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Global geometry of regions and boundaries via
skeletal and medial integrals

James Damon

For a compact region Ω in R
n+1 with smooth generic boundary

B, the Blum medial axis M is the locus of centers of spheres in
Ω which are tangent to B at two or more points. The geometry
of Ω is encoded by M , which is a Whitney-stratified set, and U ,
the multivalued vector field from points on M to the points of
tangency. We give general formulas for integrals of functions over
B or Ω in terms of integrals over M . These integral formulas
involve a radial shape operator which captures the radial geometry
of U on M , an intrinsic medial measure on M , and a radial flow
from M to B. For integrals over Ω, the formulas remain valid
when we relax the conditions on (M, U), yielding a more general
skeletal structure. These integral formulas are applied to yield:
an extension of Weyl’s volume of tubes formula where we replace
tubes by general regions; a medial version of the generalized Gauss–
Bonnet formula for B, valid even for odd-dimensional B; versions
of Crofton-type formulas and Steiner formulas for subregions of Ω
and a version of the divergence theorem over subregions in Ω for
vector fields with discontinuities across the medial axis. This last
result leads to a justification of an algorithm for finding the medial
axis, using an invariant equivalent to a local medial density for
singularities introduced elsewhere.
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1. Introduction

We consider a compact (n + 1)-dimensional region Ω ⊂ R
n+1 with smooth

boundary B. The geometry of both the region Ω and the boundary B is
encoded by the Blum medial axis M of Ω [1], which is the locus of centers of
spheres in Ω tangent to B at two or more points allowing single degenerate
tangencies as in figure 1.

For example, this medial axis plays a fundamental role in computer imag-
ing for analyzing the shapes of objects [2]. M can be alternately described
as the Maxwell set for the family of distance functions on B [3], or the
shock set for the “grassfire”/eikonal flow from B [4]. As a result of these

Figure 1: Blum medial axis M of an object/region Ω with smooth bound-
ary B.



Global geometry via skeletal integrals 309

multiple descriptions, the properties of M are well understood for generic
boundary B; M is a Whitney-stratified set [3], whose local structure has
been determined for n ≤ 6 [3, 5] (also see [25] and especially [6] for n = 2).

On M is defined a multivalued “radial vector field” U from points on M
to the points of tangency of the spheres with the boundary (figure 2). In
the earlier papers [7–9], we introduced geometric invariants of the “radial
geometry” of U on M and used them to deduce both local and relative
geometric properties of the boundary B. In this paper, we determine how
we may compute global geometric invariants of Ω and B in terms of integral
invariants on M .

As an example, we recall that if M is a closed smooth n-dimensional sub-
manifold (without boundary) of R

n+1, then the tube Tr about M of radius r
consists of points {x + tn(x) ∈ R

n+1 : x ∈ M , and −r ≤ t ≤ r}, where n(x)
is a unit normal vector to M at x. For r sufficiently small, Tr is a manifold
with boundary and M is the Blum medial axis of Tr. The classical volume
of tubes formula of Weyl [10] expresses the volume of a tube Tr as a poly-
nomial in r whose coefficients are global curvature invariants. In the special
case of the tube on the n-dimensional submanifold M in R

n+1, the formula
has the form [11]

Volume of Tr = (2r) ·
[n/2]∑

j=0

k2j(M) · r2j

1 · 3 · 5 · · · (2j + 1)

where the terms k2j(M) are integrals over M of specific expressions in the
curvature of M .

In this paper, we will generalize this result for general regions Ω with
generic smooth boundaries B. Moreover, rather than just computing the
volume of Ω, we will quite generally compute global geometric invariants
of both Ω and B in terms of integrals over the Blum medial axis M . This
will include the n-dimensional volume of B, the (n + 1)-dimensional volume
of Ω, the total curvature of B, etc. We do this by deriving formulas for
integrals of functions over Ω and B in terms of “skeletal integrals” over
M (where we relax several of the Blum conditions), and more specifically
“medial integrals” when M is a Blum medial axis.

In fact, we will express integrals over regions in Ω and B with piece-
wise smooth boundaries as integrals over corresponding regions in M . This
leads to generalizations of Weyl’s volume of tube formula to “generalized
tubes” where r is allowed to vary. These generalizations include: “gener-
alized partial/half-tubes” defined using regions on M , versions of Steiner’s
formula for generalized offset regions, tubes allowing a singular boundary.
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As a second application of such formulas, we obtain a medial version of the
Gauss–Bonnet theorem for B which is valid for all dimensions (including
the case when the dimension of B is odd). Third, we derive a version of
Gauss’s theorem for flux integrals over regions of Ω where the vector field
has discontinuities across M .

There are several surprising aspects of the formulas we obtain. The
first is that unlike Weyl’s formula, we do not directly involve the differential
geometry of M . Instead we use expressions involving the “ radial curvature”
of the multivalued radial vector field U on M . The second is that rather
than involving integrals over M , the formulas involve integrals over M̃ , the
“double” of M , which is equivalent to integrating over “both sides of M”.
A third is that there is a natural “medial measure” on M̃ , which takes
into account the failure of U to be normal to M and replaces the usual
Riemannian volume of M . This mathematical measure provides a heuristic
measure of significance for various parts of the Blum medial axis, based on
their contributions to the global geometric invariants of B and Ω.

The basis for this approach is the introduction of a more general notion
of a “skeletal structure” (M, U) as a generalization of the Blum medial axis
M . It consists of a special type of Whitney-stratified set M on which is
defined a multivalued radial vector field U (figure 2). It has an associated
boundary B which need not be smooth (conditions for the smoothness of B
are derived in [7]).

In [7], we introduced for the skeletal structure (M, U), a radial shape
operator Srad (along with an edge shape operator SE which will not be used
in the integral formulas), and a compatibility 1-form ηU . We may write
U = r · U1 for a unit vector field U1 and radius function r. Then, the radial
shape operator Srad measures how U1 varies on M . In [8, 9] we used these
shape operators to compute the local differential geometric properties of the
associated boundary B in the partial Blum case (this only requires one of
the conditions which M must satisfy to be a Blum medial axis; namely, that
the radial vector is orthogonal to the boundary, which is guaranteed by a

Figure 2: A skeletal structure (M, U) defining a region Ω with smooth
boundary B.
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“compatibility condition” involving ηU ). To relate geometrical information
on the boundary with medial data, we introduced the “radial flow” from the
skeletal set M to the associated boundary B, which is a backwards version
of the “grassfire flow”. Its associated time one map is the radial map ψ1.

These same data will be used to express global geometric properties
of the region and the boundary via “medial integrals” on the medial axis
(or more generally “skeletal integrals” in the non-Blum case). First, in
the partial Blum case, we generally express an integral of a function g
on the boundary as a medial integral of the associated multivalued func-
tion g̃ on the medial axis obtained by composing g with the radial map ψ1
(Theorem 4.1).

∫

B
g dV =

∫

M̃
g̃ · det(I − rSrad) dM,

where the RHS is an integral over M̃ , the “double” of M , which as already
mentioned is equivalent to integrating over both sides of M . Also, the
measure dM is obtained by multiplying the volume form dV on M by a
factor ρ measuring the non-normality of U .

Second, applying the formula to the constant function 1 on B yields a
medial integral formula for the n-dimensional volume of B.

n-dimensional volume of B =
∫

M̃
det(I − rSrad) dM

Third, we apply this medial integral formula to the medial integral of the
radial curvature on the medial axis to obtain a Medial version of the gen-
eralized Gauss-Bonnet formula valid for B of all dimensions. This formula
computes the classical Gauss-Bonnet integral of the Lipschitz-Killing curva-
ture K on B by a medial integral of the Radial Curvature Krad on the Blum
medial axis M (Theorem 5.3).

1
sn

·
∫

B
K dV =

1
sn

·
∫

M̃
Krad dM = χ(Ω) = χ(M)

and if n is even

=
1
2
χ(B),

where sn = vol(Sn) and χ(X) denotes the Euler characteristic of X.
Next, we can likewise compute integrals of functions g over the entire

region Ω in terms of “skeletal integrals”, which are integrals over the skeletal
set M where we do not even require a partial Blum condition. If ψ̃ denotes
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the radial flow from M̃ , we let g1(x, t) = g ◦ ψ̃(x, t) (see Section 2 or [7,
Section 4]). We let

g̃ =
∫ 1

0
g1 · det(I − trSrad) dt.

Then, g̃ is a multivalued function on M . Hence, the integral of the product
g̃ · r is defined on M . We compute the integral of g over Ω by the following
integral over M̃ (Theorem 4.3).

∫

Ω
g dV =

∫

M̃
g̃ · r dM.

In the special case that g ≡ 1, we let δ =
∫ 1
0 det(I − trSrad) dt. Then, we

may compute the volume of Ω as a skeletal integral

(n + 1)-dimensional volume of Ω =
∫

M̃
δ · r dM.

We furthermore derive versions of all of these formulas for integrals over
regions of B (Corollary 4.2) or Ω (yielding a Crofton-type formula, Corollary
6.3). These versions allow us to obtain as corollaries formulas for integrals
over and volumes of generalized, partial or singular tubes, including half-
tubes and generalized offset regions. We determine the forms of Weyl-type
expansions of these integrals in terms of moment integrals along radial lines
and “weighted medial and skeletal integrals” involving powers of r.

One consequence for computer imaging is that for 2-dimensional objects
in R

2 or 3-dimensional objects in R
3 with generic boundaries, global geomet-

ric quantities computed as either integrals over the whole region or on the
boundary of the object can alternately be expressed as appropriate medial
integrals on the Blum medial axis. This provides a framework for statisi-
cally analyzing properties of similar objects as in medial imaging [12], but
now using medial data naturally weighted by the terms appearing in the
integrals.

Finally, we derive a modified form of the divergence theorem for regions
Γ of Ω when vector fields exhibit discontinuities across the skeletal set (or
medial axis) M (Theorem 8.3). This modification requires a correction term
involving medial or skeletal integrals. We apply this version to the vector
field generating the grassfire flow (Theorem 8.5) to give in Section 9 a rig-
orous computation of the average outward flux for the grassfire flow, which
justifies the algorithm given in [13] for numerically computing the Blum
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medial axis. In the course of this computation, we are led to introduce a
medial density which in certain cases is surprisingly similar to a local density
for singular varieties introduced in [14].

The author would like to especially thank both Mike Kerchove and
Stephen Pizer for their valuable comments regarding this work, and to
Kaleem Siddiqi for discussions concerning the role of flux integrals for the
grassfire flow in [13, 15].

2. Skeletal structures, shape operators and radial flow

2.1. Skeletal Structures

We begin by recalling the definition of a skeletal structure (M, U) in R
n+1.

Here M is a skeletal set which is a special type of Whitney-stratified set.
Hence, it which may be represented as a union of disjoint smooth strata
Mα satisying the axiom of the frontier: if Mβ ∩ M̄α �= ∅, then Mβ ⊂ M̄α;
and Whitney’s conditions (a) and (b) (which involve limiting properties
of tangent planes and secant lines). For example, for generic boundaries,
the Blum medial axis is a Whitney-stratified set (by results of Mather [3]
on the distance to the boundary function together with basic properties
of Whitney-stratified sets, see, e.g., [16] or [17]). Additionally, M may
be locally decomposed into a union of n-dimensional manifolds Mj with
boundaries and corners which only intersect on boundary faces.

We let Mreg denote the points in the top-dimensional strata (this is the
dimension n of M and these points are the “smooth points” of M). Also,
we let Msing denote the union of the remaining strata. On M is defined
a multivalued vector field U , which is called the radial vector field. For a
regular point x ∈ M , there are two values of U . For each value of U at x,
there are choices of values at neighboring points which form a smooth vector
field on a neighborhood of x. Moreover, U satisfies additional conditions at
edge points of M and singular points of M , see [7, Section 1] for more details.

