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Conformal deformations to scalar-flat metrics with
constant mean curvature on the boundary

Fernando C. Marques

Let (Mn, g) be a compact manifold with boundary, with finite
Sobolev quotient Q(Mn, ∂M). We prove that there exists a con-
formal deformation which is scalar-flat and has constant boundary
mean curvature, if n = 4 or 5 and the boundary is not umbilic. In
particular, we prove such existence for any smooth and bounded
open set of the Euclidean space, finishing the remaining cases of a
theorem of J.F. Escobar.

1. Introduction

The classical Riemann mapping theorem is one of the most famous results
in Mathematics. It states that any simply connected, proper domain of the
plane is conformally diffeomorphic to a disk. This theorem is certainly false
in higher dimensions, since the only bounded open subsets of R

n, n ≥ 3,
that are conformally diffeomorphic to Euclidean balls are the Euclidean
balls themselves. Nevertheless, we could ask how close to a ball one can get
by means of a conformal deformation of the metric. In that spirit, Esco-
bar proved in [7] (the proof in dimension 6 appeared in [11]) the following
beautiful result:

Theorem 1.1. (Escobar) Let Ω ⊂ R
n be a smooth bounded domain of the

Euclidean space, n �= 4, 5. Then there exists a smooth function u > 0 such
that g̃ij = u4/(n−2)δij is scalar-flat and has constant mean curvature on the
boundary ∂Ω.

In fact, this is a special case of the following problem:

Yamabe problem. Let (Mn, g) be an n-dimensional, compact, Rieman-
nian manifold with boundary ∂M , n ≥ 3. Is there a conformally related
metric g̃ with zero scalar curvature and boundary ∂M of constant mean
curvature?

That general question was addressed for the first time by Escobar in [7],
where he gave an affirmative answer for a large class of manifolds (see

381



382 Fernando C. Marques

Theorem 2 in that paper). The present author studied a higher dimen-
sional case in [19], where the Weyl tensor on the boundary plays a natural
role. We should also note that the classical Yamabe problem, for manifolds
without boundary, was completely solved after the works of Yamabe [22],
Trudinger [21], Aubin [2] and Schoen [20].

The problem we are interested in is equivalent, in analytical terms,
to finding a smooth positive solution to the nonlinear boundary-value
problem:

(1.1)
Δgu − n − 2

4(n − 1)
Rgu = 0 in M,

∂u

∂η
+ n−2

2 hgu = n−2
2 cun/n−2 on ∂M,

where Δg denotes the Laplace–Beltrami operator of the metric g, Rg is the
scalar curvature, hg is the mean curvature of the boundary with respect to g,
η is the outward unit normal vector to ∂M and c is a constant. In fact, given
a solution u to problem (1.1), the metric g̃ = u4/(n−2)g is scalar-flat and its
boundary mean curvature is equal to c. Note that the Equations (1.1) are
specially interesting due to the boundary nonlinearity.

The solutions to Equations (1.1) can also be seen as critical points of
the functional

Q(φ) =

∫
M (|∇φ|2 + (n − 2)/4(n − 1)Rgφ

2)dvg + (n − 2)/2
∫
∂M hgφ

2dσg

(
∫
∂M |φ|2(n−1)/(n−2)dσg)(n−2)/(n − 1)

.

Here, dvg and dσg denote the volume forms of M and ∂M , respectively.
In [7], Escobar introduced the Sobolev quotient

Q(M, ∂M) = inf{Q(φ) : φ ∈ C1(M), φ �≡ 0 on ∂M},

proving that it is conformally invariant and always satisfies

Q(M, ∂M) ≤ Q(Bn, ∂Bn),

where Bn denotes the unit ball in R
n endowed with the Euclidean metric.

Under the hypothesis that Q(M, ∂M) is finite (which is the case if
Rg ≥ 0), he also showed that the strict inequality

Q(M, ∂M) < Q(Bn, ∂Bn)

assures the existence of a minimizing solution to problem (1.1).
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The main result of the present paper is as follows.

Theorem 1.2. Let (Mn, g) be a compact manifold with nonempty bound-
ary, n = 4 or 5. Assume the boundary ∂M is not umbilic. Then

Q(Mn, ∂M) < Q(Bn, ∂B).

If Q(Mn, ∂M) is finite, then there exists a smooth function u > 0 such that
g̃ = u4/(n−2)g is scalar-flat and has constant boundary mean curvature.

We should point out that Q(Mn, ∂M) could be −∞, as it is the case of
manifolds obtained by deleting a small geodesic ball from a closed manifold
of negative scalar curvature (see [9] for details).

In the case of a smooth bounded domain Ω ⊂ R
n, we know that the

boundary is not umbilic unless the domain is a ball (in which case the exis-
tence is trivial). We also have that Q(Ω, ∂Ω) is finite because the Euclidean
metric is scalar-flat.

Therefore, we finish the remaining cases of Theorem 1.1 as the following
corollary:

Corollary 1.3. Theorem 1.1 is also true in dimensions 4 and 5.

The proof of Theorem 1.2 is explicitly based on constructing a func-
tion φ, with support in a small halfball around a nonumbilic point P ∈ ∂M ,
such that

(1.2) Q(φ) < Q(Bn, ∂Bn).

The usual strategy in this kind of problem (which goes back to Aubin, [2])
consists in defining the function φ, in the small halfball, as one of the stan-
dard entire solutions to the corresponding Euclidean equations. In our con-
text those are

Uε(x, t) =
(

ε

(ε + t)2 + |x|2

)(n−2)/2

.

