COMMUNICATIONS IN
ANALYSIS AND GEOMETRY
Volume 15, Number 3, 435-490, 2007

Uniqueness and pseudolocality theorems
of the mean curvature flow

BING-LoNG CHEN AND LE YIN

Mean curvature flow evolves isometrically immersed base manifolds
M in the direction of their mean curvatures in an ambient manifold
M. If the base manifold M is compact, the short-time existence
and uniqueness of the mean curvature flow are well known. For
complete isometrically immersed submanifolds of arbitrary codi-
mensions, the existence and uniqueness are still unsettled even
in the Euclidean space. In this paper, we solve the uniqueness
problem affirmatively for the mean curvature flow of general codi-
mensions and general ambient manifolds. In the second part of
the paper, inspired by the Ricci flow, we prove a pseudolocality
theorem of mean curvature flow. As a consequence, we obtain a
strong uniqueness theorem, which removes the assumption on the
boundedness of the second fundamental form of the solution.

1. Introduction

Let (M™, g) be a complete Riemannian (compact or noncompact) manifold,
and X : (M™, g) — M™ be an isometrically immersed Riemannian manifold.
For any fixed point zop € M", X,Y € T, M™, the second fundamental form
IT at @ is defined by II(X,Y) =V4Y — VY = (ViY)!, where M™ is
regarded as a submanifold of M locally by the isometry Xg, V and V are
the covariant derivatives of § and g, respectively, X,Y are any smooth
extensions of X and Y on M. In a local coordinate system {z!,z2,... 2"}
on M", denote the second fundamental form by h;; = I1((8/0x%), (0/0x7))
and the mean curvature by H = g h;;. The mean curvature flow (MCF) is a
deformation X; : M"™ — M" of Xj in the direction of the mean curvature H

(1.1) %X(x,t) = H(z,t), forx € M™and t > 0,

with X (z,0) = )go(a:), where M™ is equipped with the induced metric from
X(-t): M™ — M™ and H(z,t) is the corresponding mean curvature.
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We can write (1.1) in another form

(1.2) ;X(x,t) = AX(z,t), forx e M™ and t >0,

where  AX*(x,t) = g% (,1)((°X*/0x'027) — TF(0X/0x*) + rg (0X°/
0z')(0X7/0x7)) is the harmonic map Laplacian from the manifold (A", g;;
(-,1)) to (M™, g), and g;;(-,t) is the induced metric from the inclusion
map X (-,1).

Various weak solutions to the MCF have been studied in the past 30
years by many mathematicians with different approaches, e.g., Brakke solu-
tions, the level set solutions, etc. The existence, uniqueness and nonunique-
ness of weak solutions for Euclidean (non)smooth hypersurface have been
extensively studied. In this paper, motivated by geometric applications, we
consider the classical solutions in general ambient Riemannian manifolds.

When M™ is compact, the MCF (1.1) has a unique short-time solution,
since (1.2) is a (degenerate) quasi-linear parabolic equation. For codimen-
sional one complete immersed local Lipschitz hypersurfaces in the Euclidean
space, we refer the readers to see [11,12]. For submanifolds of arbitrary
codimensions in a general ambient Riemannian manifold, the short-time
existence and the uniqueness of (1.1) have not been established in the lit-
erature. In this paper, we deal with the uniqueness problem of the mean
curvature flow and derive the pseudolocality estimate.

The first main theorem of this paper is the following.

Theorem 1.1. Let (M",g) be a complete Riemannian manifold of dimen-
sion i such that the curvature and its covariant derivatives up to order 2
are bounded and the injectivity radius is bounded from below by a positive
constant, i.e., there are constants C and § such that

[Rm| + |VRm| + |V?Rm|(z) < C, inj(M",z) >4 >0,

for all x € M™. Let Xo: M™ — M"™ be an isometrically immersed Rieman-
nian manifold with bounded second fundamental form in M™. Suppose
Xi(z,t) and Xo(z,t) are two solutions to the mean curvature flow (1.1) on
M™ x [0,T] with the same X¢ as initial data and with bounded second funda-
mental forms on [0, T]. Then X1(z,t) = Xo(z,t) for all (z,t) € M™ x [0,T].

We remark that the uniqueness of the Ricci flow has been established by
Zhu and the first author in [5]. More precisely, it was proved in [5] that the
solutions of the Ricci flow in the class of bounded curvature with the same
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initial data are unique. We refer the readers to see an interesting application
of this uniqueness theorem to the theory of the Ricci flow with surgery in
dimension 3 and 4 [2, 4, 21]. We hope this MCF uniqueness theorem will also
play roles in the theory of the mean curvature flow with surgery.

Since the MCF is degenerate in tangent directions, it is not a strictly
parabolic system. In order to apply the standard theory of strict parabolic
equations, we use the De Turck trick [7]. The idea is to pull back the MCF
through a family of diffeomorphisms of the base manifold M"™ generated by
solving a harmonic map flow coupled with the MCF, this gives us the MCF in
harmonic map flow gauge, which is a strict parabolic system. Then we apply
the uniqueness of the strict parabolic system. The issue is not quite straight
forward as it seems. Because before applying the uniqueness theorem of a
strict parabolic system on a noncompact manifold, we encounter two ana-
lytic difficulties. The first one is that we need to establish a short-time
existence for the harmonic map flow between complete manifolds. The sec-
ond one is to get a priori estimates for the harmonic map flow so that after
pulling back, the solutions to the strictly parabolic system still satisfy suit-
able smooth or growth conditions.

In the classical theory of the harmonic map flow, people usually would
like to impose certain convexity conditions to ensure the existence (e.g., the
negative curvature condition [13] or convex condition [8]). We observed that
in [5] the condition of injectivity radius bounded from below by a positive
constant ensures certain uniform (local) convexity and this is sufficient to
give the short-time existence and a priori estimates for the harmonic map
flow. Note that the MCF is a kind of harmonic map flow with varying base
metrics. In order to deal with the a priori estimates for MCF and harmonic
map flow coupled with MCF, we have to consider the general harmonic map
flow. These estimates have been dealt with systematically in this paper
(Sections 2, 3 and 4).

Note that the injectivity radius of a Riemannian manifold with bounded
curvature may decay exponentially. In the Ricci flow case [5], since we
only have the curvature bound, we need make more effort to overcome this
difficulty.

The difference of Theorem 1.1 with [5] is between the extrinsic and
intrinsic geometries. In the present case, instead of the metrics as in the
Ricci flow, we consider the equation of the position function.

As a direct consequence of Theorem 1.1, we have

Corollary 1.2. Let (M™,g) be assumed as in Theorem 1.1 and X; : M™ —
M™ be a solution to the mean curvature flow (1.1) on M"™ x [0,T] with
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bounded second fundamental forms on [0,T], and with complete isometric
immersed Xo: M — M initial data. Let & be an isometry of (M",g) such
that there is an isometry o of (M™, g) to itself satisfying

(1.3) (0 0Xo)(x) = (Xgoo)(x)
for all x € M™. Then we have
(1.4) (0do0Xi)(x) = (X¢too)(z)

for all (x,t) € M™ x [0,T]. In particular, the isometry subgroup of (M",g)
induced by an isometry subgroup of (M™,g) at initial time remains to be an
isometry subgroup of (M™, g¢) for any t € [0,T].

From the PDE point of view, it is a natural condition in Theorem 1.1
to assume that the second fundamental form of the solution is bounded.
In the last part of the paper, we try to remove this condition. We remark
that in [6], Chou and Zhu had obtained the strong uniqueness of the curve
shortening flow for the locally Lipschitz continuous properly embedded curve
whose two ends are presentable as graphs over semi-infinite line. Our strong
uniqueness theorem is the following.

Theorem 1.3. Let M be an fi-dimensional complete Riemannian mani-
fold satisfying Z?:o |VIRm| < 2 and inj(M) > ip > 0. Let Xo: M — M be
an n-dimensional isometrically properly embedded submanifold with bounded
second fundamental form in M. We assume Xo(M) is uniform graphic
with some radius r > 0. Suppose X1(x,t) and Xo(x,t) are two smooth solu-
tions to the mean curvature flow (1.1) on M x [0,Ty] properly embedded in
M with the same Xo as initial data. Then there is 0 < T} < Ty such that
Xi(z,t) = Xo(z,t) for all (z,t) € M x [0,T}].

Here roughly speaking, uniform graphic with radius r(>0) means that
for any xg € Xo(M), Xo(M) N By (xo,r) is a graph. We say a submanifold
M C M is properly embedded in a ball Bj; (g, 7o) if either M is closed or
OM has distance > from . A submanifold M C M is said to be properly
embedded in (complete manifold) M if either M is closed or there is an
wo € M such that M is properly embedded in B (zo, 7o) for any rg > 0.

The strong uniqueness theorem was proved as a consequence of Theo-
rem 1.1 and pseudolocality theorem.

The pseudolocality theorem says that the behavior of the solution at a
point can be controlled by the initial data of nearby points, no matter the
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solution or initial data outside the neighborhood behaviors like. Precisely
the following theorem is proved in this paper.

Theorem 1.4. Let M be an n-dimensional manifold satisfying Z?:o
VIR m| < 2 and inj(M) > ig > 0. Then for every a > 0 there exist € > 0,
0 > 0 depending only on the constants n, ¢y and iy with the following prop-
erty. Suppose we have a smooth solution to the mean curvature flow My C M
properly embedded in By (wo,70) for t €[0,T], where 0 <T < &*3, and
assume that at time zero, My is a local 6-Lipschitz graph of radius ro at
xo € M with ro < (i9/2). Then we have an estimate of the second funda-
mental form

|Al(z,8)* < - + (ero) ™

+]Q

on By (zo,ero) N My, for any t € [0,T].

We refer the reader to see the precise definition of d-Lipschitz graph
in Section 7. The third covariant derivative of the curvature is a technical
assumption which could be improved, we assume it only for simplicity. For
most of interesting cases, we have all covariant derivative bounds.

We remark that for codimension one uniformly local Lipschitz hyper-
surface in Euclidean space, the estimate was firstly derived by Ecker and
Huisken [11, 12]. For higher-codimension case, under an additional condition
which assumes that the submanifold is compact, the estimate was proved
by Wang [24]. In codimension, one case, the constant ¢ in Theorem 1.4 does
not need to be small; however, in higher-codimension case, as noted by [24],
the smallness assumption is necessary in view of the example of Lawson and
Osserman [18]. The strategy of the proofs of [11,12,24] is to find a suit-
able gradient function. The philosophy is that this gradient function will
serve as the lower order quantity as in the Bernstein trick, and the second
fundamental form is the higher order quantity, then apply the maximum
principle. This method has some difficulties in higher-codimensional case
in current stage, treating pure local estimates for noncompact submanifolds
(see [24]).

Our approach is completely different. This approach can be regarded as
an integral version of Bernstein trick. It is a mean curvature flow analog of
the corresponding estimate in Ricci flow given by Perelman [20]. The idea
of localizing monotonicity formulas (see [9], or formula (7.8) in Section 7 of
the present paper) plays a crucial role in our argument. We refer the readers
to see [1,9,10,16] (Euclidean case) for relevant details and references.
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As a nontrivial corollary of Theorem 1.4, we have

Corollary 1.5. Let M be an n-dimensional complete manifold satisfy-
ing S0 o[V'Rm| < ¢ and inj(M) >ip > 0. Let Xo: M — M be an n-
dimensional isometrically properly embedded submanifold with bounded sec-
ond fundamental form |A| < co in M. We assume My = Xo(M) is uniform
graphic with some radius r > 0. Suppose X (xz,t) is a smooth solution to the
mean curvature flow (1.1) on M x [0, Ty] properly embedded in M with Xo as
iitial data. Then there is Th > 0 depending upon cy, g, r and the dimension
n such that

|Al(x,t) < 2co

for all z € M, 0 <t <min{Ty,T1}.

