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Miyaoka–Yau-type inequalities for Kähler–Einstein
manifolds

Kwokwai Chan and Naichung Conan Leung

We investigate Chern number inequalities on Kähler–Einstein man-
ifolds and their relations to uniformization. For Kähler–Einstein
manifolds with c1 > 0, we prove certain Chern number inequalities
in the toric case. For Kähler–Einstein manifolds with c1 < 0, we
propose a series of Chern number inequalities, interpolating Yau’s
and Miyaoka’s inequalities.

1. Introduction

Yau’s celebrated solution to Calabi’s conjecture [17] says that a compact
Kähler n-fold X with c1(X) < 0 or c1(X) = 0 always admit Kähler–Einstein
metrics. As an application, he proved in [16] that for the case c1(X) < 0,
we have the following Chern number inequality:1

(1.1) c2
1(X)|c1(X)|n−2 ≤ 2(n + 1)

n
c2(X)|c1(X)|n−2

and equality holds if and only if X is uniformized by the unit ball in C
n. It

turns out that [12] Yau’s inequality (1.1) is a consequence of the (Higgs-)
stability of the bundle T ∗

X ⊕ OX on X.
On the other hand, as a generalization of the Miyaoka–Yau inequality

for surfaces [6] ,[16], Miyaoka proved in [7] the following inequality:

(1.2) c2
1(X)Hn−2 ≤ 3c2(X)Hn−2

for any nef class H on a compact Kähler n-fold X with c1(X) < 0. The
relation between this inequality and stability also deserves investigation.

1Throughout this paper, by |c1(X)|, we mean −c1(X) (resp., c1(X)) if c1(X) < 0
(resp., c1(X) > 0).
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In 1990, Yau [18] conjectured that the existence of Kähler–Einstein met-
rics should be equivalent to some notion of stability. This vast program of
Yau would reveal deep relations between the existence of Kähler–Einstein
metrics, stability, Chern number inequalities and uniformization. However,
despite much work done by Yau, Tian, Donaldson and others [14], [18],
[13], [3], our understanding of these relations is still poor, especially for the
c1 > 0 case.

In view of Yau’s program and inequalities (1.1) and (1.2), we propose
the following series of Miyaoka–Yau type Chern number inequalities for the
c1 < 0 case:

c2
1(X)|c1(X)|n−2 ≤ 2(n + 1)

n
c2(X)|c1(X)|n−2

...

c2
1(X)|c1(X)|k−2Hn−k ≤ 2(k + 1)

k
c2(X)|c1(X)|k−2Hn−k

...
c1(X)2Hn−2 ≤ 3c2(X)Hn−2.

(∗)

This, in particular, will provide a link between inequalities (1.1) and (1.2).
We also infer that an equality will lead to uniformization. More precisely,
we propose the following.

Conjecture 1.1. Let X be a compact Kähler n-fold with c1(X) < 0. Then
the above series of inequalities (∗) hold for any nef class H on X. Moreover,
equality holds for the kth level inequality with Hn−k effective if and only if
X is a fibration whose general fiber is uniformized by the k-dimensional unit
ball and H comes from the base.

In the next section, we will investigate the intimate relation between
these inequalities and stability and explain why such a conjecture is con-
ceivable.

For the c1 > 0 case, both the existence of Kähler–Einstein metrics and
stability become much more subtle, as mentioned above. Nevertheless,
the situation becomes considerably better in the toric case. Recall that
for a toric Fano manifold X, there is an associated reflexive polytope P .
Recently, Wang and Zhu [15] proved that a toric Fano manifold admits
Kähler–Einstein metrics if and only if it is balanced, i.e., the center of mass
of P is at the origin. In view of this, we consider Kähler–Einstein manifolds
with c1 > 0 which are toric, and prove, in Sections 3 and Sections 4, the
following Chern number inequalities.
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Theorem 1.2. Let X be a Kähler–Einstein toric Fano n-fold. Then for
any nef class H, we have:

c2
1(X)Hn−2 ≤ 3c2(X)Hn−2

provided that either

(i) n = 2, 3, 4, or

(ii) each facet of P contains a lattice point in its interior.

Theorem 1.2, together with the discussion at the end of Section 2, yields
the following.

Corollary 1.3. Let X be a product of Kähler–Einstein toric Fano mani-
folds of dimensions less than or equal to 3. Then the whole set of inequalities
(∗) hold for any nef class H on X.

We will also discuss how the proposed inequalities (∗) can give new
combinatorial information on balanced reflexive polytopes. Let P be an
n-dimensional balanced reflexive polytope such that the corresponding toric
variety X is smooth. Denote by #(kP ) the number of lattice points in kP .
The normalized Ehrhart polynomial of P :

˜E(P ) :=
#(kP )
Vol(P )

= bnkn + bn−1k
n−1 + bn−2k

n−2 + · · ·

measures the growth of the number of lattice points. Now Yau’s inequality
gives the following asymptotic lower bound.