The next step would be to expand the quotient of φ in powers of ε and,
by exploiting the local geometry around P , show that the inequality (1.2)
holds if ε is small. In order to simplify the asymptotic analysis, we use
conformal Fermi coordinates (introduced in [19]), which play the same role
the conformal normal coordinates (see [18]) did in the classical Yamabe
problem.
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The difficulty arises because, when 3 ≤ n ≤ 5, the first correction term in
the expansion has the wrong sign. When n = 3, Escobar proved the strict
inequality by applying the Positive Mass Theorem (a global construction
originally due to Schoen, [20]). This argument does not work when 4≤n ≤
5 because the metric is not sufficiently flat around the nonumbilic point
P ∈ ∂M .

Our point of view in this article is that the test functions Uε are not
optimal in dimensions 4 and 5, but the problem should still be local. This
kind of phenomenon does not appear in the classical solution of the Yamabe
problem for manifolds without boundary, although we should say that per-
turbed test functions have already been used in the work of Hebey and
Vaugon ([17]).

In order to prove the strict inequality (1.2), we introduce

(1.3) ψε(x, t) = ε(n−2)/2hijx
ixjt

(
1

(ε + t)2 + |x|2

)n/2

,

where hij are the coefficients of the second fundamental form at P . Our test
function φ is defined as

φ = Uε + ψε,

around P ∈ ∂M .
When n = 5, this solves the problem because the first correction term in

the expansion of Q(φ) is strictly negative, but if n = 4 one can check that
the term actually vanishes. In order to deal with that case, we need to work
with a small perturbation φ = Uε + ψε + δT .

The motivation for the definition (1.3) came from blowup analysis ideas,
by determining good enough approximations of solutions concentrating at
a boundary point. We think it should be possible to apply this sort of
reasoning to other similar problems.

Other works concerning conformal deformation on manifolds with
boundary include [1, 4, 5, 8, 10, 12–16].

2. Preliminaries and statements

Let (Mn, g) be an n-dimensional compact Riemannian manifold with
boundary, n ≥ 3. In what follows, let Rg denote the scalar curvature of
the metric g, and let hg denote the mean curvature of ∂M .

We are interested in finding a conformal deformation g̃ = u4/(n−2)g,
which is scalar-flat and has constant mean curvature on the boundary. This
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geometric problem is equivalent to finding a constant c ∈ R and a positive
solution u to

(2.1)
Δgu − n−2

4(n−1)Rgu = 0 in M,
∂u
∂η + n−2

2 hgu = n−2
2 cun/(n−2) on ∂M.

The operator Lg = Δg − n−2
4(n−1)Rg is called the conformal Laplacian of g.

In order to obtain the variational formulation of problem (2.1) we need
to introduce the Sobolev quotient of M .

Given φ ∈ H1(M), define

E(φ) =
∫

M

(

|∇gφ|2 +
n − 2

4(n − 1)
Rgφ

2
)

dvg +
n − 2

2

∫

∂M
hgφ

2 dσ,

and also

Q(φ) =
E(φ)

( ∫
∂M |φ|2(n−1)/(n−2)dσ

)(n−2)/(n−1) .

One can now check that solutions to the Equations (2.1) are the positive
functions which are critical points of Q.

The Sobolev quotient Q(M, ∂M) is defined as

Q(M, ∂M) = inf{Q(φ): φ ∈ C1(M), φ �≡ 0 on ∂M}.

It is not difficult to see [7] that the Sobolev quotient is a conformal invariant.
It follows from the work in [7] that whenever

−∞ < Q(Mn, ∂M) < Q(Bn, ∂B),

there exists a positive minimizer of Q. This minimizer is automatically a
solution to the problem (2.1).

The number Q(Bn, ∂B) also appears as the best constant in the Sobolev-
trace inequality:

(∫

∂R
n
+

|φ|2(n−1)/(n−2) dx

)(n−2)/(n−1)

≤ 1
Q(Bn, ∂B)

∫

R
n
+

|∇φ|2 dx dt,

for every φ ∈ H1(Rn
+).

Here R
n
+ = {(x, t) ∈ R

n: t ≥ 0}.
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It was proven by Escobar [6], and independently by Beckner [3], that
the equality is achieved by

Uε(x, t) =
(

ε

(ε + t)2 + |x|2

)(n−2)/2

,

which is a solution to the boundary-value problem:

(2.2)
ΔUε = 0 in R

n
+,

∂
∂tUε = −(n − 2)Un/(n−2)

ε on ∂R
n
+.

One can check, using integration by parts, that
∫

R
n
+

|∇Uε|2 dxdt = (n − 2)
∫

∂R
n
+

U2(n−1)/n−2
ε dx,

and also

(2.3) Q(Bn, ∂Bn) = (n − 2)

(∫

∂R
n
+

U2(n−1)/n−2
ε dx

)1/n−1

.

3. Estimating the Sobolev quotient

In this section, we will prove Theorem 1.2 by constructing a function φ with

Q(φ) < Q(Bn, ∂B).

Let P ∈ ∂M be a nonumbilic point, and choose geodesic normal
coordinates (x1, . . . , xn−1) on the boundary, centered at P . We say that
(x1, . . . , xn−1, t) are the Fermi coordinates of the point expx(tη(x)) ∈ M ,
where η(x) denotes the inward unit vector normal to the boundary at
x ∈ ∂M and t ≥ 0 is small. It is easy to see that in these coordinates gtt ≡ 1
and gti ≡ 0. The expansion of the coefficients gij up to second order is given
by (see [19, Lemma 2.2]):

gij = δij − 2hijt(3.1)

− 1
3
Rikjlxkxl − 2hij,ktxk + (−Rtitj + hishsj)t2 + O(|(x, t)|3).

