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Uniqueness and pseudolocality theorems
of the mean curvature flow

Bing-Long Chen and Le Yin

Mean curvature flow evolves isometrically immersed base manifolds
M in the direction of their mean curvatures in an ambient manifold
M̄ . If the base manifold M is compact, the short-time existence
and uniqueness of the mean curvature flow are well known. For
complete isometrically immersed submanifolds of arbitrary codi-
mensions, the existence and uniqueness are still unsettled even
in the Euclidean space. In this paper, we solve the uniqueness
problem affirmatively for the mean curvature flow of general codi-
mensions and general ambient manifolds. In the second part of
the paper, inspired by the Ricci flow, we prove a pseudolocality
theorem of mean curvature flow. As a consequence, we obtain a
strong uniqueness theorem, which removes the assumption on the
boundedness of the second fundamental form of the solution.

1. Introduction

Let (M̄ n̄, ḡ) be a complete Riemannian (compact or noncompact) manifold,
and X0 : (Mn, g) → M̄ n̄ be an isometrically immersed Riemannian manifold.
For any fixed point x0 ∈ Mn, X, Y ∈ Tx0M

n, the second fundamental form
II at x0 is defined by II(X, Y ) = ∇̄X̃ Ỹ − ∇X̃ Ỹ = (∇̄X̃ Ỹ )⊥, where Mn is
regarded as a submanifold of M̄ locally by the isometry X0, ∇̄ and ∇ are
the covariant derivatives of ḡ and g, respectively, X̃, Ỹ are any smooth
extensions of X and Y on M̄ n̄. In a local coordinate system {x1, x2, . . . , xn}
on Mn, denote the second fundamental form by hij = II((∂/∂xi), (∂/∂xj))
and the mean curvature by H = gijhij . The mean curvature flow (MCF) is a
deformation Xt : Mn → M̄ n̄ of X0 in the direction of the mean curvature H

(1.1)
∂

∂t
X(x, t) = H(x, t), for x ∈ Mnand t ≥ 0,

with X(x, 0) = X0(x), where Mn is equipped with the induced metric from
X(·, t) : Mn → M̄ n̄ and H(x, t) is the corresponding mean curvature.
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We can write (1.1) in another form

(1.2)
∂

∂t
X(x, t) = �X(x, t), for x ∈ Mn and t ≥ 0,

where �Xα(x, t) = gij(x, t)((∂2Xα/∂xi∂xj) − Γk
ij(∂Xα/∂xk) + Γ̄α

βγ(∂Xβ/

∂xi)(∂Xγ/∂xj)) is the harmonic map Laplacian from the manifold (Mn, gij

(·, t)) to (M̄ n̄, ḡ), and gij(·, t) is the induced metric from the inclusion
map X(·, t).

Various weak solutions to the MCF have been studied in the past 30
years by many mathematicians with different approaches, e.g., Brakke solu-
tions, the level set solutions, etc. The existence, uniqueness and nonunique-
ness of weak solutions for Euclidean (non)smooth hypersurface have been
extensively studied. In this paper, motivated by geometric applications, we
consider the classical solutions in general ambient Riemannian manifolds.

When Mn is compact, the MCF (1.1) has a unique short-time solution,
since (1.2) is a (degenerate) quasi-linear parabolic equation. For codimen-
sional one complete immersed local Lipschitz hypersurfaces in the Euclidean
space, we refer the readers to see [11, 12]. For submanifolds of arbitrary
codimensions in a general ambient Riemannian manifold, the short-time
existence and the uniqueness of (1.1) have not been established in the lit-
erature. In this paper, we deal with the uniqueness problem of the mean
curvature flow and derive the pseudolocality estimate.

The first main theorem of this paper is the following.

Theorem 1.1. Let (M̄ n̄, ḡ) be a complete Riemannian manifold of dimen-
sion n̄ such that the curvature and its covariant derivatives up to order 2
are bounded and the injectivity radius is bounded from below by a positive
constant, i.e., there are constants C̄ and δ̄ such that

|R̄m| + |∇̄R̄m| + |∇̄2R̄m|(x) ≤ C̄, inj(M̄ n̄, x) > δ̄ > 0,

for all x ∈ M̄ n̄. Let X0 : Mn → M̄ n̄ be an isometrically immersed Rieman-
nian manifold with bounded second fundamental form in M̄ n̄. Suppose
X1(x, t) and X2(x, t) are two solutions to the mean curvature flow (1.1) on
Mn × [0, T ] with the same X0 as initial data and with bounded second funda-
mental forms on [0, T ]. Then X1(x, t) = X2(x, t) for all (x, t) ∈ Mn × [0, T ].

We remark that the uniqueness of the Ricci flow has been established by
Zhu and the first author in [5]. More precisely, it was proved in [5] that the
solutions of the Ricci flow in the class of bounded curvature with the same
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initial data are unique. We refer the readers to see an interesting application
of this uniqueness theorem to the theory of the Ricci flow with surgery in
dimension 3 and 4 [2, 4, 21]. We hope this MCF uniqueness theorem will also
play roles in the theory of the mean curvature flow with surgery.

Since the MCF is degenerate in tangent directions, it is not a strictly
parabolic system. In order to apply the standard theory of strict parabolic
equations, we use the De Turck trick [7]. The idea is to pull back the MCF
through a family of diffeomorphisms of the base manifold Mn generated by
solving a harmonic map flow coupled with the MCF, this gives us the MCF in
harmonic map flow gauge, which is a strict parabolic system. Then we apply
the uniqueness of the strict parabolic system. The issue is not quite straight
forward as it seems. Because before applying the uniqueness theorem of a
strict parabolic system on a noncompact manifold, we encounter two ana-
lytic difficulties. The first one is that we need to establish a short-time
existence for the harmonic map flow between complete manifolds. The sec-
ond one is to get a priori estimates for the harmonic map flow so that after
pulling back, the solutions to the strictly parabolic system still satisfy suit-
able smooth or growth conditions.

In the classical theory of the harmonic map flow, people usually would
like to impose certain convexity conditions to ensure the existence (e.g., the
negative curvature condition [13] or convex condition [8]). We observed that
in [5] the condition of injectivity radius bounded from below by a positive
constant ensures certain uniform (local) convexity and this is sufficient to
give the short-time existence and a priori estimates for the harmonic map
flow. Note that the MCF is a kind of harmonic map flow with varying base
metrics. In order to deal with the a priori estimates for MCF and harmonic
map flow coupled with MCF, we have to consider the general harmonic map
flow. These estimates have been dealt with systematically in this paper
(Sections 2, 3 and 4).

Note that the injectivity radius of a Riemannian manifold with bounded
curvature may decay exponentially. In the Ricci flow case [5], since we
only have the curvature bound, we need make more effort to overcome this
difficulty.

The difference of Theorem 1.1 with [5] is between the extrinsic and
intrinsic geometries. In the present case, instead of the metrics as in the
Ricci flow, we consider the equation of the position function.

As a direct consequence of Theorem 1.1, we have

Corollary 1.2. Let (M̄ n̄, ḡ) be assumed as in Theorem 1.1 and Xt : Mn →
M̄ n̄ be a solution to the mean curvature flow (1.1) on Mn × [0, T ] with
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bounded second fundamental forms on [0, T ], and with complete isometric
immersed X0 : M → M initial data. Let σ̄ be an isometry of (M̄ n̄, ḡ) such
that there is an isometry σ of (Mn, g) to itself satisfying

(1.3) (σ̄ ◦ X0)(x) = (X0 ◦ σ)(x)

for all x ∈ Mn. Then we have

(1.4) (σ̄ ◦ Xt)(x) = (Xt ◦ σ)(x)

for all (x, t) ∈ Mn × [0, T ]. In particular, the isometry subgroup of (Mn, g)
induced by an isometry subgroup of (M̄ n̄, ḡ) at initial time remains to be an
isometry subgroup of (Mn, gt) for any t ∈ [0, T ].

From the PDE point of view, it is a natural condition in Theorem 1.1
to assume that the second fundamental form of the solution is bounded.
In the last part of the paper, we try to remove this condition. We remark
that in [6], Chou and Zhu had obtained the strong uniqueness of the curve
shortening flow for the locally Lipschitz continuous properly embedded curve
whose two ends are presentable as graphs over semi-infinite line. Our strong
uniqueness theorem is the following.

Theorem 1.3. Let M̄ be an n̄-dimensional complete Riemannian mani-
fold satisfying

∑3
i=0 |∇̄iR̄m| ≤ c2

0 and inj(M̄) ≥ i0 > 0. Let X0 : M → M̄ be
an n-dimensional isometrically properly embedded submanifold with bounded
second fundamental form in M̄ . We assume X0(M) is uniform graphic
with some radius r > 0. Suppose X1(x, t) and X2(x, t) are two smooth solu-
tions to the mean curvature flow (1.1) on M × [0, T0] properly embedded in
M̄ with the same X0 as initial data. Then there is 0 < T1 ≤ T0 such that
X1(x, t) = X2(x, t) for all (x, t) ∈ M × [0, T1].

Here roughly speaking, uniform graphic with radius r(>0) means that
for any x0 ∈ X0(M), X0(M) ∩ BM̄ (x0, r) is a graph. We say a submanifold
M ⊂ M̄ is properly embedded in a ball BM̄ (x0, r0) if either M is closed or
∂M has distance ≥r0 from x0. A submanifold M ⊂ M̄ is said to be properly
embedded in (complete manifold) M̄ if either M is closed or there is an
x0 ∈ M̄ such that M is properly embedded in BM̄ (x0, r0) for any r0 > 0.

The strong uniqueness theorem was proved as a consequence of Theo-
rem 1.1 and pseudolocality theorem.

The pseudolocality theorem says that the behavior of the solution at a
point can be controlled by the initial data of nearby points, no matter the
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solution or initial data outside the neighborhood behaviors like. Precisely
the following theorem is proved in this paper.

Theorem 1.4. Let M̄ be an n̄-dimensional manifold satisfying
∑3

i=0
|∇̄iR̄ m| ≤ c2

0 and inj(M̄) ≥ i0 > 0. Then for every α > 0 there exist ε > 0,
δ > 0 depending only on the constants n̄, c0 and i0 with the following prop-
erty. Suppose we have a smooth solution to the mean curvature flow Mt ⊂ M̄
properly embedded in BM̄ (x0, r0) for t ∈ [0, T ], where 0 < T ≤ ε2r2

0, and
assume that at time zero, M0 is a local δ-Lipschitz graph of radius r0 at
x0 ∈ M with r0 ≤ (i0/2). Then we have an estimate of the second funda-
mental form

|A|(x, t)2 ≤ α

t
+ (εr0)−2

on BM̄ (x0, εr0) ∩ Mt, for any t ∈ [0, T ].

We refer the reader to see the precise definition of δ-Lipschitz graph
in Section 7. The third covariant derivative of the curvature is a technical
assumption which could be improved, we assume it only for simplicity. For
most of interesting cases, we have all covariant derivative bounds.

We remark that for codimension one uniformly local Lipschitz hyper-
surface in Euclidean space, the estimate was firstly derived by Ecker and
Huisken [11, 12]. For higher-codimension case, under an additional condition
which assumes that the submanifold is compact, the estimate was proved
by Wang [24]. In codimension, one case, the constant δ in Theorem 1.4 does
not need to be small; however, in higher-codimension case, as noted by [24],
the smallness assumption is necessary in view of the example of Lawson and
Osserman [18]. The strategy of the proofs of [11, 12, 24] is to find a suit-
able gradient function. The philosophy is that this gradient function will
serve as the lower order quantity as in the Bernstein trick, and the second
fundamental form is the higher order quantity, then apply the maximum
principle. This method has some difficulties in higher-codimensional case
in current stage, treating pure local estimates for noncompact submanifolds
(see [24]).

Our approach is completely different. This approach can be regarded as
an integral version of Bernstein trick. It is a mean curvature flow analog of
the corresponding estimate in Ricci flow given by Perelman [20]. The idea
of localizing monotonicity formulas (see [9], or formula (7.8) in Section 7 of
the present paper) plays a crucial role in our argument. We refer the readers
to see [1, 9, 10, 16] (Euclidean case) for relevant details and references.
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As a nontrivial corollary of Theorem 1.4, we have

Corollary 1.5. Let M̄ be an n̄-dimensional complete manifold satisfy-
ing

∑3
i=0 |∇̄iR̄m| ≤ c2

0 and inj(M̄) ≥ i0 > 0. Let X0 : M → M̄ be an n-
dimensional isometrically properly embedded submanifold with bounded sec-
ond fundamental form |A| ≤ c0 in M̄ . We assume M0 = X0(M) is uniform
graphic with some radius r > 0. Suppose X(x, t) is a smooth solution to the
mean curvature flow (1.1) on M × [0, T0] properly embedded in M̄ with X0 as
initial data. Then there is T1 > 0 depending upon c0, i0, r and the dimension
n̄ such that

|A|(x, t) ≤ 2c0

for all x ∈ M, 0 ≤ t ≤ min{T0, T1}.

This paper is organized as follows. In Section 2, we derive the injectivity
radius estimate of an immersed manifold and some preliminary estimates for
a general harmonic map flow. In Section 3, the higher-derivative estimates
for the MCF are derived. In Section 4, we study the harmonic map flow
coupled with the MCF. In Section 5, we deal with the uniqueness theorem
of the mean curvature De Turck flow (or MCF in harmonic map flow gauge).
In Section 6, we prove the uniqueness Theorem 1.1 and Corollary 1.2. In
Section 7, we establish the pseudolocality Theorems 1.4 and 1.5 and prove
the strong uniqueness Theorem 1.3.

2. Preliminary estimates

In the first part of this section, we will derive the injectivity radius estimate
for isometrically immersed manifold Mn.

Theorem 2.1. Let (M̄ n̄, ḡ) be a complete Riemannian manifold of dimen-
sion n̄ with bounded curvature and the injectivity radius is bounded from
below by a positive constant, i.e., there are constants C̄ and δ̄ such that

(2.1) |R̄m|(x) ≤ C̄ and inj(M̄ n̄, x) ≥ δ̄ > 0, for all x ∈ M̄ n̄.

Let X : Mn → M̄ n̄ be a complete isometrically immersed manifold with
bounded second fundamental form |hα

ij | ≤ C in M̄ n̄, then there is a positive
constant δ = δ(C̄, δ̄, C, n̄) such that the injectivity radius of Mn satisfies

(2.2) inj(Mn, x) ≥ δ > 0, for all x ∈ Mn.
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Proof. Fix x0 ∈ Mn, let {y1, y2, . . . , yn̄} and {x1, x2, . . . , xn} be any two
local coordinates of M̄ n̄ and Mn at y0(= X(x0)) and x0, respectively, recall
that the second fundamental form can be written in these local coordinates
in the following form

hα
ij =

∂2yα

∂xi∂xj
− Γk

ij

∂yα

∂xk
+ Γ̄α

βγ

∂yβ

∂xi

∂yγ

∂xj

= ∇i∇j(yα) + Γ̄α
βγ

∂yβ

∂xi

∂yγ

∂xj
, for α = 1, 2, . . . , n̄,(2.3)

where ∇i∇j(yα) is the Hessian of yα, which is viewed as a function of Mn

near x0. In the following argument, we denote by C̄1 various constants
depending only on C̄, C and δ̄.