This paper is organized as follows. In Section 2, we derive the injectivity
radius estimate of an immersed manifold and some preliminary estimates for
a general harmonic map flow. In Section 3, the higher-derivative estimates
for the MCF are derived. In Section 4, we study the harmonic map flow
coupled with the MCEF. In Section 5, we deal with the uniqueness theorem
of the mean curvature De Turck flow (or MCF in harmonic map flow gauge).
In Section 6, we prove the uniqueness Theorem 1.1 and Corollary 1.2. In
Section 7, we establish the pseudolocality Theorems 1.4 and 1.5 and prove
the strong uniqueness Theorem 1.3.

2. Preliminary estimates

In the first part of this section, we will derive the injectivity radius estimate
for isometrically immersed manifold M™.

Theorem 2.1. Let (M™",g) be a complete Riemannian manifold of dimen-
sion . with bounded curvature and the injectivity radius is bounded from
below by a positive constant, i.e., there are constants C and § such that

(2.1) [Rm|(z) < C and inj(M" x)>6>0, forallz € M".
Let X : M™ — M"™ be a complete isometrically immersed manifold with
bounded second fundamental form \h | < C in M™, then there is a positive

constant § = §(C,6,C,n) such that the injectivity radius of M™ satisfies

(2.2) inj(M",z) > 6 >0, forallze M".
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Proof. Fix xg € M™, let {y', 9>, ...,y"} and {z!,22, ... 2"} be any two
local coordinates of M™ and M™ at yo(= X (z0)) and xq, respectively, recall
that the second fundamental form can be written in these local coordinates
in the following form

Py~ r Oy y° oy
he = . —
5= wiow  Liggr T o ou
_ dy° oy B )
(2.3) =V,;V,(y )+Fﬁ78xlﬁ’ fora=1,2,...,n,

where V;V;(y®) is the Hessian of y®, which is viewed as a function of M"
near xg. In the following argument, we denote by C; various constants
depending only on C, C and 6.

Define f(z) = d?(yo, X(z)) on M™ N XY B(yo,C1)) for some Cy <6,
then V;f = (0f/0y®)(0y®/dx7) and the Hessian of f with respect to the
metric g on M"™ N X1 (B(yp,C1)) can be computed as follows

0
ViVif = 55V f —T5Vef
_(_Pf g Of\ Oy oy’
Oy oyP By | Oz Oxt
of ((*y™ 0y~ | o, POy
+ o il Nl N
Oy \ 0xt0xI 7 Ox oxt OxJ
- o 720y 0y’
2.4 = VaVjsd? a
(2.4) VaVsd? 5520 4 24V od - I,

Using Hessian comparison theorem on M™ and choosing C suitable small
so that d is suitable small, we get

1
(2.5) Viij > 59”

on M™N XY (B(yy,C1)). Now we claim that any closed geodesic starting
and ending at o on (M", g) must have length > 2C1.

We argue by contradiction. Indeed, suppose we have a closed geodesic
v :[0,L] — M™ of length L < 2Cy, X o~ must be contained in B(yo, C1),
then by (2.5), we have

2

(2.6) L fon(s) = V2f(5.4) >

75 s € [0, L).

L\D\r—t
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By the maximum principle, we have

sup foy(s) < fov(0),
s€[0,L]

this implies that v is just a point 7(0). The contradiction proves the claim.
On the other hand, by the Gauss equation,

Rijri = Rijii + (hf‘kh?l = hﬁhfj)gaﬁ(w 0),
we see that
(2.7) Rm| < C + 202

Finally, by Klingenberg lemma [3], the injectivity radius of (M™", g) at g is
given by

inj(M"™, g, z9) = min {the conjugate radius at g,

1
3 the length of the shortest closed geodesic at a:o}

T _
>min{ —,Cy ;.
= { VT 207 1}
The proof of the theorem is completed. O

Let N be a Riemannian manifold, the distance function d(yi,y2) can
be regarded as a function on N x N. In the next theorem, we will estimate
the Hessian of the distance function, which is viewed as the function of two
variables. The crucial computation of the Hessian was carried out in [23].

Theorem 2.2. Let N" be a complete Riemannian manifold of dimension
n satisfying

(2.8) Rm| < Ko, inj(N") > ig > 0.

Let d(y1,y2) be the distance function regarded as a function on N x N,
then there is a positive constant C' = C(Ky,i9) such that when d(yi,y2) <

min{(ig/2), (1/4v/Ko)}, we have
(i) [V?d®|(y1,92) < C,
(2.9) (i) (V?d*)(X,X) >2|X; — P, ' X, — C|X|*d?

for all X € T(y, ,,)N™ x N",
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where X = X1+ X9, X7 € Ty, N", Xo € T,,N", V is the covariant deriva-
tive of N X N, v is the unique geodesic connecting y1 and y2 in N", and P,
1s the parallel translation of N™ along .

Proof. Set ¥(y1,y2) = d%m(y1,y2). Then 1 is a smooth function of (y1,y2)
when d(y1,y2) < min{(ig/2), (1/4v/Kp)}. Now we recall the computation of
Hess (1) in [23]. For any (u,v) € D = {(u,v) : (u,v) € N" x N dnn(u,v) <
min{(i0/2), (1/4v'Ko)}} \ {(u,u) : u € N}, let vy, be the minimal geodesic
from u to v and e; € T, N" be the tangent vector to 7y, at u. Then e (u,v)
defines a smooth vector field on D. Let {e;} be an orthonormal basis for
T,N™ which depends on u smoothly. By parallel translation of {e;} along
v, we define {€;} an orthonormal basis for T, N". Thus {ey,...en,€1,...€,}
is a local frame on D. Then for any X = Xj + X € T{,)D with

n n
X = Zfzez and Xy = Zméi,
=1

i=1
by the formula (16) in [23],

n

Hess () (X, X) = 36— ) + [ V. V9L

=1

+/ t(Vélv,VéIV>—/ HR(er, VIV, e1)
0 0

(2.10) - [ wr@ v

where V' is a Jacobi field on geodesic o (connecting (v,v) to (u,v)) and
o (connecting (u,u) to (u,v) of length r = /) with X as the boundary
values, where X is extended to be a local vector field by letting its coefficients
with respect to {ei1,...ep,€1,...€,} be constant (see [23]). By the Jacobi
equation, we have the estimates

V| < C(Ko,i0)|X], Ve, V] < C(Ko,io)|X|, 7|Ve, V] < C(Ko,io) | X

under the assumption d(yi,y2) < min{(io/2), (1/4v/Ko)}. Thus by (2.10)
we have

[Hess(¢)| < C(Ko, o),
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this proves (i). Similarly, when d(y1,y2) < min{(io/2), (1/4v/Ko)}, by (2.10),
we have

This proves (ii). The Theorem is proved. O

For future applications, in the next part of this section, we will calculate
the equations of derivatives of general harmonic map flow. Since the MCF
is a kind of harmonic map flow with varying base metrics evolved by MCF,
the formulas computed here are very useful in deriving the higher derivative-
estimates in Section 3 and 4. The formulas are of interest in their own rights.
First we fix some notations.

Let F' be a map from a Riemannian manifold (M, g;;) to another Rie-
mannian manifold (N, gag), let F7ITN be the pull back of the tangent
bundle of N, we equip the bundle (T*M)®P @ F~'TN the connection and
metric induced from the connections and metrics of M and N. Let u be a
section of (T*M)®®P~1) @ F~'TN. In local coordinates {z'} and {y®} of M
and N with y = F(z), we have |u|? = “?11'2...@'?,1“?ljz,..jp,lgiljl g g
The coefficients of the covariant derivative Vu can be computed by the
formula

ous. . 8Fﬁ
(0% _ 11%2...1p—1 - l a Sa y
(Vu)z‘m...z‘p,lz‘p =T on Fz‘pz’j“iliz...ij,lzml...ip,l + F,B’yiaxip Ui g iy

where I' and I' are connection coefficients of M and N, respectively. We can
define the Laplacian of u by Au = tryV?u = ¢%(V2u)..;;. Recall the Ricci
identity

(V2U)?z’j - (VQU).C.V.J@' = _Rz’jimlu.c.y.imflkim“...gkl
_ OFPOFY s
(2.11) + Ravsc 55 570" us..
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Note that the derivative VF (V;F® = (0F*/0z")) is a section of the bun-
dle T*M @ F~ITN, the higher-derivative VPF is a section of (T*M)®P @
FITN.

If we have a family of metrics g;;(-,t) on M and a family of maps F(-,?)
from M to N, then for each time ¢, we can still define the bundle (T*M)*? @
F~'TN and define the covariant derivative V. It is a useful observation that
the natural time derivative (9/0t) is not covariant with the metrics. We
define a covariant time derivative Dy as follows. For any section uj , of
(T*M)®P @ F~'TN, we define

oFP

a —
Dyu ot U, 4,

iy — &Uﬁ% + f%

It is a routine computation which shows that the operator D, is covariant.
Proposition 2.3. Let M be a manifold with a family of metrics g;j(x,t),

(N, g) a Riemannian manifold. Let F(-,t) be a solution to the harmonic
map flow with respect to the evolving metrics g and g

0
—F(xz,t) = AF(x,t), forxe M" and t >0,

(2.12) o

where AF(x,t) is the harmonic map Laplacian of F defined by metrics
gij(z,t) and g. Then we have

(2.13)
k—1
(Dy = D)VFF = VI (Ry g2+ Ry + (VF)? 5 gt 5 g )]« VFIF
=0

N

-1

x* * F
- g 9_[: )

o~
Il

where VYA x B) represents the linear combinations of V'Ax B, V71 A%
VB,...,Ax V!B with universal coefficients.

Proof. For k =1, by direct computation and Ricci identity, we have
0 o o &) [e]
= Vil + '3 F; (AF)T =V,AF

ot
= AV,;F® — RV, F*
+ RgévviFﬁka‘svlFVg“.
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For k > 2, we prove by induction. Since

0 k g 0 k—1 0 k—1
F = Vi F Vi F
8t(v )21 K 8 ik 8t( )11 g1 'lk'l/l 8t( )Zl P k-1

a k—1
+Fﬁ’y ik (%(v F)h dk—1

909 )\
— F
*(g Vi *V )

+ 2 8 (AF)FS (V- 1F)

[ Z T TR

0y°
a 8 B (k-1
+F57aFlk(v F)’Ll Ag—1?
we have
k 0 k—1 k—1
(V F)zl K a in Dt(v F)zl g1 zkzl (v F)h Pedp—1
+ 19 F Dy(V*~ 1F)“ i
a o
-1 k—1
— F
G )
9 - B (k-1
+ 5 s (AP E(V F)h .
_ 8
+F6’7aFlﬁk(vk IF)’Ll k-1
0 e aF k—1
- axik |: By Ay at (V F)h Ap— 1:|
OF” k1
+ka2lrﬂ7 at (V F)Zl Peeli—1
— ﬁaF k—1 3F k
—T§, I} F, . (V F)Zl P 5 (VPF)] i
Since
Oxin Fﬁv ot (V )11 k-1 3 /BFM i Ot (V F)zl k1
o OFP OFP
F k—1 F k
+ ﬂ'}’amzk at (v F)Zl dg—1 + By 9+ at (V F)Zl K
OF” OF?®
D k=1 v P k-1
+szn By as ot (V )zl Dedr_1 F,Bngk ot (v F)zl g1’
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we have

8 (e}
Dy(VFF)¢ ;= [VDy(VF'F) , + <g—1 * va—i * V’HF)

+ Ry, (AF) F(VLF)]

10 ll—1"

Combining with Ricci identity
VAVFIE = AVFF 4 V[(Ry v 9 2+ Ry« (VF)2 5 g g ) « VAL

and induction on k, we have

(Dy — A VFF) = g7t « v% « VLR
+ Ry« VE«V2F « VF 1F s g7l s g!