Proposition 1.4. For k large, we have

˜E(P ) ≥ ˜E(Pn)

with equality holds if and only if P = Pn, where Pn denotes (n + 1) times of
the standard simplex, which is the polytope of P

n.

Other inequalities of (∗) can give asymptotic upper bounds on Ehrhart
polynomials. These will be discussed in the final section.

2. Manifolds with c1 < 0

In this section, we first review how Yau’s inequality (1.1) can be deduced
from stability. Then we explain, along similar lines, how Conjecture 1.1
comes out.
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Let X be a compact Kähler n-fold with c1(X) < 0. The direct sum
E := T ∗

X ⊕ OX of the holomorphic cotangent bundle and the trivial line
bundle is of rank n + 1. Let θ ∈ Ω1,0(End(E)) be the Higgs field given by
the identity map T ∗

X → T ∗
X = OX ⊗ T ∗

X . Then, it can be shown that (E, θ)
is Hermitian–Yang–Mills and hence Higgs-stable with respect to the polar-
ization |c1(X)| [12]. Bogomolov’s inequality then gives Yau’s inequality:

c2
1(X)|c1(X)|n−2 ≤ 2(n + 1)

n
c2(X)|c1(X)|n−2

and equality implies that X is uniformized by the unit ball. In view of this,
we suggest that Miyaoka’s inequality:

c2
1(X)Hn−2 ≤ 3c2(X)Hn−2

also follows from the (Higgs-)stability of some rank-3 bundle, which,
analogous to the above situation, should be the direct sum of a rank-2 bundle
and a trivial bundle. A natural choice of this is described as follows.

We begin with the rank-n bundle T ∗
X over X. Let Gr(2, T ∗

X) be the
Grassmannian bundle of 2-planes in T ∗

X , π: Gr(2, T ∗
X) → X the projection

map. Let S2 be the universal rank-2 sub-bundle of π∗T ∗
X . It is natural

to expect that Miyaoka’s inequality is related to the stability of S2 ⊕ O.
More generally, for k = 3, . . . , n, let Gr(k, T ∗

X) be the Grassmannian bundle
of k-planes and Sk the universal rank-k bundle. We observe the following
relation between the Chern classes of Sk and X.

Lemma 2.1.

c2
1(X)ck−2

1 (X)Hn−k = c2
1(Sk)ck−2

1 (X)Hn−k · cn−k
k (Sk)

c2(X)ck−2
1 (X)Hn−k = c2(Sk)ck−2

1 (X)Hn−k · cn−k
k (Sk)

where on the right-hand sides, we have suppressed the pull-back.

Proof. Let Qk :=π∗T ∗
X/Sk be the universal quotient bundle. Then cn−r(X)=

cn−r−k(Qk)ck(Sk) + · · · + cn−r−m(Qk)cm(Sk) + · · · , for r = 0, 1, . . . , n − k.
Intersecting with α := ck−2

1 (X)Hn−k, all except the first two Chern classes
of X become zero. For r = 0, cn−k(Qk)ck(Sk)α = 0. For r = 1, cn−k−1(Qk)
c2
k(Sk)α = −cn−k(Qk)ck(Sk)ck−1(Sk)α = 0. Recursively, we have

c1(Qk)cn−k
k (Sk)α = 0, c2(Qk)cn−k−1

k (Sk)α = 0.

Since c1(Qk) = c1(X) − c1(Sk), the first equation gives c2
1(X)cn−k

k

(Sk)α = c2
1(Sk)cn−k

k (Sk)α. Then by c2(Qk) = c2(X) − c2(Sk) − c1(Sk)c1(X) +
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c2
1(Sk), c2(X)cn−k

k (Sk)α = c2(Sk)cn−k
k (Sk)α. Finally, if ˜Sk is the universal

bundle over the ordinary Grassmannian Gr(k, n), then the intersection num-
ber cn−k

k (˜Sk) = 1. This completes the proof of the lemma. �

Since cn−k
k (˜Sk) = 1, ˜X := cn−k

k (Sk) looks like a section of Gr(k, T ∗
X) over

X. Suppose that this is really the case and ˜X is a genuine manifold. Restrict
the bundle Sk to ˜X, which we still denote by Sk. Also denote by π : ˜X →
X the restriction of the projection map. Consider the direct sum Ek =
Sk ⊕ O

˜X . Let θk ∈ Ω1,0(End(Ek)) be the Higgs-field given by the inclusion
Sk ↪→ T ∗

˜X
= O

˜X ⊗ T ∗
˜X
. Suppose that (Ek, θk) is Hermitian–Yang–Mills and

hence Higgs-stable with respect to the polarization π∗|c1(X)|. Let H be an
ample class on X. We can assume that H is very ample by replacing it
with a sufficiently high multiple if necessary. Then choosing n − k sections
of π∗H will generically cut out a k-dimensional submanifold of ˜X. When
restricted to this k-dimensional submanifold, (Ek, θk) remains Higgs-stable.
Therefore, we have

c2
1(Sk)|c1(X)|k−2Hn−k ≤ 2(k + 1)

k
c2(Sk)|c1(X)|k−2Hn−k

on ˜X = cn−k
k (Sk). By the above lemma, the following inequality holds

c2
1(X)|c1(X)|k−2Hn−k ≤ 2(k + 1)

k
c2(X)|c1(X)|k−2Hn−k.