Define f(x) = d̄ 2(y0, X(x)) on Mn ∩ X−1(B̄(y0, C̄1)) for some C̄1 ≤ δ̄,
then ∇jf = (∂f/∂yα)(∂yα/∂xj) and the Hessian of f with respect to the
metric g on Mn ∩ X−1(B̄(y0, C̄1)) can be computed as follows

∇i∇jf =
∂

∂xi
∇jf − Γk

ij∇kf

=
(

∂2f

∂yα∂yβ
− Γ̄γ

αβ

∂f

∂yγ

)
∂yα

∂xj

∂yβ

∂xi

+
∂f

∂yα

(
∂2yα

∂xi∂xj
− Γk

ij

∂yα

∂xk
+ Γ̄α

βγ

∂yβ

∂xi

∂yγ

∂xj

)

= ∇̄α∇̄β d̄ 2 ∂yα

∂xj

∂yβ

∂xi
+ 2 d̄∇̄αd̄ · hα

ij .(2.4)

Using Hessian comparison theorem on M̄ n̄ and choosing C̄1 suitable small
so that d̄ is suitable small, we get

(2.5) ∇i∇jf ≥ 1
2
gij

on Mn ∩ X−1(B̄(y0, C̄1)). Now we claim that any closed geodesic starting
and ending at x0 on (Mn, g) must have length ≥ 2C̄1.

We argue by contradiction. Indeed, suppose we have a closed geodesic
γ : [0, L] → Mn of length L < 2C̄1, X ◦ γ must be contained in B̄(y0, C̄1),
then by (2.5), we have

(2.6)
d2

ds2 f ◦ γ(s) = ∇2f(γ̇, γ̇) ≥ 1
2
, s ∈ [0, L].
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By the maximum principle, we have

sup
s∈[0,L]

f ◦ γ(s) ≤ f ◦ γ(0),

this implies that γ is just a point γ(0). The contradiction proves the claim.
On the other hand, by the Gauss equation,

Rijkl = R̄ijkl + (hα
ikh

β
jl − hα

ilh
β
kj)ḡαβ(·, 0),

we see that

(2.7) |Rm| ≤ C̄ + 2C2.

Finally, by Klingenberg lemma [3], the injectivity radius of (Mn, g) at x0 is
given by

inj(Mn, g, x0) = min
{

the conjugate radius at x0,

1
2

the length of the shortest closed geodesic at x0

}

≥ min
{

π√
C̄ + 2C2

, C̄1

}

.

The proof of the theorem is completed. �

Let N be a Riemannian manifold, the distance function d(y1, y2) can
be regarded as a function on N × N. In the next theorem, we will estimate
the Hessian of the distance function, which is viewed as the function of two
variables. The crucial computation of the Hessian was carried out in [23].

Theorem 2.2. Let Nn be a complete Riemannian manifold of dimension
n satisfying

(2.8) |Rm| ≤ K0, inj(Nn) ≥ i0 > 0.

Let d(y1, y2) be the distance function regarded as a function on N × N,
then there is a positive constant C = C(K0, i0) such that when d(y1, y2) ≤
min{(i0/2), (1/4

√
K0)}, we have

(i) |∇2d2|(y1, y2) ≤ C,

(ii) (∇2d2)(X, X) ≥ 2|X1 − P−1
γ X2|2 − C|X|2d2

for all X ∈ T(y1,y2)N
n × Nn,

(2.9)
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where X = X1 + X2, X1 ∈ Ty1N
n, X2 ∈ Ty2N

n, ∇ is the covariant deriva-
tive of N × N, γ is the unique geodesic connecting y1 and y2 in Nn, and Pγ

is the parallel translation of Nn along γ.

Proof. Set ψ(y1, y2) = d2
Nn(y1, y2). Then ψ is a smooth function of (y1, y2)

when d(y1, y2) ≤ min{(i0/2), (1/4
√

K0)}. Now we recall the computation of
Hess(ψ) in [23]. For any (u, v) ∈ D = {(u, v) : (u, v) ∈ Nn × Nn, dNn(u, v) ≤
min{(i0/2), (1/4

√
K0)}} \ {(u, u) : u ∈ Nn}, let γuv be the minimal geodesic

from u to v and e1 ∈ TuNn be the tangent vector to γuv at u. Then e1(u, v)
defines a smooth vector field on D. Let {ei} be an orthonormal basis for
TuNn which depends on u smoothly. By parallel translation of {ei} along
γ, we define {ēi} an orthonormal basis for TvN

n. Thus {e1, . . . en, ē1, . . . ēn}
is a local frame on D. Then for any X = X1 + X2 ∈ T(u,v)D with

X1 =
n∑

i=1

ξiei and X2 =
n∑

i=1

ηiēi,

by the formula (16) in [23],

1
2
Hess(ψ)(X, X) =

n∑

i=1

(ξi − ηi)2 +
∫ r

0
t〈∇e1V, ∇e1V 〉

+
∫ r

0
t〈∇ē1V, ∇ē1V 〉 −

∫ r

0
t〈R(e1, V )V, e1〉

−
∫ r

0
t〈R(ē1, V )V, ē1〉,(2.10)

where V is a Jacobi field on geodesic σ (connecting (v, v) to (u, v)) and
σ̄ (connecting (u, u) to (u, v) of length r =

√
ψ) with X as the boundary

values, where X is extended to be a local vector field by letting its coefficients
with respect to {e1, . . . en, ē1, . . . ēn} be constant (see [23]). By the Jacobi
equation, we have the estimates

|V | ≤ C(K0, i0)|X|, r|∇e1V | ≤ C(K0, i0)|X|, r|∇ē1V | ≤ C(K0, i0)|X|

under the assumption d(y1, y2) ≤ min{(i0/2), (1/4
√

K0)}. Thus by (2.10)
we have

|Hess(ψ)| ≤ C(K0, i0),
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this proves (i). Similarly, when d(y1, y2) ≤ min{(i0/2), (1/4
√

K0)}, by (2.10),
we have

1
2
Hess(ψ)(X, X) ≥

n∑

i=1

(ξi − ηi)2 −
∫ r

0
t〈R(e1, V )V, e1〉

−
∫ r

0
t〈R(ē1, V )V, ē1〉

≥
n∑

i=1

(ξi − ηi)2 − C(K0, i0)|X|2r2.

This proves (ii). The Theorem is proved. �

For future applications, in the next part of this section, we will calculate
the equations of derivatives of general harmonic map flow. Since the MCF
is a kind of harmonic map flow with varying base metrics evolved by MCF,
the formulas computed here are very useful in deriving the higher derivative-
estimates in Section 3 and 4. The formulas are of interest in their own rights.
First we fix some notations.

Let F be a map from a Riemannian manifold (M, gij) to another Rie-
mannian manifold (N, ḡαβ), let F−1TN be the pull back of the tangent
bundle of N , we equip the bundle (T ∗M)⊗p ⊗ F−1TN the connection and
metric induced from the connections and metrics of M and N . Let u be a
section of (T ∗M)⊗(p−1) ⊗ F−1TN . In local coordinates {xi} and {yα} of M
and N with y = F (x), we have |u|2 = uα

i1i2...ip−1
uβ

j1j2...jp−1
gi1j1 . . . gip−1jp−1 ḡαβ .

The coefficients of the covariant derivative ∇u can be computed by the
formula

(∇u)α
i1i2...ip−1ip

=
∂uα

i1i2...ip−1

∂xip
− Γl

ipij
uα

i1i2...ij−1lij+1...ip−1
+ Γ̄α

βγ

∂F β

∂xip
uγ

i1i2...ip−1
,

where Γ and Γ̄ are connection coefficients of M and N , respectively. We can
define the Laplacian of u by �u = trg∇2u = gij(∇2u)···ij . Recall the Ricci
identity

(∇2u)α
···ij − (∇2u)α

···ji = −Rijimlu
α
···im−1kim+1···g

kl

+ R̄βγδζ
∂F β

∂xj

∂F γ

∂xi
ḡαδuζ

···.(2.11)
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Note that the derivative ∇F (∇iF
α = (∂Fα/∂xi)) is a section of the bun-

dle T ∗M ⊗ F−1TN , the higher-derivative ∇pF is a section of (T ∗M)⊗p ⊗
F−1TN .

If we have a family of metrics gij(·, t) on M and a family of maps F (·, t)
from M to N , then for each time t, we can still define the bundle (T ∗M)⊗p ⊗
F−1TN and define the covariant derivative ∇. It is a useful observation that
the natural time derivative (∂/∂t) is not covariant with the metrics. We
define a covariant time derivative Dt as follows. For any section uα

i1...ip
of

(T ∗M)⊗p ⊗ F−1TN , we define

Dtu
α
i1...ip

=
∂

∂t
uα

i1...ip
+ Γ̄α

βγ

∂F β

∂t
uγ

i1...ip
.

It is a routine computation which shows that the operator Dt is covariant.

Proposition 2.3. Let M be a manifold with a family of metrics gij(x, t),
(N, ḡ) a Riemannian manifold. Let F (·, t) be a solution to the harmonic
map flow with respect to the evolving metrics gt and ḡ

(2.12)
∂

∂t
F (x, t) = �F (x, t), for x ∈ Mn and t ≥ 0,

where �F (x, t) is the harmonic map Laplacian of F defined by metrics
gij(x, t) and ḡ. Then we have

(Dt − �)∇kF =
k−1∑

l=0

∇l[(RM ∗ g−2 + R̄N ∗ (∇F )2 ∗ g−1 ∗ ḡ−1)] ∗ ∇k−lF

+
k−1∑

l=1

g−1 ∗ ∇l ∂g

∂t
∗ ∇k−lF,

(2.13)

where ∇l(A ∗ B) represents the linear combinations of ∇lA ∗ B, ∇l−1A ∗
∇B, . . . , A ∗ ∇lB with universal coefficients.

Proof. For k = 1, by direct computation and Ricci identity, we have

∂

∂t
∇iF

α + Γ̄α
βγF β

i (�F )γ = ∇i�Fα

= �∇iF
α − Rl

i∇lF
α

+ R̄α
βδγ∇iF

β∇kF
δ∇lF

γgkl.
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For k ≥ 2, we prove by induction. Since

∂

∂t
(∇kF )α

i1...ik
=

∂

∂xik

∂

∂t
(∇k−1F )α

i1...ik−1
− Γp

ikil

∂

∂t
(∇k−1F )α

i1...p...ik−1

+ Γ̄α
βγF β

ik

∂

∂t
(∇k−1F )γ

i1...ik−1

+
(

g−1 ∗ ∇∂g

∂t
∗ ∇k−1F

)α

i1...ik

+
∂

∂yδ
Γ̄α

βγ(�F )δF β
ik

(∇k−1F )γ
i1...ik−1

+ Γ̄α
βγ

∂

∂t
F β

ik
(∇k−1F )γ

i1...ik−1
,

we have

Dt(∇kF )α
i1...ik

=
∂

∂xik
Dt(∇k−1F )α

i1...ik−1
− Γp

ikil
Dt(∇k−1F )α

i1...p...ik−1

+ Γ̄α
βγF β

ik
Dt(∇k−1F )γ

i1...ik−1

+
(

g−1 ∗ ∇∂g

∂t
∗ ∇k−1F

)α

i1...ik

+
∂

∂yδ
Γ̄α

βγ(�F )δF β
ik

(∇k−1F )γ
i1...ik−1

+ Γ̄α
βγ

∂

∂t
F β

ik
(∇k−1F )γ

i1...ik−1

− ∂

∂xik

[

Γ̄α
βγ

∂F β

∂t
(∇k−1F )γ

i1...ik−1

]

+ Γp
ikil

Γ̄α
βγ

∂F β

∂t
(∇k−1F )γ

i1...p...ik−1

− Γ̄α
βγΓ̄γ

δξF
β
ik

∂F δ

∂t
(∇k−1F )ξ

i1...ik−1
+ Γ̄α

βγ

∂F β

∂t
(∇kF )γ

i1...ik
.

Since

∂

∂xik

[

Γ̄α
βγ

∂F β

∂t
(∇k−1F )γ

i1...ik−1

]

=
∂

∂yβ
Γ̄α

δγF β
ik

∂F δ

∂t
(∇k−1F )γ

i1...ik−1

+ Γ̄α
βγ

∂

∂xik

∂F β

∂t
(∇k−1F )γ

i1...ik−1
+ Γ̄α

βγ

∂F β

∂t
(∇kF )γ

i1...ik

+ Γp
ikil

Γ̄α
βγ

∂F β

∂t
(∇k−1F )γ

i1...p...ik−1
− Γ̄α

δγΓ̄γ
βξF

β
ik

∂F δ

∂t
(∇k−1F )ξ

i1...ik−1
,
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we have

Dt(∇kF )α
i1...ik

= [∇Dt(∇k−1F )]αi1...ik
+
(

g−1 ∗ ∇∂g

∂t
∗ ∇k−1F

)α

i1...ik

+ R̄α
δβγ(�F )δF β

ik
(∇k−1F )γ

i1...ik−1
.

Combining with Ricci identity

∇�∇k−1F = �∇kF + ∇[(RM ∗ g−2 + R̄N ∗ (∇F )2 ∗ g−1 ∗ ḡ−1) ∗ ∇k−1F ]

and induction on k, we have

(Dt − �)(∇kF ) = g−1 ∗ ∇∂g

∂t
∗ ∇k−1F

+ R̄N ∗ ∇F ∗ ∇2F ∗ ∇k−1F ∗ g−1 ∗ ḡ−1

+ ∇[(Dt − �)∇k−1F ]
+ ∇[(RM ∗ g−2 + R̄N ∗ (∇F )2 ∗ g−1 ∗ ḡ−1) ∗ ∇k−1F ]

= ∇[(Dt − �)∇k−1F ]
+ ∇[(RM ∗ g−2 + R̄N ∗ (∇F )2 ∗ g−1 ∗ ḡ−1) ∗ ∇k−1F ]

+ g−1 ∗ ∇∂g

∂t
∗ ∇k−1F

=
k−1∑

l=0

∇l[(RM ∗ g−2 + R̄N ∗ (∇F )2 ∗ g−1 ∗ ḡ−1)] ∗ ∇k−lF

+
k−1∑

l=1

g−1 ∗ ∇l ∂g

∂t
∗ ∇k−lF.

We finish the proof of the proposition. �

Corollary 2.4. Let F (·, t) be assumed as in Proposition 2.3. Then we have

(
∂

∂t
− �

)

|∇kF |2 ≤ −2|∇k+1F |2 +

〈
k−1∑

l=0

{

∇l[(RM ∗ g−2

+ R̄N ∗ (∇F )2 ∗ g−1 ∗ ḡ−1)]

+g−1 ∗ ∇l ∂g

∂t

}

∗ ∇k−lF, ∇kF

〉

+ g−(k+1) ∂g

∂t
∗ (∇kF )2 ∗ ḡ.(2.14)
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Proof. Since |∇kF |2 = (∇kF )α
i1...ik

(∇kF )β
j1...jk

gi1j1 . . . gikjk ḡαβ , and

∂

∂t
|∇kF |2 = 2

∂

∂t
(∇kF )α

i1...ik
(∇kF )β

j1...jk
gi1j1 . . . gikjk ḡαβ

+
∂ḡαβ

∂yδ

∂F δ

∂t
(∇kF )α

i1...ik
(∇kF )β

j1...jk
gi1j1 . . . gikjk

+ g−(k+1) ∗ ∂g

∂t
∗ (∇kF )2 ∗ ḡ

= 2Dt(∇kF )α
i1...ik

(∇kF )β
j1...jk

gi1j1 . . . gikjk ḡαβ

+ g−(k+1) ∗ ∂g

∂t
∗ (∇kF )2 ∗ ḡ,

then (2.14) follows from Proposition 2.3. �

3. Higher-derivative estimates for the mean curvature flow

Now we come back to MCF, suppose X(·, t) is a solution to MCF equa-
tion (1.2), g(·, t) is the family of the induced metrics on Mn from (M̄ n̄, ḡ)
by X(·, t), then

(3.1)
∂

∂t
gij = −2Hαhβ

ij ḡαβ .