+ V[(D; — A)VFLF]

+V[(Ryrxg 2+ Ry * (VF)? xg L xg 1)« V1]
= V[(D; — A)VF LR

+V[(Rayr*g 24+ Ry * (VF) 25 gL« g 1) « VF L]

+g7 1« V@ « VAR

ot
k—1 ~
= Z VI(Ry g 24+ Ry* (VF) 2« g tsg ]« VIR
=
k—1 89
-1 l k—l1
- F.
+ Z g *xV 9 " \Y
1=1
We finish the proof of the proposition. O

Corollary 2.4. Let F(-,t) be assumed as in Proposition 2.3. Then we have

k—1

0

— —A Epi2 <« _o|vwktlp|2 l -2

(- &) 19472 < -29 \+<;{V[<RM*9
+ Ry * (VF) 5 g~ g7 h)]

+g7 1« vl%z} « VIR, ka>

(2.14) + g(k+1)g? % (VEF)? % 3.
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Proof. Since [VEPI2 = (VE)S_ (VEE)] g7 " g5, and
0
97
8t(
0Gag OF? - -
a;z? ot (VkF)zoizk (VkF)J@l...jkgzljl coLgteIn

+g—(k+1) " g'i " (Vk?F)Q *g

9 s Q1] i 7
5|V =25 (VEP); (VER)] . ghdt  gig,s

1.0k 1Tk

+

=2Dy(VFF)S  (VEP)] . ghdr g gag

+ g~ kD) % « (VFF)2 « g,

then (2.14) follows from Proposition 2.3. O

3. Higher-derivative estimates for the mean curvature flow

Now we come back to MCF, suppose X (-,t) is a solution to MCF equa-
tion (1.2), g(-,t) is the family of the induced metrics on M™ from (M", )
by X(-,t), then

(3.1) &gij = —2Hahiﬁj§a5.

Note that (0g/0t) = (V2X)2% g g~ and Ry = Ry * (VX)* 4 (V2X)? «
g. Combining with corollary 2.4, we have

Proposition 3.1. Let (M",g) be a Riemannian manifold of dimension fi.

Let Xo : M™ — M™ be an isometrically immersed manifold in M™. Suppose
X(x,t) is a solution of MCF on M™ x [0,T] with Xo as initial data. Then

k—1
d
— — A kX2<_2 k+1X2 l 2X2 — —2
(56~ 0) 195X < 29X 4 (VP07 50
+ Ry + (VX) % g2
«gxg ]« VX, v’fX>

(3.2) + g2 4 5% 5 (V2X)2 % (VFX)2.
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Now we are ready to derive the higher-derivative estimates of the sec-
ond fundamental form of MCF provided that we have bounded the second
fundamental form. Before deriving the higher-derivative estimates, we need
to construct a family of cut-off functions &, which are used also in the next
section. For each integer k > 0, let & be a smooth nonincreasing function
from (—o0,+00) to [0,1] so that & (s) =1 for s € (—oo, (1/2) + (1/2F1)],
and & (s) =0 for s € [(1/2) + (1/2%), +00); moreover for any e > 0 there
exists a universal C} > 0 such that

(3-3) 1€(9)] + 1€1(s)] < Cier(s)' ™

Theorem 3.2. (local estimates) Let (M™,g) be a complete Riemannian
manifold of dimension fn. Let Xo : M™ — M™ be an isometrically immersed
complete manifold in M™. Suppose X (x,t) is a solution to the mean cur-
vature flow (1.1) on M™ x [0,T] with X¢ as initial data and with bounded
second fundamental forms [hi;| < C on [0,T]. Then for any fized xo € M™
and any geodesic ball By(xo,a) of radius a > 0 of initial metric g;j, for any
k > 3, we have

Ck

k
(B4)  [VX(@,6) < a

a
for all (z,t) € By <x0, 5) x [0,T7,

where the constant Cy, depends on C, T, 7, a and the bounds of the curvature
and its covariant deriwatives up to order k —1 of the ambient manifold M
on its geodesic ball By (Xo(xo),a+ 1+ /nCT).

Proof. Since |(0/0t)X| = |H| < +/nC, it is not hard to see that under
the evolution of MCF, at any time ¢ € [0,7T], X¢(Bo(xo,a)) is contained
in By;(Xo(zo0),a+ 1+ /nCT). For any fixed a > 0, k > 0, we denote by
C}, various constants depending only on a, C, T, 7 and the bounds of the
curvature and its covariant derivatives up to order k — 1 of the ambient
manifold M on its ball By;(Xo(x0),a + 1+ /nCT).

By Proposition 3.1, we have

<§t — A> IV2X|? < =2|V3X |2 + Cy + Co|V3X|

(3.5) < —|VEX|2 + Oy
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and
(gt - A) IVEX[? < —2|VAX 2+ C3(|VPX [P + [V3X 2 + | V3X|
+ VX[V X])
(3.6) < VX + G5 VX P + Cs.

Combining (3.5) and (3.6), for any constant A > 0 we have

(55~ 8) (A+IXPITP) < (VX P + Co)TX

+ 8| VEX 2| VAX || V2X | + [—|ViX?
(3.7) + C3|V3X ]2 + C3](A + |[V2X|?).

Since |V2X|? is bounded by assumption, by choosing A suitable large, let
u=(A+|V2X]?)|V3X|? and v = tu, we have

0 1 5
- < -
(875 A)u_ 03u + C

and

) 1/ 1,

Now we need a cut-off function technique as in [5]. Let &(x) =&3(do(x, z0)/a),
where 3 is the cut-off function satisfying (3.3) for £ = 3. Then the function
&(x) satisfies

1 1
&(x) =1, forz e By (a:o, <2 + 24> a) ,
&(xz) =0, forxz e M\By(zo,a),
Voél? < Cst,
(3.9) (V5€)ij = —Cs€gi5(-, 0),
where we used the Hessian comparison theorem. Since by Gauss equation,

the curvature of the initial metric is bounded from below by a constant,
which depends on C' and the curvature bound on the ball B (Xo(zo),
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a+1+ /nCT) of the ambient manifold. The last formula holds in the
sense of support functions. Define ¢(z,t) = {(z)v(x,t). Then we have

(3.10) (; — A) o< % <—Cl,3£v2 —tvAE — 2tVE - Vo + C’3§> .

Suppose ¢(x,t) achieves its maximum value over M" x [0,7T] at some
point (z1,t1) € B(xg,a) x (0,7}, i.e.,

B(w1,t1) = R P(z,1).

Suppose the point 1 does not lie in the cut locus of zg, then

(311) aaf(l‘l,tl) 2 O, Vv(xl,tl) == —Vggv, A(j)(xl,tl) S 0.
By (3.10) and (3.11), at (z1,t1) we have
2
(3.12) 0< —Ci&ﬁ —t1vAE+ 2t |V€§| v+ C3€.
3

Note that the second fundamental form is bounded in M™ x [0, T, the met-
rics g;5(-,t) are equivalent. Since

Ok _ <g1 x vag>k =g 2 gx VIX « V3X
1) ’
ot at ),

we have

t1
0% (21, t1) — Doy (21)] < C(n)C/ V3 X |dt
0

< C(n)é/otl <£¢t>1/2 (w1,t)dt

P(z1, 1)/
§C3 5(1'1)1/2 )
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where we used the fact that ¢ achieves its maximum at (x,¢1). Thus at
(x1,t1), we have

A= g7V V¢
= —g"(V;Vo;& + (Lo — TE)Vort)

P(1,t1)1/?

VE].

Substituting into (3.12), multiplying by &(x1) and combining with (3.9), we
have at (x1,t1)

Vel?
§

1 2,2 1 2‘v€‘
0 S —?35 v+ <C3+C3¢($1,t1) / ﬁ 51)—!—2

Ev 4 C5€?

1
<58+ G308’ + Cap + .
3

This implies
P(z1,t1) < Cs,

hence we have

Cs
V3X| < 7
on By(zo, ((1/2) + (1/2%))a) x [0, T)]. If 21 lies on the cut locus of zg, then by
applying a standard support function technique as in [22], the same estimate
is still valid.

For higher-derivatives, we prove by induction. Fix zg € M", a > 0,
suppose

Ck

k
(3.13) VEX| < s

k=3,....,m—1,

on By(wo, ((1/2) + (1/2¥1))a) x [0,7]. Now we prove the estimate
for k = m.
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By induction hypothesis and Proposition 3.1, we have

m—1
<a - A) IVX|? < =2VPHXP 4+ () V(VEX) xgrg?
ot e
+ Ry (VX) g 25 gxg ]+« V" IX, V" X)

+g—(m+2) *gQ % (vQX)Q * (va)Q

m—1
< _2‘vm+1X‘2 + Cm Z Z ’v?-ﬁ-hX”v?-‘rlzX’
l:0 l1+l2:l

+ Z ‘vl1+1X"Vl2+1X|’vlg-‘rlXHVlr‘rlX’
Lt tla=l
x [V LX| |V X
< =2|V™HIX |2 4+ O |VTHLX| VX
+ (IV3X] + D)|V™X|? 4t~ m=2/2) | ym X ]
Crm,

(3‘14) < _’vm+1X’2+m|va|2+Cmt—(m—2/2)’va’
and
0 m—1+y-|2 m y |2 Cm—1 m—1+y-|2
<&—A> VX < VKPSV
+ Cmilt—(m—3/2) |Vm_1X|
Con—
m 2 m—1

on By(zo, ((1/2) + (1/2™))a) x [0,T].
Define
(@) = (A + 731X [2) [y X 2=
for A to be determined later. Combining (3.14) and (3.15), we have for
suitable large A as before

2m —5 m—=3omy|2;m—2 [ _|vmy |2 Cm—1
<at‘A>¢5 S (IV X+ svan

4 tm—2(A +tm—3‘vm—1X’2) <_ ‘Vm—HX‘Q

Cm
+W

4 8t2m75’vm71X|‘va‘2|vm+lX|

V"X 2+ Cppt=m=2/2) |va|>
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om—5 1. .,
< m— m
< IOy X PP
Cm
_|_t1/2[tm 2|va| ]—I—C [tm Z‘VmX‘ ]1/2
< % {—1w2+0mw+0 W}
1
. < |-—=
(3.16) _t{ me<+0:

on By(zo, ((1/2) 4+ (1/2™))a) x [0,T]. To apply the cut-off function tech-
nique to (3.16) as before, we note that by the estimate for k=3,
we know that

T T
_ 1
T —To| < C(n)C ﬁm&g@/ﬁg@.
0 0o Vi
By calculating the equation of &, (do(xo,-)/a)y using (3.16), and repeat-

ing the same procedure of applying maximum principle as before, we can
prove that

. (do(:Zo,‘)> ¥ < Cy, on By(zo,a) x [0,T],

which implies

m Cm 1 1
‘V X‘(l‘,t) < W, for all ($,t) S BO <xo, <2 + 2m+1> CL> X [O,T]

We complete the induction step and the theorem is proved. O

Corollary 3.3. Let (M™,g) be a complete Riemannian manifold satisfying

IVERm|(-) < C, for k<2.

Let Xo : M™ — M™ be an isometrically immersed complete manifold in M™.
Suppose X (-, t) is a solution of MCF on M"™ x [0,T] with Xo as initial data
and with bounded second fundamental forms |hi;| < C on [0,T]. Then there
is a constant C1 depending only on C, i and T such that

(3.17) |VRm|(z,t) < for all (x,t) € M™ x [0,T].

