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Images of real submanifolds under finite
holomorphic mappings

Peter Ebenfelt and Linda P. Rothschild

We give some results concerning the smoothness of the image of
a real-analytic submanifold in complex space under the action of
a finite holomorphic mapping. For instance, if the submanifold is
not contained in a proper complex subvariety, we give a necessary
and sufficient condition guaranteeing that its image is smooth and
the mapping is transversal to the image.

1. Introduction and main results

In this paper we study finite holomorphic mappings of real-analytic subman-
ifolds in C

N . Recall that a germ of a holomorphic mapping H : (CN , p0) →
(CN , p̃0) is finite at p0 if H−1(p̃0) ∩ U = {p0} for a sufficiently small open
neighborhood U of p0 in C

N . If V ⊂ C
N is a germ at p0 of a real-analytic

subvariety and H is a finite holomorphic mapping, then its image, H(V ), is
contained in a germ at p̃0 of a real-analytic subvariety of the same dimen-
sion. We consider here the case where V is a (germ at p0 of a) real-analytic
submanifold and ask for geometric conditions guaranteeing that the image
Ṽ := H(V ) is again a (germ at p̃0 of a) submanifold and H is transversal to
Ṽ at p0. Our main result (Theorem 1.1) generalizes to higher codimension
earlier work of Baouendi and the second author (see [3]). This study is partly
motivated by the recent interest in the structure of nondegenerate mappings
(e.g., finite holomorphic mappings) taking one real-analytic submanifold in
C

N into another. We mention here only the papers [4, 5, 9, 10, 12, 13], and
refer the reader to these papers for precise results and a more extensive
bibliography.

A standard method of studying real-analytic submanifolds involves the
complexification of such manifolds. In this paper we are led to the study of
questions involving images of complex manifolds under finite holomorphic
mappings. The key step in our proof of the main result concerning images
of real-analytic submanifolds (Theorem 1.1 below) is a result for complex
submanifolds (Theorem 2.1 below). A natural question arises concerning
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the hypotheses in Theorem 2.1. This open question is formulated precisely
in Section 4, and some partial results are given there.

Before stating our main result, we must first introduce some notation.
Let M be a real-analytic submanifold of codimension d in C

N with p0 ∈
M . We let M be the usual complexification of M in some neighborhood
of (p0, p̄0) in C

N × C
N ; i.e., M is defined near (p0, p̄0) in C

N × C
N by

ρ1(Z, ζ) = · · · = ρd(Z, ζ) = 0 if M is defined near p0 by

(1.1) ρ1(Z, Z̄) = · · · = ρd(Z, Z̄) = 0.

We shall also associate to a holomorphic mapping H : (CN , p0) → (CN , p̃0)
its complexification H : (CN × C

N , (p0, p̄0)) → (CN × C
N , (p̃0, ¯̃p0)) defined

by H(Z, ζ) = (H(Z), H̄(ζ)), where H̄(ζ) := H(ζ̄). Observe that the map-
ping H sends M into another real-analytic submanifold ˜M if and only if the
complexified mapping H sends M to ˜M, where ˜M is the complexification
of ˜M . Also, observe that the mapping H is finite if and only if H is finite.
It is easy to check that a necessary condition for H(M) to be smooth is that
H(M) is smooth, but the converse is not true in general. (See Remark 3.1.)

A real-analytic submanifold M is called generic if TpM + J(TpM) =
TpC

N for every p ∈ M . Here, TpY denotes the (real) tangent space at p to
a manifold Y , and J : TC

N → TC
N is the complex structure on C

N . An
equivalent definition can be given in terms of local defining equations (1.1)
for M near p0, namely ∂ρ1 ∧ · · · ∧ ∂ρd �= 0 on M . A generic submanifold M
is said to be of finite type at p0 (in the sense of Kohn and Bloom–Graham)
if the (complex) Lie algebra gM generated by all smooth (1, 0) and (0, 1)
vector fields tangent to M satisfies gM (p0) = CTp0M , where CTp0M is the
complexified tangent space to M . Recall that a germ of a smooth mapping
g : (Rk, x) → (R�, y) is said to be transversal to a smooth submanifold Y ⊂
R

� at y if

(1.2) TyY + dg(Tx(Rk)) = Ty(R�).

