformly contractible and of
bounded geometry, (3) and the fixed-point sets of finite subgroups of Γ also
satisfy the conditions in Theorem 1.2.

Since X
BS is a manifold with corners, it is clearly metrizable. On the

other hand, X is a complete Riemannian manifold with respect to the G-
invariant metric, and hence the boundary points in e(P) are of infinite dis-
tance from the interior points in X with respect to the invariant metric.
This implies that the induced distance function on X does not extend to a
distance function on X

BS.
For this purpose, we need a realization of X

BS as a submanifold XT

of X, where T is a suitable truncation parameter (see [17]). Briefly, XT is
submanifold with corners of X obtained by removing a cusp neighborhood of
every boundary component e(P) in a Γ-equivariant way with respect to the
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fixed basepoint x0 corresponding to K ⊂ G. When X is the upper halfplane
H, XT is obtained from H by removing a horoball at every rational boundary
point in Q ∪ {∞} ⊂ R ∪ {∞}. [The sizes of these balls are determined by
the equivariance with respect to the action of SL(2, Q).]

The group Γ acts properly on XT with a compact quotient Γ\XT , which
is diffeomorphic to the Borel–Serre compactification Γ\X

BS. The space
Γ\XT can also be obtained from Γ\X by truncating every end. Since XT

is a subspace of X, the Riemannian length function of X restricts to a
distance function dT on XT . But XT is not a convex subspace of X, and
hence the restriction dT to XT is not a length function. On the other hand,
the distance function dT induces a length function d̃T , with respect to which
XT is a proper geodesic space.

To apply Theorem 1.2, we need to show that for any pair of finite sub-
groups H, I of Γ with I ⊆ H, the fixed-point set (XT )I and the quotient
NH(I)\(XT )I are uniformly contractible and of bounded geometry.

Since the quotient Γ\XT is a compact manifold with corners, by the
proof of Corollary 2.6, (XT , d̃T ) is of bounded geometry.

For any finite subgroup I ⊂ Γ, as mentioned earlier, XI is a totally
geodesic submanifold of X (see [1, the proof of Proposition 4.5]), and hence
(XT )I = XI ∩ XT is of bounded geometry.

To show the desired uniform contractibility of (XT )I and NH(I)\(XT )I ,
we need to compare the subspace distance dT and the induced geodesic
distance function d̃T on XT . From the construction, it is clear that d̃T ≥ dT .
In the other direction, we have the following result.

Proposition 3.6. There exists a positive function f(t) satisfying limt→+∞
f(t) = +∞ such that for any x, y ∈ XT ,

d̃T (x, y) ≤ f(dT (x, y)).

In other words, dT and d̃T are coarsely equivalent.

Proof. Since Γ\XT is compact and both dT and d̃T are Γ-invariant
distance functions on XT , it suffices to set x equal to a fixed base-point x0.
For any R > 0, consider the closed metric ball BXT

(x0, R) with respect to
the metric dT . Let f(R) be the maximum distance from x0 to points in
BXT

(x0, R) with respect to d̃T . Then for any y ∈ BXT
(x0, R),

d̃T (x, y) ≤ f(R).
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Now for any point y ∈ XT , take R = dT (x0, y). The above inequality implies
that

d̃T (x0, y) ≤ f(dT (x0, y)).

�
Remark 3.7. A stronger conclusion that f is a linear function holds when
Γ is an irreducible lattice and the rank of the symmetric space X is at least
2. In this case, there exists a constant C ≥ 1 such that

dT ≤ d̃T ≤ CdT .

This is a restatement of the main theorem of [18]. In fact, since Γ\XT is
compact, (XT , d̃T ) is quasi-isometric to Γ with a word length dW . It is
proved in [18] that dW is Lipschitz equivalent to the induced metric on an
orbit Γx0 in X from d, and the upper bound in the equation follows from
this.

Proposition 3.8. The proper geodesic spaces (XT , d̃T ) and (XT )I , where
I ⊂ Γ is any finite subgroup, are uniformly contractible.