1/2’

Moreover, for any fized xo € M™ and any ball By(xo,a) of radius a > 0 of
initial metric g;;, and for any k > 2, there is a constant Cy, depending only
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on a, C, i, T and the bounds of the curvature and its derivatives up to
order k + 1 of the ambient manifold on its geodesic ball By;(Xo(xo),a + 1+
VnCT), such that

(3.18) \V*Rm|(z,t) < ti’/kw for all (z,t) € By (xo, g) x [0, T].
Proof. This follows from Gauss equation and Theorem 3.2. O

4. Harmonic map flow coupled with mean curvature flow

Let X; be the solution of MCF as in Theorem 1.1, g;j(x,t) the induced
Riemannian metrics. Let f: M"™ — N™ be a map from M"™ to a fixed
Riemanian manifold (N, §o3). Then the harmonic map flow coupled with
MCF is the following evolution equation of maps

gt (x,t) = Af(x,t), forxze M" t>0,

F(2,0) = f(z), forae M",

where the Harmonic map Laplacian A is defined by using the metric g;;(z,t)
and g3(y), i-e.,
Afa(xa t) = g”(x, t)vzvjfa(xv t)a

and
W B L 0f . P ap
ViVif" = dridzi L R o Azt i
Here we use {z'} and {y®} to denote the local coordinates of M™ and
N™ respectively, Ffj and fgv the corresponding Christoffel symbols of g;;
and Qag.
Now we fix a metric § = g(-,7") on M™, and let (N™, g) = (M", g). Note
that the ambient manifold (M, g) in Theorem 1.1 satisfies the assumption
of Corollary 3.3. By Corollary 3.3 and Theorem 2.1, we know that there are

positive constants Ci, 6 depending only on C, T, 7 and § such that

|Ryn| + |VRy| < C1,
(4.1) inj(N,§) > 6 > 0.

Moreover, by (3.18) of Corollary 3.3, for any fixed yo € N, for any k > 2,
there is a constant Cj depending only on C, n, T and the bounds of the
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curvature and its derivatives up to order k + 1 of the ambient manifold on
its ball By (Xo(yo),2eV"“*T + 1 + /nCT), such that

(4.2) IVERN|(y) < Cy, for all y € B(yo, 1).

In this section, we will establish the existence theorem for the above har-
monic map flow coupled with MCF. More precisely, we will prove

Theorem 4.1. There exists 0 < Ty < T, depending only on C,T,n,§, such
that the harmonic map flow coupled with mean curvature flow

gtF(:z:,t) = AF(x,t), x € M",t >0,
(4.3) F(-,0) = Identity, z € M"

has a solution on M™ x [0, Ty] such that the following estimates hold. There
s a constant Cy depending only on C, §, n and T such that

(4.4) IVE| 4 |V2F| < Cs.

lforiany k>3, Bo(x1,1) C M™, there is a constant C) depending only on
C, 0, T, n and x1 such that

(4.5) |VEF| < Cpt=%=2/2) " on By(z1,1) x [0, Tp).

We will adapt the strategy of [5] by solving the corresponding initial-
boundary value problem on a sequence of exhausted bounded domains D1 C
D, C -+ with smooth boundaries and D; O By(zo,j + 1),

gtFj (z,t) = AFI(z,1)
FI(2,0) =z for all z € Dj,
(4.6) FI(z,t) =z for all z € dD;,

and taking a convergent subsequence of FJ as j — oo, where zg is a fixed
point in M™".
First we need the zero order estimate for the Dirichlet problem (4.6).
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Lemma 4.2. There exist positive constants T1 > 0 and C' > 0 such that for
any j, if F7 solves problem(4.6) on D; x [0,T]] with T < Ty, then we have

d(z, Fi(x,1)) < CVt

for any (x,t) € Dj x [0,T]], where d is the distance with respect to the
metric .

Proof. For simplicity, we drop the superscript j. In the following argu-
ment, we denote by C various positive constants depending only on the
constants C, 6, T, and 7 in Theorem 1.1. Note that d(yy,y2) is the dis-
tance function on the target (M™,§), which can be regarded as a function
on M"™ x M™ with the product metric. Let ¢(y1,y2) = (1/2)d%(y1,y2) and
plz,t) = p(x, F(z,t)). We compute

(a _ A) p = d(x, F(z,1)) <—§£A1da>

ot
i) PP — (1 oId)ai o1d™ 91d”
g aylaaylﬁ af dy] [ 0x' O

%o OId* OFP
Oyj oy, Ov' 0w

g 0% . oo | OF* OFF
— Y — (.o F)22 i
g {aygayg (Tage )ay; } Oxt Ox’

ij

= —d-——AId* — g Hess(¢)(Vi, V),
8y1

where
o4 9 OF*
Y0t Oyy T Ot Oyy

By Theorem 3.2, there is a constant C' depending only on C, T and 7
such that

or . c
. — < < —.
(4.7) ‘& <CIviX| <

Since
Ald = g’l * (f‘ old-T) = gf1 «* (D, T) = T(,1))
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then we have |AId| < C by (4.7), this implies

P .
Q%—A>p§0d—¢”%%WKWJ®-
By (4.1), the curvature of § is bounded by some constant K , the injec-
tivity radius of ¢ has a uniform positive lower bound 4. We claim that if

d(z, F(z,t)) < min{6/2,1/4V K}, then
g 1
g"Hess(¢)(V;,V;) > S|V F[* =
Firstly, by Theorem 2.2(i), we have |Hess(¢)| < C under the assumption

of the claim. On the other hand, the Hessian comparison theorem at those
points not lying on the cut locus shows that

0% op _ m
[0, 0 F)~= > —gas,
oys 8y2 ~ o )ay; 470

0% . dp _ 7
— (D) 0ld) =% > —jap

oyt 3y1 o dy] — 4

Combining the above inequalities, we have
g"Hess() (Vi, Vj) = S|VF|* = C|VF| -
1
> _|VF]* -
> S IVF

which proves the claim. Hence when d(z, F(z,t)) < min { 5/2), (1/4\/ )}

we have

o L1
4. ~Z _Alp<Cd- Z|VF]? )
(4.8) <& >pCd dv |*+C

By maximum principle we have

o

j ; 51
d(x, F(z,t)) < Cvt whenever d(z, F(z,t)) < min {g, } .

VK
Therefore there exists 7) < (1/C?) min? {(5/2) ( )} such that

d(z, F(xz,t)) < CVt, for t <Ti(<TY),

we have proved the lemma. O
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After proving the above lemma, we can apply the standard parabolic
equation theory to get a local existence for the initial-boundary value prob-
lem (4.6) as follows. This is similar to [5], we include the proof here for
completeness.

Lemma 4.3. There ezists a positive constant To(< T1) depending only on
the dimension n, the constants 17 and C obtained in the previous lemma
such that for each j, the initial-boundary value problem (4.6) has a smooth
solution F7 on D; x [0, Ts].

Proof. For an arbitrarily fixed point  in M"™, we consider the normal
coordinates {z'} and {y“} of the metric go;; and the metric g3, respectively,
around Z. Locally the equation (4.6) is written as a system of equations

Iy _ i a2ya k oy
E(m,t) =g"(z,t) BITY ij(wvt)@
. Byﬁ oy
o 1 n A

Note that f%’y(j) = 0. Since by (4.1) the curvature of metric § and it’s first
covariant derivative are bounded on the whole target manifold, by apply-
ing Corollary 4.12 in [14], we know that there is some uniform constant C
such that if d(y, ) < (1/C), then T4, (y)| < Cd(y, Z). (This fact is proved
essentially in [14], although it is not explicitly stated.) By Lemma 4.2,
ci(m, F(z,t)) < Cv/t, we conclude that the coefficients of the quadratic terms
on the RHS of (4.9) can be as small as we like, provided T» > 0 is sufficiently
small (independent of z and j).

Now for fixed j, we consider the corresponding parabolic system of the
difference of the map F7 and the identity map. Clearly the coefficients of
the quadratic terms of the gradients are also very small. Thus, whenever
(4.9) has a solution on a time interval [0,74] with Ty < T, we can argue
exactly as in the proof of Theorem 6.1 in Chapter VII of the book [19] to
bound the norm of VF7 on the time interval [0, T3] by a positive constant
depending only on gg;;, and gog over the domain Djyq, the L* bound of
FJ obtained in the previous lemma, and the boundary 0D;. Hence by the
same argument as in the proof of Theorem 7.1 in Chapter VII of the book
[19], we deduce that the initial-boundary value problem (4.9) has a smooth
solution F7 on D; x [0, T]. O

To get a convergent sequence of F7, we need the following uniform esti-
mates.
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Lemma 4.4. There exists a positive constant T3, 0 < T3 < Ty, independent
of 3, such that if FV solves

%F]( t) = AFV(z,t) on Dj x [0, T3],

FI(z,0) =z on D;.
Then for any Bo(z1,1) C Dy, there is a positive constant C' = C(C,8,n,T)
such that

|VFI| + |[V2Fi| < C

on By(x1,(1/2)) x [0,T5], and for any k >3 there exist constants Cy =
C(k,C, §,T,n, 1) satisfying

|VkF]’ < th—(k:—Q/Q)
on Bo(xl, (1/2)) X [O,Tg].

Proof. We drop the superscript j. We denote by C various constants depend-
ing only on C, 6, T, n. We first estimate |VF|. By Corollary 2.4, we have

<§t - A) IVF]? < —2|V?F|*> + << [RM %9 24+ Ry« (VF)?xg tag?

+g71 * gt> * VF, VF> 2‘;*;’ « (VF)?x g

Note that (9g/ot) = (V2X)2xg+g~', Ry = Ry » (VX)* +(V2X)2 % g,
the second fundamental form V2X and curvature R;; are bounded by
assumption, we know that |(0g/0t)| and |Rps| are bounded. The above
formula gives

0
(4.10) éyvm? < A|VF]? = 2|V?F? + C|VF|? + C|VF*.

On the other hand, we know from (4.8) that

8

< Ap— Z|VF?
8t p |V |+ C,
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where p(z,t) = (1/2)d?(z, F(x,t)). For any a > 0 to be determined later, we
compute

0
Sl pIVFP) < Ala+ p) VY] - 2V VIVE?

—2(a+ p)|V?F|* + C(a+ p)|VF|* + Cla + p)|VF|*

1
- §\VF\4 + C|VF)2.
Since

—2Vp - V|VF)? < Cd(|[VF| + |VF|?)|V?F|
< C(|VF]? +|VF|Yd 4+ Cd|V*F|?

and d(-, F(-,t)) < CVt, by taking a = (1/8C') and T3 suitable small, we have

1

O lat IVEP < Alat pIVFP] — o

1
2F2—* F4
g verE-tvrt o

for t < T3. Let u = (a + p)|VF|?, then

au<Au—lu2+C’

(4.11) 5 < %

for t <T3. Let {(z) = &1 (do(x1,z)) be a cut-off function, where &; is the
nonincreasing smooth function in (3.3) supported in [0,1) and equal to 1 in

[ %] Note that at t =0, u = ag®(-,0)g;;(-,7) < C. Then by computing
the equation of £u and applying the maximum principle as before, we have

Eu(z,t) < C on M"™ x [0, T3],
this implies

|VF‘ < C on B() (1‘1,1) X [O,Tg].
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We now estimate |V2F|. By Corollary 2.4 again

8 2 2 3 2 - l -2
(m—A) IV2F|2 < —2|V3F]? + lz;{v [(Rar * g
+Ry * (VF) x g g h)]

+g7 1« vlgg} x* V2R V2F>

+g % (2R g
and by (3.4), (3.17) and (4.1), we know \/%]V%]—F\/ﬂVRM]—H@]%N\
<, and

<

0 |V2F|? < AIV2F|2 = 2|V3F)? + C|V2F|? + 7

(4.12) =

V2|

on By (z1,3) x [0, T5]. This implies

9 C
4.1 ZIV2F| < AIV2F 2Fl+ —.
(4.13) atIV | < A[VEF|+ CIV7F| + i

By (4.10) we have

gtyvﬂz < A|VF]? = 2IV2F)? + C.