For a radial vector field U , we may represent U = r ·U1, for a positive
multivalued function r, and a multivalued unit vector field U1 on M . These
satisfy analogous properties to U .

2.2. Radial-shape operator

For the full understanding of the geometry of the boundary, two shape oper-
ators are needed, the radial and edge-shape operators. However, because
edge-shape operators are only needed on a set of measure zero, we will be
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able to ignore them when considering integrals. For a regular point x0 of M
and each smooth value of U defined in a neighborhood of x0, with associated
unit vector field U1, the radial-shape operator is defined by

Srad(v) = −projU

(
∂U1

∂v

)

for v ∈ Tx0M . Here projU denotes projection onto Tx0M along U (which in
general is not orthogonal to Tx0M). Because U1 is not necessarily normal
and the projection is not orthogonal, it does not follow that Srad is self-
adjoint as is the case for the usual differential geometric shape operator.
We let Krad = det(Srad) and refer to it as the radial curvature.

For a point x0 and a given smooth value of U , we call the eigenvalues
of the associated operator Srad the principal radial curvatures at x0, and
denote them by κr i. As U is multivalued, so are Srad and κr i.

2.2.1. Compatibility 1-forms. To identify the partial Blum condition
for the boundary, we use the compatibility 1-form. Given a smooth value for
U , (possibly at a point of Msing), with U = r · U1 for a unit vector field U1, we
define the compatibility 1-form ηU (v) def= v · U1 + dr(v). This is a multivalued
1-form. The vanishing of ηU at x0 implies that U(x0) is orthogonal to the
tangent space of the associated boundary B at the corresponding point [7,
Lemma 6.1].

In [7, Theorem 1] we give three conditions: radial curvature condi-
tion, edge condition and compatibility condition, which together ensure that
the associated boundary of the skeletal structure is smooth. These condi-
tions are satisfied by the Blum medial axis in the generic case. We assume
throughout the rest of this paper that these conditions are satisfied. Then,
integrals are defined on B. We will relate them to integrals on the skeletal
set M .

2.3. Radial flow and tubular neighborhood for a skeletal
structure

We stated in the introduction that in the partial Blum case we relate
the geometry of boundary to the radial geometry of the skeletal set via the
radial flow. One way to view the formation of the medial axis is as the
shock set resulting from the Grassfire/level-set flow from the boundary [4]
(see figure 3b); [2, 15] also see for further discussion. This flow is from points
on the boundary along the normals until shocks are encountered.
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Figure 3: (a) Radial flow and (b) grassfire flow.

We would like to define the radial flow as essentially a “backward flow”
along U to relate the skeletal set M with the boundary B. Locally if we
choose a smooth value of U defined on a neighborhood W of x0 ∈ M , we
can define a local radial flow ψ(x, t) = x + t · U(x) on W × I. We cannot use
such local radial flows to define a global one on M because the radial vector
field U is multivalued on M . We overcome this problem by introducing
“double” M̃ of M on which is defined a “normal bundle” N for (M, U).

2.3.1. The double and the normal bundle of M and the global
radial flow. Points of M̃ consist of pairs (x, U ′) with x ∈ M and U ′ a
value of U at x. It is possible to put the structure of a stratified set on
M̃ so the natural projection p : M̃ → M sending (x, U ′) �→ x is continuous
and smooth on strata. Moreover, on M̃ , we have a canonical line bundle N
which at a point (x0, U0) is spanned by U0. Also, given an ε > 0 we have the
positive ε neighborhood of the zero section Nε = {(x0, tU0) ∈ N : 0 ≤ t ≤ ε}.

Now, for (M, U), with normal line bundle N , we can define the global
radial flow as a map ψ̃ : N → R

n+1 by (x0, tU0) �→ x0 + tU0. We proved in [7]
that there is a sufficiently small ε > 0 so that ψ̃|Nε\M̃ is a homeomorphism,
smooth on regular points, and M together with ψ̃(Nε\M̃) forms a “tubular
neighborhood” of M [7, Theorem 5.1].

We computed in [7] the derivatives of the radial flow ψ̃ and the radial map
ψ1. If v = {v1, . . . , vn} is a basis for Tx0M , we use bases {∂/∂t, v1, . . . , vn} in
the source for Tx0M × R at (x0, t) and {U1, v1, . . . , vn} for R

n+1 at ψ(x0, t)
by translation along U . Then the transpose of the Jacobian matrix of the
radial flow with respect to these bases is equation (4.5) of [7].

(2.1)
(

r 0
t(dr(v) + rAv) (I − tr · Sv)T

)
,

where Sv denotes a matrix representation of Srad with respect to the basis v.
Likewise, the matrix representation of the Jacobian of ψ1 using the basis

v for Tx0M and the same basis for {U1, v1, . . . , vn} for R
n+1 has tranpose
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given by deleting the first row of (2.1) to yield

(2.2)
(
(dr(v) + rAv) (I − r · Sv)T

)
.

The conditions that these maps are non-singular follow from the radial
curvature condition:

(2.3) r < min
{

1
κr i

}
for all positive principal radial curvatures κr i,

where κr i, the “principal radial curvatures”, are the eigenvalues of Srad
(there is an analogous edge condition on the “principal edge curvatures”κE i,
which are generalized eigenvalues of SE).

The radial and edge conditions together ensure that the radial flow
remains non-singular from smooth points and does not develop new sin-
gularities from singular points of M . These conditions: together with a
compatibility condition involving the vanishing of the compatibility 1-form
ηU on Msing are (necessary and) sufficient to ensure that the “associated
boundary” B is smooth (in the sense of [7, Theorem 2.5]) provided the
radial map has no non-local self-intersections.

Definition 2.1. Suppose (M, U) is a skeletal structure which satisfies: the
radial curvature, edge conditions and compatibility conditions, and for which
the radial flow does not have any non-local intersections. Then, we say that
(M, U) defines a region with smooth boundary.

If in addition, U is everywhere orthogonal to the associated boundary
B, which is equivalent to the vanishing of the compatibility 1-form ηU on all
of M , we say that (M, U) satisfies the partial Blum condition.

If we relax the radial curvature and edge conditions by replacing the
inequalities “<” by “≤”, but suppose that the radial flow is still one–one for
0 < t < 1, then we say that (M, U) defines a region with (possibly) singular
boundary B.

For a Blum medial axis M of a region Ω with generic smooth boundary
B with its associated multivalued vector field U , (M, U) is an example of a
skeletal structure which satisfies the partial Blum condition and defines a
region with smooth boundary.

Remark 2.2. In the case when (M, U) “defines a region with smooth
boundary”, we know that B is smooth off the image ψ(Msing) of the sin-
gular set of M , where we only know B is weakly C1. The images of the
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strata of Msing are still smooth submanifolds in B. Then, B is piecewise
smooth and so has a Riemannian volume form, denoted by dV , for each
compact piecewise smooth region. Hence, integrals of continuous functions
are defined on B.

We next turn to defining integrals on M and relating them to integrals
on B and Ω.

3. Skeletal and medial integrals

Given a skeletal structure (M, U) which defines a region with smooth bound-
ary, and a multivalued function h on M , we will introduce the skeletal inte-
gral of h over M . By a multivalued function h on M , we mean a function
which lifts to a well-defined function h′ on M̃ . Alternately, it means that
for each value of U at a point x ∈ M , there is a corresponding value of h
at x and conversely. We say h is a continuous multivalued function if h′

is continuous on M̃ . For example, if g : B → R is a continuous function on
B, then the composition g ◦ ψ1 defines a continuous function on M̃ which
pushes down to a continuous multivalued function g̃ on M .

Our strategy will be to first define a skeletal integral for continuous
multivalued continuous functions on M . This will be equivalent to defining
the integral of a continuous function on M̃ . This integral will satisfy the
usual linearity and positivity properties. Then, as M̃ is a locally compact
Hausdorff space, we shall use the Riesz representation theorem to extend
the definition to general integrable functions over measurable regions of M̃ .
These will include, for example, piecewise continuous functions over regions
of M̃ with piecewise differentiable boundaries.

By the compactness of M and the properties of skeletal structures, we
may find a finite covering of M by open sets {Wi} which satisfy the following
properties: (i) for each Wi, and each stratum Mα for which Wi α = Wi ∩
Mα �= ∅, each value of U defined at a point of Wi α extends smoothly to values
of U on all of Wi α; (ii) the closure of each Wi may be decomposed into a finite
number of manifolds with boundaries and corners which only meet along
boundary facets. We refer to such a Wi as a paved neighborhood (figure 4). If
π : M̃ → M denotes the natural projection, and π−1(Wi) = ∪Wij is a disjoint
union of neighborhoods in M̃ , then we also refer to each Wij as a paved
neighborhood of M̃ . Each Wij is a union of manifolds with boundaries and
corners on which values of U can be chosen to form a continuous vector field.

Then, we may construct a smooth partition of unity {χi} subordinate to
{Wi}. By smooth we mean that each χi is smooth on each stratum (we can
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in fact extend {Wi} to an open covering {W ′
i} of M in R

n+1 and restrict
the corresponding partition of unity to M). Then, using {χi} we define

(3.1)
∫

M̃
h dM =

∑

i

∫

M̃
χi · h dM.

By a standard argument, (3.1) is independent of the covering and partition
of unity. Thus, by (3.1), it will be sufficient to define the integral for h with
support in a finite union of compact manifolds with boundaries and corners
{Mj}s

j=1 which only meet along boundary facets as in figure 4. In turn, for
such an h with supp (h) ⊂ ∪s

j=1Mj , we may write

(3.2)
∫

M̃
h dM =

∑

i

∫

M̃i

h dM.

Here M̃i is the union in M̃ of the two copies of Mi corresponding to the two
choices of smooth values of U on Mi, which, in turn, correspond to the two
sides of M at Mi.

Remark 3.1. In the generic case where the Blum medial axis is the Maxwell
set for multi–Ak singularities, there are unique limiting tangent spaces for
strata and we can decompose neighborhoods into manifolds with boundaries
and corners as indicated. This always holds for n ≤ 6. Whether this holds
in general is unknown, but there is some evidence that this is true. If not,
then the parametrization by manifolds with boundaries and corners may be
singular on the boundary points which map to the singular set of M (see
[26] or [28] and [27]). Because the radial flow will be non-singular off the
singular set for the Blum medial axis [7, Proposition 4.6], the change of
variables formula will be valid, and the integrals are well defined.

Also, at edge points of the medial axis, we must use “edge coordinates”.
Under these, the parametrization of a neighborhood of an edge is one–one

Figure 4: (a) Paved neighborhood of a point in M and corresponding paved
neighborhoods (b) and (c) in M̃ .
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differentiable and a local diffeomorphism off the edge. Again, this does not
cause any problem with integration.

To finally define each integral on the RHS of (3.2), we let j = 1, 2 cor-
respond to a value of U on each side of Mi. We also let hj be the value of
h corresponding to that side, and let ρj = U1 j · nj , where U1 j is a value of
the unit vector field for each of the smooth values of U and nj is the normal
unit vector pointing on the same side as U1 j . Lastly, we let dVj denote the
volume form for the Riemannian metric with Mi oriented by nj . Hence, we
may finally write

(3.3)
∫

M̃i

h dM =
2∑

j=1

∫

Mi

hjρj dVj .

Then, the integral has the usual properties that it is linear; and if h ≥ 0,
then

∫
h dM ≥ 0.