All the coefficients are computed at P , where hij denotes the second
fundamental form with respect to the inward unit normal, and Rtitj , Rikjl
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denote components of the full Riemannian curvature tensors of M and ∂M ,
respectively.

Since the Sobolev quotient Q(Mn, ∂M) is a conformal invariant, we can
assume (see [19, Section 3]) there exist conformal Fermi coordinates, i.e.,
Fermi coordinates (x1, . . . , xn−1, t) centered at P such that

(3.2) dvg = (1 + O(|(x, t)|N ))dx dt,

where N is arbitrarily large.
In general, from the expansion (3.1),

det g = 1 − 2Ht

− 1
3
Rklxkxl − 2H,ktxk + (−Rtt − |h|2 + 2H2)t2 + O(r3).

Here H denotes the mean curvature, |h|2 =
∑

i,j(hij)2, and Rtt, Rkl denote
components of the Ricci tensors of M and ∂M , respectively.

Hence, in conformal Fermi coordinates, we have H = H,k = Rkl = 0, and
Rtt = −

∑
i,j(hij)2 at P .

In what follows B+
ρ = {(x, t) ∈ R

n
+ : |x|2 + t2 ≤ ρ2}, S+

ρ = {(x, t) ∈ R
n
+ :

|x|2 + t2 = ρ2} and Bn−1
ρ = {(x, 0) ∈ R

n : |x|2 ≤ ρ2}.
Fix A ∈ R, ρ0 > 0 and ε > 0.
If

ψε(x, t) = Aε(n−2)/2hjkxjxkt

(
1

(ε + t)2 + |x|2

)n/2

,

define
uε = Uε + ψε for (x, t) ∈ R

n
+,

where Uε is as in the previous section.
Note that

uε(x, t) = (1 + O(r)) Uε(x, t).

Hence, if ρ0 is sufficiently small and A is fixed

1
2
Uε ≤ uε ≤ 2Uε in B+

2ρ0
.

Let η(ρ) be a smooth cut-off function satisfying η(ρ) = 1 for ρ ≤ ρ0,
η(ρ) = 0 for ρ ≥ 2ρ0, 0 ≤ η ≤ 1 and |η′(ρ)| ≤ Cρ−1

0 if ρ0 ≤ ρ ≤ 2ρ0.
Define

φ = ηuε.

Let us first estimate Eg(φ) on A+
ρ0

= B+
2ρ0

\B+
ρ0

.
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In what follows, we will denote by C different positive constants.
First observe

|∇φ|2g ≤ C|∇φ|2 ≤ C(|∇η|2u2
ε + η2|∇uε|2).

Now
∫

A+
ρ0

|∇η|2u2
ε dx dt ≤ Cρ−2

0

∫

A+
ρ0

U2
ε dx dt

≤ Cρ−2
0 εn−2

∫

A+
ρ0

(
1

t2 + |x|2

)n−2

dx dt

= Cρ−2
0 εn−2

∫ 2ρ0

ρ0

ρ3−n dρ

≤ Cεn−2ρ2−n
0 .

We also have
∫

A+
ρ0

η2|∇uε|2 dx dt ≤ Cεn−2
∫ 2ρ0

ρ0

ρ1−ndρ ≤ Cεn−2ρ2−n
0 .

The other terms are estimated as follows:
∫

A+
ρ0

Rgφ
2 dx dt ≤ C

∫

A+
ρ0

U2
ε dx dt ≤ Cεn−2ρ4−n

0 ,

and ∫

A+
ρ0∩∂M

hgφ
2 dx ≤ C

∫

A+
ρ0∩∂M

U2
ε dx ≤ Cεn−2ρ3−n

0 .

We conclude that

EM\B+
ρ0

(φ) ≤ Cεn−2ρ2−n
0 .

Now let us turn our attention to the quantity EB+
ρ0

(φ). Since N is as
large as we want in equality (3.2), we can just assume dvg = dx dt in the
expansions to come.

Using that gtt = 1 and gti = 0 in Fermi coordinates, we obtain
∫

B+
ρ0

|∇φ|2g dx dt =
∫

B+
ρ0

|∇uε|2 dx dt +
∫

B+
ρ0

(gij − δij)(uε)i(uε)j dx dt,

where the indices on functions denote derivatives.
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Now
∫

B+
ρ0

|∇uε|2 dx dt =
∫

B+
ρ0

(|∇Uε|2 + |∇ψε|2) dx dt.

We are using that
∫

B+
ρ0

〈∇Uε,∇ψε〉 dx dt = 0,

since
∫

Sn−2
r

hijxixj =
H

n − 1

∫

Sn−2
r

r2 = 0.

Note that from the properties (2.2) and the identity (2.3), we can get

(3.3)
∫

B+
ρ0

|∇Uε|2 dx dt ≤ Q(Bn, ∂Bn)

(∫

Bn−1
ρ0

U2(n−1)/n−2
ε dx

)n−2/n−1

.

Here, we are using that ∂Uε

∂η < 0 on ∂B+
ρ0

∩ R
n
+, where η denotes the outward

unit normal vector.
On the other hand

uε(x, 0) = Uε(x, 0).