Let
u= |V F| 4+ |VF|? — 20Vt + 2CV'T,
then
0 9 3
(4.14) augAu—u + C on By 1, | X [0, T5].

Define the cut-off function {(z) = &2(do(z1,x)). Note that at t = 0, |V2F| =
ITog —T'| < C, then u|—p < C. Using the similar maximum principle argu-
ment as before, we get

1 1
&u < C on By (:):1, 3 + 22) x [0, T3],
which implies

1 1
’VQF‘ < C on B() <.T1,2 + 23> X [O,Tg]
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To derive the higher-derivative estimates we prove by induction on k.
We denote by C} various constants, depending only on C, T, 8, f, and the
bounds of the ambient manifold M curvature and its covariant derivatives
up to order k on its ball By;(Xo(x1),C) for suitable C.

Now suppose we have proved

C
: Fl< —_ 1=2,... k-
(4.15) IVIF| < EYER l=2,..., k-1
on By(z1, ((1/2) + (1/2%))) x [0, T3]. By Corollaries 2.4 and 3.3, Theorem 3.2
and using (4.15), we get

C
t(k—l)/2

(4.16) %W"”F\Q < AIVFF|2 = 2)VFIF12 4+ Oy | VEF)? + |VEF),

which implies

0 k k k Ck
(4.17) 5|V EI < AIVIF|+ Gil VEF| + =y

We also have

(4.18) gt\v’f—lpy? < A|IVFIRP2 - 2|VFR]? +

Cr—1
th—(5/2)"

Let
u =W \GrF| 4 F 3w PR
By combining (4.17) and (4.18), we obtain

0 1, .,
. —u < — —
(4.19) atu < Au 7f(u + C%)

on By(x1, ((1/2) + (1/2%))) x [0, T3]. Using the cut-off function &(x) = & (do
(z1,7)), (4.19) and applying maximum principle as before, we conclude with

Ch 1 1
|ka| S t(’f*Q)/Z on BO (331, <2 + 2k+1>> X [O,Tg]

Therefore we complete the proof of Lemma 4.4. O

Proof of Theorem 4.1. Now we combine the above three lemmas to prove
Theorem 4.1. We have known that there is a 75 > 0 such that for each j,



464 Bing-Long Chen and Le Yin

the equation

9 . .
j — AFJ
8tF (xz,t) = AF7(x,t)

FI(2,0) = x for all x € D,
FI(z,t) =z for all x € OD;

has a smooth solution F7 on D; x [0, T3]. Since D; D By(xo, j + 1), by choo-
sing any x1 € By(xo,j) in Lemma 4.4 we have

|VFI| +|V2FI| < C

on By(zo,7) x [0, T3], where C depends only on C, n, __, T. Moreover for
any 1 € By(zg,j), k > 3, there is a C) depending on C, 0, T, n and 1 such
that

\VFFT|(z1,t) < Cpt— (k=272

Then we can take a convergent subsequence of FV (as j — 00) to get the desi-
red F' with the desired estimates. So the proof of Theorem 4.1 is completed.
O

For later purpose, now we need to derive some preliminary estimate of
gij(x,t) with respect to F*g. Let gij = (F*§)j.

Proposition 4.5. Under the assumption qf Theorem 4.1, there exist 0 <
Ty < T5 and C > 0 depending only on C, i, & and T such that for all (x,t) €
M™ x [0,Ty], we have

1. .
(4.20) ggz‘j(l‘,t) < gij(z,t) < Cgij(x,t).

Proof. Note that |VF|? = §;; < C, which implies g;j(z,t) < Cg;j(z,t).
For the reverse inequality, since the curvature of g;;(-,t) is bounded, we
compute the equation of g;;(x,t) on the domain,

0 . . . .
710 = Agij — Rz‘kFlaFf Gapg"™ — RiuF{F) gopg™
+2Rop s FYF ] gM — 2§/aﬁFﬁ-Fz§9kl
> Agij — Rixgjig™ — Rixgag"™ — C|VF2gi; — 2|V?F|2g;
(4.21) Z AL(A]Z] — ng‘j.
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Note that for suitable large constant C', we have

0

and g;; > %gij at time 0. Thus for ¢t < 1/C3, we have

(4.22)

(815 A) <gZ]+<Ct C’)g”>_[ c+C +C(Ct C>]g,]_0

Note that
R 1
(gij + (C2t - C) gij) lt=0> 0.

Since |V2X| + v/t|V3X| < C and the curvature is bounded, then there is a
smooth proper function ¢ with ¢(z) > 1 + do(zo, z), [V| + [V?p| < C. So
Hamilton’s maximum principle for tensors on complete manifolds is appli-
cable, we get

1
i + <C2t — C’) gij > 0 for t < min{T3,C 3},

which implies
9ij < 2C¢;5

for t < Ty = min{T3,1/2C3}.
The proof of the proposition is completed. O

As a consequence, we know that the solution of the harmonic map flow
coupled with the MCF is a family of diffeomorphisms.

Corollary 4.6. Let F(x,t) be assumed as in the previous proposition. Then
F(-,t) are diffeomorphisms from M to N for all t € [0, Ty].

Proof. Note that (4.20) implies that F' are local diffeomorphisms. For any
x1 # w9, we claim that F(z1,t) # F(x9,t) for all t € [0,Ty]. Suppose not;
then there is the first time t9 > 0 such that F'(z1,%y) = F(z2,%y). Choose
small o > 0 so that there exist a neighborhood O of F (x1,%t0) and a neigh-
borhood O of x; such that F~'(-,t) is a diffeomorphism from O to O for
each t € [to — 0,t0], and let 4 be a shortest geodesic (parametrized by arc
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length) on the target (with respect to the metric g) with 4(0) = F(x1,1),
A(l) = F(x2,t) and ¥ C O. We compute

o d(F(21,1), F(22,1)) = (P_5V = V,4(0)) -5

> — Sup ‘@V’(m,t)CZ(F(Id,t),F(.%Q,t)),
zeEF-1%4

where Pj is the parallel translation along F~14 using the connection defined
by F*g. Since
GVt = gre Ot
k = Vk 8ya ’
where V, V< is the covariant derivative of the section V¢ of the bundle
F~'TN. Thus by (4.20) in proposition 4.5, we have
. C
VeVl = [ViVOV V3§32 < CIV3F| < =,
Vit
where the constant C' depends on the 1 and x2 and is independent of ¢ by
(4.5) of Theorem 4.1. Therefore, for ¢ € [ty — o, ty], we have

d(F(mlat)7F($2’t)) < eC(\/%_ tO_U)J(F(ml’tO)’F($27t0)) = 07

which contradicts with the choice of 3. The corollary is proved. ]

5. Mean curvature De Turck flow

From the previous section, we know that the harmonic map flow coupled
with MCF with identity as initial data has a short-time solution F'(z,t)
which maintains being a diffeomorphism with good estimates. Let X =
X o F~1 be a family of maps defined from (N, §as) to M™, then X satisfies
the following mean curvature De Turck flow

0 - A A =
(5.1) aX =g*PV,V3X forye N,
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where g®? is the inverse matrix of gag(-,t) = (F~1)*g(-,1))as, V is the
covariant derivative with respect to g,3. We denote the local coordinates of
M by {z%}. Tt is not hard to see

Oy OyP

_ 0X%0XP 92l 0a)  OXT 0X° (K. 0)
= 9583 ozt Oz dy> Oy - gy oyP 955 Y,t)),

9ap (Y, t) = gij(w,t)

(5.2)

this implies that the metric 9ap(y,t) is just the induced metric from the
ambient space by the map X. Since

. ox' OxI
)
Fl/@(y) - Flﬁ(yat) - (V F)ZJ 8yo‘ Tyﬂa
we have
1. A
5904[3(:9) < gaﬂ(yat) < Cgaﬁ(y)7
(5.3) ’flg(y) — T4y, 1) < C,

by Theorem 4.1 and Proposition 4.5.

Let X7 and X5 be two solutions of MCF with bounded second funda-
mental form and with the same initial value X assumed as in the Theo-
rem 1.1. Let gilj (z,t) and gfj(x, t) be the corresponding induced metrics. As
in Section 4, we solve the harmonic map flows coupled with MCF with the
same target (M™, §ng), where g = g*(T), respectively,

0

aFl - Agl,gFl
(5.4) F1|i—o = Identity on M",
and

0

&FQ — Ag2’§F2

(5.5) F5|4—o = Identity on M™,
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where Agx 5 is the harmonic map Laplacian defined by the metric gfj(m, t),
and gog for k= 1,2, respectively. By Section 4, we obtain two solutions
Fi(z,t) and F»(z,t) such that Theorem 4.1 holds with F' = F} and F' = Fb.
Corollary 4.6 says that Fj(x,t) and Fi(x,t) are diffecomorphisms for any
t €[0,T4]. Let g1a5(y, 1) = (F1 1)*g ap(y,t) and gans(y,t) = ((Fy ')*9%)as
(y,t). Then X1 = X3 oFl_1 and Xy = Xo oF2_1 are two solutions to the
mean curvature De Turck flow (5.1) with the same initial value Xy,

o0 — N oA
—X; = ¢*V,VsX1, on M" x [0,T),

ot
(56) let:() = X(), on ]\4”7

0o abe o o .

aXQ =05 VQVQXQ, on M" x [0,T4],
(57) X2|t:0 = Xo, on Mn,

where g1,3 and gaqg are the corresponding induced metrics from the target
(M™,gs5) by the maps X and Xp by (5.2).

Proposition 5.1. Under the assumptions of Theorem 1.1, there is some
Ts > 0 depending only on C, 6, T and n such that

Xl(ya t) = XQ(yat) on M"™ x [07T5]
for the two solutions of mean-De Turck flow constructed above.
Proof. Let (21, 22) = d%(il,ig) be the square of the distance function
on M which is viewed as a function of (z1,Z2) € M x M. Set u(y,t) =

2 (X1(y,t), Xa(y,t)). Let Ay, = g,‘:ﬂ@a@g for k = 1,2. By direct computa-
tion, we have

B Lo 0d . g .
5 w:1) = QdM(Xl,Xg)a—Ale + 2d5; (X1, Xo) ——= Ao XS,

76 2S¢
aBe - _ . [oad , ¢ od . ¢
9PV oV gu(y, t) = 2d7 (X1, Xo) | ——= L1 XS + — A XS

8,21g 822<

+ Hess(¥) (Za, Z5) 95",

where Z, = (0X%/0y)(0/02%) + (0X5/0y™)(9/025) € Tz, 5)M x M,
a=1,2,...,n are vector fields on M x M. Combining these two formulas,
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we have
0 od _ oz
— g1Va Vs | uly,t) = —2dy (X1, Xo)—= (D1 — Do) X2)©
ot 9zS
2
(5.8) — Hess(4)(Zas Z3)g7".
Note that

(A1 — Do) Xy = g?ﬂ@aﬁﬁXQ - g?ﬁ%%Xz

5 .
(5.9) =919} (926 — 9167)Va VX2,
@a@g)zg = VQQVQBXQ + (f‘ — Fg) * VXQ,

where I's and V5 are the Christoffel symbol and the covariant derivative of
the metric g2,5(y, ).