Next, we conclude that there is a unique regular Borel measure on M
such that the integral we just defined is given by integration with respect to
this measure.

Proposition 3.2. There is a unique regular positive Borel measure dM on
M̃ such that for any continuous multivalued function h on M with h̃ = h ◦ π,
the integral of h on M̃ is given by

∫

M̃
h̃ dM,

the integral of h̃ with respect to the measure dM .

Proof. As stated earlier, we use the Riesz Representation Theorem to prove
the existence and uniquence of dM . For this we have already noted that
we can view the integral as being defined for continuous functions h̃ on M̃ .
Then, we can extend this integral to (compactly supported) complex-valued
continuous functions f = g + ih on M̃ by

∫

M̃
f dM =

∫

M̃
g dM + i ·

∫

M̃
h dM.

This defines a linear transformation

(3.4)
∫

M̃
f dM : Cc(M̃) −→ C
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for Cc(M̃) the space of (compactly supported) continuous complex-valued
functions on M̃ . This integral satisfies the positivity condition: f ≥ 0
implies

∫
M̃ f dM ≥ 0.

Then, M ⊂ R
n+1 is closed (as it is compact) and hence locally compact

as R
n+1 is. We easily see that M̃ is also locally compact and Hausdorff (as

well as compact). Thus, we may apply the Riesz representation theorem
[18, Theorem 2.14]. There is a unique positive Borel measure dM on M̃
(which is regular as M̃ is compact) defined on a σ-algebra of subsets of M̃
which contains the Borel sets such that

∫
M̃ h dM is given by integration with

respect to the measure dM for any continuous h on M̃ . This is the asserted
measure. �

3.1. Medial measure and Blum medial axis M as a measure space

We refer to the measure dM = ρ dV on M̃ as the medial measure. It corrects
for the failure of U to be orthogonal to M . In the case of the Blum medial
axis, dM is actually defined on M .

This changes our perspective on the Blum medial axis from just being a
stratified set to being as well a measure space, where the significance of parts
of the space are determined by their medial measure. For example, it is well
known that the introduction of a small bump on the boundary B leads to the
creation of another sheet of M . However, the bump only introduces a small
change in the volume. We shall see from the volume formulas in Section 6
that the additional integral on the added sheet represents this small change.
The smallness of the bump forces U to be close to being tangent to M on
the additional sheet. This implies that the medial measure is small on the
added sheet. Thus, although set theoretically the added sheet is a significant
alteration of the medial axis, from the point of view of measure theory the
added sheet is very small.

3.2. Skeletal and medial integrals

By a multivalued measurable, resp., integrable, functon f on M we mean
that f ◦ π is a measurable, resp., integrable, function on M̃ , where π : M̃ →
M is the natural projection. Likewise, we say that R ⊂ M̃ is measurable if it
is measurable with respect to dM . If R ⊂ M̃ is measurable, and f is defined
on R, then provided χR · f is measurable for the characteristic function χR

of R, we define as usual
∫
R f dM =

∫
M̃ χR · f dM .
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We refer to the integral
∫
M̃ h dM as a skeletal integral. In the special case

that (M, U) satisfies the partial Blum condition, we will refer to it instead
as a medial integral.

Measurable sets include regions with piecewise smooth boundary on M̃

Definition 3.3. A closed subset R ∈ M̃ is a region with piecewise smooth
boundary if we can decompose R = ∪�

i=1Ri where: (i) the Ri only intersect at
boundary points; (ii) each Ri ⊂ Wij , where Wij is a paved neighborhood in
M̃ ; (iii) we may represent Wij as a finite union of manifolds with boundaries
and corners Mα in M so that π(Ri) ∩ Mα is a region with piecewise smooth
boundary

Heuristically, we view a region of M̃ as associating a region of a smooth
stratum of M to each side of M . For example, consider in figure 5 the
region of M̃ consisting of points where at the corresponding points on B,
the Gaussian curvature is positive. It consists of the bottom side of M and
part of the top side as indicated in figure 5.

Also, integrable functions include, for example, piecewise continuous
functions

Definition 3.4. Let g be a multivalued function on M . We say that g
is piecewise continuous if for g′ = g ◦ π, supp (g′) = ∪Sj , where the Si only
intersect at boundary points, each Sj is a region with piecewise smooth
boundary, and g̃|int(Sj) has a continuous extension to Sj .

If g : B → R is a piecewise continuous function on B, then the compo-
sition g ◦ ψ1 need not define a piecewise continuous function on M̃ , but it
does define a Borel measurable one.

Figure 5: Region in M where B has positive Gauss curvature.
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4. Boundary integrals as medial integrals

We now suppose that (M, U) is a skeletal structure which defines a region
with smooth boundary and satisfies the partial Blum condition. We know
that B is smooth off the image ψ1(Msing) of the singular set of M , where
we only know it is weakly C1. The images of the strata of Msing are still
smooth submanifolds of B, and using the radial map we see that points in
ψ1(Msing) have paved neighborhoods. Then, B is piecewise smooth and so
has a Riemannian volume form, denoted by dV ; hence, the same argument
used for M allows us to define the integral

∫
B g dV for a continuous function

g. Then, even if B is not smooth we can still use the Riesz representation
theorem to extend the integral for Borel measurable functions and regions
on B.

Theorem 4.1. Suppose (M, U) is a skeletal structure defining a region with
smooth boundary B and satisfying the partial Blum condition. Let g : B → R

be Borel measurable and integrable with respect to the Riemannian volume
measure. Then,

(4.1)
∫

B
g dV =

∫

M̃
g̃ · det(I − rSrad) dM,

where g̃ = g ◦ ψ1.

Before beginning the proof, we deduce several consequences.
First, we have a version for a region of B.

Corollary 4.2. Suppose (M, U) is a skeletal structure defining a region
with smooth boundary B and satisfying the partial Blum condition. Let R
denote a Borel measurable subset of B and g : R → R a Borel measurable
and integrable function with respect to the Riemannian volume measure. If
R̃ = ψ−1

1 (R), then,

(4.2)
∫

R
g dV =

∫

R̃
g̃ · det(I − rSrad) dM,

where g̃ = g ◦ ψ1.

Proof of Corollary 4.2. If χR denote the characteristic function of R. Then,
χR · g is a Borel measurable and integrable function on B. Thus, we may
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apply Theorem 4.1 to conclude

(4.3)
∫

B
χR · g dV =

∫

M̃
(χR · g) ◦ ψ1 · det(I − rSrad) dM.

The LHS of equation (4.3) is
∫
R g dV . Also, (χR · g) ◦ ψ1 = χR̃ · g̃. Thus,

the RHS of Equation (4.3) is the RHS of Equation (4.2) as asserted. �
As a first application, we compute the n-dimensional volume of B as a medial
integral.

Theorem 4.3 (Medial Integral Formula for Boundary Volume).
Suppose Ω ⊂ R

n+1 is a region with compact closure and smooth generic
boundary B and Blum medial axis M . Then,

(4.4) n-dimensional volume of B =
∫

M̃
det(I − rSrad) dM

Remark 4.4. The preceding formula remains true if (M, U) is only a skele-
tal structure in R

n+1 defining a region with smooth boundary B and satis-
fying the partial Blum condition. Also, it remains valid if we replace B by
a measurable region R and M̃ by R̃.

Proof. We apply Theorem 4.1 for the constant function 1 on B. Even if B is
only piecewise smooth, the integral of 1 over B still yields the n-dimensional
volume of B. On the other hand, by Theorem 4.1, the integral equals the
RHS of (4.4). �

4.1. Expansion of the boundary volume in terms of the radial
function r

We expand the integrand in the RHS of (4.1). Let σr j denote the jth
elementary symmetric function in the principal radial curvatures κri (with
σr 0 ≡ 1). Then, we may expand

(4.5) det(I − rSrad) =
n∑

i=0

(−1)iσr ir
i.

Then, we can expand (4.1) using �-th weighted integrals of the multivalued
function g defined by

I�(g) =
∫

M̃
g · r� dM.
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Then we may expand the RHS of (4.1)

(4.6)
∫

B
g dV =

n∑

i=0

(−1)iIi(g · σr i).

In the case that g ≡ 1, we obtain an expansion for the volume of B.

(4.7) n-dimensional volume of B =
n∑

i=0

(−1)iIi(σr i).

In general, r is not constant and cannot be taken outside the integral.
If r is constant, then the partial Blum condition implies that U is normal at
all points. Then, M must be a closed submanifold without boundary. Thus,
this is the case of a tube. As M is smooth with U normal, we have two
consequences. First, the radial shape operator is the differential geometric
shape operator. However, there is one for each side of M at a point x0, and
the U1 on one side is the negative of that on the other. Hence, the principal
curvatures computed for each side differ by signs. Thus, the σr i for each
side differ by (−1)i. Thus, the integrals of these on each side will cancel in
the case i is odd. Thus, we obtain a polynomial representation.

Corollary 4.5. The n-dimensional volume of the boundary B of the tube
on M of radius r is given by

(4.8) n-dimensional volume of B =
[n/2]∑

i=0

(∫

M̃
σr 2i dM

)
· r2i,

where now σr 2i is the 2i-th elementary symmetric function in the principal
curvatures of M, and

(4.9) Kj =
∫

M̃
σr j dM

is a global curvature invariant

Equation (4.8) gives a formula for the n-dimensional volume of B, which
is a union of two parallel manifolds. Without requiring the partial Blum
condition, we have much greater flexibility in allowing a variety of general-
izations of tubes. We will obtain generalizations of Weyl’s formula for the
volumes of such generalized tubes in Section 7.
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Example 4.6. We consider the special cases of Ω ⊂ R
2 or R

3. In the first
case, Theorem 4.3 via (4.8) gives a formula for the length of the boundary
curve B. There is a single radial curvature κr. Then,

length (B) =
∫

M̃
1 − rκr dM

=
∫

M̃
dM −

∫

M̃
rκr dM(4.10)

The first integral on the RHS of (4.10) is 2�̃(M), where �̃(M) is the length of
M , but with respect to the “medial Riemannian length” dM = ds̃ = ρ · ds.

For the second case of Ω ⊂ R
3, we have

det(I − rSrad) = 1 − r · trace(Srad) + r2 det(Srad).

Hence, for the surface B, letting Hrad = 1/2 trace(Srad) and Krad = det(Srad),
we obtain

(4.11) area (B) =
∫

M̃
dM − 2

∫

M̃
rHrad dM +

∫

M̃
r2Krad dM

Again the first integral on the RHS represents twice the area of M but
measured using the “medial Riemannian area form” d̃A = ρ · dA.

Lastly, we turn to the proof of Theorem 4.1.

Proof. By the proof of Theorem 5.1 of [7] ψ1: M̃ → B is a homeomorphism.
Hence, we have the pull-back ψ∗

1(dV ) defined on M̃ . Also, by general prop-
erties, for a Borel measurable function g on B,

(4.12)
∫

M̃
ψ∗

1g ψ∗
1 dV =

∫

B
g dV

Hence, Theorem 4.1 will follow provided we can show ψ∗
1 dV = dM . Again,

by the uniqueness of the measure in the Riesz representation theorem, this
will follow if

(4.13)
∫

M̃
hψ∗

1 dV =
∫

M̃
h dM

for continuous functions h on M̃ .
As any h = ψ∗

1g for g = ψ−1 ∗
1 h, it is enough to establish the theorem for

continuous g. Using a partition of unity argument as in the definition of
skeletal integrals in Section 3, we may assume ψ∗

1g has support in a single
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compact manifold with boundaries and corners Mi whose interior consists
of regular points of M , and for a single smooth value of U defined on Mi.
For then, by the form of the integrals given in Section 3, we can sum both
sides over such integrals to obtain equality for all of M .