Note that (∂g/∂t) = (∇2X)2 ∗ ḡ ∗ g−1 and RM = R̄M̄ ∗ (∇X)4 + (∇2X)2 ∗
ḡ. Combining with corollary 2.4, we have

Proposition 3.1. Let (M̄ n̄, ḡ) be a Riemannian manifold of dimension n̄.
Let X0 : Mn → M̄ n̄ be an isometrically immersed manifold in M̄ n̄. Suppose
X(x, t) is a solution of MCF on Mn × [0, T ] with X0 as initial data. Then

(
∂

∂t
− �

)

|∇kX|2 ≤ −2|∇k+1X|2 +

〈
k−1∑

l=0

∇l[(∇2X)2 ∗ ḡ ∗ g−2

+ R̄M̄ ∗ (∇X)4 ∗ g−2

∗ ḡ ∗ ḡ−1] ∗ ∇k−lX, ∇kX

〉

+ g−(k+2) ∗ ḡ2 ∗ (∇2X)2 ∗ (∇kX)2.(3.2)
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Now we are ready to derive the higher-derivative estimates of the sec-
ond fundamental form of MCF provided that we have bounded the second
fundamental form. Before deriving the higher-derivative estimates, we need
to construct a family of cut-off functions ξk, which are used also in the next
section. For each integer k > 0, let ξk be a smooth nonincreasing function
from (−∞, +∞) to [0, 1] so that ξk(s) = 1 for s ∈ (−∞, (1/2) + (1/2k+1)],
and ξk(s) = 0 for s ∈ [(1/2) + (1/2k), +∞); moreover for any ε > 0 there
exists a universal Ck,ε > 0 such that

(3.3) |ξ′
k(s)| + |ξ′′

k(s)| ≤ Ck,εξk(s)
1−ε.

Theorem 3.2. (local estimates) Let (M̄ n̄, ḡ) be a complete Riemannian
manifold of dimension n̄. Let X0 : Mn → M̄ n̄ be an isometrically immersed
complete manifold in M̄ n̄. Suppose X(x, t) is a solution to the mean cur-
vature flow (1.1) on Mn × [0, T ] with X0 as initial data and with bounded
second fundamental forms |hα

ij | ≤ C̄ on [0, T ]. Then for any fixed x0 ∈ Mn

and any geodesic ball B0(x0, a) of radius a > 0 of initial metric gij, for any
k ≥ 3, we have

(3.4) |∇kX|(x, t) ≤ Ck

t(k−2/2) , for all (x, t) ∈ B0

(
x0,

a

2

)
× [0, T ],

where the constant Ck depends on C̄, T, n̄, a and the bounds of the curvature
and its covariant derivatives up to order k − 1 of the ambient manifold M̄
on its geodesic ball BM̄ (X0(x0), a + 1 +

√
nC̄T ).

Proof. Since |(∂/∂t)X| = |H| ≤
√

nC̄, it is not hard to see that under
the evolution of MCF, at any time t ∈ [0, T ], Xt(B0(x0, a)) is contained
in BM̄ (X0(x0), a + 1 +

√
nC̄T ). For any fixed a > 0, k > 0, we denote by

Ck various constants depending only on a, C̄, T , n̄ and the bounds of the
curvature and its covariant derivatives up to order k − 1 of the ambient
manifold M̄ on its ball BM̄ (X0(x0), a + 1 +

√
nC̄T ).

By Proposition 3.1, we have

(
∂

∂t
− �

)

|∇2X|2 ≤ −2|∇3X|2 + C2 + C2|∇3X|

≤ −|∇3X|2 + C2(3.5)
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and
(

∂

∂t
− �

)

|∇3X|2 ≤ −2|∇4X|2 + C3(|∇3X|3 + |∇3X|2 + |∇3X|

+ |∇4X||∇3X|)
≤ −|∇4X|2 + C3|∇3X|3 + C3.(3.6)

Combining (3.5) and (3.6), for any constant A > 0 we have

(
∂

∂t
− �

)

((A + |∇2X|2)|∇3X|2) ≤ (−|∇3X|2 + C3)|∇3X|2

+ 8|∇3X|2|∇4X||∇2X| + [−|∇4X|2

+ C3|∇3X|3 + C3](A + |∇2X|2).(3.7)

Since |∇2X|2 is bounded by assumption, by choosing A suitable large, let
u = (A + |∇2X|2)|∇3X|2 and v = tu, we have

(
∂

∂t
− �

)

u ≤ − 1
C3

u2 + C3

and

(3.8)
(

∂

∂t
− �

)

v ≤ 1
t

(

− 1
C3

v2 + C3

)

.

Now we need a cut-off function technique as in [5]. Let ξ(x) = ξ3(d0(x, x0)/a),
where ξ3 is the cut-off function satisfying (3.3) for k = 3. Then the function
ξ(x) satisfies

ξ(x) = 1, for x ∈ B0

(

x0,

(
1
2

+
1
24

)

a

)

,

ξ(x) = 0, for x ∈ M\B0(x0, a),

|∇0ξ|2 ≤ C3ξ,

(∇2
0ξ)ij ≥ −C3ξ

1/2gij(·, 0),(3.9)

where we used the Hessian comparison theorem. Since by Gauss equation,
the curvature of the initial metric is bounded from below by a constant,
which depends on C̄ and the curvature bound on the ball BM̄ (X0(x0),
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a + 1 +
√

nC̄T ) of the ambient manifold. The last formula holds in the
sense of support functions. Define φ(x, t) = ξ(x)v(x, t). Then we have

(3.10)
(

∂

∂t
− �

)

φ ≤ 1
t

(

− 1
C3

ξv2 − tv�ξ − 2t∇ξ · ∇v + C3ξ

)

.

Suppose φ(x, t) achieves its maximum value over Mn × [0, T ] at some
point (x1, t1) ∈ B(x0, a) × (0, T ], i.e.,

φ(x1, t1) = max
M×[0,T ]

φ(x, t).

Suppose the point x1 does not lie in the cut locus of x0, then

(3.11)
∂φ

∂t
(x1, t1) ≥ 0, ∇v(x1, t1) = −∇ξ

ξ
v, �φ(x1, t1) ≤ 0.

By (3.10) and (3.11), at (x1, t1) we have

(3.12) 0 ≤ − 1
C3

ξv2 − t1v�ξ + 2t1
|∇ξ|2

ξ
v + C3ξ.

Note that the second fundamental form is bounded in Mn × [0, T ], the met-
rics gij(·, t) are equivalent. Since

∂

∂t
Γk

ij =
(

g−1 ∗ ∇∂g

∂t

)k

ij

= g−2 ∗ ḡ ∗ ∇2X ∗ ∇3X,

we have

|Γk
ij(x1, t1) − Γ0

k
ij(x1)| ≤ C(n̄)C̄

∫ t1

0
|∇3X|dt

≤ C(n̄)C̄
∫ t1

0

(
φ

ξt

)1/2

(x1, t)dt

≤ C3
φ(x1, t1)1/2

ξ(x1)1/2 ,
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where we used the fact that φ achieves its maximum at (x1, t1). Thus at
(x1, t1), we have

−�ξ = −gij∇i∇jξ

= −gij(∇0i∇0jξ + (Γ0
k
ij − Γk

ij)∇0kξ)

≤ C3 + C3
φ(x1, t1)1/2

ξ(x1)1/2 |∇ξ|.

Substituting into (3.12), multiplying by ξ(x1) and combining with (3.9), we
have at (x1, t1)

0 ≤ − 1
C3

ξ2v2 +
(

C3 + C3φ(x1, t1)1/2 |∇ξ|
ξ1/2

)

ξv + 2
|∇ξ|2

ξ
ξv + C3ξ

2

≤ − 1
C3

φ2 + C3φ
3/2 + C3φ + C3.

This implies

φ(x1, t1) ≤ C3,

hence we have

|∇3X| ≤ C3

t1/2

on B0(x0, ((1/2) + (1/24))a) × [0, T ]. If x1 lies on the cut locus of x0, then by
applying a standard support function technique as in [22], the same estimate
is still valid.

For higher-derivatives, we prove by induction. Fix x0 ∈ Mn, a > 0,
suppose

(3.13) |∇kX| ≤ Ck

tk−2/2 , k = 3, . . . , m − 1,

on B0(x0, ((1/2) + (1/2k+1))a) × [0, T ]. Now we prove the estimate
for k = m.
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By induction hypothesis and Proposition 3.1, we have

(
∂

∂t
− �

)

|∇mX|2 ≤ −2|∇m+1X|2 + 〈
m−1∑

l=0

∇l[(∇2X)2 ∗ ḡ ∗ g−2

+ R̄M̄ ∗ (∇X)4 ∗ g−2 ∗ ḡ ∗ ḡ−1] ∗ ∇m−lX, ∇mX〉
+ g−(m+2) ∗ ḡ2 ∗ (∇2X)2 ∗ (∇mX)2

≤ −2|∇m+1X|2 + Cm

m−1∑

l=0

⎧
⎨

⎩

∑

l1+l2=l

|∇2+l1X||∇2+l2X|

+
∑

l1+···+l4=l

|∇l1+1X||∇l2+1X||∇l3+1X||∇l4+1X|

⎫
⎬

⎭

× |∇m−lX||∇mX|
≤ −2|∇m+1X|2 + Cm[|∇m+1X||∇mX|

+ (|∇3X| + 1)|∇mX|2 + t−(m−2/2)|∇mX|]

≤ −|∇m+1X|2 +
Cm

t1/2 |∇mX|2 + Cmt−(m−2/2)|∇mX|(3.14)

and
(

∂

∂t
− �

)

|∇m−1X|2 ≤ −|∇mX|2 +
Cm−1

t1/2 |∇m−1X|2

+ Cm−1t
−(m−3/2)|∇m−1X|

≤ −|∇mX|2 +
Cm−1

tm−3+(1/2)(3.15)

on B0(x0, ((1/2) + (1/2m))a) × [0, T ].
Define

ψ(x, t) = (A + tm−3|∇m−1X|2)|∇mX|2tm−2

for A to be determined later. Combining (3.14) and (3.15), we have for
suitable large A as before
(

∂

∂t
− �

)

ψ ≤ 2m − 5
t

ψ + tm−3|∇mX|2tm−2
(

−|∇mX|2 +
Cm−1

tm−3+(1/2)

)

+ tm−2(A + tm−3|∇m−1X|2)
(

− |∇m+1X|2

+
Cm

t1/2 |∇mX|2 + Cmt−(m−2/2)|∇mX|
)

+ 8t2m−5|∇m−1X||∇mX|2|∇m+1X|
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≤ 2m − 5
t

ψ − 1
2t

[tm−2|∇mX|2]2

+
Cm

t1/2 [tm−2|∇mX|2] + Cm[tm−2|∇mX|2]1/2

≤ 1
t

[

− 1
Cm

ψ2 + Cmψ + Cmψ1/2
]

≤ 1
t

[

− 1
Cm

ψ2 + Cm

]

(3.16)

on B0(x0, ((1/2) + (1/2m))a) × [0, T ]. To apply the cut-off function tech-
nique to (3.16) as before, we note that by the estimate for k = 3,
we know that

|Γ − Γ0| ≤ C(n̄)C̄
∫ T

0
|∇3X|dt ≤ C3

∫ T

0

1√
t
dt ≤ C3.

By calculating the equation of ξm(d0(x0, ·)/a)ψ using (3.16), and repeat-
ing the same procedure of applying maximum principle as before, we can
prove that

ξm

(
d0(x0, ·)

a

)

ψ ≤ Cm on B0(x0, a) × [0, T ],

which implies

|∇mX|(x, t) ≤ Cm

tm−2/2 , for all (x, t) ∈ B0

(

x0,

(
1
2

+
1

2m+1

)

a

)

× [0, T ].

We complete the induction step and the theorem is proved. �

Corollary 3.3. Let (M̄ n̄, ḡ) be a complete Riemannian manifold satisfying

|∇̄kR̄m|(·) ≤ C̄, for k ≤ 2.

Let X0 : Mn → M̄ n̄ be an isometrically immersed complete manifold in M̄ n̄.
Suppose X(·, t) is a solution of MCF on Mn × [0, T ] with X0 as initial data
and with bounded second fundamental forms |hα

ij | ≤ C̄ on [0, T ]. Then there
is a constant C1 depending only on C̄, n̄ and T such that

(3.17) |∇Rm|(x, t) ≤ C1

t1/2 , for all (x, t) ∈ Mn × [0, T ].

Moreover, for any fixed x0 ∈ Mn and any ball B0(x0, a) of radius a > 0 of
initial metric gij, and for any k ≥ 2, there is a constant Ck depending only
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on a, C̄, n̄, T and the bounds of the curvature and its derivatives up to
order k + 1 of the ambient manifold on its geodesic ball BM̄ (X0(x0), a + 1 +√

nC̄T ), such that

(3.18) |∇kRm|(x, t) ≤ Ck

tk/2 , for all (x, t) ∈ B0

(
x0,

a

2

)
× [0, T ].

Proof. This follows from Gauss equation and Theorem 3.2. �

4. Harmonic map flow coupled with mean curvature flow

Let Xt be the solution of MCF as in Theorem 1.1, gij(x, t) the induced
Riemannian metrics. Let f : Mn → Nm be a map from Mn to a fixed
Riemanian manifold (Nm, ĝαβ). Then the harmonic map flow coupled with
MCF is the following evolution equation of maps

∂

∂t
f(x, t) = �f(x, t), for x ∈ Mn, t > 0,

f(x, 0) = f(x), for x ∈ Mn,

where the Harmonic map Laplacian � is defined by using the metric gij(x, t)
and ĝαβ(y), i.e.,

�fα(x, t) = gij(x, t)∇i∇jf
α(x, t),

and

∇i∇jf
α =

∂2fα

∂xi∂xj
− Γk

ij

∂fα

∂xk
+ Γ̂α

βγ

∂fβ

∂xi

∂fγ

∂xj
.

Here we use {xi} and {yα} to denote the local coordinates of Mn and
Nm respectively, Γk

ij and Γ̂α
βγ the corresponding Christoffel symbols of gij

and ĝαβ .
Now we fix a metric ĝ = g(·, T ) on Mn, and let (Nm, ĝ) = (Mn, ĝ). Note

that the ambient manifold (M̄, ḡ) in Theorem 1.1 satisfies the assumption
of Corollary 3.3. By Corollary 3.3 and Theorem 2.1, we know that there are
positive constants Ĉ1, δ̂ depending only on C̄, T , n̄ and δ̄ such that

|R̂N | + |∇̂R̂N | ≤ Ĉ1,

inj(N, ĝ) ≥ δ̂ > 0.(4.1)

Moreover, by (3.18) of Corollary 3.3, for any fixed y0 ∈ N , for any k ≥ 2,
there is a constant Ĉk depending only on C̄, n̄, T and the bounds of the
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curvature and its derivatives up to order k + 1 of the ambient manifold on
its ball BM̄ (X0(y0), 2e

√
nC̄2T + 1 +

√
nC̄T ), such that

(4.2) |∇̂kR̂N |(y) ≤ Ĉk, for all y ∈ B̂(y0, 1).