For each y € M™ and t € [0,T), if X;1(y,t) # Xa(y,t), denote the mini-
mal geodesic on M from Xj(y,t) to Xa(y,t) by o, and denote the parallel
translation of M along o by P,, then we have

10000 = 925, 00) = (%1 (05 ) X (1 )>
-5 () % (57)),
= (%1 (55) % (ay)>
- (5 () 7 (% (57)),
-0 () =7 (9 () (),
= (6 () 6 (55)
(e (2),

If X1(y,t) = Xa(y,t), P, = Identity, the above formula still holds.
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In the following argument, we compute norms by using the metrics g1
and g. For example,

’f - P2‘2 = (f‘ - ]‘—‘2) (F FQ) ’ﬂ’glry’y’gl a/g ﬁﬂ/
and
IV3Xo|? = Gec gt 977 Vou V23 X5 Voo Vop X

We denote by C various constants depending only on the constants C,T,n
and 0 in the main Theorem 1.1. Then by (5.3), we have

T —-Ty <C,
IV2X,| < C|T = Ty| + C|V3Xs| < C,
(5.11) 92| + 195 < C,

where |V2Xy| is just the norm of the second fundamental form of Xo :
M™ — M™ which is bounded by C. Combining (5.9) (5.10) and (5.11),

we have
_ - 0 _ 0 -~ 0
B 2 5y Y'Y p-1 v v
(81 = £a) ol = Con <X1*<5y5) o (XQ* <8y5>>’X1* <3?ﬂ)
_ 0
— _1 [
12 2t (5 <6y>>>

By choosing an orthonormal frame at y so that gi,3 = dag, then we have

Hess(V)(Za, Z5)g Z Hess(1)(Za, Za)-

Note that
Zo =Zo1+ Zos, fora=1,2,...,n,

where  Zoy = (0XS/0y®)(9/975) = X1,(0/0y®) and  Zao = (9XS/0y")

(0/025) = X2.(0/0y").
Recall that by Theorem 2.2(ii), there is a constant C' such that if d;;(z1,

Z9) < min{(1/4\FC'), (6/2) }, we have

(V2d*)(Z,2) = 2|21 — P;' Zo|* — C|Z|Pd? for all Z € Ts, 5 M™ x M",
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where Z = 7y + Zy, Z1 € Ts, M™, Zy € T5,M™. Hence if dy (X1, Xs) <
min {(1/4VC),(5/2)}, then

n n _ /0 v (9N
> *\ a9 o *\ 90
3:1 Hess(V)(Za, Za) > 321 2 ‘X1 <0ya> P X <aya>
(5.13) — Cdyy( Xy, X)*

since |Zy| < C.
Combining (5.8), (5.12) and (5.13), if u}/2 < min{(1/4V/C), (5/2)}, then

we have
9 _ o0y, u(y,t) < Cd(X X)znpx‘ 9
ot 91 aVp Y, t) > JVACAS ) 2a:1 1% Dy°
_ )
— 71 R
Pa X2*<aya>'
N A e [0
22 X (35) ~ 7% (54s)

+ Cd%z(Xl, Xz)
(5.14) < Cu.

Now we show that u!/? < min {(1/4\@) , (5/2)} on some time interval
[0, T5). )
For any (y,t) € M x [0,T}], we have
ul/Q(ya t) < dM(Xl © Ffl(y> t)v X0 Ffl(ya 0))
+ dM(Xl ° Ffl(y’ 0)7 Xpo F271(y7 0))
+dyy (X2 0 Fy (1), Xa 0 Fy (3, 0))
(5.15) 2L+ 1L+ Is.

By the mean curvature flow equation (1.1), we know
I < dy(Xa(y, 1), X1(y, 0)) + dyy (Xa(y, 1), X2(y,0)) < 2¢v/nCt.

By (4.4) and (4.23), for any 1,22 € M", we get

O
ad(Fl(xlat)’Fl(mQat)) > _Ca

this implies

(5.16) d(z1,x2) < d(F1(21,t), Fi(x2,t)) + Ct.
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By (5.16) and Lemma 4.2, it follows

I = dy (X1 0 Fy (y,1), X1 0 F ' (y,0))
< darg (o) (Fy ' (y:1),9)
< Cd(Fy ' (y,1),y)
< Ct+ Cd(y, Fi(y,t))
< CV.

The estimate of I3 is similar. Therefore, we have
(5.17) ul?(y,t) < CVt

for some constant C' depending only on C, 6, T and 7.
Although g‘f’g VAQ@L; is not the standard Laplacian, the maximum princi-
ple is still applicable. For completeness, we include the proof in the following.
Since the curvature of (M, g) is bounded, it is well-known that there is
a function ¢ such that

%(1 + dg(yo, y)) < @(y) < C(1+dy(yo,v))

IVl + V2| < C.

Note g; is equivalent to §. For any small € > 0 and large A > 0, we have

<80t - g?ﬁVAa@[g) (e Ctu(y, t) — ety < —%eAtgo < 0.
Then the classical maximum principle implies that for any fixed ¢y the max-
imal value of (e=“u(y,t) — eety) on M x [0, to] cannot be achieved for any
point (y,t) with 0 < ¢ < to. Hence e~“tu(y, t) — cetp < 0 for any ¢ € [0, T5]
for some T5 > 0. Let ¢ — 0, we conclude that u = 0 on [0, 75]. This implies
X1 = Xo, on M x [0, Ts]. We complete the proof of Proposition 5.1. O

6. Proof of the uniqueness Theorem 1.1

Now we are ready to prove Theorem 1.1. Let X (z,t) and Xa(z,t) be two
solutions of MCF with bounded second fundamental form and with the
same initial data. We solve the corresponding harmonic map flow (5.4)
and (5.5) (with the same target (M, §), ¢ = g1(1)), respectively, to obtain
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two solutions F1 (z,t) and Fy(z,t) on some common time interval. Then
Xi=X0 Fr Vand Xy = Xy 0 Fz_l are two solutions to the mean curvature
De Turck ﬂow with the same initial value. By Proposition 5.1 we know
X1 = X3 on [0,75]. So in order to prove Xi(z,t) = Xo(x,t), we only need
to show F; = F5.

We know

AVF = g7 (T, = T5,) 0 FY,
Ao F§ = gi" (15, — T%5,) o F.

Since X; = X5, we know 91a8(Y,t) = g208(y,t) on [0,T5], and the vector
fields V7 = V5 on the target, where

Vlazgm( Gy = T'igy),
‘/2 292 ( %’y_ g,@fy)'

Therefore, the two families of maps F} and F5 satisfy the same ODE with
the same initial value:

0

—F VoF

ot Vo
Fi(-,0) = Identity,

and

0

—F F:
grl2= Vol

F5(-,0) = Identity.

So for any = € M™, letting v be a shortest geodesic (parametrized by arc
length) on the target with v(0) = Fy(x,t) and y(I) = Fa(x,t), we have

O AR, 0), o, 1)) = (VA1) — (V7' ()
—(PIV - VA(0))

< sup |VV|(y, t)d(Fi(x,t), Fa(x,1)),
yey

where P!V is the parallel transport of V(Fy(z,t),t) along the geodesic v
back to the tangent space of :che point Fi(x,t). We have seen in the proof
of Corollary 4.6 that sup,c. [VV|(y,t) < % for some C' depending on x but
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independent of ¢. Since d(F}(x,0), F5(z,0)) = 0, we conclude that
Fl(I', t) = FQ({L‘, t).

So we have proved X;(z,t) = Xy(z,t), for all z € M and t € [0, T5]. Clearly,
we can extend the interval [0,75] to the whole [0, T] by applying the same
argument on [T5, 7.

The proof of Theorem 1.1 is completed. U

Corollary 1.2 is a direct consequence of Theorem 1.1. Indeed, let &
and o be two isometries of (M™,g) and (M",g), respectively, such that
(60 Xp)(x) = (Xpoo)(x) for any 2z € M™. Since ¢ o Xy and X; o o are two
solutions to the MCF (1.1) with bounded second fundamental form on M™ x
[0,7] and with the same initial value, then by Theorem 1.1, we have

(6 0oXt)(x) = (X¢oo)(x)

for any z € M"™ and te€[0,7]. The proof of the Corollary 1.2 is
completed. O

7. Pseudolocality theorem

We begin with a few terminologies for the sake of convenience. An
n-dimensional submanifold M C M is said to be a local §-Lipschitz graph of
radius ro at P € M, if there is a normal coordinate system (y!,...,3") of M
around P with TpM = span{(9/dy'),...,(0/0y™)}, a vector valued func-
tion F:{y = (y',....,y") | (")*+ -+ (¥")? <rd} > R"™ with F(0) =
0, [DF[(0)=0 such that M N {ly'| <ro} ={( . F(¥))|[y]<re} and
|IDF|?(y) = Ziﬂ(aFﬁ/ﬁyi)(@Fﬁ/@yi) < 6%2. The submanifold My is said
to be graphic in the ball Bj;(xg,70), if the above holds for 6 = oco.

We say a submanifold M C M is properly embedded in a ball By (xg,70)
if either M is closed or M has distance > rg from xy. We say a submanifold
M C M is properly embedded in M if either M is closed or there is an
xo € M such that M is properly embedded in By (xg,10) for any ro > 0.
It is clear that if M is complete and M is properly embedded in M, then
M is complete. A properly embedded submanifold M is said to be uniform
graphic with radius r¢ if for any x¢ € M it is graphic in the ball B, (o, ro).

The following lemma says that if the second fundamental form is con-
trolled, then (a piece of) the submanifold is a local §-Lipschitz graph of
suitable radius.
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Lemma 7.1. Let M be an n-dimensional complete Riemannian manifold
satisfying

[Rm| + [VRm|(z) < C, inj(M) > ig > 0.

There exists a constant Cy > 0 with the following property. Let {x',... z"}
be normal coordinates of M of radius ro around xo with T, M = span
{(0/0xY),...,(0/0z™)}, where M is an n-dimensional submanifold prop-
erly embedded in By;(zo,r0), x0 € M, ro < (1/C1), and the second funda-
mental form |A| < (1/ro). Then there exists a map F : {(z!,... 2") | (x12 +
o 2" < (10/96)} — RPT with F(0) = 0, |[DF|(0) = 0 such that the
connected component containing xo of M N{(x',... z") | (3:12 +-
2"2) /2 < (r0/96)} can be written as a graph {(z', F(z')) | |2'| = (1 + - +
2")12 < (rg/96)} and

(71) IDF|(') < P,
0

z’' = (zt,... ,x") € Brn (0, (19/96)), where |DF|(2')?= >0 Sn_ 1 (OF/
0z")(OF®/dx")(x).

Proof. Let X = (X',...,X") = (2/,F(2')),2' = (z%,...,2™), be a graph
representation of the local isometric embedding of the connected component
containing xg of M N{(x!,... 2") | (3312 4422 <} (for some
r1 < (ro/96)) into M under the exponential map.

Define

& QFC9F* & OF*QF”
|VF|2:Z Z oz’ &ngj, |DF|2:Z Z ozt Ozt

i,j=1 a=n+1 i=1 a=n+1

By choosing ' large, we have

1 _ 1
3008 < Gap < 20ap, [10pl <1, 50ij < gy <2(1+ |DF[*)y;.

Fora > n+1,14,j < n,recall the coefficients of the second fundamental form
is given by

0xX« oxe _ . 0XPox" ., 0XPoxY
A= won Vi agk T g gar Vil T
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Note that
_AXPAXY|)P ., aXP 9XY . 9XPOXY . .
a 777 7 | —T¢ a ik jle _
Ly dri oz | PV 9 oz PV agk ggt I T e < ¢,
IV2FJ? = > VEFOVRF 5asg™ g
a,B>n~+1;1,75,k,0l<n
< A(|A]? + C(n))
< dry?+C(n),
and
IVIVF|| < |V?F|.
This implies
(7.2) IVFE|(+) < 3rytdar(zo, ).

Since g;; < 2(d;5 + %I;? %1;?) < 2(1 +|DF|?)d;;, it follows that

1 |DF|?
VF2>- 7~ 1
| "> 4 1+ |DFJ?
and
4|V F|?
) DF|?< 1"~ '

Combining (7.2)and (7.3), it follows that

_ T
|DF|() < 97"0 1dM(x07 ) on BM ($07 i) .