Moreover, equality means that any submanifold cut out by a generic choice of
n − k sections of π∗H is uniformized by the k-dimensional unit ball. Hence,
˜X and X should be fibered by these ball-quotients.

Remark 2.2. Of course the above is not a proof! Our aim is to show that
Conjecture 1.1 is conceivable and intimately related to stability.

As a test of (∗), let us look at X = M × N , a product of manifolds with
c1 < 0 of dimensions m and n, respectively. Let H1 and H2 be ample classes
on M and N , respectively. Then by a direct computation, we have that, for
k = 2, . . . , m + n, the intersection number

(

2(k + 1)
k

c2(X) − c2
1(X)

)

|c1(X)|k−2(H1 + H2)m+n−k
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is greater than or equal to the following sum

min(k,m)
∑

p=2

Ap

(

2(p + 1)
p

c2(M) − c2
1(M)

)

|c1(M)|p−2Hm−p
1

× |c1(N)|k−pH
n−(k−p)
2

+
min(k,n)

∑

p=2

Bp

(

2(p + 1)
p

c2(N) − c2
1(N)

)

|c1(N)|p−2Hn−p
2

× |c1(M)|k−pH
m−(k−p)
1 ,

where Ap, Bp are non-negative numbers. It follows that if both M and N
satisfy the series of inequalities (∗), then the same is true for X (for classes of
the form H1 + H2). Moreover, if, say, M is a ball-quotient, then an equality
would result for classes H2 on N , which agrees with our conjecture.

3. Kähler–Einstein toric Fano manifolds

Next we turn to Kähler–Einstein manifolds with c1 > 0 which are toric. In
this section, we give a proof of:

Theorem 3.1 (= second half of Theorem 1.2). Let X be a Kähler–
Einstein toric Fano n-fold, or more generally, toric Fano manifold with
reductive automorphism group. Then for any nef class H, we have the
inequality:

c2
1(X)Hn−2 ≤ 3c2(X)Hn−2

provided that each facet of P contains a lattice point in its interior.

We fix our notations first. For details of toric Fano varieties and poly-
topes, please refer to [1], [4] and [10]. Let N ∼= Z

n be a lattice and M =
HomZ(N, Z) ∼= Z

n the dual lattice with 〈·, ·〉: M × N → Z the natural pair-
ing. Denote by NR = N ⊗Z R ∼= R

n and MR = M ⊗Z R ∼= R
n (resp., NQ

and MQ) the real (resp., rational) scalar extensions. For a subset S in a real
vector space, we denote by conv(S) (resp., aff(S)) the convex (resp., affine)
hull of S.

Let P ⊂ MR be a reflexive polytope and X = XP the corresponding
toric Fano variety. We assume that X is smooth. Denote by F(P ) =
{F1, F2, . . . , Fd} the facets of P , and by D1, D2, . . . , Dd the corresponding
torus invariant prime divisors on X. Then the first and second Chern classes
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are given by:

c1(X) =
d

∑

i=1

Di, c2(X) =
∑

i<j

Di · Dj .

We then compute the codimension 2 cycle

3c2(X) − c2
1(X) = 3

∑

i<j

Di · Dj −
(

d
∑

i=1

Di

)2

=
∑

i<j

Di · Dj −
d

∑

i=1

D2
i .

By general theory of toric varieties, each u ∈ MQ determines a Q-divisor by:

div(χu) =
d

∑

i=1

〈u, vi〉Di.

We can move each Di by choosing an element uFi
∈ aff(Fi) ∩ MQ, so that

〈uFi
, vi〉 = −1, and we have

D2
i ∼Q Di ·

⎛

⎝Di +
d

∑

j=1

〈uFi
, vj〉Dj

⎞

⎠ =
∑

j �=i

〈uFi
, vj〉Di · Dj

where ∼Q denotes Q-rationally equivalence. Summing up all gives

d
∑

i=1

D2
i ∼Q

d
∑

i=1

∑

j �=i

〈uFi
, vj〉Di · Dj =

∑

i<j

(〈uFi
, vj〉 + 〈uFj

, vi〉)Di · Dj .

Hence we have

3c2(X) − c2
1(X) ∼Q

∑

i<j

(1 − 〈uFi
, vj〉 − 〈uFj

, vi〉)Di · Dj .