In this section, we will establish the existence theorem for the above har-
monic map flow coupled with MCF. More precisely, we will prove

Theorem 4.1. There exists 0 < T0 < T , depending only on C̄, T, n̄, δ̄, such
that the harmonic map flow coupled with mean curvature flow

∂

∂t
F (x, t) = ΔF (x, t), x ∈ Mn, t > 0,

F (·, 0) = Identity, x ∈ Mn(4.3)

has a solution on Mn × [0, T0] such that the following estimates hold. There
is a constant C2 depending only on C̄, δ̄, n̄ and T such that

(4.4) |∇F | + |∇2F | ≤ C2.

For any k ≥ 3, B0(x1, 1) ⊂ Mn, there is a constant Ck depending only on
C̄, δ̄, T, n̄ and x1 such that

(4.5) |∇kF | ≤ Ckt
−(k−2/2), on B0(x1, 1) × [0, T0].

We will adapt the strategy of [5] by solving the corresponding initial-
boundary value problem on a sequence of exhausted bounded domains D1 ⊆
D2 ⊆ · · · with smooth boundaries and Dj ⊇ B0(x0, j + 1),

∂

∂t
F j(x, t) = ΔF j(x, t)

F j(x, 0) = x for all x ∈ Dj ,

F j(x, t) = x for all x ∈ ∂Dj ,(4.6)

and taking a convergent subsequence of F j as j → ∞, where x0 is a fixed
point in Mn.

First we need the zero order estimate for the Dirichlet problem (4.6).
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Lemma 4.2. There exist positive constants T1 > 0 and C > 0 such that for
any j, if F j solves problem(4.6) on D̄j × [0, T ′

1] with T ′
1 ≤ T1, then we have

d̂(x, F j(x, t)) ≤ C
√

t

for any (x, t) ∈ Dj × [0, T ′
1], where d̂ is the distance with respect to the

metric ĝ.

Proof. For simplicity, we drop the superscript j. In the following argu-
ment, we denote by C various positive constants depending only on the
constants C̄, δ̄, T , and n̄ in Theorem 1.1. Note that d̂(y1, y2) is the dis-
tance function on the target (Mn, ĝ), which can be regarded as a function
on Mn × Mn with the product metric. Let ϕ(y1, y2) = (1/2)d̂2(y1, y2) and
ρ(x, t) = ϕ(x, F (x, t)). We compute

(
∂

∂t
− Δ

)

ρ = d̂(x, F (x, t))

(

− ∂d̂

∂yα
1

ΔIdα

)

− gij

{
∂2ϕ

∂y1α∂yβ
1

− (Γ̂γ
αβ ◦ Id)

∂ϕ

∂yγ
1

}
∂Idα

∂xi

∂Idβ

∂xj

− 2gij ∂2ϕ

∂yα
1 ∂yβ

2

∂Idα

∂xi

∂F β

∂xj

− gij

{
∂2ϕ

∂yα
2 ∂yβ

2

− (Γ̂γ
αβ ◦ F )

∂ϕ

∂yγ
2

}
∂Fα

∂xi

∂F β

∂xj

= −d̂
∂d̂

∂yα
1

�Idα − gijHess(ϕ)(Vi, Vj),

where

Vi =
∂Idα

∂xi

∂

∂yα
1

+
∂Fα

∂xi

∂

∂yα
2

.

By Theorem 3.2, there is a constant C depending only on C̄, T and n̄
such that

(4.7)
∣
∣
∣
∣
∂Γ
∂t

∣
∣
∣
∣ ≤ C|∇3X| ≤ C√

t
.

Since

ΔId = g−1 ∗ (Γ̂ ◦ Id − Γ) = g−1 ∗ (Γ(·, T ) − Γ(·, t))
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then we have |ΔId| ≤ C by (4.7), this implies
(

∂

∂t
− Δ

)

ρ ≤ Cd̂ − gijHess(ϕ)(Vi, Vj).

By (4.1), the curvature of ĝ is bounded by some constant K̂, the injec-
tivity radius of ĝ has a uniform positive lower bound δ̂. We claim that if
d̂(x, F (x, t)) ≤ min{δ̂/2, 1/4

√
K̂}, then

gijHess(ϕ)(Vi, Vj) ≥ 1
2
|∇F |2 − C.

Firstly, by Theorem 2.2(i), we have |Hess(ϕ)| ≤ C under the assumption
of the claim. On the other hand, the Hessian comparison theorem at those
points not lying on the cut locus shows that

∂2ϕ

∂yα
2 ∂yβ

2

− (Γ̂γ
αβ ◦ F )

∂ϕ

∂yγ
2

≥ π

4
ĝαβ ,

∂2ϕ

∂yα
1 ∂yβ

1

− (Γ̂γ
αβ ◦ Id)

∂ϕ

∂yγ
1

≥ π

4
ĝαβ .

Combining the above inequalities, we have

gijHess(ϕ)(Vi, Vj) ≥ π

4
|∇F |2 − C|∇F | − C

≥ 1
2
|∇F |2 − C,

which proves the claim. Hence when d̂(x, F (x, t)) ≤ min
{
(δ̂/2),

(
1/4
√

K̂
)}

,
we have

(4.8)
(

∂

∂t
− Δ

)

ρ ≤ Cd̂ − 1
2
|∇F |2 + C.

By maximum principle we have

d̂(x, F (x, t)) ≤ C
√

t whenever d̂(x, F (x, t)) ≤ min

{
δ̂

2
,

1

4
√

K̂

}

.

Therefore there exists T1 ≤ (1/C2) min2
{(

δ̂/2
)

,
(
1/4
√

K̂
)}

such that

d̂(x, F (x, t)) ≤ C
√

t, for t ≤ T ′
1(≤ T1),

we have proved the lemma. �
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After proving the above lemma, we can apply the standard parabolic
equation theory to get a local existence for the initial-boundary value prob-
lem (4.6) as follows. This is similar to [5], we include the proof here for
completeness.

Lemma 4.3. There exists a positive constant T2(≤ T1) depending only on
the dimension n, the constants T1 and C obtained in the previous lemma
such that for each j, the initial-boundary value problem (4.6) has a smooth
solution F j on D̄j × [0, T2].

Proof. For an arbitrarily fixed point x̄ in Mn, we consider the normal
coordinates {xi} and {yα} of the metric g0ij and the metric ĝαβ , respectively,
around x̄. Locally the equation (4.6) is written as a system of equations

∂yα

∂t
(x, t) = gij(x, t)

[
∂2yα

∂xi∂xj
− Γk

ij(x, t)
∂yα

∂xk

+ Γ̂α
βγ(y1(x, t), . . . , yn(x, t))

∂yβ

∂xi

∂yγ

∂xj

]

.(4.9)

Note that Γ̂α
βγ(x̄) = 0. Since by (4.1) the curvature of metric ĝ and it’s first

covariant derivative are bounded on the whole target manifold, by apply-
ing Corollary 4.12 in [14], we know that there is some uniform constant Ĉ
such that if d̂(y, x̄) ≤ (1/Ĉ), then |Γ̂α

βγ(y)| ≤ Ĉd̂(y, x̄). (This fact is proved
essentially in [14], although it is not explicitly stated.) By Lemma 4.2,
d̂(x, F (x, t)) ≤ C

√
t, we conclude that the coefficients of the quadratic terms

on the RHS of (4.9) can be as small as we like, provided T2 > 0 is sufficiently
small (independent of x̄ and j).

Now for fixed j, we consider the corresponding parabolic system of the
difference of the map F j and the identity map. Clearly the coefficients of
the quadratic terms of the gradients are also very small. Thus, whenever
(4.9) has a solution on a time interval [0, T ′

2] with T ′
2 ≤ T2, we can argue

exactly as in the proof of Theorem 6.1 in Chapter VII of the book [19] to
bound the norm of ∇F j on the time interval [0, T ′

2] by a positive constant
depending only on g0ij , and ĝαβ over the domain Dj+1, the L∞ bound of
F j obtained in the previous lemma, and the boundary ∂Dj . Hence by the
same argument as in the proof of Theorem 7.1 in Chapter VII of the book
[19], we deduce that the initial-boundary value problem (4.9) has a smooth
solution F j on D̄j × [0, T2]. �

To get a convergent sequence of F j , we need the following uniform esti-
mates.
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Lemma 4.4. There exists a positive constant T3, 0 < T3 ≤ T2, independent
of j, such that if F j solves

∂

∂t
F j(x, t) = ΔF j(x, t) on Dj × [0, T3],

F j(x, 0) = x on Dj .

Then for any B0(x1, 1) ⊂ Dj , there is a positive constant C = C(C̄, δ̄, n̄, T )
such that

|∇F j | + |∇2F j | ≤ C

on B0(x1, (1/2)) × [0, T3], and for any k ≥ 3 there exist constants Ck =
C(k, C̄, δ̄, T, n̄, x1) satisfying

|∇kF j | ≤ Ckt
−(k−2/2)

on B0(x1, (1/2)) × [0, T3].

Proof. We drop the superscript j. We denote by C various constants depend-
ing only on C̄, δ̄, T , n̄. We first estimate |∇F |. By Corollary 2.4, we have

(
∂

∂t
− �

)

|∇F |2 ≤ −2|∇2F |2 +
〈([

RM ∗ g−2 + R̂N ∗ (∇F )2 ∗ g−1 ∗ ĝ−1
]

+g−1 ∗ ∂g

∂t

)

∗ ∇F, ∇F

〉

+ g−2 ∂g

∂t
∗ (∇F )2 ∗ ĝ.

Note that (∂g/∂t) = (∇2X)2 ∗ ḡ ∗ g−1, RM = R̄M̄ ∗ (∇X)4 + (∇2X)2 ∗ ḡ,
the second fundamental form ∇2X and curvature R̄M̄ are bounded by
assumption, we know that |(∂g/∂t)| and |RM | are bounded. The above
formula gives

(4.10)
∂

∂t
|∇F |2 ≤ Δ|∇F |2 − 2|∇2F |2 + C|∇F |2 + C|∇F |4.

On the other hand, we know from (4.8) that

∂

∂t
ρ ≤ Δρ − 1

2
|∇F |2 + C,
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where ρ(x, t) = (1/2)d̂2(x, F (x, t)). For any a > 0 to be determined later, we
compute

∂

∂t
[(a + ρ)|∇F |2] ≤ Δ[(a + ρ)|∇F |2] − 2∇ρ · ∇|∇F |2

− 2(a + ρ)|∇2F |2 + C(a + ρ)|∇F |2 + C(a + ρ)|∇F |4

− 1
2
|∇F |4 + C|∇F |2.

Since

−2∇ρ · ∇|∇F |2 ≤ Cd̂(|∇F | + |∇F |2)|∇2F |

≤ C(|∇F |2 + |∇F |4)d̂ + Cd̂|∇2F |2

and d̂(·, F (·, t)) ≤ C
√

t, by taking a = (1/8C) and T3 suitable small, we have

∂

∂t
[(a + ρ)|∇F |2] ≤ �[(a + ρ)|∇F |2] − 1

8C
|∇2F |2 − 1

4
|∇F |4 + C

for t ≤ T3. Let u = (a + ρ)|∇F |2, then

(4.11)
∂u

∂t
≤ Δu − 1

C
u2 + C

for t ≤ T3. Let ξ(x) = ξ1(d0(x1, x)) be a cut-off function, where ξ1 is the
nonincreasing smooth function in (3.3) supported in [0, 1) and equal to 1 in[
0, 3

4

]
. Note that at t = 0, u = agij(·, 0)gij(·, T ) ≤ C. Then by computing

the equation of ξu and applying the maximum principle as before, we have

ξu(x, t) ≤ C on Mn × [0, T3],

this implies

|∇F | ≤ C on B0

(

x1,
3
4

)

× [0, T3].
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We now estimate |∇2F |. By Corollary 2.4 again

(
∂

∂t
− �

)

|∇2F |2 ≤ −2|∇3F |2 +

〈
1∑

l=0

{
∇l[(RM ∗ g−2

+R̂N ∗ (∇F )2 ∗ g−1 ∗ ĝ−1)]

+g−1 ∗ ∇l ∂g

∂t

}

∗ ∇2−lF, ∇2F

〉

+ g−(3) ∂g

∂t
∗ (∇2F )2 ∗ ĝ,

and by (3.4), (3.17) and (4.1), we know
√

t|∇∂g
∂t | +

√
t|∇RM | + |∇̂R̂N |

≤ C, and

(4.12)
∂

∂t
|∇2F |2 ≤ Δ|∇2F |2 − 2|∇3F |2 + C|∇2F |2 +

C√
t
|∇2F |

on B0
(
x1,

3
4

)
× [0, T3]. This implies

(4.13)
∂

∂t
|∇2F | ≤ Δ|∇2F | + C|∇2F | +

C√
t
.

By (4.10) we have

∂

∂t
|∇F |2 ≤ Δ|∇F |2 − 2|∇2F |2 + C.

Let
u = |∇2F | + |∇F |2 − 2C

√
t + 2C

√
T ,

then

(4.14)
∂

∂t
u ≤ Δu − u2 + C on B0

(

x1,
3
4

)

× [0, T3].

Define the cut-off function ξ(x) = ξ2(d0(x1, x)). Note that at t = 0, |∇2F | =
|Γ0 − Γ̂| ≤ C, then u|t=0 ≤ C. Using the similar maximum principle argu-
ment as before, we get

ξu ≤ C on B0

(

x1,
1
2

+
1
22

)

× [0, T3],

which implies

|∇2F | ≤ C on B0

(

x1,
1
2

+
1
23

)

× [0, T3].
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To derive the higher-derivative estimates we prove by induction on k.
We denote by Ck various constants, depending only on C̄, T , δ̄, n̄, and the
bounds of the ambient manifold M̄ curvature and its covariant derivatives
up to order k on its ball BM̄ (X0(x1), C) for suitable C.

Now suppose we have proved

(4.15) |∇lF | ≤ Cl

t(l−2)/2 , l = 2, . . . , k − 1

on B0(x1, ((1/2) + (1/2k))) × [0, T3]. By Corollaries 2.4 and 3.3, Theorem 3.2
and using (4.15), we get

(4.16)
∂

∂t
|∇kF |2 ≤ Δ|∇kF |2 − 2|∇k+1F |2 + Ck|∇kF |2 +

Ck

t(k−1)/2 |∇kF |,

which implies

(4.17)
∂

∂t
|∇kF | ≤ Δ|∇kF | + Ck|∇kF | +

Ck

t(k−1)/2 .

We also have

(4.18)
∂

∂t
|∇k−1F |2 ≤ Δ|∇k−1F |2 − 2|∇kF |2 +

Ck−1

tk−(5/2) .

Let

u = t(k−2)/2|∇kF | + tk−3|∇k−1F |2.