We shall say that a holomorphic mapping H : (CN , p0) → (CN , p̃0) is trans-
versal to a real-analytic submanifold ˜M ⊂ C

N at p̃0 if it is transversal to M
at 0 as a real mapping H : (R2N , p0) → (R2N , p̃0). Finally, the holomorphic
mapping H is said to be CR transversal to a generic submanifold ˜M at p̃0 if

(1.3) T 1,0
p̃0

˜M + dH(T 1,0
p0

C
N ) = T 1,0

p̃0
C

N .

Here T 1,0
p̃0

˜M denotes the the smooth (1, 0) vectors in Tp̃0C
N that are tangent

to ˜M at p̃0.
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The following theorem is the main result of this paper.

Theorem 1.1. Let M be a (germ of a) real-analytic submanifold through p0
in C

N and H : (CN , p0) → (CN , p̃0) a germ of a finite holomorphic mapping.
Consider the two properties:

(i) The image H(M) is a germ at p̃0 of a real-analytic submanifold.

(ii) The complexified germ H satisfies H−1(H(M)) = M, where M denotes
the complexification of M .

If M is not contained in any proper complex analytic subvariety through
p0, then

(1.4) (i) with H is transversal to H(M) at p̃0. ⇐⇒ (ii)

If M is generic and of finite type at p0, then

(1.5) (i) with H(M) generic ⇐⇒ (ii) .

Moreover, in the latter case, if either (i) or (ii) is satisfied, then the image
H(M) is of finite type at p̃0, and H is CR transversal to H(M) at p̃0.

Remark 1.2. It is well known that if ˜M is a real-analytic submanifold
and H is transversal to ˜M at p̃0, then H−1(˜M) is necessarily a real-analytic
submanifold. Moreover, if ˜M is generic and H is CR transversal to ˜M ,
then H−1(˜M) is generic. Theorem 1.1 can be viewed as providing partial
converses to these statements.

Since a smooth real hypersurface in C
N is necessarily a generic subman-

ifold, we have the following corollary, which shows that condition (iii) of
Theorem 1 in [3] is extraneous.

Corollary 1.3. If M is a real-analytic hypersurface of finite type at p0 in
C

N and H : (CN , p0) → (CN , p̃0) a germ of a finite holomorphic mapping,
then H(M) is a real-analytic, real submanifold if and only if H−1(H(M)) =
M, where M denotes the complexification of M .

Remark 1.4. By using Theorem 4 in [3], we may replace (i) by the condi-
tion (i′): the image H(M) is a germ at p̃0 of a smooth submanifold.

Remark 1.5. If (ii) in Theorem 1.1 is satisfied, then H−1(H(M)) = M .
However, even in the case of a hypersurface, the latter condition does not
imply (i) or (ii) (see Remark 1.11 in [3] for an example).
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The following example shows that the image of a generic manifold of
finite type under a finite holomorphic mapping may not be a CR manifold
at 0. (Recall that M ⊂ C

N is CR at 0 if the mapping p 
→ dim T 0,1M is
constant for p in a neighborhood of 0. A generic manifold through 0 is
necessarily CR at 0.) This example therefore shows that the condition that
H(M) is generic cannot be omitted in (1.5).

Example 1.6. Let M ⊂ C
3 be the generic hypersurface given by

(1.6) M :=
{

(z, w1, w2) ∈ C
3 : Im w1 =

|z|2
2

, Im w2 =
|z|4
2

}

and H = (F1, F2, G) : (C3, 0) → (C3, 0) be the finite mapping given by

(1.7) F1(z, w) = z, F2(z, w) = w1 + iw2, G(z, w) = (w1 − iw2)2

Let M ⊂ C
3 be the real submanifold given by

(1.8) ˜M := {(z̃1, z̃2, w̃) ∈ C
3 : w̃ = (z̃2 + i|z̃1|2 + |z̃1|4)2}.

It is easily checked that ˜M is not CR at 0. One can check by direct calcula-
tion that H(M) ⊂ ˜M . To see that H maps M onto ˜M , let (z̃0

1 , z̃
0
2 , w̃

0) ∈ ˜M .
Taking z0 := z̃0

1 , Re w0
1 = Re z̃0

2 + |z̃0
1 |4/2, Re w0

2 = Im z̃0
2 − |z̃0

1 |2/2, we have
F1(z0, w0) = z̃0

1 and F1(z0, w0) = z̃0
2 , which proves the desired surjectivity.

Note that C
3 is the lowest dimensional complex space in which one can

find an example of the above type. Indeed, for a generic submanifold in C
2

to be of finite type at a point, it must be a real hypersurface, so this case
is covered by Corollary 1.3. However, a totally real generic submanifold in
C

2 can be mapped onto a nongeneric submanifold in C
2, as is shown by the

following example.