Since dps(xo, ) < 2dy;(xo,-) by (2.5), we have

|IDF|(-) < 187”51 sup (1+|DF))|2'| < 36r51|33'\,
B (0,(ro/24))

and we conclude that

70

|IDF|(z) < 367"0_1\96’\, whenever |2/ < 96

The above argument shows that there is C7 > 0 such that under the expo-
nential map, once the connected component of M can be expressed as a
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graph (z/, F(2')) on Bgrn(0,71), for r1 < (r0/96), then the estimate (7.1)
holds. Hence the connected component of M can be expressed as a graph
on the ball B~ (0, (ro/96)). O

For future applications in pseudolocality theorem, we need a local graph
representation for mean curvature flow.

Lemma 7.2. Fiz k> 1. Let M be an n—dimensional complete manifold
satisfying

k+1
> IVRml|(z) < C,  inj(M) > g > 0.

There em'sts a constant Cy > 0 with the following property. Suppose Ms,
s € [-r3,0] is a solution of MCF properly embedded in By (xo,70), o € Mo,
ro < (1/C1), with Zf:o |ViAlrs™ <1 on Bjyy(wo,m0). Denote by xf € M;
the orbit of xg. Let {x',... 2"} be normal coordinates of M of radius ro
around xo with Ty, My = span{(9/0z"),..., (3/8$")} Then there exist a
family of smooth maps Fy : {(z!,... a") | (x12 H o 2"?)2 < (1 /CL)} =
R™™™ with Fy(0) =0, |[DoF|(0 )— 0, exp,,((0,F, (O))) = xf’j such that the
connected component of Mg {(zt, ..., 2") | (517 i R (2
C1)} (under the exponential map expx ) containing x§ can be written as
a gmph {(ZE Fs(2") | 12| = (x 124, a2 < (rg/CY)}; moreover we
have Z i r’+1|DZF | < .

Actually, by the MCF equation (0/0s)X = AX, where X = (a/, F5(2'))
is the graph representations on B(0, 1) for some r; < (r9/C1), we have infor-
mation on |(9/ds)Fs|rg + |(0/8s)DFs|rZ < Cy. This gives |Fy(0)| < Csry!
and |DF|(0) < Csry 2. Similarly, by integrating |[V|VF|| < |[V2F|, we know
the graph representation holds in a ball of uniform radius (r1/C}). The
higher-derivative D'F can be estimated by > i<i |V F| by definitions. [

Now we state the pseudolocality theorem for the MCF.

Theorem 7.3. Let M be an n-dimensional complete manifold satisfying
Z?:o |VIRm| < ¢ and inj(M) > ip > 0. Then for every a > 0 there exist
e >0, 6 > 0 with the following property. Suppose we have a smooth solution
to the mean curvature flow M; C M properly embedded in By (wo,70) for
t €10, T] with 0 < T < %2, and assume that at time zero, My is a local
d-Lipschitz graph of radius ro at xy € My with ro < (i9/2). Then we have
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an estimate of the second fundamental form

(7.4) [Al(z,t)? <

|9

+ (ET’Q)iZ
on By (xo,ero) N My, for any t € [0,T].

Proof. We argue by contradiction. By scaling we may assume rg = 1. Sup-
pose there exist fixed ¢g > 0, 79 > 0, a > 0, and a sequence of £, — 0 and
smooth solutions to the mean curvature flow M; C M for ¢t € [0,7T] C [0,£?]
such that at time zero, Mj is a local §-Lipschitz graph of radius 1 at g € M.
But there is some (21, ¢1) satisfying 0 < ¢; < T and 1 € Bj;(x0, ) such that

(6%
|A|(l‘1,t1)2 > E + 6_2.

Denote by E, the set of points (x, t) satisfying | A|(x, )% > («/t). Now we use
the Perelman’s point-picking technique [20] to choose another point which
controls nearby points in its scale.

Lemma 7.4. For any K >0 with Ke < (1/100n), let M; be assumed as
in the theorem, suppose |A|(w1,t1)? > (a/t1) + =2 for some (x1,t1) satisfy-
ing 0 <t; <T <¢e? and z1 € By(wo,¢), then one can find (Z,t) € E, with
0<t<T,dj(zo,z) < (2K + 1)e such that

(7.5) [Al(z, 1) < 4Q

whenever t — (3/4)aQ™2 <t <t, dy(x,7) < KQ™1, where Q = |A|(z,1).

Firstly, we claim that there exists (Z,t) € E, with 0 <t <T, dy; (9, Z) <

(2K + 1)e such that
Al(z,t) < 4]4|(2,7)

whenever (x,t) € E,, 0 <t <t, dy (w0, ) < dyy(wo,7) + K|A|(z,1)7 L.

The argument is by contradiction. If (z1,¢;) can not be chosen for (Z,t),
one can find (x2,t2) € Ey with 0 < to < t1, dy;(zo, x2) < dyz(zo, 1) + K|A|
(r1,t1)7 Y, |A|(z2,t2) > 4|A|(z1,t1). Inductively, we have a sequence of
(.Z‘k,tk) € E, with 0 <t <tp_q, dM(J?(),:Ek) < dM(.%'(),.CI}k_l) + K|A’(:L’k_1,
th_1)" L, |A|(xg, tr) > 4| Al(wk_1,t,_1). Therefore, we have

|Al(xg, tr) > 4k_1|A|(m17t1) > gh—1-1

and  dy (w0, vx) < dyz(zo,21) + K D00 (47 HA| (21, 1))t < (2K + 1)e <
1/2. Since the solution is smooth, we get a contradiction as k large enough.
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For the chosen (z,t), if (7,t) ¢ Ea, t — (3/4)aQ ™2 <t < t, then

If (z,t) € B, and d(z,7) < K|A|(Z,t)7!, by above claim we still have the
estimate. The lemma is proved.
Continuing the proof of Theorem 7.3.

Choose K = (1/+/¢). Let (Z,t) be the point obtained in Lemma 7.4.

Consider the auxiliary functions
_ 1 d2 (i’ iL') n
= (47(f — t))~n/2) B I My
olo.t) = (m(E - 1) P |~ (14 Z( D)) FEZ - e

and

ooy = (1 G

p? +

on M x [0,%], where p = min{(1/2), (1/co\/€),i0,+/2}. They are also func-
tions on M by composing the inclusion maps. We will compute their equa-
tions on M. Since the sectional curvature of M satisfies —c3 < sec < 2, by
comparison theorem and mean curvature flow equation, we have

9 _
((‘% + A) di(Z,)? = 4dy Vdy; - H + tr(Hess(d5; (2, ) |ram)

v COdJ\_J(jv )
>4dyVdy - H+ 2n——————
= ddyr Vi + ntancodM(fz,-)

_ 1
0
(8t - A) dyy (7, )2 = —tr(Hess(d2, (, ) |rar)
> —2ncod (T, -)coth(cod 7 (7, ) > —3n

whenever d; (%, -)? < min{(1/c2e),i2}, t € [0,£]. Hence we have

(7.6) (gt - A) b <0
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and

0 n 14+ (1/e)(t—=1t) (O
(Z?tJFA_’H‘z)(p:(p[Q(t_—t)_ A1) (aﬁA)d (@)
A+ /)t - 1))dy (T, )

T
N (1+(1/e)(t = 1))*|Vdyy (7, )
16(F —1)2
_(1/€)dM(£7‘)2 n H’2:|

4(t —t) 2e

c[LlHOEE=D), o)

(7.7) <_ ‘H+ <1+ i(t_t)> dyy (2, ) V- dy (2. )

whenever dy;(z,-) < p, t € [0,t]. We used 0 <1+ (1/e)(t —¢) < 1. In the
above and following argument, we regard the mean curvature flow M; is
a smooth family of F;, : M — M, (o) o F; is a C? function on M x [0,#]
with compact support in M. So [, w = [}, pibduv; is a C? function in t.
Combining (7.6) and (7.7), we get the monotonicity formula

(7.8) jt/Mt o < / H + <1+ 1(7515)) d (2, 2)(deM(a‘c,.) QW

on [0,¢]. This implies

/ti(1/2)aQ2 [/M <1 " é(t - t)> Ay (@ )V dy (7, )

(1.9) < /M ot - /Mf‘”/"

T—(1/2)aQ—2
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Since the solution is smooth and properly embedded, 1 is compactly sup-
ported, we have lim,_,; [, ¢¢ = e~ (/291 — (3nt/p?))%. Now we claim
that there is 8 > 0 such that as €, — 0, we have

N\ 3
GCUNE e > (1 g (12 20

t—(1/2)aQ~2 P

We still argue by contradiction. Suppose not, then there is a subsequence
of £,6 — 0 and

(7.11)

3
/t(1/2)aQ2 /Mt

<pg—=0.

H+ (1 + é(t = E)) iy (&, )V iy (7, )

Parabolic scaling the solution around (Z, t ) with the factor Q and shifting the
t to 0 and Z to origin O, i.e., let (M, §) = (M, Q%j) be the new target man-
ifold, My = My, g2, —(3/4)ar < s < 0 be the new family of submanifolds,
which is still solution of MCF. By (7.5), the normalized second fundamen-
tal form satisfies |A| < 4 on By (z,K), —(3/4)a < s <0. By Theorem 3.2,
we have |VA| + |V2A| < Const. on By;(7, (K/2)), —(5/8)a < s < 0. Note
that K — oo.

Now we are going to consider the convergence of the MCF on changing
target manifolds. We clarify the meaning of the convergence in the following.

Denote the orbit of Z under MCF by z* € M, such that z° = Z. Note
the injectivity radius of the new target (M,§) tends to infinity as e — 0.
Let {z!,...,2"} be normal coordinates of M of radius > 1 around # with
Tz My = span{(9/dz),...,(8/02™)}, and Jap be the metric coefficients of
M in this coordinates. By [14], we have |Jas — 0asl(z) < CQ~2|z|?> and
|0Gas| + 102 Gag| < C. By Arzela—Ascoli theorem, after taking a subsequence
of e =+ 0, gop tends to d,g in C?~7 topology for any 0 < v < 1.

By Lemma 7.2, there exist a family of maps Fy: {(x!,... 2")|
(22 4 -+ 2"?)V/2 < 1} — RP" with Fy(0) =0, [DFy|(0) = 0, such that
the connected component containing z° of M, N {(z',...,z") | (SU12 +-+
2"?)1/2 <1} can be written as a graph {(z’, Fy(z')) | |2/] = (a:12 +-
2"?)1/2 < 1}. Moreover, we can show

) S C?

4 2 ;
; o JOF
> Ip Fy+; (‘%F’ + 'D o

i=1
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where D and the norm are the natural differential and norm in FEuclidean
ordinates of N C R™ and the garget R". By Arzela—Ascoli theorem, F(2’, s)
will converge to F>(z’, 5) in the topology of C*/2(B(0, (1/2)) x [—(5a/8),0],
R™) N C3(B(0,(1/2)),R™).

If we set X = (2, F(a')) being the map from N := B(0,1) to M, then
the MCF equation can be written as

0X
55 AKX,

where A is the harmonic Laplacian defined by using the induced metric
X*g and the target metric g. Since X*g is defined by DF and g, after tak-
ing a subsequence of € — 0, we know X*j converges in C'~7(B(0, (1/2)) x
[—(5a/8),0]) topology.

Denote by M, = M, Nexp,{|2'| <1}, and M = Use[_(a/Q),O]MS. By
summing up the above discussion, the piece M of M containing (z,0) will
converge to a solution of the MCF (in the classical sense) which is embed-
ded on the Euclidean space R™ with |A.|(0,0) =1 and |Au|(-,s) < 4 on
[—(a/2),0].