We formulate the following.

Conjecture 3.2. If the center of mass of P, denoted by center(P ), is at
the origin, then there exists uFi

∈ aff(Fi) ∩ MQ, for i = 1, 2, . . . , d such that

〈uFi
, vj〉 ≤ 1

2

for any adjacent facets Fi and Fj.
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Since this would imply that the cycle class [3c2(X) − c2
1(X)] is effective,

inequality (1.2) for Kähler–Einstein toric Fano manifolds:

(3c2(X) − c2
1(X))Hn−2 ≥ 0

for any nef class H, would follow. The question is now in purely combina-
torial terms.

To prove Theorem 3.1, we recall that a root of a reflexive polytope P is a
lattice point contained in the relative interior of some facet. We denote the
set of all roots of P by R(P ). P is said to be semisimple if R(P ) = −R(P ).
By results of Demazure [10], the automorphism group of X = XP , i.e.,
Aut(X), is reductive if and only if P is semisimple. While by Matsushima’s
obstruction to the existence of Kähler–Einstein metrics, if X has Kähler–
Einstein metrics, then Aut(X) is reductive. Hence, if center(P ) = 0, then P
is semisimple. Recently, Nill gave a purely convex-geometrical proof of this
in [9].

We will need the following powerful results on the geometry of semisim-
ple reflexive polytopes proved by Nill [9].

Lemma 3.3 (Lemma 2.4. of [9]). Let P ⊂ MR be a reflexive polytope.
For any F ∈ F(P ) and m ∈ F ∩ M, there is a Z-basis {e∗

1, e
∗
2, . . . , e

∗
n} of M

such that m = e∗
n and F ⊂ {u ∈ MR : un = 〈u, en〉 = 1}.

Lemma 3.4 (Lemma 5.9. of [9]). Let P ⊂ MR be a n-dimensional
reflexive polytope. Let m ∈ R(P ) be contained in Fm which is associated
to the vertex vm ∈ V(P ∗). Then

1. P ⊂ Fm − R≥0m, P ∩ M ⊂ (F ∩ M) − Nm, {v ∈ P ∗ ∩ N : 〈m, v〉 < 0}
= {vm}.

2. P = conv(Fm, Fm′) if and only if there is only one facet Fm′ which is
associated to vm′ ∈ V(P ∗) with 〈m, vm′〉 > 0.

3. −m ∈ R(P ) if and only if the previous condition is satisfied and 〈m,
vm′〉 = 1.
In this case Fm′ = F−m. Furthermore Fm and F−m are naturally iso-
morphic as lattice polytopes and {v ∈ P ∗ ∩ N : 〈m, v〉 �= 0} = {vm, v−m}.

Now Theorem 3.1 is an immediate consequence of the following lemma.

Lemma 3.5. Suppose that a facet, say F1 ∈ F(P ), contains a root m ∈
R(P ) such that −m ∈ R(P ). Then there exists uF1 ∈ aff(F1) ∩ MQ such that

〈uF1 , vj〉 ≤ 1
2
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for any facet Fj adjacent to F1.

Proof. Since −m ∈ R(P ), by Lemma 3.4, there is a unique facet, say F2 ∈
F(P ) such that 〈m, v2〉 = 1 and

{v ∈ P ∗ ∩ N : 〈m, v〉 �= 0} = {v1, v2}.

Suppose that F2 is not adjacent to F1. Then we can simply take uF1 = m
and we have

〈uF1 , vj〉 = 0 <
1
2

for any Fj adjacent to F1.
If F2 is adjacent to F1, then we choose a Z-basis {e∗

1, e
∗
2, . . . , e

∗
n} of M

such that m = e∗
n and F ⊂ {u ∈ MR : un = 〈u, en〉 = 1} by Lemma 3.3. In

particular, we have v1 = −en. Suppose F2, F3, . . . , Fl are all the facets adja-
cent to F1. By Lemma 3.4, P = conv(F1, F2). We observe that v2 = z2 + en

and vj = zj for j = 3, . . . , l, where z2, z3, . . . , zl are elements in the span of
{e1, . . . , en−1}. Regard F1 as a polytope in the affine hyperplane H1 = {u ∈
MR : un = 〈u, en〉 = 1} with respect to the lattice aff(F1) ∩ M and with ori-
gin m. Using the coordinates with respect to the basis {e∗

1, . . . , e
∗
n−1}, F1 is

given by

F1 = {y ∈ H1: 〈y, z2〉 ≥ −2, 〈y, zj〉 ≥ −1 for j = 3, . . . , l}.

Also we have

F1 ∩ F2 ⊂ {y ∈ H1: 〈y, z2〉 = −2} and
F1 ∩ Fj ⊂ {y ∈ H1: 〈y, zj〉 = −1}

for j = 3, . . . , l. Consider the polytope Q ⊂ F1 defined by

Q =

{

y ∈ F1: 〈y, z2〉 ≤ 1, 〈y, zj〉 ≤ 1
2

for j = 3, . . . , l

}

.