By combining (4.17) and (4.18), we obtain

(4.19)
∂

∂t
u ≤ Δu − 1

t
(u2 + Ck)

on B0(x1, ((1/2) + (1/2k))) × [0, T3]. Using the cut-off function ξ(x) = ξk(d0
(x1, x)), (4.19) and applying maximum principle as before, we conclude with

|∇kF | ≤ Ck

t(k−2)/2 on B0

(

x1,

(
1
2

+
1

2k+1

))

× [0, T3].

Therefore we complete the proof of Lemma 4.4. �

Proof of Theorem 4.1. Now we combine the above three lemmas to prove
Theorem 4.1. We have known that there is a T3 > 0 such that for each j,
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the equation

∂

∂t
F j(x, t) = ΔF j(x, t)

F j(x, 0) = x for all x ∈ Dj ,

F j(x, t) = x for all x ∈ ∂Dj

has a smooth solution F j on D̄j × [0, T3]. Since Dj ⊃ B0(x0, j + 1), by choo-
sing any x1 ∈ B0(x0, j) in Lemma 4.4 we have

|∇F j | + |∇2F j | ≤ C

on B0(x0, j) × [0, T3], where C depends only on C̄, n̄, δ̄, T . Moreover for
any x1 ∈ B0(x0, j), k ≥ 3, there is a Ck depending on C̄, δ̄, T , n̄ and x1 such
that

|∇kF j |(x1, t) ≤ Ckt
−((k−2)/2).

Then we can take a convergent subsequence of F j (as j → ∞) to get the desi-
red F with the desired estimates. So the proof of Theorem 4.1 is completed.

�

For later purpose, now we need to derive some preliminary estimate of
gij(x, t) with respect to F ∗ĝ. Let ĝij = (F ∗ĝ)ij .

Proposition 4.5. Under the assumption of Theorem 4.1, there exist 0 <
T4 ≤ T3 and C > 0 depending only on C̄, n̄, δ̄ and T such that for all (x, t) ∈
Mn × [0, T4], we have

(4.20)
1
C

ĝij(x, t) ≤ gij(x, t) ≤ Cĝij(x, t).

Proof. Note that |∇F |2 = ĝijg
ij ≤ C, which implies ĝij(x, t) ≤ Cgij(x, t).

For the reverse inequality, since the curvature of gij(·, t) is bounded, we
compute the equation of ĝij(x, t) on the domain,

∂

∂t
ĝij = Δĝij − RikF

α
l F β

j ĝαβgkl − RjkF
α
l F β

i ĝαβgkl

+ 2R̂αβγδF
α
i F β

k F γ
j F δ

l gkl − 2ĝαβFα
kiF

β
ljg

kl

≥ Δĝij − Rikĝjlg
kl − Rjkĝilg

kl − C|∇F |2ĝij − 2|∇2F |2gij

≥ Δĝij − Cgij .(4.21)
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Note that for suitable large constant C, we have

∂

∂t
gij ≤ Cgij , 0 < t < T,

and ĝij ≥ 1
C gij at time 0. Thus for t ≤ 1/C3, we have

(
∂

∂t
− �

)(

ĝij +
(

C2t − 1
C

)

gij

)

≥
[

−C + C2 + C

(

C2t − 1
C

)]

gij ≥ 0.

(4.22)

Note that
(

ĝij +
(

C2t − 1
C

)

gij

)

|t=0≥ 0.

Since |∇2X| +
√

t|∇3X| ≤ C and the curvature is bounded, then there is a
smooth proper function ϕ with ϕ(x) ≥ 1 + d0(x0, x), |∇ϕ| + |∇2ϕ| ≤ C. So
Hamilton’s maximum principle for tensors on complete manifolds is appli-
cable, we get

ĝij +
(

C2t − 1
C

)

gij ≥ 0 for t ≤ min{T3, C
−3},

which implies

gij ≤ 2Cĝij

for t ≤ T4 = min{T3, 1/2C3}.
The proof of the proposition is completed. �

As a consequence, we know that the solution of the harmonic map flow
coupled with the MCF is a family of diffeomorphisms.

Corollary 4.6. Let F (x, t) be assumed as in the previous proposition. Then
F (·, t) are diffeomorphisms from M to N for all t ∈ [0, T4].

Proof. Note that (4.20) implies that F are local diffeomorphisms. For any
x1 �= x2, we claim that F (x1, t) �= F (x2, t) for all t ∈ [0, T4]. Suppose not;
then there is the first time t0 > 0 such that F (x1, t0) = F (x2, t0). Choose
small σ > 0 so that there exist a neighborhood Ô of F (x1, t0) and a neigh-
borhood O of x1 such that F−1(·, t) is a diffeomorphism from Ô to O for
each t ∈ [t0 − σ, t0], and let γ̂ be a shortest geodesic (parametrized by arc
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length) on the target (with respect to the metric ĝ) with γ̂(0) = F (x1, t),
γ̂(l) = F (x2, t) and γ̂ ⊂ Ô. We compute

∂

∂t
d̂(F (x1, t), F (x2, t)) = 〈V (F (x2, t)), γ̂′(l)〉ĝ − 〈V (F (x1, t)), γ̂′(0)〉ĝ,

(4.23)

where V (F (x, t)) = (∂/∂t)F (x, t). Now we pull back everything by F−1 to O,

∂

∂t
d̂(F (x1, t), F (x2, t)) = 〈P−γ̂V − V, γ̂′(0)〉F ∗ĝ

≥ − sup
x∈F −1γ̂

|∇̂V |(x, t)d̂(F (x1, t), F (x2, t)),

where Pγ̂ is the parallel translation along F−1γ̂ using the connection defined
by F ∗ĝ. Since

∇̂kV
l = ∇kV

α ∂xl

∂yα
,

where ∇kV
α is the covariant derivative of the section V α of the bundle

F−1TN. Thus by (4.20) in proposition 4.5, we have

|∇̂kV
l| = [∇kV

α∇lV
β ĝαβ ĝkl]1/2 ≤ C|∇3F | ≤ C√

t
,

where the constant C depends on the x1 and x2 and is independent of t by
(4.5) of Theorem 4.1. Therefore, for t ∈ [t0 − σ, t0], we have

d̂(F (x1, t), F (x2, t)) ≤ eC(
√

t0−
√

t0−σ)d̂(F (x1, t0), F (x2, t0)) = 0,

which contradicts with the choice of t0. The corollary is proved. �

5. Mean curvature De Turck flow

From the previous section, we know that the harmonic map flow coupled
with MCF with identity as initial data has a short-time solution F (x, t)
which maintains being a diffeomorphism with good estimates. Let X̄ =
X ◦ F−1 be a family of maps defined from (N, ĝαβ) to M̄ n̄, then X̄ satisfies
the following mean curvature De Turck flow

(5.1)
∂

∂t
X̄ = gαβ∇̂α∇̂βX̄ for y ∈ N,
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where gαβ is the inverse matrix of gαβ(·, t) = ((F−1)∗g(·, t))αβ , ∇̂ is the
covariant derivative with respect to ĝαβ . We denote the local coordinates of
M̄ by {z̄ᾱ}. It is not hard to see

gαβ(y, t) = gij(x, t)
∂xi

∂yα

∂xj

∂yβ

= ḡᾱβ̄

∂X ᾱ

∂xi

∂X β̄

∂xj

∂xi

∂yα

∂xj

∂yβ
=

∂X̄ γ̄

∂yα
· ∂X̄ δ̄

∂yβ
ḡγ̄δ̄(X̄(y, t)),(5.2)

this implies that the metric gαβ(y, t) is just the induced metric from the
ambient space by the map X̄. Since

Γ̂γ
αβ(y) − Γγ

αβ(y, t) = (∇2F )γ
ij

∂xi

∂yα

∂xj

∂yβ
,

we have

1
C

ĝαβ(y) ≤ gαβ(y, t) ≤ Cĝαβ(y),

|Γ̂γ
αβ(y) − Γγ

αβ(y, t)| ≤ C,(5.3)

by Theorem 4.1 and Proposition 4.5.
Let X1 and X2 be two solutions of MCF with bounded second funda-

mental form and with the same initial value X0 assumed as in the Theo-
rem 1.1. Let g1

ij(x, t) and g2
ij(x, t) be the corresponding induced metrics. As

in Section 4, we solve the harmonic map flows coupled with MCF with the
same target (Mn, ĝαβ), where ĝ = g1(T ), respectively,

∂

∂t
F1 = Δg1,ĝF1

F1|t=0 = Identity on Mn,(5.4)

and

∂

∂t
F2 = Δg2,ĝF2

F2|t=0 = Identity on Mn,(5.5)
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where Δgk,ĝ is the harmonic map Laplacian defined by the metric gk
ij(x, t),

and ĝαβ for k = 1, 2, respectively. By Section 4, we obtain two solutions
F1(x, t) and F2(x, t) such that Theorem 4.1 holds with F = F1 and F = F2.
Corollary 4.6 says that F1(x, t) and F2(x, t) are diffeomorphisms for any
t ∈ [0, T4]. Let g1αβ(y, t) = ((F−1

1 )∗g1)αβ(y, t) and g2αβ(y, t) = ((F−1
2 )∗g2)αβ

(y, t). Then X̄1 = X1 ◦ F−1
1 and X̄2 = X2 ◦ F−1

2 are two solutions to the
mean curvature De Turck flow (5.1) with the same initial value X0,

∂

∂t
X̄1 = gαβ

1 ∇̂α∇̂βX̄1, on Mn × [0, T4],

X̄1|t=0 = X0, on Mn,(5.6)

∂

∂t
X̄2 = gαβ

2 ∇̂α∇̂βX̄2, on Mn × [0, T4],

X̄2|t=0 = X0, on Mn,(5.7)

where g1αβ and g2αβ are the corresponding induced metrics from the target
(M̄ n̄, ḡᾱβ̄) by the maps X̄1 and X̄2 by (5.2).

Proposition 5.1. Under the assumptions of Theorem 1.1, there is some
T5 > 0 depending only on C̄, δ̄, T and n̄ such that

X̄1(y, t) = X̄2(y, t) on Mn × [0, T5]

for the two solutions of mean-De Turck flow constructed above.

Proof. Let ψ(z̄1, z̄2) = d2
M̄

(z̄1, z̄2) be the square of the distance function
on M̄ which is viewed as a function of (z̄1, z̄2) ∈ M̄ × M̄. Set u(y, t) =
d2

M̄
(X̄1(y, t), X̄2(y, t)). Let Δk = gαβ

k ∇̂α∇̂β for k = 1, 2. By direct computa-
tion, we have

∂

∂t
u(y, t) = 2dM̄ (X̄1, X̄2)

∂d

∂z̄1ξ̄
�1X̄

ξ̄
1 + 2dM̄ (X̄1, X̄2)

∂d

∂z̄2ζ̄
�2X̄

ζ̄
2 ,

gαβ
1 ∇̂α∇̂βu(y, t) = 2dM̄ (X̄1, X̄2)

[
∂d

∂z̄1ξ̄
�1X̄

ξ̄
1 +

∂d

∂z̄2ζ̄
�1X̄

ζ̄
2

]

+ Hess(ψ)(Zα, Zβ)gαβ
1 ,

where Zα = (∂X̄ ξ̄
1/∂yα)(∂/∂z̄ξ̄

1) + (∂X̄ ζ̄
2/∂yα)(∂/∂z̄ζ̄

2) ∈ T(X̄1,X̄2)M̄ × M̄,

α = 1, 2, . . . , n are vector fields on M̄ × M̄. Combining these two formulas,
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we have

[
∂

∂t
− gαβ

1 ∇̂α∇̂β

]

u(y, t) = −2dM̄ (X̄1, X̄2)
∂d

∂z̄ζ̄
2

((�1 − �2)X̄2)ζ̄

− Hess(ψ)(Zα, Zβ)gαβ
1 .(5.8)

Note that

(�1 − �2)X̄2 = gαβ
1 ∇̂α∇̂βX̄2 − gαβ

2 ∇̂α∇̂βX̄2

= gαγ
1 gβδ

2 (g2δγ − g1δγ)∇̂α∇̂βX̄2,

∇̂α∇̂βX̄2 = ∇2α∇2βX̄2 + (Γ̂ − Γ2) ∗ ∇X̄2,

(5.9)

where Γ2 and ∇2 are the Christoffel symbol and the covariant derivative of
the metric g2αβ(y, t).

For each y ∈ Mn and t ∈ [0, T ], if X̄1(y, t) �= X̄2(y, t), denote the mini-
mal geodesic on M̄ from X̄1(y, t) to X̄2(y, t) by σ, and denote the parallel
translation of M̄ along σ by Pσ, then we have

g1δγ(y, t) − g2δγ(y, t) =
〈

X̄1∗

(
∂

∂yδ

)

, X̄1∗

(
∂

∂yγ

)〉

ḡ

−
〈

X̄2∗

(
∂

∂yδ

)

, X̄2∗

(
∂

∂yγ

)〉

ḡ

=
〈

X̄1∗

(
∂

∂yδ

)

, X̄1∗

(
∂

∂yγ

)〉

ḡ

−
〈

P−1
σ

(

X̄2∗

(
∂

∂yδ

))

, P−1
σ

(

X̄2∗

(
∂

∂yγ

))〉

ḡ

=
〈

X̄1∗

(
∂

∂yδ

)

−P−1
σ

(

X̄2∗

(
∂

∂yδ

))

, X̄1∗

(
∂

∂yγ

)〉

ḡ

+
〈

P−1
σ

(

X̄2∗

(
∂

∂yδ

))

, X̄1∗

(
∂

∂yγ

)

−P−1
σ

(

X̄2∗

(
∂

∂yγ

))〉

ḡ

.(5.10)

If X̄1(y, t) = X̄2(y, t), Pσ = Identity, the above formula still holds.
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In the following argument, we compute norms by using the metrics g1
and ḡ. For example,

|Γ̂ − Γ2|2 = (Γ̂ − Γ2)
γ
αβ(Γ̂ − Γ2)

γ′

α′β′g1γγ′g1
αα′

g1
ββ′

and

|∇2
2X̄2|2 = ḡξ̄ζ̄g

αα′

1 gββ′

1 ∇2α∇2βX̄ ξ̄
2∇2α′∇2β′X̄ ζ̄

2 .

We denote by C various constants depending only on the constants C̄, T , n̄
and δ̄ in the main Theorem 1.1. Then by (5.3), we have

|Γ̂ − Γ2| ≤ C,

|∇̂2X̄2| ≤ C|Γ̂ − Γ2| + C|∇2
2X̄2| ≤ C,

|g2| + |g−1
2 | ≤ C,(5.11)

where |∇2
2X̄2| is just the norm of the second fundamental form of X2 :

Mn → M̄ n̄ which is bounded by C̄. Combining (5.9) (5.10) and (5.11),
we have

|(�1 − �2)X̄2|2 ≤ Cgδγ
1

〈

X̄1∗

(
∂

∂yδ

)

− P−1
σ

(

X̄2∗

(
∂

∂yδ

))

, X̄1∗

(
∂

∂yγ

)

−P−1
σ

(

X̄2∗

(
∂

∂yγ

))〉

ḡ

.(5.12)

By choosing an orthonormal frame at y so that g1αβ = δαβ , then we have

Hess(ψ)(Zα, Zβ)gαβ
1 =

n∑

α=1

Hess(ψ)(Zα, Zα).