Let Bi = ψ1(Mi). As ψ1 : Mi → Bi is the restiction of a diffeomorphism,
we can use the change of variables formula. On Bi,

dV (w1, . . . , wn) = det(n′, w1, . . . , wn),

where n′ denotes the outward pointing unit normal vector. By the (partial)
Blum condition, n′

ψ1(x) = U1(x), the unit vector in the direction of U .
Next, by earlier calculations in (2.2) [7, Section 2], if {v1, . . . , vn} denotes

a basis for TxMi, then

(4.14)
∂ψ1

∂vi
= bi · U1 −

n∑

j=1

cjivj ,

where the matrix C = (cij) = (I − r · Sv)T, and Sv is the matrix represen-
tation of Srad. We let C̃ denote the linear transformation sending vi �→∑n

j=1 cjivj .
Then, letting v denote the column vector with i-th entry vi,

ψ∗
1(dV )(v1, . . . , vn) = det(U1, dψ1(v1), . . . , dψ1(vn))

= det(U1, C̃(v1), . . . , C̃(vn))
= det(C) det(U1, v1, . . . , vn)
= ρ det(C) det(n, v1, . . . , vn)
= det(I − r · Srad)dM(v1, . . . , vn),(4.15)

where n is the unit normal vector on Mi in the same direction as U , and
ρ = < U1,n >. Hence, by (4.15) and the change of variables formula,

∫

Bi

g dV =
∫

Mi

g ◦ ψ1 · det(I − rSrad) dM.

This completes the proof. �

5. Medial version of the generalized Gauss–Bonnet theorem

As a second consequence of Theorem 4.1, we deduce a form of the general-
ized Gauss–Bonnet theorem for the smooth boundary B of a generic region
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Ω ⊂ R
n+1 in terms of medial integrals. The standard generalized Gauss–

Bonnet formula applies in the case n is even to give a formula for the Euler
characteristic χ(B) in terms of an integral of the Gauss–Bonnet form over
B. In the case n is odd χ(B) = 0, and there is no standard Gauss–Bonnet
formula. There is Chern’s version of the Gauss–Bonnet formula valid for
an even-dimensional Riemannian manifold with boundary in terms of inte-
grals on the manifold, which requires a form expressed in terms of a sum of
characteristic forms [19, Vol. V]. We first give a single form of generalized
Gauss-Bonnet which is valid for a region Ω ⊂ R

n+1 with compact closure
and smooth boundary B independent of the dimension of B.

Theorem 5.1 (generalized Gauss–Bonnet theorem). Suppose Ω ⊂
R

n+1 is a region with compact closure and smooth boundary B. Then,

1
sn

·
∫

B
Kn dV = χ(Ω)

and if n is even

(5.1) =
1
2
χ(B).

Here Kn is the Lipschitz–Killing curvature (which is the determinant
of the differential geometric shape operator of B) and Kn dV is the Gauss–
Bonnet form. Also, sn = vol(Sn) and χ(X) denotes the Euler characteristic
of X.

Remark 5.2. In this version of Gauss–Bonnet, there is no restriction on
how many connected components either B or Ω has. The outward pointing
normal naturally provides a consistent orientation for each component.

This version of Gauss–Bonnet has the following medial version valid for
all dimensions.

Theorem 5.3 (medial version of generalized Gauss–Bonnet
theorem). Suppose Ω ⊂ R

n+1 is a region with compact closure and smooth
generic boundary B. Let M be the Blum medial axis. Then,

1
sn

·
∫

M̃
Krad dM = χ(Ω) = χ(M)

and if n is even

(5.2) =
1
2
χ(B)
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with sn = vol(Sn) and χ(X) as above.

Remark 5.4. Suppose instead that (M, U) is a skeletal structure defining
a region with smooth boundary B which satisfies the partial Blum condition.
Then, the conclusion of Theorem 5.3 still applies.

Proof of Theorem 5.3. We first deduce Theorem 5.3 from Theorem 5.1. In
the Gauss–Bonnet form Kn dV , Kn = det(SB) denotes the determinant of
the differential geometric shape operator for B using the outward point-
ing unit normal vector field. Then, we apply the formula for SB given by
Theorem 4.1 of [7].

SB = Sv(I − rSv)−1

where Sv denotes the matrix representation of Srad with respect to a basis
v for TxM , as does SB for a corresponding basis of Tx′B with x′ = ψ1(x).
Thus,

(5.3) Kn = det(SB) =
Krad

det(I − rSv)
.

Using (4.1) to evaluate the integral in (5.1), and substituting in (5.3) yields
the result for χ(Ω). Then, the reverse of the radial flow provides a deforma-
tion retract of Ω onto M by [7] (or see [20]). Thus, χ(Ω) = χ(M), completing
the proof. �
Proof of the Gauss–Bonnet theorem. We also provide the proof of the form
of the Gauss–Bonnet theorem given here. First, as Ω is a smooth manifold
with boundary B, we may apply a standard formula from topology [21,
Section 28]

(5.4) χ(2Ω) = 2 · χ(Ω) − χ(B),

where 2Ω denotes the double of Ω obtained by attaching two copies of Ω
along B. If n is odd χ(B) = 0; however, if n is even, 2Ω is odd-dimensional
and without boundary so χ(2Ω) = 0, and by (5.4), χ(B) = 2 · χ(Ω). This
yields the second part of Theorem 5.1 from the first part. Thus, we need to
show

χ(Ω) = deg(Gauss map of B).

For the first part, we follow the standard argument with one change.
The degree of the Gauss map on B using the outward pointing normal is
computed by 1/sn ·

∫
B Kn. We compute this a second way using Morse

theory on Ω.
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We may flow in along the inward pointing unit normal vector field on B
to define a collar neighborhood of B in Ω. If t denotes the distance along the
flow lines, then t is a smooth function on the collar neighborhood which is 0
on B and has no critical points. We may extend t to a smooth function on Ω.
We may perturb this function to a Morse function f on Ω which agrees with
t near B and has f−1(0) = B. Let {x1, . . . , xk} denote the critical points of
f with λi the Morse index of xi. Then, by Morse theory

(5.5) χ(Ω) = χ(B) +
k∑

i=1

(−1)λi .

Second, indxi
(−∇f), the index of the negative gradient vector field −∇f at

xi is given by

indxi
(−∇f) = (−1)n+1 · indxi

(∇f) = (−1)n+1 · (−1)λi .

Also, choose around each xi small disjoint open balls Bi which also are
disjoint from B. We let Si denote the boundary sphere of Bi. Then, G(x) =
−∇f(x)/‖∇f(x)‖ is a smooth map on Ω\ ∪k

i=1 Bi → Sn which agrees with
the Gauss map on B. Hence,

(5.6) deg(G|B) =
k∑

i=1

deg(G|Si).

However,

(5.7) deg(G|Si) = indxi
(−∇f) = (−1)n+1 · (−1)λi .

Hence, using (5.6) and (5.7), (5.5) becomes

(5.8) χ(Ω) = χ(B) + (−1)n+1 · deg(G|B).

Finally, if n is odd, χ(B) = 0 so (5.8) gives the result; while if n is even,
χ(B) = 2 · χ(Ω), and again (5.8) gives the result. �

6. Integrals over regions as skeletal integrals

Throughout this section, we consider a skeletal structure (M, U) which
defines a region Ω with possibly singular boundary except that we do not
assume the partial Blum condition is satisfied. This is the “non-Blum case”,
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but we still show that we still can represent integrals over a region Ω as skele-
tal integrals. Of course the result is still valid in the partial Blum case. We
suppose that g : Ω → R is a Borel measurable and integrable function (with
respect to Lebesgue measure). We let ψ̃ denote the radial flow from M̃ , and
let g1 = g ◦ ψ̃ denote the function on the “positive normal bundle” on M̃ ,
see Section 2 and [7, Section 4]. Let g1(x, t) = g(x + tU(x)). Provided the
integral is defined, we let

(6.1) g̃(x) =
∫ 1

0
g1(x, t) · det(I − trSrad) dt

Theorem 6.1. Suppose (M, U) is a skeletal structure which defines a region
Ω with possibly singular boundary B (without being partially Blum). Let
g : Ω → R be Borel measurable and integrable (for Lebesgue measure). Then,
g̃ is defined for almost all x ∈ M̃, it is integrable on M̃, and

(6.2)
∫

Ω
g dV =

∫

M̃
g̃ · r dM.

Remark 6.2. By a change of variables t′ = r · t, we may instead write the
formula (6.2) as the integral of g̃′, where now

g̃′ =
∫ r

0
g(x + t′U1(x)) · det(I − t′Srad) dt.

Before proving this theorem, we deduce several immediate consequences.
First, we deduce a “Crofton-type formula” for integrals over regions Γ ⊂ Ω.
Such a formula computes integrals over the regions by first integrating over
the intersection of the region with radial lines (figure 6), and then integrating
the resulting function over the skeletal set M which parametrizes such lines.

We let

(6.3) g̃Γ(x) =
∫ 1

0
χΓ · g1(x, t) · det(I − trSrad) dt,

where χΓ is the characteristic function of Γ.

Corollary 6.3 (medial Crofton-type formula). Suppose (M, U) is a
skeletal structure which defines a region Ω with possibly singular boundary
B (without being partially Blum). Let Γ ⊂ Ω be Borel measurable and let
g : Γ → R be Borel measurable and integrable for Lebesgue measure. Then,
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Figure 6: Integration over regions Γ ⊂ Ω as skeletal integrals.

g̃ is defined for almost all x ∈ M̃ ; it is integrable on M̃ and

(6.4)
∫

Γ
g dV =

∫

M̃
g̃Γ · r dM.

Note that g̃Γ will vanish for all (x, U(x)) for which the radial line {x +
tU(x) : 0 ≤ t ≤ 1} only intersects Γ in a set of measure 0.

Proof of Corollary 6.3. We apply Theorem 6.1 to the function χΓ · g just as
in the proof of Corollary 4.2, we applied Theorem 4.1 to χR · g. �

Second, we use Theorem 6.1 for computing the volume of Ω. Let

(6.5) δ(x) =
∫ 1

0
det(I − trSrad) dt.

Then, we can compute the volume of Ω in terms of an integral of δ over M̃ .

Theorem 6.4. Suppose (M, U) is a skeletal structure which defines a region
Ω with possibly singular boundary B (without being partially Blum). Then

(6.6) Volume of Ω =
∫

M̃
δ · r dM.

Proof of Theorem 6.4. We just apply Theorem 6.1 in the case g ≡ 1. �
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6.1. Weyl expansion of integrals for general regions

We expand the integrand in the RHS of (6.2) to understand its relation with
Weyl’s formula. First, we use (4.5) to expand (6.1).

(6.7) δ(x) =
n∑

i=0

(−1)imi(g)σr i · ri,

where

mi(g)(x) =
∫ 1

0
g(x + tU(x)) · ti dt

is an i-th radial moment of g along the radial line {x + tU(x) : 0 ≤ t ≤ 1}.
Then, we can expand (6.2) as a sum of weighted integrals of radial moments;

(6.8)
∫

Ω
g dV =

n∑

i=0

(−1)iIi+1(mi(g) · σr i).

In the special case when g ≡ 1, we obtain an expansion of the formula for
the volume of Ω.

(6.9) Volume of Ω =
n∑

i=0

(−1)i

i + 1
Ii+1(σr i).

Example 6.5. Suppose Ω ⊂ R
2 or R

3 has compact closure with smooth
generic boundary so the Blum medial axis M together with the radial vector
field U defines a skeletal structure (M, U).