In fact, Q = (−1/2)F1. Q is not empty since the origin (i.e., m) is contained
in it. Moreover, there is a positive constant ε > 0 such that the ball

Bε = {y ∈ H1: |y| ≤ ε}

is contained in Q. We claim that there exists y ∈ Q such that

〈y, z2〉 ≤ −1
2
.
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Suppose not, then any vertex of Q, say w, will satisfy

〈w, z2〉 > −1
2
.

Since Q = (−1/2)F1 and F1 is integral, this implies that

〈w, z2〉 ≥ 0.

But Q is the convex hull of its vertices, so we have

〈y, z2〉 ≥ 0

for all y ∈ Q. This is a contradiction since Bε contains points with
〈y, z2〉 < 0. This proves our claim. It follows that there exists y ∈ Q, with
rational coordinates such that

〈y, z2〉 ≤ −1
2

and 〈y, zj〉 ≤ 1
2

for j = 3, . . . , l.

If we set uF1 = y + en, then this is equivalent to

〈uF1 , vj〉 ≤ 1
2

for j = 2, 3, . . . , l. �

Remark 3.6. The difficulty in removing the last condition in Theorem 3.1
can be described as follows. For a facet not containing a root, there are
examples, such as the P

1-bundle P(OP1×P1 ⊗ OP1×P1(1,−1)), such that the
possible values of uFi

∈ aff(Fi) ∩ MQ , though form a sub-polytope of Fi,
is of dimension less than that of Fi, in other words, the sub-polytope has
empty relative interior. It is then more difficult to locate the required uFi

.
Indeed, we do not see why such a sub-polytope is always non-empty.

4. Further evidence

In this section, we will prove:

Theorem 4.1 (=first half of Theorem 1.2). Let X be a Kähler–
Einstein toric Fano surface, 3-fold or 4-fold. Then we have

c2
1(X)Hn−2 ≤ 3c2(X)Hn−2

for any nef class H.
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Since Kähler–Einstein toric n-folds for n ≤ 4 are completely classified,
we can and will prove Theorem 4.1 by directly checking the inequality for
all cases along the lines of Conjecture 3.2.

For any complex surface, it is well known that the Miyaoka–Yau inequal-
ity c2

1 ≤ 3c2 is true, so we are done. In fact there are exactly three Kähler–
Einstein toric Fano surfaces, namely,

P
2, P

1 × P
1, S3,

where S3 is blow-up of P
2 at three points, which is a del Pezzo surface of

degree 6. It is easy to check the inequality for them directly.
For 3-folds and 4-folds, we need a lemma:

Lemma 4.2. Let X = Y × Z be a product of varieties. Suppose [3c2(Y ) −
c2
1(Y )] and [3c2(Z) − c2

1(Z)] are effective (resp., positive) cycle classes on Y
and Z, respectively. Then [3c2(X) − c2

1(X)] is also effective (resp., positive).

Proof. Note that effectivity and positivity of a cycle class is preserved under
pull-back via a projection. Now the lemma follows from 3c2(X) − c2

1(X) =
(3c2(Z) − c2

1(Z)) + c1(Y )c1(Z) if dim(Y ) = 1 and dim(Z) ≥ 2, and from
3c2(X) − c2

1(X) = (3c2(Y ) − c2
1(Y )) + (3c2(Z) − c2

1(Z)) + c1(Y )c1(Z) if both
dim(Y ), dim(Z) ≥ 2. Here we have suppressed the pull-backs. �

Kähler–Einstein toric Fano 3-folds are classified by Mabuchi [5]. There
are five examples. The first four are P

3 and products of lower-dimensional
smooth toric Fano varieties:

P
2 × P

1, P
1 × P

1 × P
1, P

1 × S3.

By the above lemma, Conjecture 3.2 is true for these four examples. The
remaining one is the P

1-bundle

P(OP1×P1 ⊗ OP1×P1(1,−1)).

The verification for this will be carried out in the appendix.
Kähler–Einstein toric Fano 4-folds are classified by Nakagawa and Batyrev

and Selivanova [8, 2]. There are 12 of them. The first nine are P
4 and the
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following eight products are of lower-dimensional varieties:

P
1 × P

3, P
1 × P

1 × P
2,

P
2 × P

2, P
1 × P

1 × P
1 × P

1,

P
2 × S3, P

1 × P
1 × S3, S3 × S3,

P
1 × P(OP1×P1 ⊗ OP1×P1(1,−1)).

Applying Lemma 4.2 again, Conjecture 3.2 holds for these examples. The
remaining three are, in the notations of [2], V2, W2 and X1,1. We again
check the inequality for them in the appendix. This completes the proof of
Theorem 4.1.