Proof. For any x ∈ X, let BX(x, R) be the metric ball in X with center
x and radius R in X. For any x ∈ XT , let BXT

(x, R) be the metric ball
in XT with respect to dT , and B̃XT

(x, R) be the metric ball in XT with
respect to the length function d̃T . By Proposition 3.6, B̃XT

(x, R) is con-
tained in BXT

(x, f(R)). We claim that for any r > 0, the ball BXT
(x, r) is

contractible. In fact, the ball BX(x, r) in X is clearly contractible. Now
BXT

(x, r) is obtained from BX(x, r) by removing disjoint and contractible
pieces of horoballs. In fact, BXT

(x, r) = BX(x, r) ∩ XT , and XT is obtained
from X by removing a disjoint Γ-equivariant family of horoballs, and X can
be deformation retracted to XT , equivariantly with respect to any arith-
metic subgroup Γ, along the geodesics induced from the geodesic action
of the split component AP associated with P (see [17]). (Note that XT

is a manifold with corners with one boundary face corresponding to every
Q-parabolic subgroup of G, and the geodesic flow of AP is orthogonal to
the boundary face corresponding to P.) This implies that BX(x, r) can be
deformation retracted in X to BXT

(x, r) by following along parts of these
geodesics, and hence BXT

(x, r) is contractible. This proves that (XT , d̃T ) is
uniformly contractible.

To prove the second statement, we note that for any finite subgroup
I ⊂ Γ, the fixed-point set XI is a totally geodesic submanifold, and XI

T is
equal to XT ∩ XI and is also a totally geodesic submanifold of (XT , d̃T ).
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Then the uniform contractibility of XI
T follows from that of XI as in the

above paragraph. �

Proposition 3.9. For any pair of finite subgroups I, J of Γ such that J
stabilizes the fixed-point set XI

T , the quotient J\XI
T is uniformly contractible.

Proof. Since XI
T is a totally geodesic submanifold of XT , without loss

of generality, we assume XI
T = XT and show that J\XT is uniformly con-

tractible.
As in the previous proposition, we first show that J\X is uniformly

contractible. By [1], the fixed-point set XJ is a nonempty totally geodesic
submanifold. If XJ = X, then J acts trivially on X and J\XJ = X. Hence
J\XJ is uniformly contractible in this case. Assume that XJ is a proper
submanifold. Let N(XJ) be the normal bundle in X. Clearly J acts on
N(XJ). Since X is nonpositively curved and simply connected, the expo-
nential map

(3.2) exp : N(XJ) → X

is a diffeomorphism. Since J acts isometrically on X, the map exp is J-
equivariant. Therefore, we have a homeomorphism (or a diffeomorphism
between orbifolds):

(3.3) exp : J\N(XJ) → J\X

Let x0 ∈ XJ and V be the normal space Nx0(XJ). Then J acts on V
by linear transformation with the origin as the only fixed point, and the
quotient J\V is a cone. In fact, if J has any other fixed point in V , it will
contradict the assumption that V is normal to XJ . This implies that the
quotient J\X a cone bundle on XJ with the fiber cone given by J\V . We
endow J\V with the metric induced from the restriction of the invariant
metric to Nx0(XJ). Since the sectional curvature of X is nonpositive, the
map exp in Equation (3.3) is distance increasing.

First, we note that the cone J\V is uniformly contractible. Let 0 denote
the origin of V and also the vertex of the cone J\V . We consider several
cases. First, assume that J acts freely on V − {0}. Then there exists a
positive function f(R) such that for any x ∈ J\V with d(x, 0) ≥ f(R), the
ball B(x, R) in J\V is diffeomorphic to a ball of the same radius in V and
hence contractible. Certainly we can take f so that f(R) ≥ R. On the other
hand, if the distance d(0, x) ≤ f(R), then the ball B(x, f(R)) contains 0 and
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hence B(x, f(R)) is contractible to 0 along the rays from 0 in J\V . This
implies that the ball B(x, R) is either contractible already or contractible to
the point 0 in the larger ball B(x, f(R)). This proves that J\V is uniformly
contractible.