In the first case,

δ(x) =
∫ 1

0
1 − trκr dt = 1 − 1

2
rκr.

Hence, we may compute the area of a 2-dimensional region Ω

(6.10) area (Ω) =
∫

M̃
r dM − 1

2

∫

M̃
r2κr dM.

For a 3-dimensional region Ω,

δ(x) = 1 − 1
2
rHrad +

1
3
r2Krad.
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Thus,

(6.11) volume (Ω) =
∫

M̃
r dM − 1

2

∫

M̃
r2Hrad dM +

1
3

∫

M̃
r3Krad dM.

Remark 6.6. In Section 7, we obtain analogs of (6.8) and (6.9) where we
replace Ω by a region Γ which is a union of radial lines over a region R̃ in
M̃ . This includes the case when M is a compact smooth manifold without
boundary, so we obtain integral formulas for volumes of various generalized
and partial tubes and offset regions.

Proof of Theorem 6.1. First, we consider the definition of g̃(x) by the inte-
gral in Equation (6.1). It is enough to consider a neighborhood W of a
point x0 and show that g̃(x) is defined for almost all x ∈ W and integrable
on W . For then as M̃ is compact, we can cover M̃ by a finite number
of such neighborhoods so g̃(x) is defined a.e. and integrable on M̃ . Now
any point has a paved neighborhood which is a finite union of compact
manifolds with boundaries and corners. Thus, it is sufficient to establish
a formula for the restriction to a single compact manifold Mi with bound-
aries and corners whose interior consists of regular points of M (with a
single smooth value of U defined on Mi), the positive normal bundle has the
form Mi × [0,∞), and ψ̃ is given by ψ̃(x, t) = x + tU(x). The differentiable
map ψ̃ : Mi × [0, 1] → R

n+1 is a diffeomorphism for 0 < t < 1 and hence is
one-one except on the boundary. Its image is compact and hence a Borel set,
on which g is integrable. Thus, g1 is integrable so we may apply Fubini’s
Theorem to conclude that for almost all x ∈ Mi, the integral in (5.1) is
defined and the resulting function defined a.e. on Mi is integrable. Hence,
g̃(x) is defined a.e. and integrable on M̃ .

Now, we proceed with a derivation of the formula. The proof will be
similar to that for Theorem 4.1.

By a partition of unity argument using paved neighborhoods, we may
reduce to establishing the formula again for the case of a single compact
manifold Mi with boundaries and corners whose interior consists of regular
points of M (with a single smooth value of U defined on Mi). Then, ψ : Mi ×
[0, 1] → R

n+1 is a diffeomorphism on the interior. Hence, if Ωi = ψ(Mi ×
[0, 1]), then it is sufficient to show

(6.12)
∫

Ωi

g dV =
∫

M̃i

g̃ · r dM
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For this, we again use the change of variables formula for ψ. We let {v1, . . . ,

vn} be a basis of TxMi. Since
∂ψ

∂t
= U , we compute

ψ∗dV

(
∂

∂t
, v1, . . . , vn

)
= det(U, dψ(v1), . . . , dψ(vn)).

Using (2.1) and proceeding as in (4.14), except letting C̃ = (I − tr · Sv)T,
we obtain

ψ∗ dV

(
∂

∂t
, v1, . . . , vn

)
= r · det(U1, C̃(v1), . . . , C̃(vn))

= r · ρ det(C) det(n, v1, . . . , vn)
= r · det(I − trSrad)dM(v1, . . . , vn).(6.13)

Hence, by the change of variables formula and Fubini’s theorem,
∫

Ωi

g dV =
∫

Mi

∫

[0,1]
g ◦ ψ · r · det(I − trSrad) dM,

and carrying out the innermost integral,

(6.14) =
∫

Mi

g̃ · r dM,

where

g̃ =
∫

[0,1]
g ◦ ψ · det(I − trSrad) dt.

Hence ∫

Ωi

g dV =
∫

Mi

g̃ · r dM

as claimed. �

7. Volumes of generalized tubes

In [11], Gray gives an encyclopedic treatment of volumes of tubes on man-
ifolds in numerous settings. We consider here the generalizations of tubes
by allowing skeletal structures, or considering tubes on smooth manifolds
without requiring normal directions nor constant radii values, and allowing
partial tubes over subregions. We generally refer to such tubes as generalized
or partial tubes. To determine formulas for the volumes of such tubes, we
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return to consequences of Theorem 6.4 and Corollary 6.3 using the expansion
(6.9).

We consider a skeletal structure (M, U) defining a region with either a
smooth or possibly singular boundary B. As already mentioned, the gen-
eral results we obtain already suggest that a region Ω with smooth generic
boundary B and Blum medial axis M is a “generalized tube on M”. As we
specialize the conditions on both M and U , the regions begin to resemble
our usual notions of tubes.

7.1. Types of generalized or partial tubes

(1) Generalized or partial tubes on a skeletal set M . For a skeletal struc-
ture (M, U) (defining a region with smooth or possibly singular bound-
ary B), we may suppose r is constant (but U need not be normal, nor
need M be a smooth manifold without boundary) and obtain a gener-
alized tube on M (figure 7a); or we may restrict the tube to a region
in M̃ (figure 7b).

(2) Generalized or partial or half-tube on a smooth manifold. Alternately,
we may suppose M is a compact smooth n-dimensional submanifold
without boundary of R

n+1, with a smooth multivalued vector field U
so that (M, U) is a skeletal structure (defining a region with smooth
or possibly singular boundary B). First, we consider the generalized
tube where r is not constant nor need U be normal to M . We then
further specialize to cases where either U is normal, or r is constant
(with the same value for both sides of M), and finally to where both
hold and we return to a traditional tube (as in Weyl’s formula).

We examine the form that volume formulas take for these cases, including
the special forms for the formulas as a result of special conditions. These

Figure 7: Generalized and partial tubes on a skeletal set M .
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integrals will involve global invariants

(7.1) Kr i =
∫

M̃
σr i dM.

where as earlier σr i denotes the i-th elementary symmetric function in the
principal radial curvatures (some of which may be complex in the non-Blum
case, although σr i will be real-valued). As well, we consider for a measurable
region R̃ in M̃ and the partial tubes on R̃. In this case, we shall consider
instead the global invariants on R̃ defined by integrals

(7.2) Kr i(R̃) =
∫

R̃
σr i dM.

7.2. Generalized or partial tube on a skeletal set

In the first case for a skeletal set M , with r constant but U non-normal, we
can directly apply (6.9) to obtain a Weyl-type expansion for volume which
is a polynomial in r.

Corollary 7.1. For a generalized constant radius tube Ω on a skeletal set
M,

(7.3) Volume of Ω =
n∑

i=0

(−1)i

i + 1
Kr i · ri+1.

7.2.1. Partial tube on a skeletal set. Second, we may consider a con-
stant radius tube on only part of M as in figure 7b. Let R̃ denote a mea-
surable region in M̃ . We let Γ denote the union of the radial lines from
points of R̃. Equivalently, Γ = ψ(N1|R̃), where N1 denotes the subset of the
positive normal bundle of vectors of length ≤ 1. We can decompose R̃ into
a finite union of measurable sets Ri contained in compact manifolds with
boundaries and corners M̃i, which only intersect in sets of measure 0, and on
which the values of U define a smooth vector field. Then, Γ is a union of the
measurable sets Γi = ψ(Ri × [0, 1]) which only intersect on sets of measure
0. Thus, Γ is a measurable region (whose volume is the sum of the volumes
of the Γi). In turn, we may apply Corollary 6.3 with g ≡ 1 to each Γi and
sum over i to obtain

Corollary 7.2. For a constant radius partial tube Γ on a region R̃,

(7.4) Volume of Γ =
n∑

i=0

(−1)i

i + 1
Kr i(R̃) · ri+1.
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7.3. Generalized and partial tubes on smooth manifolds

Next, we turn to the second class of generalized tubes where M is a compact
smooth n-dimensional submanifold of R

n+1 (without boundary). Then, for
a skeletal structure (M, U), U is defined by a pair of smooth non-vanishing
vector fields which at each point x ∈ M , point to opposite sides of M . Also,
M̃ consists of two copies of M , one corresponding to each side of M .

If we place no restriction on r or U , then we still obtain the same formulas
(6.9) and the analogue for regions using the expansion for (6.4). When we
further restrict r or U , we do obtain more specialized forms which yield
analogs of Weyl’s formula and other classical formulas.

7.3.1. Constant radius generalized tube on a smooth manifold. In
the case that r is constant without U necessarily being normal on M , we
obtain a polynomial expansion for the volume given by (7.3).

7.3.2. Varying radius tube on a smooth manifold. Next, we consider
instead the case where U is normal to M , but r varies (except that all of its
values at a point agree).

Corollary 7.3 (generalized Weyl’s formula for a varying radius
tube). For a tube Ω defined on a smooth manifold M, but with varying
radius r,

(7.5) Volume of varying radius tube Ω = 2 ·
[n/2]∑

i=0

∫

M
σ2i · r2i+1 dV.

Here σ2i denotes the 2i-th elementary symmetric function in the principal
curvatures of M (which is independent of the orientation).

In the special case of a true tube, with r constant and U normal, we
may take out r from the integrals and obtain Weyl’s tube formula for this
case.

Proof. As U is normal to M , Srad is the usual differential geometric shape
operator for each side of M , using the normal vector field pointing in that
direction. If we denote these by S

(i)
rad, i = 1, 2, then the principal curvatures

on each side differ by a sign, so as in the proof of Corollary 4.5, σ
(1)
r i =

(−1)iσ
(2)
r i . Thus, in (6.9), the integrals on each side of M will cancel for i

odd, and will be equal for i even, yielding the desired formula. �
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7.3.3. Partial and half-tubes on a smooth manifold. A partial tube
Γ on a smooth manifold is defined by two measurable regions Ri, i = 1, 2 on
M , each one associated to a side of M . Then, Γ is the union of the radial lines
from these points on each side, all of length r. The volume of this partial
tube is the sum of the volumes of the partial tubes on each side. Hence, it
is enough to compute the volume of a partial tube for a one-sided region
R. We let U denote the smooth vector field on the side corresponding to R.
Then, we may naturally identify R with the copy of R in M̃ corresponding
to the side associated to U . We can apply the earlier formulas obtained for
a general skeletal set but now with R̃ = R. In the case when neither r is
constant nor U is normal, then we only obtain the general formula (6.9). If
the radius r is constant, without U being normal, then we obtain the volume
of constant radius partial tube for R̃ = R given by (7.4). In the case that
R = M is a one-sided region, we obtain a “half-tube”. Then, (6.9) takes the
following simplified form.

Corollary 7.4. The volume of a varying radius half-tube Γ is given by

(7.6) Volume of Γ =
n∑

i=0

(−1)i

i + 1

∫

M
σr i · ri+1 dV.

Remark 7.5. We make two remarks regarding volumes of half-tubes. The
first is that if we are only given one vector field U (1) pointing toward one
side of M , for which the radial flow satisfies the conditions for a region
with possibly singular boundary, then we may choose a normal vector field
U (2) of sufficiently small constant length and pointing to the opposite side
from U (1). Together, the U (i) define a multivalued vector field U on M ,
so that (M, U) is a skeletal structure which defines a region with possibly
singular boundary. Then the preceding formula (7.6) applies to the half-tube
determined by U (1).

Second, (7.6) remains valid even in the case that the boundary of the
region defined by (M, U) is singular in the sense of Definition 2.1.