Remark 4.3. There is a notion of symmetric toric Fano manifolds intro-
duced by Batyrev-Selivanova in [2]. Namely, the toric Fano manifold X
associated to a polytope P , is called symmetric if the group AutM (P ) of
lattice automorphisms leaving P invariant has only the origin as a fix point.
As noticed by Batyrev-Selivanova, all known examples of Kähler–Einstein
toric Fano manifolds (including all examples of dimensions 2, 3 and 4) are
symmetric. It is not known whether the inequality (1.2) is true for symmet-
ric toric Fano manifolds.

5. Applications to counting lattice points

In this section, we apply our results to give new asymptotic bounds on
counting lattice points of balanced reflexive polytopes.

Let X = XP be a toric Fano variety associated to a reflexive polytope
P ⊂ R

n. Let H be an ample divisor on X and PH ⊂ R
n be the corresponding

polytope. Suppose that X is smooth, then kH is very ample for every
k ≥ 1. The higher cohomology groups of the line bundle O(kH) vanish and
the sections precisely correspond to the lattice points in kPH . Hence, by the
Riemann–Roch the Ehrhart polynomial [4, Section 5.3]:

E(PH) = #(kPH) =
n

∑

ν=0

aνk
ν

= ankn + an−1k
n−1 + an−2k

n−2 + O(kn−3)

where aν = 1
ν!(H

ν · Tdν(X)) and Tdν(X) denotes the νth Todd class of X.
The first few Todd classes are given by

Tdn(X) = 1, Tdn−1(X) =
1
2
c1(X), Tdn−2(X) =

1
12

(c2
1(X) + c2(X)).
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Hence we have

an =
Hn

n!
= Vol(PH), an−1 =

1
2

Hn−1c1(X)
(n − 1)!

=
1
2
Vol(∂PH).

Since A∗(X)Q is spanned by the classes [V (τ)], τ ∈ ΔP , the νth Todd
class can be written as

Tdν(X) =
∑

τ∈ΔP (ν)

rτ [V (τ)]

for some rational numbers rτ . A famous question raised by Danilov is that
given a lattice M (or N), whether we can choose the rτ ’s uniformly, inde-
pendent of the toric variety X. Of course, by the above, we have uniformly,
rτ = 1/2, for all τ ∈ ΔP (1). There has been much work on this question [11].

Applying inequality (1.2), we can get a uniform bound on rτ for τ ∈
ΔP (2). Namely, if inequality (1.2) is true for X, then we have

Tdn−2(X)Hn−2 =
1
12

(c2
1(X) + c2(X))Hn−2 ≤ 1

3
c2(X)Hn−2

from which follows that

rτ ≤ 1
3

for any τ ∈ ΔP (2). Also, for the coefficient an−2 in the above formula for
the number of lattice points, we have

an−2 =
1

(n − 2)!
(Hn−2 · Tdn−2(X)) ≤ 1

3
Hn−2c2(X)

(n − 2)!
.

The quantity Hn−2c2(X)/(n − 2)! is the sum of volumes of codimension 2
faces of PH . If we denote by PH(2) the union of codimension 2 faces of PH ,
then we get the following asymptotic upper bound for the growth of number
of lattice points of kPH :

E(kPH) ≤ Vol(PH)kn +
1
2
Vol(∂PH)kn−1 +

1
3
Vol(PH(2))kn−2 + O(kn−3)

provided that inequality (1.2) holds for X. Hence by the results of previous
sections, we have
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Proposition 5.1. If P is balanced, then the following asymptotic upper
bound holds:

E(kPH) ≤ Vol(PH)kn +
1
2
Vol(∂PH)kn−1 +

1
3
Vol(PH(2))kn−2 + O(kn−3)

provided that either

(i) n = 2, 3, 4, or

(ii) each facet of P contains a root.

On the other hand, taking H to be the anticanonical divisor K−1 =
c1(X), then the normalized Ehrhart polynomial of P is given by

˜E(P ) :=
#(kP )
Vol(P )

= bnkn + bn−1k
n−1 + bn−2k

n−2 + · · ·

where in general, we have bn = 1, bn−1 = 1/2n and

bn−2 =
an−2

Vol(P )
=

1
12(n − 2)!Vol(P )

(c2
1(X) + c2(X))cn−2

1 (X).

By Yau’s inequality (1.1), we have

Proposition 5.2 (=Proposition 1.4). If P is balanced, then for k large,
we have

˜E(P ) ≥ ˜E(Pn)

with equality holds if and only if P = Pn, where Pn is the polytope of P
n.