Example 1.7. Let

M := {(w1, w2) ∈ C
2 : Im w1 = Im w2 = 0}

and let H(w1, w2) := (w1 + iw2, (w1 − iw2)2). Then H is finite, and H maps
M onto the surface

˜M := {z̃, w̃) ∈ C
2 : w̃ = z̃

2},

which again is not CR at 0 and hence not generic.
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Example 1.8. If M is contained in a complex analytic subvariety, then the
implication ⇐ in (1.4) does not hold in general. Consider M ⊂ C

2 given by
z2 = 0 and the mapping H(z1, z2) = (z1, z

2
2). Observe that the complexifica-

tion M ⊂ C
2 × C

2 of M is the submanifold of points (z1, z2, ζ1, ζ2) such that
z2 = ζ2 = 0, and the complexified map is given by H(z, ζ) = (z1, z

2
2 , ζ1, ζ

2
2 ).

Clearly, we have H−1(H(M)) = M. The image M̃ := H(M) is a subman-
ifold at 0 (i.e., (i)), but H is not transverse to M̃ at 0. However, we do
not know of any examples where (ii) holds, but (i) does not. For further
discussion about this point, see Section 4 of this paper.

As mentioned above, Theorem 1.1 generalizes and sharpens a theorem of
Baouendi and the second author (see [3], Theorem 1, part (B)) for the case,
where M is an essentially finite real-analytic hypersurface. We should also
point out that the conclusion in Theorem 1.1 that H is CR transversal to
H(M), when M is generic and of finite type, provided that H(M) is a generic
manifold, was proved in a recent paper [5] (see Theorem 1.1) by the authors.
We conclude the introduction by mentioning two corollaries concerning ranks
of finite holomorphic mappings that follow from Theorem 1.1.

Corollary 1.9. Let M be a real-analytic generic submanifold of finite type
through p0 in C

N , and H : (CN , p0) → (CN , p̃0) a germ of a finite holomor-
phic mapping. Let M and H denote the complexifications of M and H,
respectively. If H−1(H(M)) = M, then

(1.9) rk
∂H

∂Z
(p0) ≥ codim M,

where rk denotes the rank of a matrix and codim M is the real codimension
of M in C

N .

By combining Theorem 1.1 above with a theorem from [5], we obtain,
as a corollary, a sufficient geometric condition for a finite mapping to be a
local biholomorphism at a given point. For this recall that M is said to be
finitely nondegenerate at p0 if

(1.10) spanC

{

Lα

(

∂ρj

∂Z

)

(p0) : j = 1, . . . , d, α ∈ N
n
+

}

= C
N ,

where spanC denotes the vector space spanned over C and Lα := Lα1
1 , . . . , Lαn

n .
Here, L1, . . . , Ln is a basis for the smooth (0, 1) (or CR) vector fields tangent
to M near p0, and M is defined locally near p0 by (1.1). A direct consequence
of Theorem 1.1 above and Theorem 1.2 in [5] is the following result.
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Corollary 1.10. Let M , M, H, and H be as in Corollary 1.9. Assume,
in addition, that M is finitely nondegenerate at p0. If H−1(H(M)) = M,
then H is a local biholomorphism at p0.

2. Images of complex manifolds under finite mappings

The study of images of complex analytic manifolds and varieties under finite
holomorphic mappings has a long history (see e.g., [7, 8, 14, 15]). The proof
of Theorem 1.1 is mainly based on the following result concerning images of
complex manifolds.

Theorem 2.1. Let X be a complex submanifold through 0 in C
k and f :

(Ck, 0) → (Ck, 0) a germ of a finite holomorphic mapping such that

(2.1) det
∂f

∂z

∣

∣

∣

∣

X

�≡ 0,

where z = (z1, . . . , zk) are coordinates in C
k. Then, the following are equiv-

alent:

(a) f(X) is a germ of a manifold at 0 and f is transversal to f(X),

(b) f−1(f(X)) = X as germs at 0.

Remark 2.2. Without the assumption (2.1), condition (b) in Theorem 2.1
does not imply that f is transversal to f(X), as is shown by the example
given in Remark 1.8 above. We do not know if condition (b) implies that
f(X) is a manifold without assuming (2.1). If X is of dimension one, then
it is shown in Theorem 4.1 below that in fact (b) does imply that f(X) is a
manifold even without assuming (2.1).