7.4. Generalized offset regions and a “mining rights formula”

We consider three consequences of the preceding remarks for generalized
offset regions, for “signed offset regions” and a “mining rights formula”
proposed by Stetten [22] which gives an alternate way to compute the volume
of a region.
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7.4.1. Volumes of offset regions and Steiner’s formula. Suppose
that Ω is a compact region in R

n+1 with a smooth boundary B. Let U
be a smooth nonvanishing outward pointing vector field. We construct a
generalized offset region. Suppose (B, U) satisfies the conditions for defining
a region Ω′ with possibly singular boundary. We refer to Ω′ as a generalized
offset region (with possibly singular boundary).

In the standard case of an offset region using a normal vector field of
constant length, there is a generalization of the classical Steiner’s formula
for regions with smooth boundary [11, Chapter 10]. In fact, the offset region
is a half-tube. The generalized offset region is a generalized half-tube; hence
by Remark 7.5 and (7.6), we obtain the following formula.

Corollary 7.6. The volume of the generalized offset region Ω′ is given by

(7.7) Volume of generalized offset region =
n∑

i=0

(−1)i

i + 1

∫

M
σr i · ri+1 dM.

Remark 7.7. We emphasize that dM denotes the medial measure (even
though it is being used on M) and it automatically takes into account the
failure of the vector field U to be non-normal.

In the special case that the offset region has constant radius, we may
remove r from the integrals in (7.7) and obtain a polynomial expansion in
r. If the offset region is defined using a normal vector field, then σr i is the
i-th elementary symmetric function in the principal curvatures of M .

7.4.2. Integrals and volumes for “signed offset regions”. Suppose
U1 is a smooth unit vector field on M , nowhere tangent to M . We let r
be a smooth function on M which may be positive and negative. We let
U = r · U1. If we try to define a generalized offset region using U , then we
have a basic problem: depending on the sign of r, U points to different sides
of M . Nonetheless, we suppose for simplicity that r−1(0) is a piecewise
smooth n − 1 submanifold separating the regions R+ and R− where r is
positive and negative. Suppose r also satisfies

(7.8) |r| < min
1

|κr i|
for all κr i such that sgn(r) · κr i > 0.

Then the radial flow does not develop singularities from R+ nor from R−.
We suppose that the flow remains globally one–one on each of these regions.
We denote the image of the radial flow at time one by B and the region
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Figure 8: Signed offset region Ω on M .

between M and B by Ω. We refer to this region as a signed offset region
(figure 8).

Then, Ω is made up of partial tubes Ω+ and Ω− on the regions R+
and R− on each side of M (actually B and M intersect on the boundaries;
however, the arguments we have given will still apply). We suppose we are
given a non-negative function g on Ω, and we want to integrate g on Ω,
except we want to treat the values of g over Ω− as being negative. This is
represented by the following signed offset integral

∫

Ω
sgn(r) · g dV.

We apply the preceding results regarding partial tubes (except to integrals
rather than just volumes) to Ω+ and Ω− separately. We define for ε = ±1

δε(x) =
∫ 1

0
g(x + tεU(x)) · det(I − trSrad) dt.

Corollary 7.8. For the signed offset region Ω, and non-negative integrable
function g,

(7.9)
∫

Ω
sgn(r) · gdV =

∫

R+

r · δ+ dM −
∫

R−

r · δ− dM.

In the case that g ≡ 1, we obtain from (7.9) the signed volume of Ω,
which measures the difference in volume between the region enclosed by B
and that enclosed by M . This is a difference of volumes of partial tubes,
and is given by the preceding formulas as a difference of integrals.

7.4.3. “Mining rights formula” for volume of a region. If Ω is a
compact region with generic smooth boundary B in R

n+1, then an alternate
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approach to finding the volume of Ω is to express it as an integral over B.
Define the function δ′ by the expression

δ′ =
∫ r

0

∏
(1 − tκi)dt,

where the κi are the principal curvatures of M (with respect to the inward
pointing normal). Then, the following formula (7.10) was proposed by Stet-
ten [22] who called it the “mining rights formula”.

Theorem 7.9. If Ω is a region in R
n+1 with generic smooth boundary B,

then the volume of Ω is given by the following formula

(7.10) Volume of Ω =
∫

B
δ′ dV.

We derive this formula as a consequence of the formula obtained earlier
for the volume of a half-tube allowing a singular boundary.

Proof. We define on B the vector field U which at a point x is from x to
the image in the Blum medial axis under the grassfire flow. In the generic
case this is a continuous piecewise smooth vector field (it is the negative of
the translate of the radial vector field from the medial axis M to B. Then,
we invert our view of Ω as being built from the medial axis M by the radial
flow. Instead, it is the half-tube on B defined by this vector field. Thus,
we flow inward from B by the grassfire flow to obtain the half-tube Ω with
“singular boundary” M as in figure 9.

In order to apply half-tube formula in this case, we have to break up M
into regions on which U is smooth and use the formula for partial tubes on
the regions. Then adding up these formulas, we still obtain the formula (7.6)

Figure 9: Region Ω as a half-tube on B with singular boundary M .
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for the volume of Ω. We first rewrite this as an integral from Theorem 6.4.

(7.11) Volume of Ω =
∫

B
r · δ(x) dV

where

r · δ(x) =
∫ 1

0
det(I − t · r · SB) · r · dt

=
∫ 1

0

∏
(I − t · r · κi) · r · dt.

Here the κi are the principal curvatures of B but for the inward pointing
normal. Then, after performing a change of coordinates s = r · t, we see
that r · δ = δ′; hence, (7.11) yields the formula. �

8. Divergence theorem for fluxes with discontinuities across
the medial axis

Let (M, U) be a skeletal structure which defines Ω as a region with smooth
boundary B in R

n+1. For example, M could be the Blum medial axis M
of Ω in the case of a smooth generic boundary B. We will derive a version
of the divergence theorem for a region Γ ⊂ Ω for a vector field F which
may have discontinuities across M . Before we begin defining exactly what
we will mean, we first introduce a piece of terminology. Let Mα denote
either a component of a stratum of M or a manifold with boundary or
corners appearing in a paved neighborhood in M . We let M̃α denote the
submanifold in M̃ given by M̃α together with a choice of smooth value of U
on Mα. Then, for the radial flow ψ, we will refer to the image ψ(M̃α × [0, 1])
as the radial trace of M̃α. By our assumptions on (M, U) (see Section 2 and
[7]), it will still be a smooth manifold if Mα is a stratum, or a manifold
with boundary and corners if Mα is one. We denote the radial trace more
simply as M̃α ψ. In figure 10, we see the radial traces of the singular stratum
denoted by heavier lines, with the darker region denoting the radial traces
of the submanifolds M̃ij .

Definition 8.1. A vector field F will be a smooth vector field on Ω with
(possible) discontinuities across M , if F is a smooth vector field on Ω\M
which in addition has the following property at any point x0 ∈ M . There
is a neighborhood V of x0 in R

n+1 and a paved neighborhood W ⊂ V of x0
with W = ∪Mi a decomposition into manifolds with boundaries and corners
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Figure 10: Radial traces and a region Γ in Ω in radial general position.

so that: if M̃i denotes Mi with a chosen smooth value of U , and M̃i belongs
to the abstract neighborhood of C, a local complementary component of M
at x0 in V , then F extends smoothly to the radial trace M̃i ψ.

Example 8.2. We may translate U along each radial line to obtain a vector
field (again denoted by U) on Ω, which is multivalued on M but smooth on
Ω\M . Thus, this U is smooth with discontinuities across M . Likewise, the
corresponding unit vector field U1 analogously obtained by translation is also
smooth with discontinuities across M . In the Blum case, −U1 is the vector
field corresponding to the “grassfire flow” (i.e., eikonal flow) considered by
Siddiqi et al. in [13, 15].

As a consequence of Definition 8.1, F extends to a multivalued continu-
ous piecewise smooth vector field on M . Also, divF also extends smoothly
to each radial trace M̃i ψ.

Next, we specify the types of regions Γ over which we define integrals
of divF , as well as flux integrals of F over the boundary ∂Γ, with the goal
of finding the appropriate generalization of the divergence theorem relating
them.

Normally, flux integrals are defined over smooth boundaries. However,
as in [23], we can define the flux integral of a vector field over a manifold
with boundaries and corners and there is still a version of the divergence
theorem [23, Theorem 7.1]. Now we consider a region Γ ⊂ Ω which has
regular piecewise smooth boundary ∂Γ. By this, we shall mean that each
point x0 of ∂Γ has a paved neighborhood V in Γ. Furthermore, we require
that Γ is in radial general position, which means that M and the radial
traces of Msing decompose Γ into a union of regions with regular piecewise
smooth boundary.
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For example, if Γ has a regular piecewise smooth boundary and the
various dimensional smooth pieces of ∂Γ are transverse to M and the radial
traces of its strata as in figure 10, then Γ is in radial general position.

Since divF is bounded and smooth on Ω\M , and M is a set of measure
0 in Ω, we may extend divF any way we wish to M to obtain a measur-
able function. As Γ is a Borel set and compact, the integral

∫
Γ divF dV is

defined. Likewise, as ∂Γ can be locally paved by compact manifolds with
boundaries and corners with outward pointing normal vectors nΓ, the inte-
gral

∫
∂Γ F · nΓ dS is defined, where dS denotes the n-dimensional volume

over the faces of ∂Γ. To give a version of the divergence theorem, we define
a multivalued function cF on M as follows. Let projTM (F ) = cF · U1, where
projTM denotes projection onto U along TM . As both the extension of F
to M and U are continuous and multivalued, so is cF . Then, the modified
divergence theorem takes the following form.

Theorem 8.3 (modified divergence theorem). Let Ω be a region with
smooth boundary B defined by the skeletal structure. Also, let Γ be a region
in Ω with regular piecewise smooth boundary. Suppose F is a smooth vector
field with discontinuities across M, then

(8.1)
∫

Γ
divF dV =

∫

∂Γ
F · nΓ dS −

∫

Γ̃
cF dM

where Γ̃ consists of points (x, U) ∈ M̃ such that there is an interval {x + tU :
0 < t < ε} ⊂ Γ for some ε > 0.

Remark 8.4. We note that at the edge of M , U becomes tangent, so as
we approach the edge cF becomes infinite. However, the integral is still well
defined because locally dM = ρ dS and ρ approaches 0. In fact, as seen in
the proof of the theorem, the product cF · ρ represents F · n, for the unit
normal vector field n on M , and this remains bounded.

Before proving Theorem 8.3, we derive a consequence for the grassfire
flow. We let G denote the unit vector field which generates the grassfire
flow. As observed in Example 8.2, G is smooth with discontinuities across
M . Thus we can apply Theorem 8.3. In this case, projTM (−U1) = −U1 so
cG = −1. Thus, we obtain as a corollary.

Theorem 8.5. If G denotes the unit vector field generating the grassfire
flow for the region Ω with Blum medial axis M, then for a piecewise smooth
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region Γ ⊂ Ω

(8.2)
∫

Γ
divG dV =

∫

∂Γ
G · nΓ dS +

∫

Γ̃
dM.

Remark 8.6. Thus, the flux of the grassfire flow across ∂Γ differs from the
divergence integral of G over Γ by the “medial volume of Γ̃”.

Example 8.7. In the case of Ω in R
2, M is a branched curve and Γ̃ is

a union of curve segments in M̃ which represent both sides of the curve
segments in Γ ∩ M . The medial measure of Γ̃ is twice the integral of U1 · n
over Γ ∩ M with respect to the usual Riemannian length.

Proof of Theorem 8.3. For the proof, we follow the classical proof of replac-
ing the integrals by a sum of local integrals for which the classical divergence
theorem is valid. Summing these integrals leads to the modified form in the
theorem.