Appendix A

A.1 The last four examples

In this appendix, we verify Conjecture 3.2 for the remaining low dimension
examples. In the following, {e1, e2, . . . , en} will always denote the stan-
dard basis of the lattice N ∼= Z

n and P the corresponding polytope. Recall
that we have to prove that there exists uFi

∈ aff(Fi) ∩ MQ, for i = 1, 2, . . . , d
such that

〈uFi
, vj〉 ≤ 1

2
for any adjacent facets Fi and Fj .
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For P(OP1×P1 ⊗ OP1×P1(1,−1)), the six vertices of P ∗ are given by

V(P ∗) = {e1, e2, e3,−e3,−e1 − e3,−e2 + e3}

which correspond to the six facets of P :

F1 = conv(u1, u2, u3, u4), F2 = conv(u1, u2, u5, u6),
F3 = conv(u1, u3, u5, u7), F4 = conv(u2, u4, u6, u8),
F5 = conv(u5, u6, u7, u8), F6 = conv(u3, u4, u7, u8),

where u1, u2, . . . , u8 are vertices of P given, with respect to the dual basis
{e∗

1, e
∗
2, e

∗
3} of M , by the column vectors of the following matrix

⎛

⎝

−1 −1 −1 −1 2 0 2 0
−1 −1 0 2 −1 −1 0 2
−1 1 −1 1 −1 1 −1 1

⎞

⎠,

respectively. We can choose uF1 , uF2 , uF3 , uF4 , uF5 and uF6 to be the column
vectors of

⎛

⎜

⎜

⎜

⎜

⎝

−1 0
1
2

−1
2

1 0

0 −1 −1
2

1
2

0 1

0 0 −1 1 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

respectively.
V2 is the so-called del Pezzo variety of dimension 4, which is centrally

symmetric. The 10 vertices of P ∗ are given by

V(P ∗) = {e1, e2, e3, e4,−(e1 + e2 + e3 + e4),
− e1,−e2,−e3,−e4, e1 + e2 + e3 + e4}

which correspond to the 10 facets of P :

F1 = conv(u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12),
F2 = conv(u1, u2, u3, u13, u14, u15, u16, u17, u18, u19, u20, u21),
F3 = conv(u4, u5, u6, u13, u14, u15, u22, u23, u24, u25, u26, u27),
F4 = conv(u7, u8, u9, u16, u17, u18, u22, u23, u24, u28, u29, u30),
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F5 = conv(u10, u11, u12, u19, u20, u21, u25, u26, u27, u28, u29, u30),
F6 = conv(u13, u14, u16, u17, u19, u20, u22, u23, u25, u26, u28, u29),
F7 = conv(u4, u5, u7, u8, u10, u11, u22, u24, u25, u27, u28, u30),
F8 = conv(u1, u2, u7, u9, u10, u12, u16, u18, u19, u21, u29, u30),
F9 = conv(u1, u3, u4, u6, u11, u12, u13, u15, u20, u21, u26, u27),

F10 = conv(u2, u3, u5, u6, u8, u9, u14, u15, u17, u18, u23, u24),

where u1, u2, . . . , u30 are the 30 vertices of P . The first one-third is given,
with respect to the dual basis {e∗

1, e
∗
2, e

∗
3, e

∗
4} of M , by the column vectors of

the following matrix
⎛

⎜

⎜

⎝

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 1 1 0 1 1 0 1
1 1 0 −1 −1 −1 1 0 1 1
1 0 1 1 0 1 −1 −1 −1 0

⎞

⎟

⎟

⎠

,

respectively, the second one-third is given by the columns of
⎛

⎜

⎜

⎝

−1 −1 1 1 0 1 1 0 1 1
1 0 −1 −1 −1 −1 −1 −1 −1 −1
0 1 −1 −1 −1 1 0 1 1 0
1 1 1 0 1 −1 −1 −1 0 1

⎞

⎟

⎟

⎠

,

respectively, and the last one-third is given by the columns of
⎛

⎜

⎜

⎝

0 1 1 0 1 1 0 1 1 0
−1 1 0 1 1 0 1 1 0 1
1 −1 −1 −1 −1 −1 −1 0 1 1
1 −1 −1 −1 0 1 1 −1 −1 −1

⎞

⎟

⎟

⎠

,

respectively. We can choose uFi
∈ aff(Fi) ∩ MQ, i = 1, 2, . . . , 10, to be given

by the column vectors of the matrix
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1
1
2

1
2

1
2

1
2

1 −1
2

−1
2

−1
2

−1
2

1
2

−1
1
2

1
2

1
2

−1
2

1 −1
2

−1
2

−1
2

1
2

1
2

−1 0 0 −1
2

−1
2

1 0 0

0 0 0 −1 0 0 0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

respectively.
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Geometrically, W2 is the blown-up of P
2 × P

2 along 3 codimension 2
subvarieties Zi

∼= P
1 × P

1 defined by the equations zi = 0, z′
i = 0, i = 0, 1, 2.