Remark 2.3. We note that without the condition of transversality in (a),
condition (b) need not hold. For example, consider X = {(z, w) : w = 0}
and the mapping f(z, w) = (z2 + w2, zw). It can be easily checked that
f(X) = X, but f−1(f(X)) �= X.

Proof of Theorem 2.1. The proof of (a)=⇒(b) is immediate by the transver-
sality assumption (without using (2.1)). We shall prove (b) =⇒ (a). We
first observe that, by the proper mapping theorem, f(X) is a complex ana-
lytic (irreducible) subvariety, of the same dimension as X, through 0 in
C

k. Let q be the codimension of X in C
k. We choose local coordinates



Images of real submanifolds under finite holomorphic mappings 497

(x, y) ∈ C
p × C

q, with p + q = k, vanishing at the origin in C
k such that X

is given locally by y = 0.
Our first claim is that the coordinate functions yl, l = 1, . . . , q, belong

to the ideal I(f(x, y)). If m denotes the multiplicity at the origin of the
finite mapping f : C

k → C
k, then assertion (b) implies that the m points

(counted with their multiplicities) in f−1(w), for an arbitrary w ∈ f(X)
sufficiently close to the origin, are all contained in X = {(x, 0)}. Moreover,
it follows from the condition (2.1) that these m preimages will all be distinct
(multiplicity one) for a set of w which is open and dense in the variety f(X).
(The set of points w in f(X) for which f−1({w}) consists of fewer than m
points is contained in the image of {z : det(∂f/∂z)(z) = 0}, which by the
assumption (2.1) does not contain X.) Thus, if we let h : (Cp, 0) → (Ck, 0)
denote the holomorphic mapping defined by h(x) = f(x, 0), then for an open
and dense set of w ∈ f(X) there are m preimages of w under h. It follows
(see e.g., Proposition 1 on p. 94 in [1]; see also Proposition 2.4 on p. 168 of
[6]) that the multiplicity of h at 0 is at least m, i.e.,

(2.2) m ≤ dimC C{x}/I(f(x, 0)),

where C{x} denotes the ring of convergent power series in x (or ring of
germs at 0 of holomorphic functions in C

p). Consider the homomorphism
φ : C{x, y} → C{x} defined by φ(g)(x) = g(x, 0). Clearly, φ is surjective
and sends I(f(x, y)) into I(f(x, 0)). Hence, φ induces a surjective homomor-
phism φ∗ : C{x, y}/I(f(x, y)) → C{x}/I(f(x, 0)), so that dimC C{x}/I(f(x,
0)) ≤ m. On the other hand, m is the multiplicity of the finite map-
ping f , i.e.,

(2.3) m = dimC C{x, y}/I(f(x, y)),

and hence, by (2.2), we must have that

(2.4) dimC C{x}/I(f(x, 0)) = dimC C{x, y}/I(f(x, y))

and φ∗ is an isomorphism. Since φ∗(yl) = 0, for l = 1, . . . , q, we conclude
that

(2.5) yl ∈ I(f(x, y)), l = 1, . . . , q,

as claimed above.
Notice that as a consequence of (2.5), ∂f/∂y(0) has rank q. After

a linear invertible transformation in the target space C
k (if necessary),
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we can decompose its coordinates as w = (ξ, η) ∈ C
p × C

q and write the
mapping f(x, y) as f(x, y) = (R(x, y), S(x, y))t, where R = (R1, . . . , Rp)t,
S = (S1 . . . , Sq)t, and

(2.6)
∂R

∂y
(0) = 0p×q,

∂S

∂y
(0) = Iq×q,

where 0p×q denotes the (p × q)-matrix whose entries are all 0 and Iq×q the
(q × q) identity matrix. Hence, we can further write the components of the
mapping as

(2.7) R(x, y) = R0(x) + R1(x, y)y, S(x, y) = y + S0(x) + S1(x, y)y,

where R1(x, y) and S1(x, y) are (p × q)-matrix and (q × q)-matrix valued
functions, respectively, with R1(0) = 0 and S1(0) = 0. Observe that the
restriction to y = 0 is given by h(x) = f(x, 0) = (R0(x), S0(x))t.

Lemma 2.4. With the notation introduced above, the germ at 0 of the
holomorphic mapping R0 : (Cp, 0) → (Cp, 0) is finite with multiplicity m and

(2.8) S0(x) = g(R0(x)),

where g : (Cp, 0) → (Cq, 0) is the germ of the holomorphic mapping that sat-
isfies

(2.9) g(ξ) :=
1
m

m
∑

ν=1

S0(xν(ξ))

for a generic point ξ ∈ C
p; here, xν(ξ) denote the m distinct preimages of ξ

under the mapping R0.