Hence

∫

B+
ρ0

|∇Uε|2 dx dt ≤ Q(Bn, ∂Bn)
(∫

M
φ2(n−1)/n−2 dσg

)n−2/n−1

.

Now integration by parts gives

∫

B+
ρ0

|∇ψε|2 dx dt = −
∫

B+
ρ0

ψεΔψε dx dt

+
∫

S+
ρ0

ψε
∂ψε

∂r
dσρ0 −

∫

Bn−1
ρ0

ψε
∂ψε

∂t
dx

= −
∫

B+
ρ0

ψεΔψε dx dt + O(εn−2ρ4−n
0 ).(3.4)

We are using the definition of ψε to estimate the integral over the upper
hemisphere S+

ρ0
and to observe that the integral over Bn−1

ρ0
vanishes.

Let us now compute Δψε.
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If Z = (ε + t)2 + |x|2, then ΔZ−n/2 = 2nZ−(n+2)/2 and

Δψε = Aε(n−2)/2{Δ(hjkxjxkt)Z−n/2 − n〈∇(hjkxjxkt), Z−(n/2)−1∇Z〉
+ hjkxjxktΔ(Z−n/2)}

= −2nAε(n−2)/2hjkxjxkZ
−(n+2)/2(2t + ε).

We will use that

∫

Sn−2
r

q =
r2

d(d + n − 3)

∫

Sn−2
r

Δq,

if q is a homogeneous polynomial of degree d.
Therefore,

∫

Sn−2
r

hijhklxixjxkxl =
2(hij)2

(n − 1)(n + 1)

∫

Sn−2
r

r4,

and then, from identity (3.4),

∫

B+
ρ0

|∇ψε|2 dx dt = 2nA2εn−2
∫

B+
ρ0

hijhklxixjxkxlt(2t + ε)
((ε + t)2 + |x|2)n+1 dx dt

+ O(εn−2ρ4−n
0 )

=
4nA2εn−2 ∑

i,j(hij)2

(n − 1)(n + 1)

∫

B+
ρ0

|x|4t(2t + ε)
((ε + t)2 + |x|2)n+1 dx dt

+ O(εn−2ρ4−n
0 ).

Now,

∫

B+
ρ0

(gij − δij)(uε)i(uε)j dx dt

=
∫

B+
ρ0

(gij − δij){(Uε)i(Uε)j + 2(Uε)i(ψε)j} dx dt + E1,

where

E1 =

⎧
⎨

⎩

O(ε2ρ0) if n = 4,
O(ε3 log(ρ0

ε )) if n = 5,
O(ε3) if n ≥ 6.
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To see this note that

E1 =
∫

B+
ρ0

(gij − δij)(ψε)i(ψε)j dx dt

= εn−2O

(∫

B+
ρ0

|(x, t)|5
((ε + t)2 + |x|2)n

dx dt

)

and perform the change of variables ([7], Lemma 3.4):

(3.5)
∫

B+
ρ0

tkxα dx dt

((ε + t)2 + |x|2)n−l
= εk+m+2l−n

∫

B+
ρ0
ε

skyα dy ds

((1 + s)2 + |y|2)n−l
,

where α = (i1, . . . , im) and xα = xi1 , . . . , xim
.

From the expansion (3.1), we can compute

gij(x, t) = δij + 2hijt

+
1
3
Rikjlxkxl + 2hij,ktxk + (Rtitj + 3hikhkj)t2 + O(|(x, t)|3).(3.6)

We also have

(Uε)i(x, t) = (2 − n)ε(n−2)/2xi

(
1

(ε + t)2 + |x|2

)n/2

.

Therefore, since Rtt = −
∑

i,j(hij)2,

∫

B+
ρ0

(gij − δij)(Uε)i(Uε)j dx dt

=
∫

B+
ρ0

((Rtitj + 3hikhkj)t2 + O(|(x, t)|3))(Uε)i(Uε)j dx dt

= (n − 2)2εn−2
∫

B+
ρ0

(Rtitj + 3hikhkj)t2xixj

((ε + t)2 + |x|2)n
dx dt + E2

=
(n − 2)2

n − 1
εn−2

⎛

⎝Rtt + 3
∑

i,j

(hij)2

⎞

⎠
∫

B+
ρ0

t2|x|2
((ε + t)2 + |x|2)n

dx dt + E2

=
2(n − 2)2

n − 1
εn−2

∑

i,j

(hij)2
∫

B+
ρ0

t2|x|2
((ε + t)2 + |x|2)n

dx dt + E2,



392 Fernando C. Marques

where

E2 =

⎧
⎨

⎩

O(ε2ρ0) if n = 4,
O(ε3 log(ρ0

ε )) if n = 5,
O(ε3) if n ≥ 6.

We are using symmetry arguments to observe that
∫

B+
ρ0

(

2hijt +
1
3
Rikjlxkxl + 2hij,ktxk

)

(Uε)i(Uε)j dx dt = 0.

On the other hand, by integrating by parts and observing that ψε = 0
when t = 0:

2
∫

B+
ρ0

(gij − δij)(Uε)i(ψε)j dx dt

= 2
∫

B+
ρ0

(2hijt + O(|(x, t)|2))(Uε)i(ψε)j dx dt

= −4
∫

B+
ρ0

hijt(Uε)ijψε dx dt + 4ρ−1
0

∫

S+
ρ0

hijt(Uε)iψεxjdσρ0 + E3,

where

E3 =

⎧
⎨

⎩

O(ε2ρ0) if n = 4,
O(ε3 log(ρ0

ε )) if n = 5,
O(ε3) if n ≥ 6.