Second, we assume that some elements of J fix some points in V − {0}.
Clearly, for any γ ∈ J , the set of fixed points V γ is a linear subspace, and
near the image of V γ , J\V has a cone structure. As in the above paragraph,
we can consider balls that are close to these fixed points and balls that are
far away to show that J\V is uniformly contractible.

Using the fact that the exp in Equation (3.3) is distance preserving on
the radial direction and expanding in other directions, similar arguments as
above show that the quotient J\X is uniformly contractible.

As in the proof of Proposition 3.8, we can use the uniform contractibility
of J\X and the Γ-equivariance of the deformation retract of X to XT in [17]
to show that J\XT is also uniformly contractible. This completes the proof
of Proposition 3.9. �

Proof of Theorem 3.1. Let Γ be an arithmetic group as in the theorem.
By [2, Section 3] (see Proposition 1.3 above), Γ has a finite asymptotic
dimension. By Theorem 3.2 and Proposition 3.9, the conditions in Theorem
1.2 are satisfied by Γ. Therefore, the generalized integral Novikov conjecture
holds for Γ. �

4. Polycyclic groups

In this section, we show that the generalized integral Novikov conjecture
holds for polycyclic groups.

Recall that a group Γ is called polycyclic if there exists a finite sequence
of subgroups

Γ = Γ0 ⊃ Γ1 ⊃ · · · ⊃ Γk = {e}

such that Γi is normal in Γi−1 and Γi−1/Γi is cyclic. If each quotient Γi−1/Γi

is isomorphic to Z, Γ is called strongly polycyclic. A group Γ is called virtually
polycyclic (resp. virtually strongly polycyclic) if it contains a ploycyclic (resp.
strongly ploycyclic) group Γ′ as a subgroup of finite index.

It is known [19, Theorem 4.28] that any lattice (which is automati-
cally cocompact) in a simply connected solvable Lie group is strongly poly-
cyclic, and every polycyclic group Γ admits a normal subgroup Γ′ of finite
index that is isomorphic to a lattice in a solvable simply connected Lie
group.
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More generally, let S be a connected, simply connected solvable group
and K a compact subgroup of the automorphism group Aut(S). Let S � K
be the associated semidirect product. It is known [37, Theorem 3] that
any discrete cocompact subgroup Γ of S � K is virtually polycyclic, and Γ
does not contain any nontrivial finite normal subgroup; and the converse is
also true.

In this section, we prove the following result.

Theorem 4.1. If Γ is a virtually polycyclic group, then the generalized
integral Novikov conjecture in both L- and K-theories holds for Γ.

Remark 4.2. This result was proved in [4, Section 9 and p. 141]. But
the proof there seems to be problematic. Realize Γ or a quotient of Γ by a
maximal finite normal subgroup as a lattice in the group S � K. Then S can
be taken to be a EFΓ space. It was stated in [4, Section 9 and p. 141] that
S has the structure of a cofinite Γ-CW-complex, but no proof was given.
(It is not entirely obvious. See Proposition 4.4 below.) The paper then
claimed that since S is diffeomorphic to an Euclidean space, EFΓ = S can
be compactified by adding a sphere at infinity as in the case of an Euclidean
space Rn. Actually, unless Γ is crystallographic, this compactification is
not Γ-equivariant. In fact, it is not clear how to extend the action of Γ on
S to the compactification since the boundary points do not have intrinsic
interpretations as in the case of the Euclidean space in terms of geodesics.
On the other hand, in a special case when S endowed with the invariant
metric is nonpositively curved, it is contained in [1, Proposition 4.5], which
states that if a group Γ acts properly and co-compactly on a complete,
nonpositively curved manifold M , then the generalized integral Novikov
conjecture in both K- and L-theories holds for Γ. (In this case, M can be
compactified by adding the set M(∞) of equivariance classes of geodesics,
and the isometric action of Γ on M clearly extends to a countinuous action on
M ∪ M(∞).) This special case happens, for example, if there is a semisimple
Lie group G with an Iwasawa decomposition G = NAK, and S = NA.