Proof of Lemma 2.4. In view of (2.5), we have

(2.10) y = A(x, y)R(x, y) + B(x, y)S(x, y),

for some matrix valued functions A, B. If we expand A(x, y) and B(x, y) in y
in Taylor form, writing A(x, y) = A0(x) + O(y) and B(x, y) = B0(x) + O(y),
we conclude by substituting (2.7) into (2.10) and setting x = 0 that

(2.11) B0(0) = Iq×q.

Similarly, by setting y = 0 we obtain

(2.12) A0(x)R0(x) + B0(x)S0(x) = 0.
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It follows from (2.11) that B0(x) is invertible near 0 and therefore, by (2.12),
the components of S0(x) are in the ideal I(R0(x)). In other words, we
have I(f(x, 0)) = I(R0(x)). Thus, by (2.4) the number m of preimages of
a generic w ∈ f(X) under h : (Cp, 0) → (Ck, 0) is also the multiplicity of
the mapping R0 : (Cp, 0) → (Cp, 0) as claimed in the lemma. If we write
w = (ξ, η) ∈ C

p × C
q for a point in f(X), then for generic ξ we have

(2.13) η = S0(xν(ξ)), ν = 1, . . . , m.

If we define g by (2.9), then g extends to a holomorphic function near 0,
since it is a symmetric function of the roots x1, . . . , xm, and (2.8) can be
verified directly from (2.13). �

We may now complete the proof of Theorem 2.1. Let g be as in Lemma
2.4. If we make the change of variables

(2.14) ξ′ = ξ, η′ = η − g(ξ)

in the target space C
k then by writing

g(R0(x) + R1(x, y)y) = g(R0(x)) + O(|x| + |y|)y

and using Lemma 2.4, the mapping f(x, y) takes the form

(2.15) f(x, y) = (R0(x) + R1(x, y)y, y + S̃1(x, y)y)t,

where S̃1(x, y) is a (q × q)-matrix-valued function with S̃1(0) = 0. By (2.15),
the q-dimensional complex subvariety f(X), where X = {y = 0}, is con-
tained in the q-dimensional plane {η′ = 0} in C

k. This proves that f(X) =
{η′ = 0} and hence is a submanifold at 0. It is obvious from the form (2.15)
of the mapping that f is transversal to f(X). This completes the proof of
Theorem 2.1. �

Remark 2.5. The condition (2.1) in Theorem 2.1 is only used to deduce
that the generic number of preimages of the mapping f |X : (X, 0)→(f(X), 0)
equals the multiplicity of the mapping f : (Ck, 0) → (Ck, 0). In fact, these
two properties are equivalent as the reader can verify.

3. Proof of Theorem 1.1

Proof. Without loss of generality, we may take p0 = p̃0 = 0. We assume first
that M is a real-analytic submanifold that is not contained in any proper
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complex subvariety of C
N . To prove the implication =⇒ of (1.4), we sup-

pose that ˜M := H(M) is a germ at 0 of a real-analytic submanifold and
that H is transversal to H(M) at 0. Observe that ˜M is of the same dimen-
sion as M , since H is a finite mapping. If ρ̃(Z, Z̄), where ρ̃ = (ρ̃1, . . . , ρ̃d),
is a defining function for ˜M , then the fact that H is transversal implies
that ρ(Z, Z̄) := ρ̃(H(Z), H̄(Z̄)) is a defining function for M . By simply
replacing Z̄ by ζ in the above, we conclude that H−1( ˜M) = M which is the
assertion (ii).

To prove the implication ⇐= in (1.4), we shall need the observation that

det
∂H

∂(Z, ζ)

∣

∣

∣

∣

M
�≡ 0.