We can compute

(Uε)ij(x, t) = (2 − n)ε(n−2)/2δij

(
(ε + t)2 + |x|2

)−n/2

+ n(n − 2)ε(n−2)/2xixj

(
(ε + t)2 + |x|2

)−(n+2)/2
.

Therefore,

2
∫

B+
ρ0

(gij − δij)(Uε)i(ψε)j dx dt

= −4n(n − 2)Aεn−2
∫

B+
ρ0

hijhklxixjxkxlt
2

((ε + t)2 + |x|2)n+1 dx dt + E′
3

= − 8n(n − 2)
(n − 1)(n + 1)

Aεn−2
∑

i,j

(hij)2
∫

B+
ρ0

|x|4t2
((ε + t)2 + |x|2)n+1 dx dt + E′

3,

where E′
3 = E3 + O(εn−2ρ4−n

0 ).
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Now for the scalar curvature term

n − 2
4(n − 1)

∫

B+
ρ0

Rgu
2
ε dx dt =

n − 2
4(n − 1)

∫

B+
ρ0

(Rg(0) + O(|(x, t)|))u2
ε dx dt

= − n − 2
4(n − 1)

∑

i,j

(hij)2
∫

B+
ρ0

u2
ε dx dt + E4,

where

E4 =

⎧
⎨

⎩

O(ε2ρ0) if n = 4,
O(ε3 log(ρ0

ε )) if n = 5,
O(ε3) if n ≥ 6.

We are using that Rg(P ) = −
∑

i,j(hij)2 in conformal Fermi coordinates.
Since u2

ε = U2
ε + 2Uεψε + ψ2

ε , we get

n − 2
4(n − 1)

∫

B+
ρ0

Rgu
2
ε dx dt = − n − 2

4(n − 1)

∑

i,j

(hij)2
∫

B+
ρ0

U2
ε dx dt + E5

= − n − 2
4(n − 1)

∑

i,j

(hij)2εn−2
∫

B+
ρ0

1
((ε + t)2 + |x|2)n−2 dx dt + E5,

where

E5 = E4 − n − 2
4(n − 1)

∑

i,j

(hij)2
∫

B+
ρ0

ψ2
ε dx dt.

After using the definition of ψε and performing the change of variables (3.5)
on the integral above, we get

E5 =

⎧
⎨

⎩

O(ε2ρ0) if n = 4,
O(ε3 log(ρ0

ε )) if n = 5,
O(ε3) if n ≥ 6.

The integral involving the mean curvature can be estimated as follows

∫

Bn−1
ρ0

hgu
2
ε dx =

∫

Bn−1
ρ0

O(|x|2)u2
ε dx =

⎧
⎨

⎩

O(ε2ρ0) if n = 4,
O(ε3 log(ρ0

ε )) if n = 5,
O(ε3) if n ≥ 6.

We are using that in conformal Fermi coordinates H = H,k = 0 at P .
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Therefore,

E(φ) ≤ Q(Bn, ∂Bn)
(∫

∂M
φ2(n−1)/(n−2)dσg

)n−2/n−1

+
4nA2ε2 ∑

i,j(hij)2

(n − 1)(n + 1)

{

2
∫

B+
ρ0/ε

|y|4s2

((1 + s)2 + |y|2)n+1 dy ds

+
∫

B+
ρ0/ε

|y|4s
((1 + s)2 + |y|2)n+1 dy ds

}

− 8n(n − 2)
(n − 1)(n + 1)

Aε2
∑

i,j

(hij)2
∫

B+
ρ0/ε

|y|4s2

((1 + s)2 + |y|2)n+1 dy ds

+
2(n − 2)2

n − 1
ε2

∑

i,j

(hij)2
∫

B+
ρ0/ε

s2|y|2
((1 + s)2 + |y|2)n

dy ds

− n − 2
4(n − 1)

ε2
∑

i,j

(hij)2
∫

B+
ρ0/ε

1
((1 + s)2 + |y|2)n−2 dy ds + E′,(3.7)

where

E′ =

⎧
⎨

⎩

O(ε2ρ−2
0 ) if n = 4,

O(ε3 log(ρ0

ε )) if n = 5,
O(ε3) if n ≥ 6.

Let us divide the rest of the proof in two cases.
Case n = 5. We will apply the change of variables y = (1 + s)z in order

to compare the different integrals in expansion (3.7).
First

I1 =
∫

R
n
+

|y|4s2

((1 + s)2 + |y|2)n+1 dy ds

=
∫ ∞

0

s2

(1 + s)n−1 ds

∫

Rn−1

|z|4
(1 + |z|2)n+1 dz

=
2σn−2

(n − 2)(n − 3)(n − 4)

∫ ∞

0

rn+2

(1 + r2)n+1 dr,

where σn−2 denotes the volume of the (n − 2)-dimensional unit sphere.
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For the second integral,

I2 =
∫

R
n
+

|y|4s
((1 + s)2 + |y|2)n+1 dy ds

=
∫ ∞

0

s

(1 + s)n−1 ds

∫

Rn−1

|z|4
(1 + |z|2)n+1 dz

=
σn−2

(n − 2)(n − 3)

∫ ∞

0

rn+2

(1 + r2)n+1 dr.