To prove Theorem 4.1, the idea is to apply Theorem 1.2. The first
condition is satisfied according to the following result.

Proposition 4.3. If Γ is virtually polycyclic, and Γ′ a polycyclic subgroup
of finite index, then the asymptotic dimension of Γ, denoted by asdim Γ, is
bounded by the Hirsch length of Γ′ and hence is finite.
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Proof. The proposition follows from [20, Theorems 1 and 8]. Since finite
groups and cyclic groups have finite asymptotic dimension, the finiteness of
asdim Γ also follows directly from [21, Theorem 3]. �

The other conditions concern the existence of a EFΓ space given by a
cofinite Γ-CW-complex.

Proposition 4.4. If Γ is a virtually polycyclic group, then it admits a
EFΓ-space given by a cofinite Γ-CW-complex.

Proof. By definition, there exists a polycyclic subgroup Γ′ of finite index.
It is known that any polycyclic group contains a torsion-free subgroup of
finite index. In fact, it contains a strongly polycyclic subgroup of finite
index which is torsion free (see [19, Lemma 4.6]). Hence, Γ contains a
torsion-free subgroup of finite index. This implies that there is a uniform
bound on the order of finite subgroups of Γ, and hence there are maximal
normal finite subgroups contained in Γ. Let H be such a maximal subgroup.
Then H\Γ is a virtually polycyclic group that does not contain a nontrivial
finite normal group. By [37, Theorem 3] mentioned earlier, there exists a
connected and simply connected solvable group S and a compact subgroup
K ⊂ Aut(S) such that H\Γ is isomorphic to a cocompact discrete subgroup
of S � K. Since K is a maximal compact subgroup of S � K, it is known
(see [33, Theorem 4.4] for example) that S = S � K/K is diffeomorphic to
an Euclidean space and gives a EFΓ-space.

Since S is a smooth manifold and Γ acts smoothly and properly, the
existence of equivariant triangulation in [15] shows that S is a cofinite Γ-
CW-complex, and hence gives a Γ-cofinite EFΓ-space. �

To apply Theorem 1.2, we need to understand fixed-point sets SH of
finite subgroups H of Γ and show that their quotients by finite groups are
uniformly contractible and of bounded geometry. Our discussion below also
gives a more direct proof of the above proposition that S is a EFΓ-space.

Let S1 = [S, S], Si+1 = [Si, Si], for i ≥ 1. Since S is solvable, we get a
finite descending commutator series

(4.1) S ∼= S0 ⊇ S1 ⊇ · · · ⊇ Sk−1 ⊇ Sk = {e}

for some k ≥ 0. Since all Si are connected and simply connected, each
successive quotient Si−1/Si is isomorphic as Lie groups to Rdi for some
di ≥ 1.

A simple but crucial observation is that the filtration in Equation (4.1)
is canonical in the sense that they are invariant under Aut(S), and hence
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Aut(S) acts on each successive quotient Si−1/Si = Rdi as an affine trans-
formation.

Since S1 is a normal subgroup of S = S0, S is a principal S1-bundle
over the base S0/S1. Denote the projection map by π1 : S0 → S0/S1. Since
S0/S1 ∼= Rd1 , this bundle can be trivialized and hence there is a diffeomor-
phism

(4.2) S ∼= S0/S1 × S1.

For any s ∈ S, the left multiplication on S induces a translation on
S0/S1 ∼= Rd1 . For any v1 ∈ S0/S1 fixed by s, the multiplication by s induces
a left multiplication on π−1(v) ∼= S1 by some element in S1.

Similarly, S1 is a principal S2-bundle over S1/S2 = Rd2 , and hence S1

is diffeomorphic to S1/S2 × S2. By induction, S has the structure of a
multi-step fibration with the successive bases (from the base up) given by
S/S1, S1/S2, . . . , Sk−1/Sk. It is important to note that this multi-step fibra-
tion is invariant under Aut(S). Similarly, by induction, we get a diffeomor-
phism

(4.3) S ∼= S/S1 × S1/S2 × · · · × Sk−1/Sk ∼= Rd1 × · · · × Rdk .