Indeed, if det(∂H/∂(Z, ζ))|M ≡ 0, then by the specific form of H it would
follow that |det(∂H/∂Z)|M |2 ≡ 0 contradicting the assumptions that H is
finite and M is not contained in a proper complex-analytic subvariety. We
may now apply Theorem 2.1 with X := M and f := H to conclude that
˜M := H(M) is a germ at 0 of a manifold with H transversal to ˜M at 0.
Since H is finite, ˜M has the same dimension as M. Moreover, ˜M satisfies
the “reality” symmetry: if (Z, ζ) ∈ ˜M, then (ζ̄, Z̄) ∈ ˜M. The latter is easily
verified (and the verification is left to the reader) from the fact that M has
this symmetry, by using the specific form of H. The symmetry implies
that one can find defining equations for ˜M near 0 of the form ρ̃(Z, ζ) =
0, where ρ̃ = (ρ̃1, . . . , ρ̃d), and for each 1 ≤ j ≤ d we have ρ̃j(Z, Z̄) is real-
valued. It follows that the real-valued equation ρ̃(Z, Z̄) = 0 defines a real-
analytic submanifold ˜M ⊂ C

N through 0 of codimension d. By construction,
H sends M into ˜M . We must show that H sends M onto ˜M in the sense of
germs at 0. The fact that H is transversal to ˜M at 0 means that ρ(Z, ζ) :=
ρ̃(H(Z), H̄(ζ)) is a defining function for M at 0. Clearly, this also means
that ρ(Z, Z̄) is a defining function for M at 0 and, hence, H−1(˜M) = M
as germs at 0. Since any representative of the germ H near 0 is an open
mapping, we conclude that H(M) = ˜M as germs at 0. This completes the
proof of the implication ⇐= in (1.4).

To complete the proof of Theorem 1.1, assume that M is a generic sub-
manifold of finite type at 0. We shall show that (1.5) holds. Note first that
M generic implies that M is not contained in any proper complex subman-
ifold of C

N . It follows from (1.4) that (ii) =⇒ (i) and H is transversal
to H(M) at 0. As above, we note that ρ(Z, Z̄) = ρ̃(H(Z), H(Z)), where
ρ̃(Z, Z̄) is a defining function for H(M) near 0, is a defining function for M
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near 0. Now, by the chain rule

∂ρ

∂Z
(0) =

∂ρ̃

∂Z
(0)

∂H

∂Z
(0)

and, hence, the rank of (∂ρ̃/∂Z)(0) must be d since M is generic. Conse-
quently, H(M) is generic.

For the implication =⇒ in (1.5), let ˜M := H(M) be a generic submani-
fold. It follows from Proposition 2.3 in [5] that ˜M is of finite type at 0, since
H is finite. Finally, the mapping H is CR transversal (and hence transver-
sal) to ˜M at 0, by Theorem 1.1 of [5]. The rest of the proof of (1.5) now
follows from (1.4). �

Remark 3.1. To prove that H(M) is smooth in the proof above, we
have used not only that H(M) is smooth but also that H is transversal
to H(M). In general, H(M) smooth does not imply that H(M) is smooth.
For instance, consider M = R in C and the mapping z 
→ z2. However, the
reverse implication does hold, i.e., if H(M) is smooth, then H(M) is also
smooth.

4. Further results on images of curves
under finite mappings

In this section, we shall address the following question, which was alluded
to above.

Question: Let X be a complex submanifold through 0 in C
k, and f : (Ck, 0) →

(Ck, 0) a germ of a finite holomorphic mapping. Does the identity f−1

(f(X)) = X, as germs at 0, imply that f(X) is a submanifold at 0?

An equivalent formulation can be given as follows.
Question′: Let X̃ be a complex subvariety through 0 in C

k, and f : (Ck, 0) →
(Ck, 0) a germ of a finite holomorphic mapping. Assume that X := f−1(X̃)
is a submanifold at 0. Does this imply that X̃ is a submanifold at 0?

As mentioned above, we do not know the answer in general. However,
the answer for one-dimensional submanifolds is affirmative in view of the
following result.

Theorem 4.1. Let X be a complex submanifold of dimension one (i.e.,
a smooth complex curve) through 0 in C

k and f : (Ck, 0) → (Ck, 0) a germ
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of a finite holomorphic mapping. If f−1(f(X)) = X as germs at 0, then
X̃ := f(X) is a germ at 0 of a submanifold.

An equivalent formulation of this result in the spirit of the second for-
mulation of the question above is the following.

Theorem 4.2. Let X̃ be a complex subvariety of dimension one (i.e., a
complex curve) through 0 in C

k and f : (Ck, 0) → (Ck, 0) a germ of a finite
holomorphic mapping. If X := f−1(X̃) is a germ at 0 of a submanifold (i.e.,
a smooth curve), then X̃ is also a submanifold (i.e., a smooth curve) at 0.