Now the fourth integral,

I4 =
∫

R
n
+

|y|2s2

((1 + s)2 + |y|2)n
dy ds

=
∫ ∞

0

s2

(1 + s)n−1 ds

∫

Rn−1

|z|2
(1 + |z|2)n

dz

=
2σn−2

(n − 2)(n − 3)(n − 4)

∫ ∞

0

rn

(1 + r2)n
dr.

And the last integral,

I5 =
∫

R
n
+

1
((1 + s)2 + |y|2)n−2 dy ds

=
∫ ∞

0

ds

(1 + s)n−3

∫

Rn−1

dz

(1 + |z|2)n−2

=
σn−2

n − 4

∫ ∞

0

rn−2

(1 + r2)n−2 dr.

Thus,

E(φ) ≤ Q(Bn, ∂Bn)
(∫

∂M
φ2(n−1)/(n−2)dσg

)n−2/n−1

+ A2ε2
∑

i,j

(hij)2
{

8n

(n − 1)(n + 1)
I1 +

4n

(n − 1)(n + 1)
I2

}

+ Aε2
∑

i,j

(hij)2
{

− 8n(n − 2)
(n − 1)(n + 1)

I1

}

+ ε2
∑

i,j

(hij)2
{

2(n − 2)2

n − 1
I4 − n − 2

4(n − 1)
I5

}

+ E,
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where
E = O

(
ε3 log

(ρ0

ε

))
.

We are using that the differences between the integrals in expansion (3.7)
and the corresponding integrals over the entire R

n
+ do not change the order

of the error terms.
Now integration by parts yields

(3.8)
∫ ∞

0

rn

(1 + r2)n
dr =

2n

n + 1

∫ ∞

0

rn+2

(1 + r2)n+1 dr.

For the same reason
∫ ∞

0

rn−2

(1 + r2)n−2 dr =
2(n − 2)
n − 1

∫ ∞

0

rn

(1 + r2)n−1 dr,

and also

(3.9)
∫ ∞

0

rn

(1 + r2)n−1 dr =
2(n − 1)
n + 1

∫ ∞

0

rn+2

(1 + r2)n
dr,

so ∫ ∞

0

rn−2

(1 + r2)n−2 dr =
4(n − 2)
n + 1

∫ ∞

0

rn+2

(1 + r2)n
dr.

Now identity (3.9) and the equality
∫ ∞

0

rn

(1 + r2)n−1 dr =
∫ ∞

0

rn

(1 + r2)n
dr +

∫ ∞

0

rn+2

(1 + r2)n
dr

immediately imply
∫ ∞

0

rn+2

(1 + r2)n
dr =

n + 1
n − 3

∫ ∞

0

rn

(1 + r2)n
dr.

Therefore,

(3.10)
∫ ∞

0

rn−2

(1 + r2)n−2 dr =
8n(n − 2)

(n − 3)(n + 1)

∫ ∞

0

rn+2

(1 + r2)n+1 dr.

Hence,

I2 =
n − 4

2
I1,

I4 =
2n

n + 1
I1
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and

I5 =
4n(n − 2)2

n + 1
I1.

Thus

E(φ) ≤ Q(Bn, ∂Bn)
(∫

∂M
φ2(n−1)/(n−2)dσg

)n−2/n−1

+ A2ε2
∑

i,j

(hij)2I1

{
8n

(n − 1)(n + 1)
+

2n(n − 4)
(n − 1)(n + 1)

}

− Aε2
∑

i,j

(hij)2I1

{
8n(n − 2)

(n − 1)(n + 1)

}

+ ε2
∑

i,j

(hij)2I1

{
4n(n − 2)2

(n − 1)(n + 1)
− n(n − 2)3

(n − 1)(n + 1)

}

+ E.

Since n = 5, we get

E(φ) ≤ Q(Bn, ∂Bn)
(∫

∂M
φ2(n−1)/(n−2)dσg

)n−2/n−1

+
5ε2 ∑

i,j(hij)2I1

24
{
10A2 − 24A + 9

}
+ Cε3 log

(ρ0

ε

)
.

Choosing A = 1, and observing that
∑

i,j(hij)2(P ) > 0 since P ∈ ∂M is
not umbilic, we obtain

E(φ) < Q(Bn, ∂Bn)
(∫

∂M
φ2(n−1)/(n−2)dσg

)n−2/n−1

for small ε.

This finishes the proof when n = 5.
Case n = 4. We will again apply the change of variables y = (1 + s)z to

the integrals in expansion (3.7).
We should point out that we will always assume n = 4 in the following

estimates.
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For the first integral

I1,ρ0/ε =
∫

B+
ρ0/ε

|y|4s2

((1 + s)2 + |y|2)n+1 dy ds

=
∫

B+
ρ0/ε∩{s≤ρ0/2ε}

|y|4s2

((1 + s)2 + |y|2)n+1 dy ds + O(1)

=
∫

R
n
+∩{s≤ρ0/2ε}

|y|4s2

((1 + s)2 + |y|2)n+1 dy ds + O(1).

Hence,

I1,ρ0/ε =
∫ ρ0/2ε

0

s2

(1 + s)n−1 ds

∫

Rn−1

|z|4
(1 + |z|2)n+1 dz + O(1)

=
(

σn−2

∫ ∞

0

rn+2

(1 + r2)n+1 dr

)

log
(ρ0

ε

)
+ O(1).

The second integral

I2,ρ0/ε =
∫

B+
ρ0/ε

|y|4s
((1 + s)2 + |y|2)n+1 dy ds = O(1).