By the properties of skeletal sets we may cover M by the interiors of a
finite number of paved neighborhoods {Wi}. The associated abstact neigh-
borhoods {W̃ij} are a finite covering of M̃ . For each Wi, we let W̃i, resp.,
Vi, denote the union of the W̃ij , resp., radial traces of the W̃ij , for the W̃ij

associated to Wi. Also, the union of the radial traces of the interiors of the
W̃ij associated to Wi form the interior of Vi relative to Ω. The unions of the
interiors again cover Ω. We let {ϕi} be a partition of unity subordinate to
{int(Vi)}.

We may compute the integral by

(8.3)
∫

Γ
divF dV =

∑

i

∫

Γi

ϕi · divF dV

where Γi = Γ ∩ Vi. As each Γi is a Borel set, the integrals on the RHS are
well defined.

First, we consider the case of a single Fi = ϕ · F with support in the
interior of a single Vi. We may represent Vi as a union of radial traces
Vi = ∪M̃ij ψ, where π−1(Wi) = ∪jM̃ij and each M̃ij is a compact manifold
with boundaries and corners with associated smooth value of U . Then,
we may decompose Γi as a union of Γij = Γi ∩ Mij ψ (figure 11 a). Since Fi

extends to be smooth on Γij , we may apply the classical divergence theorem.

(8.4)
∫

Γij

divFi dV =
∫

∂Γij

Fi · nΓ dS.
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Figure 11: Decomposition of the region Γ in Vi.

Second, we sum (8.4) over j. To understand the cancellation that occurs
in the sum of the RHS of (8.4), we note as in figure 11b), there are four types
of n-dimensional faces of Γij :

(1) common faces of a two distinct Γij ;

(2) faces lying in a face of ∂Γ;

(3) faces lying in a M̃ij and

(4) faces lying in a radial trace of a boundary facet of M̃ij , not shared
with another M̃ij′ .

For case (1) of common faces of a pair of Γij , the integrals over the faces
cancel. For case (4), since the support of ϕi does not intersect a radial trace
of such a single boundary facet, the integral over that face is also 0. For
case (2), the sum of integrals over such faces equals

∫
∂Γ∩Vi

Fi · nΓ dS.
Finally for a face as in case (3), we note that nΓ = −n, the unit nor-

mal vector field to Mij pointing in the same direction as the corresponding
smooth value of U . Also, Fi · nΓ = ϕi(F · (−n)). If we write F = cF U1 + F1
with F1 tangent to M , then

Fi · nΓ dS = ϕi · cF (U1 · (−n)) dS(8.5)
= −(ϕi · cF ) · ρ dS(8.6)

where dS the denotes Riemannian volume form on M . Then, the sum of
the integrals for faces in case (3) equals the integral

(8.7)
∫

Γ̃∩W̃i

−(ϕi · cF ) · ρ dS =
∫

Γ̃∩W̃i

−(ϕi · cF ) dM.
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Hence, summing (8.4) over j, we obtain

(8.8)
∫

Γi

div(ϕiF ) dV =
∫

∂Γ∩Vi

ϕi · (F · nΓ) dS −
∫

Γ̃∩W̃i

ϕi · cF dM.

Equivalently, as supp (ϕi) ⊂ Vi, we obtain

(8.9)
∫

Γ
div(ϕiF ) dV =

∫

∂Γ
ϕi · (F · nΓ) dS −

∫

Γ̃
ϕi · cF dM.

Lastly, we want to sum over i. Since
∑

i ϕi ≡ 1,
∑

i ∇(ϕi) ≡ 0. Then,
we may apply a standard argument as follows. Since

(8.10) div(ϕi · F ) = ∇ϕi · F + ϕi divF,

we may sum (8.10) over i, using the relations between ϕi and ∇(ϕi) just
stated, to obtain

(8.11)
∑

i

div(ϕi · F ) = divF.

Thus, summing (8.9) over i using the linearity of the integrals and both
(8.10) and (8.11), we obtain

(8.12)
∫

Γ
divF dV =

∫

∂Γ
(F · nΓ) dS −

∫

Γ̃
cF dM

which is what we wished to establish. �

9. Computing the average outward flux for the grassfire flow

We explain in this section how the modified divergence theorem applies to
justify an algorithm developed by Siddiqi et al. [13, 15] to identify points
of the Blum medial axis. Let Ω be a region with smooth generic bound-
ary B, and Blum medial axis M . As in Section 8, we also let G denote
the unit vector field which generates the grassfire flow. The algorithm con-
cerns properties of the flux of the vector field G, which has discontinuities
across M .

Suppose we are given a convex region Γ′ ⊂ R
n+1 with regular piece-

wise smooth boundary, containing 0 in its interior. We can form tΓ′ =
{t · x : x ∈ Γ′}. Then, about any point x ∈ Ω\B, we can form the translate
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Γt(x) = x + tΓ′. For t > 0 sufficiently small, Γt(x) ⊂ Ω. Thus, we may first
consider the limit of the flux across ∂Γt(x) as t → 0.

lim
t→0

∫

∂Γt(x)
G · n∂Γt(x) dS

where n∂Γt(x) denotes the outward normal to ∂Γt(x).

Lemma 9.1. Suppose Ω ⊂ R
n+1 is a compact region with smooth generic

boundary B. If x ∈ Ω\B, then

lim
t→0

∫

∂Γt(x)
G · n∂Γt(x) dS = 0.

Proof. If Γt(x) ∩ M = ∅, then by the usual divergence theorem,
∫

∂Γt(x)
G · n∂Γt(x) dS =

∫

Γt(x)
divG dV.

By the continuity of G off M and the mean value theorem for integrals,
∫

Γt(x)
divG dV = divG(x̄) · vol(Γt(x))

for some x̄ ∈ Γt(x).
Then, the continuity of divG implies that |divG(x̄)| is bounded on

Γt0(x). If we let t → 0, then vol(Γt(x)) → 0; hence, the RHS → 0. Thus, so
does the flux.

In fact, we claim this still remains true if x ∈ M . Using the modified
divergence theorem applied to G (Theorem 8.5),

(9.1)
∫

∂Γt(x)
G · n∂Γt(x) dS =

∫

Γt(x)
divG dV −

∫

Γ̃t(x)
dM.

We claim there is a constant C > 0 so that for t > 0 sufficiently small,

(9.2) |
∫

Γt(x)
divG dV | ≤ C · Vol(Γt(x)).

If t is small enough, then there is a paved neighborhood W of x, so that
Γt(x) is contained in the radial trace of W . We may then repeat the argu-
ment in the proof of Theorem 8.3, to decompose Γt(x) = ∪iΓt i, so that each
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G|(Γt i\M) extends smoothly to Γt i ∩ M . Thus, divG is bounded on Γt i.
Thus, there is a single constant C such that

|divG| ≤ C for all x ∈ Γt(x).

This continues to hold for all 0 < t′ < t as Γt′(x) ⊂ Γt(x). Thus, by again
applying the mean value theorem for integrals to each Γt i, and then sum-
ming, we obtain (9.2).

As t → 0, the RHS of (9.2) → 0, so

lim
t→0

∫

Γt(x)
divG dV = 0.

Second, since ρ ≤ 1,
∣∣∣∣∣

∫

Γ̃t(x)
dM

∣∣∣∣∣ ≤ n-dim vol(Γ̃t(x)).

As t → 0, n-dim vol(Γ̃t(x)) → 0, so also the second integral on the RHS of
(9.1) → 0 as t → 0. Thus, as t → 0, the limit of the flux on Γt(x) → 0. �

Although the limiting value of the flux does not differ for points on or
off the Blum medial axis, it turns out that the limiting value of the “average
flux” does detect points on the medial axis. The algorithm developed in [13,
15] uses a discrete version of the average flux to determine the Blum medial
axis. We justify this algorithm using the modified divergence theorem. In
what we say, we restrict attention to regions in R

2 or R
3, although the

general form we give will have analoges in higher dimensions.
We use a convex Γ as before, except that we further limit the allowable

Γ by requiring that the edges of the boundary (where smooth facets meet)
lie in the intersection of the boundary with a finite number of hyperplanes
passing through 0. Thus, besides convex regions with smooth boundaries,
this also allows, for example, cubes.

We let voln+1(Γt(x)), resp., voln(∂Γt(x)), denote the (n + 1)-dimensional
volume of Γt(x), resp., n-dimensional volume of ∂Γt(x), for n = 1, 2. Now
we consider the average flux across Γt(x) to be

the average flux across Γt(x) =
1

voln(∂Γt(x))
·
∫

∂Γt(x)
G · n∂Γt(x) dS.

We are interested in the limit of the average flux as t → 0. In particular,
we will see that it will again be zero off the medial axis; however, now
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for points on the medial axis, it will not vanish (except at edge points).
The non-vanishing on the medial axis is due to the medial integral term
in the modified divergence theorem. Thus, we will be concentrating on
understanding the contribution of this term to the limiting average flux.

Although the value of the limiting average flux can vary for points on
the medial axis, it can be bounded in terms of two invariants associated to
each point x on the Blum medial axis M . First, we recall that ρ(x) = U1 · n
is a piecewise smooth multivalued function on M which has values at x
corresponding to each local component of M of x, and to each value of U1
defined for each local component (and the corresponding unit normal vector
n to the local component at x pointing in the same direction as U1). We
let min(ρ)(x) denote the minimum non-zero value of ρ(x) for the multiple
values at x.

Second, we define for each possible generic type T for points of M a
medial density mT Γ. The generic types for the 1-dimensional medial axis
are smooth points, branch points, and end points; for the 2-dimensional
medial axis they are smooth points, Y-branch points, edge points, fin points
(figure 4a) and 6-junction points (where six local components joined along
four Y-branch curves meet). The medial density mT Γ has the property that
for any point x ∈ M of type T ,

mT Γ ≤ lim
t→0

voln(Γ̃t(x))
voln(∂Γt(x))

,

and this is the largest constant with this property for all generic regions.
Here voln(Γ̃t(x)) denotes the integral

∫
Γ̃t(x) dV for the usual n-dimensional

Riemannian volume dV .

Remark 9.2. We note that this constant can differ for different Γ such
as a disk versus a cube. In the case of a disk, this gives, up to a constant
factor, the local density defined by Kurdyka–Raby for subanalytic sets [14].

We will show that this constant is strictly positive for each type except
the edge points of M . Then, we define

MΓ = min
non-edge T

{mT Γ}.

Finally, we will give a bound for the limiting flux at non-edge points of M
in terms of min(ρ) and MΓ. Since both of these constants are non-zero, we
will obtain a non-zero bound for the limiting average flux at non-edge points
of M .
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The main theorem we will prove is the following.

Theorem 9.3. Suppose Ω ⊂ R
n+1 for n = 1, 2 denotes a compact region

with smooth generic boundary B. If x ∈ Ω\B, then

lim
t→0

(the average flux across Γt(x))

{
= 0 x /∈ M or x ∈ ∂M

< −MΓ · min(ρ)(x) x ∈ M\∂M

where MΓ is positive and depends on Γ and min(ρ)(x) > 0.

Hence, as asserted in [15], the points on the Blum medial axis (except
∂M) are detected by the non-vanishing of the limiting average flux as
t → 0. Another calculation of the limit of the average outward flux in the
1-dimensional case using Γ a 2-disk allows a more precise evaluation [24].

Remark 9.4. For a smooth point x of the Blum medial axis, ρ(x) is
uniquely defined, and we can give a more precise bound < −ρ(x0) · mSΓ
for S denoting the type representing smooth points.