On the other hand, let p = Q"¢ = (47(—s))~ /2 exp[—(1 + (s/Q%))
(d%,(Z,-) /4(=s)) — (n/2¢)(f + Q~?s)], note that

dy (2, )V'dg (2, )|

H+<1+i(t—f)> e

_ g S dM(a_ju)@J_dM(ja)2
i (o ) ate

Q72

9

g

. _ - 2.\ 3
o= <1 Q 2 (z,)? —i—23nt+ 3nQ 25) Y
p +

@ — (4m(—5)) "2 FV/A=9) and oy dv = @i do.

Since M, C Mj, by passing (7.11) to limit, we have

0
/(1/2)a /Moo

2

7 ——

; <4w<—s>><"/2>e<lw|2/4<s>>] i =0
S
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where we denote the limit of Ms by M;?o, I:IOO the mean curvature on the
limit. This implies
1
. T o
Ho="" forsc [——,o].
© T o 7 2

The boundedness of the second fundamental form on M(‘fo implies 2 = 0 on
Mgo. Since the second fundamental form and its twice covariant derivative
of M are bounded for s € [—(a/2),0], M are C*~7 submanifolds for
any v > 0. Moreover by the higher-derivative estimates in Theorem 3.2 (in
Euclidean Space) M §° is smooth.

Note 0 € Mg®, after a orthogonal transformation, we may assume ToMg°

{A(xl,acg, s @y 0y 0)}. Clearly we still have the condition z =0 on
Mg§°. We may write MG° as a graph (at least locally near 0) (2/, f1(2),...,
fron(z") where o' = (21,...,2,). Now 2+ = (2, f1(2),. .., fa_n(z’)+ =0

implies 2221(8 fi/0xp)x), = fl( ). So f; is homogenous of degree 1. Since
Df;(0) =0, we conclude f; =0. Hence we know Mgo is an n-dimensional
linear subspace R™ of R”.
This contradicts |A|(O,0) = 1 and we complete the proof of (7.10).
Note that By (z, p) C Bj(xo, p+ (2K + 1)e) C By(xo,44/¢). Combin-
ing (7.10) and monotonicity formula (7.8), we know

_ £\ d* (z,x
/ (47t) (/P exp |- <1 - t> M dv
MoNBj; (w0,4+/2) € 4t
’I’L/2€ 3nt_ 3
(7.12) > PUdv i——1/2)a@—> = (L + B)e” I——) .
M, p
By assumption, there is a normal coordinate system (y!, ..., y") of M around

xo with T, My = span{(9/dy'), ..., (8/8y")} and a vector valued function
F:{y =@ .. ,y)EH)?+ -+ )2 <1} - R*™™ with F(0) =0,
|DF|(0) =0, |[DFP(y') =3, (0F7/0y")(OF7/dy") < 6% such that My N
{V| <1} ={W,F)) | V] < 1}. Let P : R™ — R" be the orthogonal pro-
jection into the first n-components. Let expgj0 (y) =% and 3’ = Py. For
x € By(zo,44/¢), 1et exp,,(y) = and y' = Py. Since the curvature of
M is bounded by ¢}, by comparison theorem on the ball By (o, 4./¢),
we have

(7.13)

A (7, 7) > sin(4cov/2)

dege 17—yl = (A =3ce)ly —y| > (1 =3y’ — /|



484 Bing-Long Chen and Le Yin
On the other hand, also by comparison theorem, the Riemannian volume
element dv of M satisfies

sinh(cod ;7 (o, -))
C()dM(:L’o, )

n
(7.14) expl dv < eyt pgy < [1+ 16cgg]ndvexp;01 Mo

whenever x € My N By (xo,44/2). By definition, it is clear that
(7.15)  dvggpoi g, < (L4 [DFP)2dyt . dy™ < (14 8)"2dy" .. dy™.

Combining (7.13), (7.14) and (7.15), we have

_ £\ d% (z,
/ (478) ="/ exp | — <1 - t) M dv
MoNBy; (x0,4+/2) € 4t
< (140221 + 16¢2e)" (1 — &)~ W2 (1 — 3c¢e)™
/ [ AnE }—(nﬂ)
X
(|y1‘2+,,,+|yﬂ‘2)1/2<4\/€ (1 — E)(l — 30%5)2

4t

—/ /12 1 n
X exp [—!y — | /(1—5)(1—3035)2] dy'...dy
< (14 6%)"2(1 + 16¢2e)" (1 — &)~ W2 (1 — 3cke)™.

By (7.12) and the fact < &2, we conclude that
(1+02) 2 (14 16¢2e)" (1 — &) M2 (1 — 3¢2e) ™™(1 — 3ne) 3e™/2 > (1 + ),

which is a contradiction as €,0 — 0. We complete the proof of the
Theorem. O

Theorem 7.5. Let M be an f-dimensional manifold satisfying Z?:o‘
V¢ Rm| < ¢ and inj(M) >ig > 0. Then there is € > 0 with the following
property. Suppose we have a smooth solution My C M to the MCF properly
embedded in By (zo,m0) fort € [0,T], where ro < (ig/2), 0 < T < &?r2. We
assume that at time zero, xg € My, and the second fundamental form satis-
fies |A|(x) < gt on My N By (wo,m0) and assume My is graphic in the ball
By (zo,m0). Then we have

(7.16) |Al(x,t) < (5r0)_1

for any x € By(xo,ero) N My, t € 0,T].
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Proof. By scaling we may assume rg = 1. By Lemma 7.1, for any § > 0, there
is 0 < rs <1 such that the connected component of My N By;(xo, (1/96))
containing xy contains a d-Lipschitz graph of radius 2rs at xg. By our graphic
assumption, we conclude that My N By (xo,7s) is a 6-Lipschitz graph. So
Theorem 7.3 is applicable with radius r;.

Consequently, for any « > 0, there exists an €, > 0 such that

(7.17) A, t)? < T +e5?

whenever x € M; N By (z0,€q), t € [0,62] N[0, T]. Let o be a fixed small
constant to be determined later. It turns out that we only need to choose
a=al(cy,n,n) finally. Choose & = min{\/ag,,1071}. Then by (7.17)
we have

2
(7.18) Al 8 < =

whenever € My N By (x0,24), t € [0,£2] N[0, T).
Claim. |A|(z,t) < e ! holds on M; N By (xo,€), t € [0,£2] N[0, T].

Suppose |A|(z1,t1) >~ holds for some point (z1,t1), 1 € My,N
By (z0,€), t1 € [0,€2] N[0, T]. We can choose another point (z,), z € Mz N
By (z0,4¢), t € 0,62] N[0, T] such that Q = |A|(z,) > ! and

(7.19) 1A (z,1) < 4Q

whenever x € My, d;(z,2) < Q71 0<t <t

Actually (Z,t) can be constructed as the limit of a finite sequence (z;, ;)
satisfying 0 < tj, < t_1, dj(wo, z) < dyp(z0, 2h—1) + |Al(Tp—1, th1) 7, 4]
(xg,tr) > 4|A|(xg—1,tg—1). Since

|Al(zg, te) = 4 A (21, t1) > 4517
dyr(wo, wx) < dyy(wo, 1) + 3072, (47 Al (21, 11)) 7! < 32 < (1/2), and the
solution is smooth, the sequence must be finite and the last element fits.

Note that 3ntQ? < 6na < (1/2) by choosing a < (1/12n). Let ¢ = (1—
d> (z,-) + 3nt/Q2))3, then we have
M +

0
(i-o)v=0
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whenever d;(Z,)? < min{(1/c3e),i3}, t € [0,£]. On the other hand, by
(3.2), the second fundamental form satisfies

(eis - A) |A]? < —|VA]? + C(n)|A]* + C(R) (1 + ) (|A]* + |A]).

Hence

(;’t - A) (V[A]?) < =[VAPY + C(n)| A" + C(n) (1 + ) (JA]* + |A])o
+ 4|V A|[A]|[ VY|

2
< C@AMY + C()(1 + ) (AP + Ay + 4W$‘|AI2

< CM)IA[*Y + CR)(1 + ) (A + A
(7.20) + 144Q%| APy t/?

on [0,%]. By (7.19) and (7.20), we have

(gt - A) @WlA?) < C()Q" + C()(1 + ) (Q + Q7).

From the maximum principle, it follows
(VAP maxli=t < 1+ C(M)Q'T+ C(R)(1 + ) (Q + Q)
<1+ 2aC(R)Q*+ C(n)(1 + &) (V2al + 20).
Note that
(VAP ) maxli=z > ¢IA*(2,1) > (1 = 3nQ%*)°Q* > (1 — 18na)Q?,
hence we have
(1 - 18n0)Q% < 1 + 2aC(R)Q? + C(A)(1 + ¢2) (\/ﬂﬂ 2a) .

This implies
1+ C@)(1+ @) (V2a + 2a)
1—(18n+2C(n))a
Choosing suitable small o = «(cg,n,n), we have Q? < 2, which is a contra-
diction with @2 > e72. So the Claim is proved. O

Q* <



Uniqueness and pseudolocality theorems of the mean curvature flow 487

We remark that in the above theorem the condition that Mj is graphic
in the ball Bj;(zo,70) can be replaced by any one of the following conditions:

(i) dg(z,y) > (dg,(x,y)/C) for any z,y € Mo N By (x0,70);

(ii) there is a € >0 such that Bj;(xo,erg) N My is connected for
any € < €g.

Corollary 7.6. Let M be an n-dimensional complete manifold satisfying
S22 o IVRm| < and inj(M) > ig > 0. Let Xo:M — M be an
n-dimensional isometrically properly embedded submanifold with bounded
second fundamental form |A| < co in M. We assume My = Xo(M) is uni-
form graphic with some radius r > 0. Suppose X (x,t) is a smooth solution
to the mean curvature flow (1.1) on M x [0,Ty] properly embedded in M
with Xg as initial data. Then there is T1 > 0 depending upon cg,ig,r and
the dimension n such that

|[A](z,t) < 2¢

forallx € M, 0 <t <min{Ty,T1}.

Proof. By Theorem 7.5, there is € > 0 such that for any g € M, we have
|Al(z,t) < e

on By (wo,€), t €[0,e2]N[0,T]. Let [0,7) C [0,e%] N[0, T] be the maximal
time interval so that the orbit of zg, z§ € Bj;(zo,¢€) for t € [0,7]. Then by
the MCF equation, we know

d

@dﬂ;[(azo, xf)) < Ce !,

for any t € [0,7]. This implies v > (¢2/C) for some C = C(n,n). Choos-
ing e = (¢/v/C), T = min{Tp, 2}, we conclude that the second fundamental
forms are uniformly bounded by the constant e~! on M x [0,T]. Once the
second fundamental form is bounded, since we assumed Z?:o [ViIRm| < ¢Z,
we have gradient estimate |V A| < (C/+/t), and hence suitable linear growth
function with bounded first and second derivatives can be constructed.
Therefore we can apply the maximum principle to the equation of |A|
to conclude a uniform estimate |A| < 2¢o, for any t € [0, (1/C(n)c3)]. Set
Ty = min{T, (1/C(n)c2)}. The proof is completed. O

Theorem 1.3 follows as a corollary of Theorem 1.1 and Corollary 7.6.
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In [16], Huisken established his monotonicity formula, which was later
generalized by Ecker-Huisken [11], Huisken [17], and to parabolic flows on
Riemannian manifolds by Hamilton [15]. The remarkable localized mono-
tonicity formula was discovered by Ecker [9].

Finally, we are acknowledged kindly by Prof. Klaus Ecker that part
of our arguments of using monotonicity was also carried out before by B.
White [25] (see [10]) in different situations. The choice of ¢ in inequality
(7.6) appeared first in [1] for the case of Euclidean space, see Remark 4.8 of
the book [10].
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