Now the fourth integral

I4,ρ0/ε =
∫

B+
ρ0/ε

|y|2s2

((1 + s)2 + |y|2)n
dy ds

=
∫

B+
ρ0/ε∩{s≤ρ0/2ε}

|y|2s2

((1 + s)2 + |y|2)n
dy ds + O(1)

=
∫

R
n
+∩{s≤ρ0/2ε}

|y|2s2

((1 + s)2 + |y|2)n
dy ds + O(1)

=
∫ ρ0/2ε

0

s2

(1 + s)n−1 ds

∫

Rn−1

|z|2
(1 + |z|2)n

dz + O(1)

=
(

σn−2

∫ ∞

0

rn

(1 + r2)n
dr

)

log
(ρ0

ε

)
+ O(1).
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Similarly,

I5,ρ0/ε =
∫

B+
ρ0/ε

1
((1 + s)2 + |y|2)n−2 dy ds

=
∫

B+
ρ0/ε∩{s≤ρ0/2ε}

1
((1 + s)2 + |y|2)n−2 dy ds + O(1)

=
∫

R
n
+∩{s≤ρ0/2ε}

1
((1 + s)2 + |y|2)n−2 dy ds + O(1)

=
∫ ρ0/2ε

0

ds

(1 + s)n−3

∫

Rn−1

dz

(1 + |z|2)n−2 + O(1)

=
(

σn−2

∫ ∞

0

rn−2

(1 + r2)n−2 dr

)

log
(ρ0

ε

)
+ O(1).

Thus,

E(φ) ≤ Q(Bn, ∂Bn)
(∫

∂M
φ2(n−1)/(n−2)dσg

)n−2/n−1

+ A2ε2
∑

i,j

(hij)2
{

8n

(n + 1)(n − 1)
I1,ρ0/ε

}

− Aε2
∑

i,j

(hij)2
{

8n(n − 2)
(n − 1)(n + 1)

I1,ρ0/ε

}

+ ε2
∑

i,j

(hij)2
{

2(n − 2)2

n − 1
I4,ρ0/ε − n − 2

4(n − 1)
I5,ρ0/ε

}

+ O(ε2ρ−2
0 ).

Define

J = σn−2

∫ ∞

0

rn+2

(1 + r2)n+1 dr.

Therefore, using identities (3.8) and (3.10):

E(φ) ≤ Q(Bn, ∂Bn)
(∫

∂M
φ2(n−1)/(n−2)dσg

)n−2/n−1

+
∑

i,j

(hij)2Jε2 log
(ρ0

ε

) {
8nA2

(n + 1)(n − 1)
− 8n(n − 2)A

(n − 1)(n + 1)

+
4n(n − 2)2

(n − 1)(n + 1)
− 8n(n − 2)2

4(n − 3)(n − 1)(n + 1)

}

+ O(ε2ρ−2
0 ).
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Since n = 4, we get

E(φ) ≤ Q(Bn, ∂Bn)
(∫

∂M
φ2(n−1)/(n−2)dσg

)n−2/n−1

+
32
15

∑

i,j

(hij)2Jε2 log
(ρ0

ε

)
{A2 − 2A + 1} + O(ε2ρ−2

0 ).

The optimal choice is A = 1, by which we lose the logarithmic singularity,

(3.11) E(φ) ≤ Q(Bn, ∂Bn)
(∫

∂M
φ2(n−1)/(n−2) dσg

)n−2/n−1

+ O(ε2ρ−2
0 ).

In order to solve the problem, we will need to consider a small pertur-
bation of ψε:

ψε,δ = ψε + δT,

where

(3.12) T = εn−2/2hijxixj

(
1

(ε + t)2 + |x|2

)n−1/2

.

Define uε = Uε + ψε,δ and φ = ηuε as before.
Following the previous computations we get,

E(φ) ≤ Q(Bn, ∂Bn)
(∫

∂M
φ2(n−1)/(n−2)dσg

)n−2/n−1

+ 2δ

∫

B+
ρ0

〈∇ψε,∇T 〉 dx dt

+ 4δ

∫

B+
ρ0

hijt(Uε)i(T )j dx dt

+ δ2
∫

B+
ρ0

|∇T |2 dx dt + O(ε2ρ−2
0 ).

We are using that

∫

∂M
φ2(n−1)/(n−2)dσg ≥

∫

Bn−1
ρ0

u2(n−1)/(n−2)
ε dσg,
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and
∫

Bn−1
ρ0

u2(n−1)/(n−2)
ε dx

=
∫

Bn−1
ρ0

(Uε + δT )2(n−1)/(n−2) dx

=
∫

Bn−1
ρ0

(

U2(n−1)/(n−2)
ε +

2(n − 1)
n − 2

δTUn/n−2
ε + δ2O(T 2U2/n−2

ε )
)

dx

=
∫

Bn−1
ρ0

U2(n−1)/(n−2)
ε dx + O(δ2ε2).

Now

2δ

∫

B+
ρ0

〈∇ψε,∇T 〉 dx dt + 4δ

∫

B+
ρ0

hijt(Uε)i(T )j dx dt

= −2δ

∫

B+
ρ0

TΔψε dx dt − 4δ

∫

B+
ρ0

hijt(Uε)ijT dx dt

+ δ

∫

S+
ρ0

{

2T
∂ψε

∂r
+ 4ρ−1

0 hijt(Uε)iTxj

}

dσρ0

− 2δ

∫

Bn−1
ρ0

T
∂ψε

∂t
dx

= −2δ

∫

B+
ρ0

T (Δψε + 2hijt(Uε)ij) dx dt

− 2Aδεn−2/2
∫

Bn−1
ρ0

ThjkxjxkZ
−n/2dx + δO(ε2).