We want to both prove this theorem and to compute these medial den-
sities for the case of disks and cubes. First, we determine how to compute
these constants, and do so for Γ a 2-disk or square for the 1-dimensional case,
or 3-disk or cube for the 2-dimensional case. If we choose a point x0 of one
type T , then we may pave a neighborhood W of x0 in M by manifolds with
boundaries and corners Mi. In the 1-dimensional case, these are smooth
embedded images of closed intervals, while for the 2-dimensional case, we
may take them to be smooth embedded images of closed rectangles.

We let W̃ denote the inverse image of W in M̃ , and we let M̃ij denote
the non-edge manifold components of W̃ so each M̃ij consists of a non-
edge manifold component Mi of W together with a smooth value of U . In
practical terms for non-edge points, only in the case of fin points do we
disregard a local component (which corresponds to the fin in that case). For
each M̃ij , there is a value of ρ = U1 · n at x0 which is strictly positive (as Mij

is a non-edge component so U is not tangent to Mi at x0). The corresponding
function ρ on each M̃ij is continuous. We let M̃ij(t) = M̃ij ∩ Γ̃t(x0). Then,

(9.3)
∫

Γ̃t(x0)
dV =

∑

i,j

∫

M̃ij(t)
dV.

Thus, to compute

lim
t→0

voln(Γ̃t(x0))
voln(∂Γt(x0))

,
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it is sufficient to determine for each M̃ij the limit

lim
t→0

1
voln(∂Γt(x0))

·
∫

M̃ij(t)
dV.

The Mi have well-defined tangent planes at x0. Let Rij(t) denote the pro-
jection of Mij(t) onto the tangent plane of Mij at x0. For t > 0 sufficiently
small, this projection is a diffeomorphism. Also, we let Ci denote the inter-
section in Tx0Mi of the cone spanned by the half-tangent lines at x0 to the
1-dimensional edges of Mi; and let Ci(t) = Γt(x0) ∩ Ci.

Lemma 9.5.

lim
t→0

voln(Mij(t))
voln(∂Γt(x0))

= lim
t→0

voln(Rij(t))
voln(∂Γt(x0))

= lim
t→0

voln(Ci(t))
voln(∂Γt(x0))

.

Proof of Lemma 9.5. In the 1- or 2-dimensional case (using polar coordi-
nates), a direct calculation shows

(9.4) voln(Mij(t)), voln(Rij(t)) = voln(Ci(t)) + o(tn).

If we use the scaling property

voln(∂Γt(x0)) = tn · voln(∂Γ(x0))

together with (9.4), we obtain the result. �

Remark 9.6. Almost certainly Lemma 9.5 holds as well for higher
dimensions.

Then, applying Lemma 9.5 and (9.3) and keeping in mind that there are
two sides Mij to each Mi, we compute

(9.5) lim
t→0

voln(Γ̃t(x0))
voln(∂Γt(x0))

= lim
t→0

( 2
voln(∂Γt(x0))

·
∑

i

voln(Ci(t))
)
.

However, by scaling properties of volume for both Ci(t) and ∂Γt(x0),

voln(∂Γt(x)) = tn · voln(∂Γ) and
voln(Ci(t)) = tn · voln(Ci ∩ Γ(x0)).(9.6)
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Table 1: Medial densities for the 1-and 2-dimensional cases for Γ an n-disk
or n-cube.

1-dimensional case 2-dimensional case

Type 2-disk Square Type 3-disk Cube

Smooth point
2
π

1
2

Smooth point
1
2

1
3

Branch point
3
π

3
4

Y-branch point
3
4

1
2

End point
1
π

1
4

Fin point
1
2

1
3

MΓ
2
π

1
2

6-junction point ≥ 1
2

≥ 1
3

End point
1
4

1
6

MΓ
1
2

1
3

Thus, we conclude from Lemma 9.5 and (9.6)

(9.7) lim
t→0

voln(Γ̃t(x0))
voln(∂Γt(x0))

=
2

voln(∂Γ(x0))
·
(∑

i

voln(Ci ∩ Γ(x0))
)
.

Then, using (9.7) we can compute the medial density.

Proposition 9.7. The medial densities in the 1- and 2-dimensional case
for disks and cubes are given by table 1.

Table 1 suggests that for general allowable Γ, MΓ = mS Γ, where S denotes
the type representing smooth points, i.e., the minimum of mT Γ occurs for
smooth points.

Proof of Proposition 9.7. We consider the 2-dimensional case. The
1-dimensional case is easier. First, for smooth points and fin points ∪iCi =
Tx0M , i.e., in the smooth case C1 = Tx0M , while for a fin point x0, there is a
unique common limiting tangent plane at x0, for each non-edge component
and ∪iCi fills out this plane. Thus, the intersection of this plane with a cube
Γ centered at x0 has area ≥ the area of a face of the cube. Thus, by (9.7)
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mTΓ ≥ 2 · r2

6r2 = 1
3 and equality will occur if the tangent plane is parallel to

a face. Instead, for a sphere mTΓ = 2 · πr2

4πr2 = 1
2 .

In the case of Y -branch points, there are three Ci each of which is a half
plane. Thus, an analogous computation yields either 1

2 for a cube or 3
4 for

the sphere.
The remaining case is the 6-junction. There are six cones Ci joined

along four half-lines through x0 which intersect the sphere in four points
Pi. In the case of the sphere or radius r centered at x0, the area of each
Ci ∩ Γ(x0) is proportional to the spherical length of the spherical segment
determined by Ci. The sum of the lengths of these 6 segments > 2πr, and
as these points approach a common point, the lengths approach 2π. Thus,
mTΓ ≥ 2 · πr2

4πr2 = 1
2 . A similar argument works for the cube giving 1

3 . �

Proof of Theorem 9.3. If x /∈ M , the proof is similar to that for Lemma 9.1.
Suppose |divG| ≤ C on ∂Γt(x). By the usual divergence theorem,

(9.8)
average flux across ∂Γt(x) =

1
voln(∂Γt(x))

·
∫

Γt(x)
divG dV

≤ C

voln(∂Γt(x))
· voln+1(Γt(x)).

Using that the volume has the scaling properties (9.6) and

voln+1(Γt(x)) = tn+1 · voln+1(Γ),

we conclude

(9.9) average flux across ∂Γt(x) ≤ tC · voln+1(Γ)
voln(∂Γ)

.

Since the RHS of (9.9) → 0 as t → 0, we conclude that the limit of the
average flux is 0.

For the case of x ∈ M , we again use the modified divergence theorem
in the form of Theorem 8.5. We obtain the average flux across ∂Γt(x) by
dividing (9.1) by voln(∂Γt(x)). From (9.2), we obtain

(9.10)

1
voln(∂Γt(x))

· |
∫

Γt(x)
divG dV | ≤ C · voln+1(Γt(x))

voln(∂Γt(x))

≤ tC · voln+1(Γ)
voln(∂Γ)

.
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Again as t → 0, the RHS of (9.10) → 0. Thus,

(9.11) lim
t→0

(average flux across ∂Γt(x)) = − lim
t→0

( 1
voln(∂Γt(x))

∫

Γ̃t(x)
dM

)
.

It remains to show that the RHS has a non-zero negative value bounded
away from zero if x ∈ M\∂M , while if x ∈ ∂M , the limit is 0.

Let x0 ∈ M\∂M . We use notation as earlier for a paved neighborhood
W of x0 with M̃ij denoting the manifold components of W̃ , except we do
allow edge-components. We again let M̃ij(t) = M̃ij ∩ Γ̃t(x0). Then,

∫

Γ̃t(x0)
dM =

∑

ij

∫

M̃ij(t)
ρij dV,

where ρij is the value of ρ for M̃ij . It is enough to determine for each M̃ij

the limit

lim
t→0

1
voln(∂Γt(x0))

·
∫

M̃ij(t)
ρij dV.

Then, for t > 0 sufficiently small, Mi(t) will be connected; thus, we can
apply the mean value theorem for integrals to conclude

∫

M̃ij(t)
ρ dV = ρij(x̄) · voln(Mi(t)).

Then,

lim
t→0

1
voln(∂Γt(x0))

·
∫

M̃ij(t)
ρij dV = lim

t→0

(
ρij(x̄) · voln(Mi(t))

voln(∂Γt(x0))

)

or using x̄ → x0 as t → 0, Lemma 9.5, and the scaling properties of volume

= ρij(x0) · voln(Ci ∩ Γ(x0))
voln(∂Γ(x0))

≥ min(ρ)(x0) · voln(Ci ∩ Γ(x0))
voln(∂Γ(x0))

.(9.12)
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Note: if Mi is an edge component then ρij(x0) = 0 so we can drop it from
the sum. Summing (9.12) over (i, j) yields

lim
t→0

( 1
voln(∂Γt(x))

∫

Γ̃t(x)
dM

)
≥ min(ρ)(x0) · 1

voln(∂Γ(x0))

·
∑

i

voln(Ci ∩ Γ(x0))

≥ min(ρ)(x0) · mTΓ(9.13)

by using (9.7), where x0 is of type T . By (9.11), this is exactly what we
claimed �

Acknowledgement

Partially supported by National Science Foundation grants DMS-0405947
and CCR-0310546 and DARPA grant HR0011-05-1-0057

References

[1] H. Blum and R. Nagel, Shape description using weighted symmetric axis
features, Pattern Recog. 10 (1978), 167–180.

[2] S. Pizer, S. Siddiqi, G. Szekely, J. Damon, and S. Zucker, Multiscale
Medial Loci and their Properties, Int. J. Comp. Vision 55 (2003), no.
2–3, 155–179.

[3] J. Mather, Distance from a manifold in Euclidean space, Proc. Symp.
Pure Math. 40 (1983), (Pt 2), 199–216.

[4] B. B. Kimia, A. Tannenbaum, and S. Zucker, Toward a computational
theory of shape: an overview, ‘in Three dimensional computer vision’,
ed. O. Faugeras, M I T Press, 1990.

[5] J. Yomdin, On the local structure of the generic central set, Compositio
Mathematica 43 (1981), 225–238.

[6] P. J. Giblin, Symmetry sets and medial axes in two and three dimen-
sions, in ‘The Mathematics of Surfaces’, eds. Roberto Cipolla and Ralph
Martin, Springer-Verlag, 2000, 306–321.



Global geometry via skeletal integrals 357

[7] J. Damon, Smoothness and geometry of boundaries associated to skeletal
structures I: sufficient conditions for smoothness, Ann. Inst. Fourier 53
(2003), 1001–1045.

[8] J. Damon, Smoothness and geometry of boundaries associated to skeletal
structures II: Geometry in the Blum case, Compositio Mathematica 140
(2004), no. 6, 1657–1674.

[9] J. Damon, Determining the geometry of boundaries of objects from
medial data, Int. J. Comp. Vision 63 (2005), no. 1, 45–64.

[10] H. Weyl, On the volume of tubes, Amer. J. Math. 61 (1939), 461–472.

[11] A. Gray, Tubes, Addison-Wesley Publishers, 1990.

[12] S. Pizer, P. T. Fletcher, S. Joshi, A. Thall, J. Z. Chen, Y. Fridman,
D. S. Fritsch, A. G. Gash, J. M. Glotzer, M. R. Jiroutek, C. Lu,
K. E. Muller, G. Tracton, P. Yushkevich, and E. L. Chaney, Deformable
M-reps for 3D medical image segmentation, Int. J. Comp. Vision 55
(2003), no. 2–3, 85–106.

[13] S. Bouix, K. Siddiqi, A. Tannenbaum, and S. Zucker Hamilton–Jacobi
skeleton, Intl Conf. Computer Vision, Kerkyra, Greece, (1999) 828–834.
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