Proof of Theorem 4.1. Let Z = (z, w) ∈ C × C
k−1 be local coordinates at 0

in which X = {(z, w) : w = 0}. We also choose coordinates Z̃ at 0 in the
target copy of C

k such that, after possibly another change of coordinates in
the z variable,

(4.1) g(z) := f(z, 0) = (zm, f2(z, 0), . . . , fk(z, 0)),

where fj(z, 0) = O(zm) for j = 2, . . . , k. We expand the fj(z, 0), j = 2, . . . , k,
in their Taylor series

(4.2) fj(z, 0) =
∞

∑

l=1

ajlz
l, j = 2, . . . , k.

We define

(4.3) q := gcd(m, {l : a1l �= 0}, . . . , {l : akl �= 0}),

where gcd(n1, n2, . . .) denotes the greatest common divisor of the numbers
n1, n2, . . . . We observe that there are holomorphic functions hj(z), for j =
2, . . . , k, such that

(4.4) fj(z, 0) = hj(zq), j = 2, . . . , k.

We claim that, for any t �= 0, the preimages of g(t) are {ε0t, . . . , εq−1t},
where ε0, . . . , εq−1 are the qth roots of unity. The fact that all the points εjt,
j = 0, . . . , q − 1, are preimages is clear from the definition of q and (4.4).
Conversely, if z0 is a preimage of g(t0) for some t0 �= 0, then z0 = εt0 for
some mth root of unity ε. Since the only possible preimages of a point g(t)
with t close to t0 are of the form z = δt for some mth root of unity δ, we
conclude that z = εt is a preimage of g(t) for all t near t0. Hence, we have
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fj(εt, 0) = fj(t, 0) for j = 2, . . . , k, which implies

(4.5)
∞

∑

l=1

ajlε
ltl =

∞
∑

l=1

ajlt
l, j = 2, . . . , k,

for t near t0. Consequently, εl = 1 for all l such that ajl �= 0 for some j =
2, . . . , k. Since εm = 1 as well, we conclude that εq = 1, where q is as defined
in (4.3). This proves the claim above.

If q = m, then it is clear that X̃ is smooth at 0. Thus, to complete the
proof of Theorem 4.1 it suffices to assume that 1 ≤ q < m and show that
f−1(f(X)) contains but is not equal to X. This is an immediate consequence
of the following lemma, since f(t, 0) is O(tm) and q < m. �

Lemma 4.3. Let f and X be as in Theorem 4.1 and q the multiplicity of
the mapping f |X : X → X̃ := f(X). If f−1(f(X)) = X as germs at 0, then
there is a germ at 0 of a holomorphic function F : (Ck, 0) → (C, 0) such that
F (f(t, 0)) = ctj, where c �= 0 and 1 ≤ j ≤ q.

Proof. We retain the normalizations as in the beginning of the proof of Theo-
rem 4.1. Let p be the multiplicity of the finite mapping f : (Ck, 0) → (Ck, 0)
and, for generic Z̃, let Z1 := Z1(Z̃), . . . , Zp := Zp(Z̃) be the preimages of Z̃
under f . For j = 1, . . . , p, we form the jth symmetric combination of these
preimages, i.e., F j(Z̃) = (F j

1 (Z̃), . . . F j
k (Z̃)), where

(4.6) F j
i (Z̃) = (−1)j

∑

1≤l1<···<lj≤p

Z l1
i . . . Z

lj
i .

As is well known, the mappings F j , originally defined only for generic Z̃,
extend as holomorphic mappings (Ck, 0) → (Ck, 0). Since all the preimages
of f(t, 0), for (t, 0) ∈ X, are assumed to lie on X and, hence are of the form
(εit, 0) with εq

i = 1 for i = 0, 1, . . . , q − 1, we conclude that

(4.7) F j(f(t, 0)) = (cjt
j , 0), j = 1, . . . , p,

for some constants cj . Thus, to prove Lemma 4.3, it suffices to show that
cj �= 0 for some j ≤ q. To this end, we introduce the Weierstrass polynomial
(4.8)

P (Z̃, x) := xp + F 1
1 (Z̃)xp−1 + · · · + F p−1

1 (Z̃)x1 + F p
1 (Z̃) =

p
∏

l=1

(x − Z l
1),
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where the last identity only holds for generic Z̃. We let R(t, x) denote the
polynomial P (f(t, 0), x) and observe that R(t, x) has the form

(4.9) R(t, x) = xp + c1tx
p−1 + · · · + cp−1t

p−1x + cpt
p.