Note that

Zα = Zα1 + Zα2, for α = 1, 2, . . . , n,

where Zα1 = (∂X̄ ξ̄
1/∂yα)(∂/∂z̄ξ̄

1) = X̄1∗(∂/∂yα) and Zα2 = (∂X̄ ζ̄
2/∂yα)

(∂/∂z̄ζ̄
2) = X̄2∗(∂/∂yα).

Recall that by Theorem 2.2(ii), there is a constant C such that if dM̄ (z̄1,
z̄2) ≤ min

{(
1/4

√
C̄
)
,
(
δ̄/2
)}

, we have

(∇2d2)(Z, Z) ≥ 2|Z1 − P−1
σ Z2|2 − C|Z|2d2 for all Z ∈ T(z̄1,z̄2)M̄

n̄ × M̄ n̄,
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where Z = Z1 + Z2, Z1 ∈ Tz̄1M̄
n̄, Z2 ∈ Tz̄2M̄

n̄. Hence if dM̄ (X̄1, X̄2) ≤
min

{
(1/4

√
C̄), (δ̄/2)

}
, then

n∑

α=1

Hess(ψ)(Zα, Zα) ≥
n∑

α=1

2
∣
∣
∣
∣X̄1∗

(
∂

∂yα

)

− P−1
σ X̄2∗

(
∂

∂yα

)∣
∣
∣
∣

2

− CdM̄ (X̄1, X̄2)2(5.13)

since |Zα| ≤ C.
Combining (5.8), (5.12) and (5.13), if u1/2 ≤ min{(1/4

√
C̄), (δ̄/2)}, then

we have
(

∂

∂t
− gαβ

1 ∇̂α∇̂β

)

u(y, t) ≤ CdM̄ (X̄1, X̄2)
n∑

α=1

2
∣
∣
∣
∣X̄1∗

(
∂

∂yα

)

−P−1
σ X̄2∗

(
∂

∂yα

)∣
∣
∣
∣

− 2
n∑

α=1

∣
∣
∣
∣X̄1∗

(
∂

∂yα

)

− P−1
σ X̄2∗

(
∂

∂yα

)∣
∣
∣
∣

2

+ Cd2
M̄ (X̄1, X̄2)

≤ Cu.(5.14)

Now we show that u1/2 ≤ min
{(

1/4
√

C̄
)

,
(
δ̄/2
)}

on some time interval
[0, T5].

For any (y, t) ∈ M̂ × [0, T4], we have

u1/2(y, t) ≤ dM̄ (X1 ◦ F−1
1 (y, t), X1 ◦ F−1

1 (y, 0))

+ dM̄ (X1 ◦ F−1
1 (y, 0), X2 ◦ F−1

2 (y, 0))

+ dM̄ (X2 ◦ F−1
2 (y, t), X2 ◦ F−1

2 (y, 0))

� I1 + I2 + I3.(5.15)

By the mean curvature flow equation (1.1), we know

I2 ≤ dM̄ (X1(y, t), X1(y, 0)) + dM̄ (X2(y, t), X2(y, 0)) ≤ 2
√

nC̄t.

By (4.4) and (4.23), for any x1, x2 ∈ Mn, we get

∂

∂t
d̂(F1(x1, t), F1(x2, t)) ≥ −C,

this implies

(5.16) d̂(x1, x2) ≤ d̂(F1(x1, t), F1(x2, t)) + Ct.
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By (5.16) and Lemma 4.2, it follows

I1 = dM̄ (X1 ◦ F−1
1 (y, t), X1 ◦ F−1

1 (y, 0))

≤ d(M,g1(·,t))(F
−1
1 (y, t), y)

≤ Cd̂(F−1
1 (y, t), y)

≤ Ct + Cd̂(y, F1(y, t))

≤ C
√

t.

The estimate of I3 is similar. Therefore, we have

(5.17) u1/2(y, t) ≤ C
√

t

for some constant C depending only on C̄, δ̄, T and n̄.
Although gαβ

1 ∇̂α∇̂β is not the standard Laplacian, the maximum princi-
ple is still applicable. For completeness, we include the proof in the following.

Since the curvature of (M, ĝ) is bounded, it is well-known that there is
a function ϕ such that

1
C

(1 + dĝ(y0, y)) ≤ ϕ(y) ≤ C(1 + dĝ(y0, y))

|∇̂ϕ| + |∇̂2ϕ| ≤ C.

Note g1 is equivalent to ĝ. For any small ε > 0 and large A > 0, we have
(

∂

∂t
− gαβ

1 ∇̂α∇̂β

)

(e−Ctu(y, t) − εeAtϕ) ≤ −εA

2
eAtϕ < 0.

Then the classical maximum principle implies that for any fixed t0 the max-
imal value of (e−Ctu(y, t) − εeAtϕ) on M × [0, t0] cannot be achieved for any
point (y, t) with 0 < t ≤ t0. Hence e−Ctu(y, t) − εeAtϕ ≤ 0 for any t ∈ [0, T5]
for some T5 > 0. Let ε → 0, we conclude that u ≡ 0 on [0, T5]. This implies
X̄1 = X̄2, on M × [0, T5]. We complete the proof of Proposition 5.1. �

6. Proof of the uniqueness Theorem 1.1

Now we are ready to prove Theorem 1.1. Let X1(x, t) and X2(x, t) be two
solutions of MCF with bounded second fundamental form and with the
same initial data. We solve the corresponding harmonic map flow (5.4)
and (5.5) (with the same target (M, ĝ), ĝ = g1(T )), respectively, to obtain
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two solutions F1(x, t) and F2(x, t) on some common time interval. Then
X̄1 = X1 ◦ F−1

1 and X̄2 = X2 ◦ F−1
2 are two solutions to the mean curvature

De Turck flow with the same initial value. By Proposition 5.1 we know
X̄1 ≡ X̄2 on [0, T5]. So in order to prove X1(x, t) ≡ X2(x, t), we only need
to show F1 ≡ F2.

We know

Δ1F
α
1 = gβγ

1 (Γ̂α
βγ − Γα

1βγ) ◦ F1,

Δ2F
α
2 = gβγ

2 (Γ̂α
βγ − Γα

2βγ) ◦ F2.

Since X̄1 ≡ X̄2, we know g1αβ(y, t) = g2αβ(y, t) on [0, T5], and the vector
fields V1 ≡ V2 on the target, where

V α
1 = gβγ

1 (Γ̂α
βγ − Γα

1βγ),

V α
2 = gβγ

2 (Γ̂α
βγ − Γα

2βγ).

Therefore, the two families of maps F1 and F2 satisfy the same ODE with
the same initial value:

∂

∂t
F1 = V ◦ F1

F1(·, 0) = Identity,

and

∂

∂t
F2 = V ◦ F2

F2(·, 0) = Identity.

So for any x ∈ Mn, letting γ be a shortest geodesic (parametrized by arc
length) on the target with γ(0) = F1(x, t) and γ(l) = F2(x, t), we have

∂

∂t
d̂(F1(x, t), F2(x, t)) = 〈V, γ′(l)〉 − 〈V, γ′(0)〉

= 〈P−1
γ V − V, γ′(0)〉

≤ sup
y∈γ

|∇̂V |(y, t)d̂(F1(x, t), F2(x, t)),

where P−1
γ V is the parallel transport of V (F2(x, t), t) along the geodesic γ

back to the tangent space of the point F1(x, t). We have seen in the proof
of Corollary 4.6 that supy∈γ |∇̂V |(y, t) ≤ C√

t
for some C depending on x but



474 Bing-Long Chen and Le Yin

independent of t. Since d̂(F1(x, 0), F2(x, 0)) ≡ 0, we conclude that

F1(x, t) ≡ F2(x, t).

So we have proved X1(x, t) = X2(x, t), for all x ∈ M and t ∈ [0, T5]. Clearly,
we can extend the interval [0, T5] to the whole [0, T ] by applying the same
argument on [T5, T ].

The proof of Theorem 1.1 is completed. �
Corollary 1.2 is a direct consequence of Theorem 1.1. Indeed, let σ̄

and σ be two isometries of (M̄ n̄, ḡ) and (Mn, g), respectively, such that
(σ̄ ◦ X0)(x) = (X0 ◦ σ)(x) for any x ∈ Mn. Since σ̄ ◦ Xt and Xt ◦ σ are two
solutions to the MCF (1.1) with bounded second fundamental form on Mn ×
[0, T ] and with the same initial value, then by Theorem 1.1, we have

(σ̄ ◦ Xt)(x) = (Xt ◦ σ)(x)

for any x ∈ Mn and t ∈ [0, T ]. The proof of the Corollary 1.2 is
completed. �

7. Pseudolocality theorem

We begin with a few terminologies for the sake of convenience. An
n-dimensional submanifold M ⊂ M̄ is said to be a local δ-Lipschitz graph of
radius r0 at P ∈ M , if there is a normal coordinate system (y1, . . . , yn̄) of M̄
around P with TP M = span{(∂/∂y1), . . . , (∂/∂yn)}, a vector valued func-
tion F : {y′ = (y1, . . . , yn) | (y1)2 + · · · + (yn)2 < r2

0} → R
n̄−n with F (0) =

0, |DF |(0) = 0 such that M ∩ {|y′| < r0} = {(y′, F (y′)) | |y′| < r0} and
|DF |2(y′) =

∑
i,β(∂F β/∂yi)(∂F β/∂yi) < δ2. The submanifold M0 is said

to be graphic in the ball BM̄ (x0, r0), if the above holds for δ = ∞.
We say a submanifold M ⊂ M̄ is properly embedded in a ball BM̄ (x0, r0)

if either M is closed or ∂M has distance ≥ r0 from x0. We say a submanifold
M ⊂ M̄ is properly embedded in M̄ if either M is closed or there is an
x0 ∈ M̄ such that M is properly embedded in BM̄ (x0, r0) for any r0 > 0.
It is clear that if M̄ is complete and M is properly embedded in M̄, then
M is complete. A properly embedded submanifold M is said to be uniform
graphic with radius r0 if for any x0 ∈ M it is graphic in the ball BM̄ (x0, r0).

The following lemma says that if the second fundamental form is con-
trolled, then (a piece of) the submanifold is a local δ-Lipschitz graph of
suitable radius.
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Lemma 7.1. Let M̄ be an n̄-dimensional complete Riemannian manifold
satisfying

|R̄m| + |∇̄R̄m|(x) ≤ C̄, inj(M̄) ≥ i0 > 0.

There exists a constant C1 > 0 with the following property. Let {x1, . . . , xn̄}
be normal coordinates of M̄ of radius r0 around x0 with Tx0M = span
{(∂/∂x1), . . . , (∂/∂xn)}, where M is an n-dimensional submanifold prop-
erly embedded in BM̄ (x0, r0), x0 ∈ M, r0 ≤ (1/C1), and the second funda-
mental form |A| ≤ (1/r0). Then there exists a map F : {(x1, . . . , xn) | (x12 +
· · · + xn2)1/2 < (r0/96)} → R

n̄−n with F (0) = 0, |DF |(0) = 0 such that the
connected component containing x0 of M ∩ {(x1, . . . , xn̄) | (x12 + · · · +
xn2)1/2 < (r0/96)} can be written as a graph {(x

′
, F (x′)) | |x′| = (x12 + · · · +

xn2)1/2 < (r0/96)} and

(7.1) |DF |(x′) ≤ 36
r0

|x′|,

x′ = (x1, . . . , xn) ∈ BRn(0, (r0/96)), where |DF |(x′)2 =
∑n

i=1
∑n̄

α=n+1 (∂Fα/
∂xi)(∂Fα/∂xi)(x′).

Proof. Let X = (X1, . . . , X n̄) = (x′, F (x′)), x′ = (x1, . . . , xn), be a graph
representation of the local isometric embedding of the connected component
containing x0 of M ∩ {(x1, . . . , xn̄) | (x12 + · · · + xn2)1/2 < r1} (for some
r1 ≤ (r0/96)) into M̄ under the exponential map.

Define

|∇F |2 =
n∑

i,j=1

n̄∑

α=n+1

∂Fα

∂xi

∂Fα

∂xj
gij , |DF |2 =

n∑

i=1

n̄∑

α=n+1

∂Fα

∂xi

∂Fα

∂xi
.

By choosing C1 large, we have

1
2
δαβ ≤ ḡαβ ≤ 2δαβ , |Γ̄γ

αβ | ≤ 1,
1
2
δij ≤ gij ≤ 2(1 + |DF |2)δij .

For α ≥ n + 1, i, j ≤ n, recall the coefficients of the second fundamental form
is given by

Aα
ij =

∂Xα

∂xi∂xj
− Γk

ij

∂Xα

∂xk
+ Γ̄α

βγ

∂Xβ

∂xi

∂Xγ

∂xj
= ∇2

ijF
α + Γ̄α

βγ

∂Xβ

∂xi

∂Xγ

∂xj
.
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Note that
∣
∣
∣
∣Γ̄

α
βγ

∂Xβ

∂xi

∂Xγ

∂xj

∣
∣
∣
∣

2

= Γ̄α′

β′γ′
∂Xβ′

∂xi

∂Xγ′

∂xj
Γ̄α

βγ

∂Xβ

∂xk

∂Xγ

∂xl
gikgjlḡαα′ ≤ C(n̄),

|∇2F |2 =
∑

α,β≥n+1;i,j,k,l≤n

∇2
ijF

α∇2
klF

βδαβgikgjl

≤ 4(|A|2 + C(n̄))

≤ 4r−2
0 + C(n̄),

and

|∇|∇F || ≤ |∇2F |.

This implies

(7.2) |∇F |(·) ≤ 3r−1
0 dM (x0, ·).

Since gij ≤ 2(δij + ∂F α

∂xi
∂F α

∂xj ) ≤ 2(1 + |DF |2)δij , it follows that

|∇F |2 ≥ 1
4

|DF |2
1 + |DF |2

and

(7.3) |DF |2 ≤ 4|∇F |2
1 − 4|∇F |2 .

Combining (7.2)and (7.3), it follows that

|DF |(·) ≤ 9r−1
0 dM (x0, ·) on BM

(
x0,

r0

24

)
.

Since dM (x0, ·) ≤ 2dM̄ (x0, ·) by (2.5), we have

|DF |(·) ≤ 18r−1
0 sup

BM (0,(r0/24))
(1 + |DF |)|x′| ≤ 36r−1

0 |x′|,

and we conclude that

|DF |(x′) ≤ 36r−1
0 |x′|, whenever |x′| ≤ r0

96
.

The above argument shows that there is C1 > 0 such that under the expo-
nential map, once the connected component of M can be expressed as a
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graph (x′, F (x′)) on BRn(0, r1), for r1 ≤ (r0/96), then the estimate (7.1)
holds. Hence the connected component of M can be expressed as a graph
on the ball BRn(0, (r0/96)). �

For future applications in pseudolocality theorem, we need a local graph
representation for mean curvature flow.

Lemma 7.2. Fix k ≥ 1. Let M̄ be an n̄–dimensional complete manifold
satisfying

k+1∑

i=0

|∇̄iR̄m|(x) ≤ C̄, inj(M̄) ≥ i0 > 0.