Combinatorially, the vertices of P ∗ are given by the following nine vectors

V(P ∗) = {e1, e2, e3, e4,−e1 − e2,−e3 − e4,

− e1 − e2 − e3 − e4, e1 + e3, e2 + e4}

which correspond to the 9 facets of P :

F1 = conv(u1, u2, u3, u4, u5, u6, u7, u8, u9, u10),
F2 = conv(u1, u2, u3, u11, u12, u13, u14, u15, u16, u17),
F3 = conv(u11, u12, u13, u14, u15, u18, u19, u20, u21, u22),
F4 = conv(u4, u5, u6, u7, u8, u18, u19, u20, u23, u24),
F5 = conv(u4, u5, u9, u11, u12, u16, u18, u19, u21, u23),
F6 = conv(u1, u2, u6, u7, u10, u13, u14, u17, u22, u24),
F8 = conv(u1, u3, u5, u8, u9, u10, u14, u15, u18, u20, u21, u22),
F9 = conv(u2, u3, u7, u8, u12, u15, u16, u17, u19, u20, u23, u24),

where u1, u2, . . . , u24 are the 24 vertices of P . The first half are given, with
respect to the dual basis {e∗

1, e
∗
2, e

∗
3, e

∗
4} of M , by the column vectors of the

following matrix

⎛

⎜

⎜

⎝

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 2 2
−1 −1 −1 2 2 1 0 0 2 1 −1 −1
0 1 0 1 0 2 2 0 0 0 −1 −1
1 0 0 −1 −1 −1 −1 −1 0 1 1 0

⎞

⎟

⎟

⎠

respectively, while the second half are given by the columns of

⎛

⎜

⎜

⎝

1 0 0 2 1 0 1 0 0 0 1 0
−1 −1 −1 −1 −1 1 0 0 1 0 0 0
−1 −1 −1 0 1 −1 −1 −1 −1 −1 1 2
2 2 0 0 0 −1 −1 −1 1 2 −1 −1

⎞

⎟

⎟

⎠
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respectively. We can choose uFi
∈ aff(Fi) ∩ MQ, i = 1, 2, . . . , 9, to be given

by the column vectors of the matrix

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1
1
2

3
5

− 3
10

1
2

− 3
10

1
4

−1
2

1
4

1
2

−1 − 3
10

3
5

1
2

− 3
10

1
4

1
4

−1
2

3
5

− 3
10

−1
1
2

− 3
10

1
2

1
4

−1
2

1
4

− 3
10

3
5

1
2

−1 − 3
10

1
2

1
4

1
4

−1
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

respectively.
Finally for X1,1, the 10 vertices of P ∗ are given by

V(P ∗) = {e1, e2, e3,−e3, e4,−e4, e3 − e4,−e3 + e4,−e1 + e3,−e2 − e3}

which correspond to the 10 facets of P :

F1 = conv(u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12)
F2 = conv(u1, u2, u3, u4, u5, u6, u13, u14, u15, u16, u17, u18)
F3 = conv(u1, u2, u7, u8, u13, u14, u19, u20)
F4 = conv(u3, u4, u9, u10, u15, u16, u21, u22)
F5 = conv(u1, u5, u7, u11, u13, u17, u19, u23)
F6 = conv(u3, u6, u9, u12, u15, u18, u21, u24)
F7 = conv(u2, u6, u8, u12, u14, u18, u20, u24)
F8 = conv(u4, u5, u10, u11, u16, u17, u22, u23)
F9 = conv(u13, u14, u15, u16, u17, u18, u19, u20, u21, u22, u23, u24)

F10 = conv(u7, u8, u9, u10, u11, u12, u19, u20, u21, u22, u23, u24)

where u1, u2, . . . , u24 are the 24 vertices of P . The first half is given, with
respect to the dual basis {e∗

1, e
∗
2, e

∗
3, e

∗
4} of M , by the column vectors of the

following matrix

⎛

⎜

⎜

⎝

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 2 2 0 0 1 1
−1 −1 1 1 0 0 −1 −1 1 1 0 0
−1 0 1 0 −1 1 −1 0 1 0 −1 1

⎞

⎟

⎟

⎠

,
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respectively, while the second half is given by the columns of
⎛

⎜

⎜

⎝

0 0 2 2 1 1 0 0 2 2 1 1
−1 −1 −1 −1 −1 −1 2 2 0 0 1 1
−1 −1 1 1 0 0 −1 −1 1 1 0 0
−1 0 1 0 −1 1 −1 0 1 0 −1 1

⎞

⎟

⎟

⎠

,

respectively. We can choose uFi
∈ aff(Fi) ∩ MQ, i = 1, 2, . . . , 10, to be given

by the column vectors of the matrix
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 −1
2

1
2

−1
4

1
4

−1
4

1
4

1 0

0 −1
1
2

−1
2

1
4

−1
4

1
4

−1
4

0 1

0 0 −1 1 −1
2

1
2

−1
2

1
2

0 0

0 0 −1
2

1
2

−1 1
1
2

−1
2

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

respectively.
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