Moreover, by construction, the distinct roots of R(t, x) are precisely xi = εit,
i = 0, 1, . . . , q.

Lemma 4.4. Let Q(y) be a monic polynomial of degree p

(4.10) Q(y) = yp + e1y
p−1 + · · · + ep−1y + ep.

If all the roots of Q(y) are q-roots of unity with q ≤ p, then there is 1 ≤ j ≤ q
such that ej �= 0.

Proof. Let S(w1, . . . , wp, y) be the monic polynomial in y with polynomial
coefficients ci(w) given by

(4.11) S(w, y) =
p

∏

l=1

(y − wi) = yp + c1(w)yp−1 + · · · + cp−1(w)y + cp(w).

Note that the polynomial ci(w) is homogeneous of total degree i in the
complex variables w1, . . . , wp and is invariant under all permutations of
the wi. Furthermore, by the well-known theorem of elementary invari-
ant theory (see e.g., [2], Theorem 5.3.4), if d(w) is any polynomial invari-
ant under all permutations of w, then there is a polynomial a(b1, . . . , bp)
such that

(4.12) d(w) = a(c1(w), . . . , cp(w))

In view of the homogeneity of the ci(w), it follows from (4.12) that if dq(w)
is homogeneous of degree q, then there is a polynomial aq(b1, . . . , bq) (nec-
essarily of degree ≤q and with no constant term) such that

(4.13) dq(w) = aq(c1(w), . . . , cq(w))

Now take dq(w) :=
∑p

i=1 wq
i . If wi = εi is a q-root of unity for i = 1, . . . p,

then dq(ε1, . . . , εp) = p, and, in particular, is not zero. It follows from (4.13)
that cj0((ε1, . . . , εp) �= 0 for some j0 with 1 ≤ j0 ≤ q. Therefore, since all the
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roots of Q(y) given by (4.10) are assumed to be q-roots of unity, it follows
that the coefficient ej0 of Q(y) is not zero. This proves Lemma 4.4. �

To complete the proof of Lemma 4.3, we set y = x/t in (4.9) and define
Q(y) := R(t, ty)/tp, i.e.,

(4.14) Q(y) = yp + c1y
p−1 + · · · + cp−1y + cp.

All the roots of Q(y) are q-roots of unity by construction. By Lemma 4.4,
there is 1 ≤ j ≤ q such that cj �= 0. This proves Lemma 4.3. �

We conclude this paper by giving an equivalent algebraic reformulation
of the question posed in the beginning of this section. Let I be an ideal in
C{Z}. Recall that I is the ideal of a complex analytic subvariety X at 0 if
and only if I =

√
I, i.e., I is radical. The subvariety X is a submanifold at

0 if and only if the ring C{Z}/I is regular, i.e., isomorphic to a power series
ring C{t}.

Question′′: Let φ : C{x1, . . . , xk} → C{z1, . . . , zk} be an injective C-algebra
homomorphism such that C{z1, . . . , zk} is integral over φ(C{x1, . . . , xk}).
Let I be a radical ideal in C{x1, . . . , xk} and J the ideal in C{z1, . . . , zk}
generated by φ(I). Assume that the ring C{z1, . . . , zk}/

√
J is regular. Does

this imply that C{x1, . . . , xk}/I is regular?

In this formulation, the answer is negative if the field of complex num-
bers is replaced by any field of characteristic 0 < p < ∞ in view of the fol-
lowing example, communicated to us by Joseph Lipman, who attributed it
to Melvin Hochster. Let K be a field of characteristic p and consider the
homomorphism φ : K{u, v, w} → K{x, y, z} given by u 
→ xp, v 
→ yp, and
w 
→ z. If we let I be the (prime) ideal generated by wp + uv, then J is the
ideal generated by zp + xpyp, which in characteristic p is equal to (z + xy)p.
The radical

√
J is then generated by z + xy, and C{z1, . . . , zk}/

√
J is reg-

ular. However, C{x1, . . . , xk}/I is not regular. Another counterexample (in
characteristic 3) was attributed to Bill Heinzer. Lipman also informed us
that he has an algebraic proof [11] showing that if “regular” in Question′′

above is replaced by “normal”, then the answer is affirmative (indeed, he
proved this statement in a more general context). For an ideal I for which
dim C{z1, . . . , zk}/I = 1, normal is the same as regular and, hence, Lipman’s
arguments yield another proof of Theorem 4.2 above. We would like to take
this opportunity to thank the above mentioned people for their help and
interest in our question.
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