We are integrating by parts, estimating the integral over S+
ρ0

, and using that

∂ψε

∂t
= Aεn−2/2hjkxjxkZ

−n/2,

when t = 0. Recall Z = (ε + t)2 + |x|2.
Note that

Δψε + 2hijt(Uε)ij = −2nAε(n−2)/2hjkxjxkZ
−(n+2)/2(2t + ε)

+ 2n(n − 2)ε(n−2)/2hijxixjtZ
−(n+2)/2.
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Hence, if n = 4 and A = 1, after a cancellation we get,

Δψε + 2hijt(Uε)ij = εn/2O(|x|2Z−(n+2)/2).

Therefore, in this case,

E(φ) ≤ Q(Bn, ∂Bn)
(∫

∂M
φ2(n−1)/(n−2)dσg

)n−2/n−1

− 2δεn−2/2
∫

Bn−1
ρ0

ThjkxjxkZ
−n/2 dx

+ δ2
∫

B+
ρ0

|∇T |2 dx dt + O(ε2ρ−2
0 ).

From the definition (3.12),

E(φ) ≤ Q(Bn, ∂Bn)
(∫

∂M
φ2(n−1)/(n−2)dσg

)n−2/n−1

− 4δεn−2

(n − 1)(n + 1)

∑

i,j

(hij)2
∫

Bn−1
ρ0

|x|4
(ε2 + |x|2)n−1/2 dx

+ δ2
∫

B+
ρ0

|∇T |2 dx dt + O(ε2ρ−2
0 ).

Hence,

E(φ) ≤ Q(Bn, ∂Bn)
(∫

∂M
φ2(n−1)/(n−2)dσg

)n−2/n−1

− 4δε2

(n − 1)(n + 1)

∑

i,j

(hij)2
∫

Bn−1
ρ0/ε

|y|4
(1 + |y|2)n−1/2 dy

+ O
(
δ2ε2 log

(ρ0

ε

))
+ O(ε2ρ−2

0 ).

Therefore, for some c > 0,

E(φ) ≤ Q(Bn, ∂Bn)
(∫

∂M
φ2(n−1)/(n−2) dσg

)n−2/n−1

− c
∑

i,j

(hij)2δε2 log
(ρ0

ε

)
+ O

(
δ2ε2 log

(ρ0

ε

))
+ O(ε2ρ−2

0 ).
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Since
∑

i,j(hij)2 > 0 at the nonumbilic point P ∈ ∂M , we find

E(φ) < Q(Bn, ∂Bn)
(∫

∂M
φ2(n−1)/(n−2)dσg

)n−2/n−1

,

if δ > 0 is sufficiently small.
This finishes the proof of the Theorem. �
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abe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976),
269–296.

[3] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser–
Trudinger inequality, Ann. Math., (1993), 138(1):213–242.

[4] S. Brendle, A generalization of the Yamabe flow for manifolds with
boundary, Asian J. Math. (2002), 6(4) 625–644.

[5] Z. Djadli, A. Malchiodi and M. Ould Ahmedou, Prescribing scalar
and boundary mean curvature on the three-dimensional half sphere,
J. Geom. Anal. 13(2) (2003), 255–289.

[6] J.F. Escobar, Sharp constant in a Sobolev trace inequality, Indiana
Math. J. 37 (1988), 687–698.



404 Fernando C. Marques

[7] J.F. Escobar, Conformal deformation of a Riemannian metric to a
scalar flat metric with constant mean curvature on the boundary, Ann.
Math. 136 (1992), 1–50.

[8] J.F. Escobar, The Yamabe problem on manifolds with boundary. J. Diff.
Geom. 35 (1992), 21–84.

[9] J.F. Escobar, Addendum: conformal deformation of a Riemannian met-
ric to a scalar flat metric with constant mean curvature on the boundary,
Ann. Math. 139(3) (1994), 749–750.

[10] J.F. Escobar, Conformal deformation of a Riemannian metric to a
constant scalar curvature metric with constant mean curvature on the
boundary, Indiana Univ. Math. J. 45(4) (1996), 917–943.

[11] J.F. Escobar, Conformal metrics with prescribed mean curvature on the
boundary, Calc. Var. 4 (1996), 559–592.

[12] J.F. Escobar and G. Garcia, Conformal metrics on the ball with
zero scalar curvature and prescribed mean curvature on the boundary,
J. Funct. Anal. 211(1) (2004), 71–152.

[13] V. Felli and M. Ould Ahmedou, Compactness results in conformal
deformations of Riemannian metrics on manifolds with boundaries,
Math. Z. 244(1) (2003), 175–210.

[14] V. Felli and M. Ould Ahmedou, Some geometric equations with critical
nonlinearity at the boundary, Pac. J. Math. 218(1) (2005), 75–100.

[15] Z.C. Han and Y.Y. Li, The Yamabe problem on manifolds with bound-
ary: existence and compactness results, Duke Math. J. 99(3) (1999),
489–542.

[16] Z.C. Han and Y.Y. Li, The existence of conformal metrics with constant
scalar curvature and constant boundary mean curvature, Comm. Anal.
Geom. 8(4) 2000, 809–869.

[17] E. Hebey and M. Vaugon, Le problème de Yamabe équivariant, Bull.
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