There exists a constant C1 > 0 with the following property. Suppose Ms,
s ∈ [−r2

0, 0] is a solution of MCF properly embedded in BM̄ (x0, r0), x0 ∈ M0,
r0 ≤ (1/C1), with

∑k
i=0 |∇iA|ri+1

0 ≤ 1 on BM̄ (x0, r0). Denote by xs
0 ∈ Ms

the orbit of x0. Let {x1, . . . , xn̄} be normal coordinates of M̄ of radius r0
around x0 with Tx0M0 = span{(∂/∂x1), . . . , (∂/∂xn)}. Then there exist a
family of smooth maps Fs : {(x1, . . . , xn) | (x12 + · · · + xn2)1/2 < (r0/C1)} →
R

n̄−n with F0(0) = 0, |D0F |(0) = 0, ¯expx0
((0, Fs(0))) = xs

0 such that the
connected component of Ms ∩ {(x1, . . . , xn̄) | (x12 + · · · + xn2)1/2 < (r0/
C1)} (under the exponential map ¯expx0

) containing xs
0 can be written as

a graph {(x
′
, Fs(x′)) | |x′| = (x12 + · · · + xn2)1/2 < (r0/C1)}; moreover we

have
∑k+2

i=1 ri+1
0 |DiFs| ≤ C1.

Actually, by the MCF equation (∂/∂s)X = �X, where X = (x′, Fs(x′))
is the graph representations on B(0, r1) for some r1 < (r0/C1), we have infor-
mation on |(∂/∂s)Fs|r0 + |(∂/∂s)DFs|r2

0 ≤ C1. This gives |Fs(0)| ≤ Csr−1
0

and |DFs|(0) ≤ Csr−2
0 . Similarly, by integrating |∇|∇F || ≤ |∇2F |, we know

the graph representation holds in a ball of uniform radius (r1/C1). The
higher-derivative DiF can be estimated by

∑
j≤i |∇jF | by definitions. �

Now we state the pseudolocality theorem for the MCF.

Theorem 7.3. Let M̄ be an n̄-dimensional complete manifold satisfying∑3
i=0 |∇̄iR̄m| ≤ c2

0 and inj(M̄) ≥ i0 > 0. Then for every α > 0 there exist
ε > 0, δ > 0 with the following property. Suppose we have a smooth solution
to the mean curvature flow Mt ⊂ M̄ properly embedded in BM̄ (x0, r0) for
t ∈ [0, T ] with 0 < T ≤ ε2r2

0, and assume that at time zero, M0 is a local
δ-Lipschitz graph of radius r0 at x0 ∈ M0 with r0 ≤ (i0/2). Then we have
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an estimate of the second fundamental form

(7.4) |A|(x, t)2 ≤ α

t
+ (εr0)−2

on BM̄ (x0, εr0) ∩ Mt, for any t ∈ [0, T ].

Proof. We argue by contradiction. By scaling we may assume r0 = 1. Sup-
pose there exist fixed c0 > 0, i0 > 0, α > 0, and a sequence of ε, δ → 0 and
smooth solutions to the mean curvature flow Mt ⊂ M̄ for t ∈ [0, T ] ⊆ [0, ε2]
such that at time zero, M0 is a local δ-Lipschitz graph of radius 1 at x0 ∈ M .
But there is some (x1, t1) satisfying 0 ≤ t1 ≤ T and x1 ∈ BM̄ (x0, ε) such that

|A|(x1, t1)2 >
α

t1
+ ε−2.

Denote by Eα the set of points (x, t) satisfying |A|(x, t)2 ≥ (α/t). Now we use
the Perelman’s point-picking technique [20] to choose another point which
controls nearby points in its scale.

Lemma 7.4. For any K > 0 with Kε < (1/100n), let Mt be assumed as
in the theorem, suppose |A|(x1, t1)2 ≥ (α/t1) + ε−2 for some (x1, t1) satisfy-
ing 0 ≤ t1 ≤ T ≤ ε2 and x1 ∈ BM̄ (x0, ε), then one can find (x̄, t̄ ) ∈ Eα with
0 < t̄ ≤ T , dM̄ (x0, x̄) ≤ (2K + 1)ε such that

(7.5) |A|(x, t) ≤ 4Q

whenever t̄ − (3/4)αQ−2 ≤ t ≤ t̄, dM̄ (x, x̄) ≤ KQ−1, where Q = |A|(x̄, t̄ ).

Firstly, we claim that there exists (x̄, t̄ ) ∈Eα with 0< t̄ ≤T , dM̄ (x0, x̄) ≤
(2K + 1)ε such that

|A|(x, t) ≤ 4|A|(x̄, t̄ )

whenever (x, t) ∈ Eα, 0 ≤ t ≤ t̄, dM̄ (x0, x) ≤ dM̄ (x0, x̄) + K|A|(x̄, t̄ )−1.
The argument is by contradiction. If (x1, t1) can not be chosen for (x̄, t̄ ),

one can find (x2, t2) ∈ Eα with 0 ≤ t2 ≤ t1, dM̄ (x0, x2) ≤ dM̄ (x0, x1) + K|A|
(x1, t1)−1, |A|(x2, t2) > 4|A|(x1, t1). Inductively, we have a sequence of
(xk, tk) ∈ Eα with 0 ≤ tk ≤ tk−1, dM̄ (x0, xk) ≤ dM̄ (x0, xk−1) + K|A|(xk−1,
tk−1)−1, |A|(xk, tk) > 4|A|(xk−1, tk−1). Therefore, we have

|A|(xk, tk) > 4k−1|A|(x1, t1) ≥ 4k−1ε−1

and dM̄ (x0, xk) ≤ dM̄ (x0, x1) + K
∑∞

i=1(4
i−1|A|(x1, t1))−1 ≤ (2K + 1)ε <

1/2. Since the solution is smooth, we get a contradiction as k large enough.
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For the chosen (x̄, t̄ ), if (x, t) /∈ Eα, t̄ − (3/4)αQ−2 ≤ t ≤ t̄, then

|A|2(x, t) ≤ α

t
≤ α

t̄ − (3/4)αQ−2 ≤ 4Q2.

If (x, t) ∈ Eα and dM̄ (x, x̄) ≤ K|A|(x̄, t̄ )−1, by above claim we still have the
estimate. The lemma is proved.

Continuing the proof of Theorem 7.3.
Choose K = (1/

√
ε). Let (x̄, t̄ ) be the point obtained in Lemma 7.4.

Consider the auxiliary functions

ϕ(x, t) = (4π(t̄ − t))−(n/2) exp

[

−
(

1 +
1
ε
(t − t̄ )

)
d2

M̄
(x̄, x)

4(t̄ − t)
− n

2ε
t

]

,

and

ψ(x, t) =
(

1 − dM̄ (x̄, x)2 + 3nt

ρ2

)3

+

on M̄ × [0, t̄ ], where ρ = min{(1/2), (1/c0
√

e), i0,
√

ε}. They are also func-
tions on M by composing the inclusion maps. We will compute their equa-
tions on M . Since the sectional curvature of M̄ satisfies −c2

0 ≤ sec ≤ c2
0, by

comparison theorem and mean curvature flow equation, we have

(
∂

∂t
+ �

)

dM̄ (x̄, ·)2 = 4dM̄∇̄dM̄ · H + tr(Hess(d2
M̄ (x̄, ·)) |TM )

≥ 4dM̄∇̄dM̄ · H + 2n
c0dM̄ (x̄, ·)

tan c0dM̄ (x̄, ·)

≥ 4dM̄∇̄dM̄ · H + 2n

(

1 − 1
2
c2
0d

2
M̄ (x̄, ·)

)

,

(
∂

∂t
− �

)

dM̄ (x̄, ·)2 = −tr(Hess(d2
M̄ (x̄, ·)) |TM )

≥ −2nc0dM̄ (x̄, ·)coth(c0dM̄ (x̄, ·)) ≥ −3n

whenever dM̄ (x̄, ·)2 < min{(1/c2
0e), i

2
0}, t ∈ [0, t̄ ]. Hence we have

(7.6)
(

∂

∂t
− �

)

ψ ≤ 0



480 Bing-Long Chen and Le Yin

and
(

∂

∂t
+ � − |H|2

)

ϕ = ϕ

[
n

2(t̄ − t)
− 1 + (1/ε)(t − t̄ )

4(t̄ − t)

(
∂

∂t
+ �

)

dM̄ (x̄, ·)2

− (1 + (1/ε)(t − t̄ ))dM̄ (x̄, ·)2
4(t̄ − t)2

+
(1 + (1/ε)(t − t̄ ))2|∇dM̄ (x̄, ·)2|2

16(t̄ − t)2

−(1/ε)dM̄ (x̄, ·)2
4(t̄ − t)

− n

2ε
− |H|2

]

≤ ϕ

[

−1 + (1/ε)(t − t̄ )
(t̄ − t)

dM̄∇̄dM̄ · H

− (1 + (1/ε)(t − t̄ ))dM̄ (x̄, ·)2
4(t̄ − t)2

+
(1 + (1/ε)(t − t̄ ))2|∇dM̄ (x̄, ·)2|2

16(t̄ − t)2

−
[
(1/ε) − (1 + (1/ε)(t − t̄ ))nc2

0
]
dM̄ (x̄, ·)2

4(t̄ − t)
− |H|2

]

≤ −
∣
∣
∣
∣H +

(

1 +
1
ε
(t − t̄ )

)
dM̄ (x̄, ·)∇̄⊥dM̄ (x̄, ·)

2(t̄ − t)

∣
∣
∣
∣

2

ϕ(7.7)

whenever dM̄ (x̄, ·) < ρ, t ∈ [0, t̄ ]. We used 0 < 1 + (1/ε)(t − t̄ ) ≤ 1. In the
above and following argument, we regard the mean curvature flow Mt is
a smooth family of Ft : M → M̄, (ϕψ) ◦ Ft is a C2 function on M × [0, t̄ ]
with compact support in M . So

∫
Mt

ϕψ =
∫
M ϕψdvt is a C2 function in t.

Combining (7.6) and (7.7), we get the monotonicity formula

(7.8)
d

dt

∫

Mt

ϕψ ≤ −
∫

Mt

∣
∣
∣
∣H +

(

1 +
1
ε
(t − t̄ )

)
dM̄ (x̄, ·)∇̄⊥dM̄ (x̄, ·)

2(t̄ − t)

∣
∣
∣
∣

2

ϕψ

on [0, t̄ ]. This implies

∫ t̄

t̄−(1/2)αQ−2

[∫

Mt

∣
∣
∣
∣H +

(

1 +
1
ε
(t − t̄ )

)
dM̄ (x̄, ·)∇̄⊥dM̄ (x̄, ·)

2(t̄ − t)

∣
∣
∣
∣

2

ϕψ

]

dt

≤
∫

Mt̄−(1/2)αQ−2

ϕψ −
∫

Mt̄

ϕψ.(7.9)
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Since the solution is smooth and properly embedded, ψ is compactly sup-
ported, we have limt→t̄−

∫
Mt

ϕψ = e−(n/2ε)t̄(1 − (3nt̄/ρ2))3. Now we claim
that there is β > 0 such that as ε, δ → 0, we have

(7.10)
∫

Mt̄−(1/2)αQ−2

ϕψ ≥ (1 + β)e−(n/2ε)t̄
(

1 − 3nt̄

ρ2

)3

.

We still argue by contradiction. Suppose not, then there is a subsequence
of ε, δ → 0 and

(7.11)

∫ t̄

t̄−(1/2)αQ−2

[∫

Mt

∣
∣
∣
∣H +

(

1 +
1
ε
(t − t̄ )

)
dM̄ (x̄, ·)∇̄⊥dM̄ (x̄, ·)

2(t̄ − t)

∣
∣
∣
∣

2

ϕψdv

]

dt

≤ β → 0.

Parabolic scaling the solution around (x̄, t̄ ) with the factor Q and shifting the
t̄ to 0 and x̄ to origin O, i.e., let (M̃, g̃) = (M̄, Q2ḡ) be the new target man-
ifold, M̃s = Mt̄+Q−2s, −(3/4)α ≤ s ≤ 0 be the new family of submanifolds,
which is still solution of MCF. By (7.5), the normalized second fundamen-
tal form satisfies |Ã| ≤ 4 on BM̃ (x̄, K), −(3/4)α ≤ s ≤ 0. By Theorem 3.2,
we have |∇̃Ã| + |∇̃2Ã| ≤ Const. on BM̃ (x̄, (K/2)), −(5/8)α ≤ s ≤ 0. Note
that K → ∞.

Now we are going to consider the convergence of the MCF on changing
target manifolds. We clarify the meaning of the convergence in the following.

Denote the orbit of x̄ under MCF by x̄s ∈ M̃s such that x̄0 = x̄. Note
the injectivity radius of the new target (M̃, g̃) tends to infinity as ε → 0.
Let {x1, . . . , xn̄} be normal coordinates of M̃ of radius � 1 around x̄ with
Tx̄M̃0 = span{(∂/∂x1), . . . , (∂/∂xn)}, and g̃αβ be the metric coefficients of
M̃ in this coordinates. By [14], we have |g̃αβ − δαβ |(x) ≤ CQ−2|x|2 and
|∂g̃αβ | + |∂2g̃αβ | ≤ C. By Arzela–Ascoli theorem, after taking a subsequence
of ε → 0, g̃αβ tends to δαβ in C2−γ topology for any 0 < γ < 1.

By Lemma 7.2, there exist a family of maps Fs : {(x1, . . . , xn) |
(x12 + · · · + xn2)1/2 < 1} → R

n̄−n with F0(0) = 0, |DF0|(0) = 0, such that
the connected component containing x̄s of M̃s ∩ {(x1, . . . , xn̄) | (x12 + · · · +
xn2)1/2 < 1} can be written as a graph {(x

′
, Fs(x′)) | |x′| = (x12 + · · · +

xn2)1/2 < 1}. Moreover, we can show

4∑

i=1

|DiF | +
2∑

i=1

(∣
∣
∣
∣

∂i

∂si
F

∣
∣
∣
∣+

∣
∣
∣
∣D

i ∂F

∂s

∣
∣
∣
∣

)

≤ C,
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where D and the norm are the natural differential and norm in Euclidean
ordinates of N ⊂ R

n and the garget R
n̄. By Arzela–Ascoli theorem, F (x′, s)

will converge to F∞(x′, s) in the topology of C3/2(B(0, (1/2)) × [−(5α/8), 0],
R

n̄) ∩ C3(B(0, (1/2)), Rn̄).
If we set X = (x′, F (x′)) being the map from N := B(0, 1) to M̃, then

the MCF equation can be written as

∂X

∂s
= �X,

where � is the harmonic Laplacian defined by using the induced metric
X∗g̃ and the target metric g̃. Since X∗g̃ is defined by DF and g̃, after tak-
ing a subsequence of ε → 0, we know X∗g̃ converges in C1−γ(B(0, (1/2)) ×
[−(5α/8), 0]) topology.

Denote by M̂s = M̃s ∩ expx̄{|x′| < 1}, and M̂ = ∪s∈[−(α/2),0]M̂s. By
summing up the above discussion, the piece M̂ of M̃ containing (x̄, 0) will
converge to a solution of the MCF (in the classical sense) which is embed-
ded on the Euclidean space R

n̄ with |Â∞|(O, 0) = 1 and |Â∞|(·, s) ≤ 4 on
[−(α/2), 0].