The left multiplication of S on S induces an action on S/S1 × S1/S2 ×
· · · × Sk−1/Sk. For any i ≤ k, it induces an action on S/S1 × S1/S2 × · · · ×
Si−1/Si, which is a part of the multi-step fibration of S.

For any s ∈ S � K and v = (v1, . . . , vk) ∈ S according to the decompo-
sition in Equation (4.3), if the action of s on S/S1 × S1/S2 × · · · × Si−1/Si

fixes (v1, . . . , vi), then it induces an affine map on Si/Si+1.

Proposition 4.5. Let S be a connected and simply connected solvable Lie
group, K ⊂ Aut(S) a compact subgroup, and H ⊂ S � K a finite subgroup
as above. Then the set SH of fixed points by H on S = S � K/K has a
structure of multi-step fibration contained in the multi-step fibration of S
discussed above (Equation 4.3) such that the subset contained in each base
Si−1/Si is an affine subspace Vi ⊂ Rdi, and hence SH is diffeomorphic to

V1 × · · · × Vk ⊂ Rd1 × · · · × Rdk ∼= S/S1 × · · · × Sk−1/Sk

under the decomposition in Equation (4.3). In particular, the set SH is
contractible.

Proof. By the discussions above, both K and S induce affine actions on
S/S1. If H fixes a point v = (v1, . . . , vk) according to the decomposition in
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Equation (4.3), then it must fix the first component v1 ∈ S/S1 ∼= Rd1 ; and
hence v1 belongs to the set V1 of fixed points of a finite affine group on
S/S1 ∼= Rd1 . Clearly V1 is an affine space.

For each v1 ∈ V1, H induces a finite group action on π−1
1 (v1) ∼= S1, where

π1 : S → S/S1. In fact, for any γ ∈ H and v1 = gS1 ∈ S/S1, assume that
γgS1 = gS1. Then g−1γgS1 = S1 and hence g−1γg ∈ S1 � Aut(S1). This
implies that H ⊂ g(S1 � Aut(S1) ∩ S � Aut(S))g−1. By the same argument
as above, its set of fixed points by H in π−1(v1) ∼= S1/S2 is an affine subspace
V2. For different points in v1 ∈ V1, the sets of fixed points in π−1(v1) are
isomorphic affine subspaces.

Hence, the set of fixed points of H in S/S2 is a fibration with base in
S/S1 given by an affine space V1 and fibers in S1/S2 given by isomorphic
affine spaces V2. By induction, we can prove that SH has the structure of a
multi-step fibration in the proposition. �

Proposition 4.6. Let H be a finite subgroup of S � K as in the above
proposition. Let I be a finite subgroup of S � K stabilizing the set SH .
Then the quotient I\SH is uniformly contractible and of bounded geometry.

Proof. In the multi-step fibration of S in Equation (4.3) above, each
base Si−1/Si has a canonical Euclidean metric induced from the invariant
Riemannian metric on S and the induced action of a subgroup of S � K
on S = S � K/K is given by isometry. By the previous proposition, it suf-
fices to show that finite quotients of an Euclidean space is a uniformly con-
tractible. Since such quotients are metric cones over some lower-dimensional
Euclidean spaces, by the same (in fact, slightly simpler) proof of Proposi-
tion 3.9, we can show that such quotients are uniformly contractible, i.e.,
by considering metric balls either far away from the cone vertex point or
sufficiently close to the convex vertex, we can show that they are either con-
tractible in themselves or in slightly larger balls. Since such metric cones
over Euclidean spaces are of bounded geometry, it can be proved that I\SH

is of bounded geometry. �

Proof of Theorem 4.1. It follows from Propositions 4.4 and 4.6 that the con-
ditions in Theorem 1.2 are satisfied for virtually polycyclic groups. Hence,
Theorem 4.1 is proved. �
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