On the other hand, let ϕ̃ = Q−nϕ = (4π(−s))−(n/2) exp[−(1 + (s/Q2ε))
(d2

M̃
(x̄, ·)/4(−s)) − (n/2ε)(t̄ + Q−2s)], note that

Q−2
∣
∣
∣
∣H +

(

1 +
1
ε
(t − t̄ )

)
dM̄ (x̄, ·)∇̄⊥dM̄ (x̄, ·)

2(t̄ − t)

∣
∣
∣
∣

2

ḡ

=

∣
∣
∣
∣
∣
H̃ −

(

1 +
s

Q2ε

)
dM̃ (x̄, ·)∇̃⊥dM̃ (x̄, ·)

2s

∣
∣
∣
∣
∣

2

g̃

,

ψ =
(

1 −
Q−2dM̃ (x̄, ·)2 + 3nt̄ + 3nQ−2s

ρ2

)3

+
−→ 1,

ϕ̃ → (4π(−s))−(n/2)e−(|·|2)/4(−s) and ϕψ dv = ϕ̃ψ dṽ.

Since M̂s ⊂ M̃s, by passing (7.11) to limit, we have

∫ 0

−(1/2)α

[∫

M̂∞
s

∣
∣
∣
∣Ĥ∞ − x⊥

2s

∣
∣
∣
∣

2

(4π(−s))−(n/2)e−(|x|2/4(−s))

]

ds = 0,
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where we denote the limit of M̂s by M̂∞
s , Ĥ∞ the mean curvature on the

limit. This implies

Ĥ∞ =
x⊥

2s
for s ∈

[
−α

2
, 0
]
.

The boundedness of the second fundamental form on M̂∞
0 implies x⊥ ≡ 0 on

M̂∞
0 . Since the second fundamental form and its twice covariant derivative

of M̂∞
s are bounded for s ∈ [−(α/2), 0], M̂∞

s are C4−γ submanifolds for
any γ > 0. Moreover by the higher-derivative estimates in Theorem 3.2 (in
Euclidean space), M̂∞

0 is smooth.
Note 0 ∈ M̂∞

0 , after a orthogonal transformation, we may assume T0M̂
∞
0

{(x1, x2, . . . , xn, 0, . . . , 0)}. Clearly we still have the condition x⊥ ≡ 0 on
M̂∞

0 . We may write M̂∞
0 as a graph (at least locally near 0 ) (x′, f1(x′), . . . ,

fn̄−n(x′)) where x′ = (x1, . . . , xn). Now x⊥ = (x′, f1(x′), . . . , fn̄−n(x′))⊥ ≡ 0
implies

∑n
p=1(∂fi/∂xp)xp = fi(x′). So fi is homogenous of degree 1. Since

Dfi(0) = 0, we conclude fi ≡ 0. Hence we know M̂∞
0 is an n-dimensional

linear subspace R
n of R

n̄.
This contradicts |Â∞|(O, 0) = 1 and we complete the proof of (7.10).
Note that BM̄ (x̄, ρ) ⊆ BM̄ (x0, ρ + (2K + 1)ε) ⊆ BM̄ (x0, 4

√
ε). Combin-

ing (7.10) and monotonicity formula (7.8), we know

∫

M0∩BM̄ (x0,4
√

ε)
(4πt̄ )−(n/2) exp

[

−
(

1 − t̄

ε

)
d2

M̄
(x̄, x)
4t̄

]

dv

≥
∫

Mt

ϕψdv |t=t̄−(1/2)αQ−2 ≥ (1 + β)e−(n/2ε)t̄
(

1 − 3nt̄

ρ2

)3

.(7.12)

By assumption, there is a normal coordinate system (y1, . . . , yn̄) of M̄ around
x0 with Tx0M0 = span{(∂/∂y1), . . . , (∂/∂yn)} and a vector valued function
F : {y′ = (y1, . . . , yn)|(y1)2 + · · · + (yn)2 < 1} → R

n̄−n with F (0) = 0,
|DF |(0) = 0, |DF |2(y′) =

∑
i,γ(∂F γ/∂yi)(∂F γ/∂yi) ≤ δ2 such that M0 ∩

{|y′| < 1} = {(y′, F (y′)) | |y′| < 1}. Let P : R
n̄ → R

n be the orthogonal pro-
jection into the first n-components. Let expx0

(ȳ) = x̄ and ȳ′ = P ȳ. For
x ∈ BM̄ (x0, 4

√
ε), let expx0

(y) = x and y′ = Py. Since the curvature of
M̄ is bounded by c2

0, by comparison theorem on the ball BTx0M̄ (o, 4
√

ε),
we have

dM̄ (x̄, x) ≥ sin(4c0
√

ε)
4c0

√
ε

|ȳ − y| ≥ (1 − 3c2
0ε)|ȳ − y| ≥ (1 − 3c2

0ε)|ȳ′ − y′|.

(7.13)
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On the other hand, also by comparison theorem, the Riemannian volume
element dv of M0 satisfies

(7.14) exp∗
x0

dv ≤
[
sinh(c0dM̄ (x0, ·))

c0dM̄ (x0, ·)

]n

dvexp−1
x0 M0

≤ [1 + 16c2
0ε]

ndvexp−1
x0 M0

whenever x ∈ M0 ∩ BM̄ (x0, 4
√

ε). By definition, it is clear that

(7.15) dvexp−1
x0 M0

≤ (1 + |DF |2)n/2dy1 . . . dyn ≤ (1 + δ2)n/2dy1 . . . dyn.

Combining (7.13), (7.14) and (7.15), we have
∫

M0∩BM̄ (x0,4
√

ε)
(4πt̄ )−(n/2) exp

[

−
(

1 − t̄

ε

)
d2

M̄
(x̄, x)
4t̄

]

dv

≤ (1 + δ2)n/2(1 + 16c2
0ε)

n(1 − ε)−(n/2)(1 − 3c2
0ε)

−n

×
∫

(|y1|2+···+|yn|2)1/2<4
√

ε

[
4πt̄

(1 − ε)(1 − 3c2
0ε)2

]−(n/2)

× exp
[

−|ȳ′ − y′|2
/ 4t̄

(1 − ε)(1 − 3c2
0ε)2

]

dy1 . . . dyn

≤ (1 + δ2)n/2(1 + 16c2
0ε)

n(1 − ε)−(n/2)(1 − 3c2
0ε)

−n.

By (7.12) and the fact t̄ ≤ ε2, we conclude that

(1 + δ2)(n/2)(1 + 16c2
0ε)

n(1 − ε)−(n/2)(1 − 3c2
0ε)

−n(1 − 3nε)−3enε/2 ≥ (1 + β),

which is a contradiction as ε, δ → 0. We complete the proof of the
Theorem. �

Theorem 7.5. Let M̄ be an n̄-dimensional manifold satisfying
∑3

i=0 |
∇̄i R̄m| ≤ c2

0 and inj(M̄) ≥ i0 > 0. Then there is ε > 0 with the following
property. Suppose we have a smooth solution Mt ⊂ M̄ to the MCF properly
embedded in BM̄ (x0, r0) for t ∈ [0, T ], where r0 < (i0/2), 0 < T ≤ ε2r2

0. We
assume that at time zero, x0 ∈ M0, and the second fundamental form satis-
fies |A|(x) ≤ r−1

0 on M0 ∩ BM̄ (x0, r0) and assume M0 is graphic in the ball
BM̄ (x0, r0). Then we have

(7.16) |A|(x, t) ≤ (εr0)−1

for any x ∈ BM̄ (x0, εr0) ∩ Mt, t ∈ [0, T ].
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Proof. By scaling we may assume r0 = 1. By Lemma 7.1, for any δ > 0, there
is 0 < rδ < 1 such that the connected component of M0 ∩ BM̄ (x0, (1/96))
containing x0 contains a δ-Lipschitz graph of radius 2rδ at x0. By our graphic
assumption, we conclude that M0 ∩ BM̄ (x0, rδ) is a δ-Lipschitz graph. So
Theorem 7.3 is applicable with radius rδ.

Consequently, for any α > 0, there exists an εα > 0 such that

(7.17) |A|(x, t)2 ≤ α

t
+ ε−2

α

whenever x ∈ Mt ∩ BM̄ (x0, εα), t ∈ [0, ε2
α] ∩ [0, T ]. Let α be a fixed small

constant to be determined later. It turns out that we only need to choose
α = α(c0, n̄, n) finally. Choose ε = min{

√
αεα, 10−1}. Then by (7.17)

we have

(7.18) |A|(x, t)2 ≤ 2α

t

whenever x ∈ Mt ∩ BM̄ (x0, εα), t ∈ [0, ε2] ∩ [0, T ].

Claim. |A|(x, t) ≤ ε−1 holds on Mt ∩ BM̄ (x0, ε), t ∈ [0, ε2] ∩ [0, T ].

Suppose |A|(x1, t1) > ε−1 holds for some point (x1, t1), x1 ∈ Mt1∩
BM̄ (x0, ε), t1 ∈ [0, ε2] ∩ [0, T ]. We can choose another point (x̄, t̄ ), x̄ ∈ Mt̄ ∩
BM̄ (x0, 4ε), t̄ ∈ [0, ε2] ∩ [0, T ] such that Q = |A|(x̄, t̄ ) ≥ ε−1 and

(7.19) |A|(x, t) ≤ 4Q

whenever x ∈ Mt, dM̄ (x̄, x) ≤ Q−1, 0 ≤ t ≤ t̄.
Actually (x̄, t̄ ) can be constructed as the limit of a finite sequence (xi, ti)

satisfying 0 ≤ tk ≤ tk−1, dM̄ (x0, xk) ≤ dM̄ (x0, xk−1) + |A|(xk−1, tk−1)−1, |A|
(xk, tk) ≥ 4|A|(xk−1, tk−1). Since

|A|(xk, tk) ≥ 4k−1|A|(x1, t1) ≥ 4k−1ε−1,

dM̄ (x0, xk) ≤ dM̄ (x0, x1) +
∑∞

i=1(4
i−1|A|(x1, t1))−1 ≤ 3ε < (1/2), and the

solution is smooth, the sequence must be finite and the last element fits.
Note that 3nt̄Q2 ≤ 6nα ≤ (1/2) by choosing α ≤ (1/12n). Let ψ = (1−

(d2
M̄

(x̄, ·) + 3nt/Q−2))3+, then we have

(
∂

∂t
− �

)

ψ ≤ 0
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whenever dM̄ (x̄, ·)2 < min{(1/c2
0e), i

2
0}, t ∈ [0, t̄ ]. On the other hand, by

(3.2), the second fundamental form satisfies
(

∂

∂t
− �

)

|A|2 ≤ −|∇A|2 + C(n̄)|A|4 + C(n̄)(1 + c2
0)(|A|2 + |A|).

Hence
(

∂

∂t
− �

)

(ψ|A|2) ≤ −|∇A|2ψ + C(n̄)|A|4ψ + C(n̄)(1 + c2
0)(|A|2 + |A|)ψ

+ 4|∇A||A||∇ψ|

≤ C(n̄)|A|4ψ + C(n̄)(1 + c2
0)(|A|2 + |A|)ψ + 4

|∇ψ|2
ψ

|A|2

≤ C(n̄)|A|4ψ + C(n̄)(1 + c2
0)(|A|2 + |A|)ψ

+ 144Q2|A|2ψ1/3(7.20)

on [0, t̄ ]. By (7.19) and (7.20), we have
(

∂

∂t
− �

)

(ψ|A|2) ≤ C(n̄)Q4 + C(n̄)(1 + c2
0)(Q + Q2).

From the maximum principle, it follows

(ψ|A|2)max|t=t̄ ≤ 1 + C(n̄)Q4t̄ + C(n̄)(1 + c2
0)(Q + Q2)t̄

≤ 1 + 2αC(n̄)Q2 + C(n̄)(1 + c2
0)(

√
2αt̄ + 2α).

Note that

(ψ|A|2)max|t=t̄ ≥ ψ|A|2(x̄, t̄ ) ≥ (1 − 3nQ2t̄ )3Q2 ≥ (1 − 18nα)Q2,

hence we have

(1 − 18nα)Q2 ≤ 1 + 2αC(n̄)Q2 + C(n̄)(1 + c2
0)
(√

2αt̄ + 2α
)

.

This implies

Q2 ≤ 1 + C(n̄)(1 + c2
0)(

√
2α + 2α)

1 − (18n + 2C(n̄))α
.

Choosing suitable small α = α(c0, n̄, n), we have Q2 ≤ 2, which is a contra-
diction with Q2 > ε−2. So the Claim is proved. �
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We remark that in the above theorem the condition that M0 is graphic
in the ball BM̄ (x0, r0) can be replaced by any one of the following conditions:

(i) dḡ(x, y) ≥ (dg0(x, y)/C) for any x, y ∈ M0 ∩ BM̄ (x0, r0);

(ii) there is a ε0 > 0 such that BM̄ (x0, εr0) ∩ M0 is connected for
any ε ≤ ε0.

Corollary 7.6. Let M̄ be an n̄-dimensional complete manifold satisfying∑3
i=0 |∇̄iR̄m| ≤ c2

0 and inj(M̄) ≥ i0 > 0. Let X0 : M → M̄ be an
n-dimensional isometrically properly embedded submanifold with bounded
second fundamental form |A| ≤ c0 in M̄ . We assume M0 = X0(M) is uni-
form graphic with some radius r > 0. Suppose X(x, t) is a smooth solution
to the mean curvature flow (1.1) on M × [0, T0] properly embedded in M̄
with X0 as initial data. Then there is T1 > 0 depending upon c0, i0, r and
the dimension n̄ such that

|A|(x, t) ≤ 2c0

for all x ∈ M, 0 ≤ t ≤ min{T0, T1}.

Proof. By Theorem 7.5, there is ε > 0 such that for any x0 ∈ M , we have

|A|(x, t) ≤ ε−1

on BM̄ (x0, ε), t ∈ [0, ε2] ∩ [0, T ]. Let [0, γ) ⊂ [0, ε2] ∩ [0, T ] be the maximal
time interval so that the orbit of x0, xt

0 ∈ BM̄ (x0, ε) for t ∈ [0, γ]. Then by
the MCF equation, we know

d

dt
dM̄ (x0, x

t
0) ≤ Cε−1,

for any t ∈ [0, γ]. This implies γ ≥ (ε2/C) for some C = C(n, n̄). Choos-
ing ε = (ε/

√
C), T = min{T0, ε

2}, we conclude that the second fundamental
forms are uniformly bounded by the constant ε−1 on M × [0, T ]. Once the
second fundamental form is bounded, since we assumed

∑3
i=0 |∇̄iR̄m| ≤ c2

0,
we have gradient estimate |∇A| ≤ (C/

√
t), and hence suitable linear growth

function with bounded first and second derivatives can be constructed.
Therefore we can apply the maximum principle to the equation of |A|
to conclude a uniform estimate |A| ≤ 2c0, for any t ∈ [0, (1/C(n̄)c2

0)]. Set
T1 = min{T, (1/C(n̄)c2

0)}. The proof is completed. �

Theorem 1.3 follows as a corollary of Theorem 1.1 and Corollary 7.6.
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In [16], Huisken established his monotonicity formula, which was later
generalized by Ecker–Huisken [11], Huisken [17], and to parabolic flows on
Riemannian manifolds by Hamilton [15]. The remarkable localized mono-
tonicity formula was discovered by Ecker [9].

Finally, we are acknowledged kindly by Prof. Klaus Ecker that part
of our arguments of using monotonicity was also carried out before by B.
White [25] (see [10]) in different situations. The choice of ψ in inequality
(7.6) appeared first in [1] for the case of Euclidean space, see Remark 4.8 of
the book [10].
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