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A generalization of Liu–Yau’s quasi-local mass
Mu-Tao Wang and Shing-Tung Yau

In [11, 12], Liu and the second author propose a definition of the
quasi-local mass and prove its positivity. This is demonstrated
through an inequality which in turn can be interpreted as a total
mean curvature comparison theorem for isometric embeddings of
a surface of positive Gaussian curvature. The Riemannian ver-
sion corresponds to an earlier theorem of Shi and Tam [18]. In this
article, we generalize such an inequality to the case when the Gaus-
sian curvature of the surface is allowed to be negative. This is done
by an isometric embedding into the hyperboloid in the Minkowski
space and a future-directed time-like quasi-local energy-momentum
is obtained.

1. Introduction

Let (Ω, gij , pij) be a compact spacelike hypersurface in a time orientable
four-dimensional spacetime N , where gij is the induced metric and pij is
the second fundamental form of Ω in N . We assume the dominant energy
condition holds on Ω, i.e.,

μ ≥
(∑

i

J jJi

)1/2

,

where

μ =
1
2

⎡
⎣R −

∑
i,j

pijpij +

(∑
i

pi
i

)2
⎤
⎦,

and

J i =
∑

j

Dj

[
pij −

(∑
k

pk
k

)
gij

]

and R is the scalar curvature of the metric gij . Such a three-manifold
(Ω, gij , pij) is called an initial data set.
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Liu and Yau prove the following theorem in [11, 12]:

Theorem 1.1. Let (Ω, gij , pij) be a compact initial data set. Suppose the
boundary of Ω is a smooth surface Σ with Gaussian curvature K and mean
curvature H with respect to the outward normal. If K > 0 and H > |trΣp|,
then ∫

Σ
H0 −

∫
Σ

√
H2 − (trΣp)2 ≥ 0,

where H0 is the mean curvature of the (essentially unique) isometric embed-
ding F0 of Σ into R

3. The equality holds only if N is a flat spacetime
along Ω.

We remark that
√

H2 − (trΣp)2 is the Lorentz norm of the mean curva-
ture vector of Σ in N . Liu and Yau (see also Kijowski [10]) propose to define
the quasi-local mass of Σ to be

∫
Σ H0 −

∫
Σ

√
H2 − (trΣp)2. The inequality

amounts to the positivity of Liu–Yau’s quasi-local mass. Liu–Yau’s theo-
rem generalizes the Riemannian version of this inequality which was proved
earlier by Shi and Tam [18]:

Theorem 1.2. Let Ω be a compact three-manifold with positive scalar cur-
vature. Suppose the boundary of Ω is a smooth surface Σ with positive Gauss-
sian curvature and positive mean curvature H with respect to the outward
normal. Then ∫

Σ
(H0 − H) ≥ 0,

where H0 is the mean curvature of the (essentially unique) isometric embed-
ding F0 of Σ into R

3. The inequality holds only if Ω is flat.

The expression
∫
Σ(H0 − H) is indeed the quasi-local mass of Brown and

York [4, 5]. Liu–Yau’s theorem for time symmetric space time (pij = 0 on Ω)
implies the Riemmanian version. Indeed, the validity of Liu–Yau’s theorem
relies only on the fact that Σ bounds a space-like three-manifold Ω, but not
on any particular Ω (the expression

∫
Σ

√
H2 − (trΣp)2 is independent of Ω).

In this article, we generalize Liu–Yau’s quasi-local mass in the case when
the Gaussian curvature of the surface is not necessarily positive. In addition,
we obtain a time-like four-vector instead of a positive quantity. The motiva-
tion for such a generalization is the following. First of all, in general relativ-
ity, it is desirable to extend the definition of quasi-local mass to non-convex
surfaces in order to deal with, for example, black hole collision. Secondly,
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we intend to resolve the issue of momentum in Liu–Yau’s definition. It was
pointed out in [15] that there exists surfaces in R

3,1 with strictly positive
Liu–Yau quasi-local mass. In Liu–Yau’s formulation, the mass is zero only
if Σ lies in a totally geodesic R

3. We believe the momentum has to be
accounted for. We compare to isometric embedding of Σ into R

3,1 and a
four-vector naturally arises in such a setting.

We prove the following theorem.

Theorem 1.3. Let (Ω, gij , pij) be a compact initial data set. Suppose the
boundary of Ω is a smooth surface Σ homeomorphic to the two-sphere. Let K
be the Gaussian curvature and H be the mean curvature with respect to the
outward normal of Σ. Suppose κ > 0 satisfies K > −κ2 and H > |trΣp|. Let
F0 be the (essentially unique) isometric embedding of Σ into H

3
−κ2 ⊂ R

3,1.
Then on Σ there exists a future-directed time-like vector-valued function
W0 : Σ → R

3,1 which depends only on
√

H2 − (trΣp)2 and the embedding
of Σ into H

3
−κ2 such that

∫
Σ

[
H0 −

√
H2 − (trΣp)2

]
W0

is a future-directed non-space-like vector. Here, H0 is the mean curvature of
the isometric embedding into H

3
−κ2.

Our theorem is in the spirit of Liu–Yau’s as the expression depends
only on the metric and the embedding of Σ and

√
H2 − (trΣp)2 and is thus

independent of the particular Ω. Theorem 1.3 is not sharp even if Ω itself is
part of a hyperbolic space. But it does recover Liu–Yau’s theorem as κ → 0.

The Riemannian version is

Theorem 1.4. Let Ω be a compact three-manifold with scalar curvature
R ≥ −6κ2, for some κ > 0. Suppose the boundary of Ω is a smooth sur-
face Σ homeomorphic to the two-sphere. We assume Σ has positive mean
curvature H with respect to the outward normal and Gaussian curvature
K > −κ2. Then there exists a future-directed time-like vector-valued func-
tion W0 : Σ → R

3,1 which depends on H and the embedding of Σ into H
3
−κ2

such that ∫
Σ
(H0 − H)W0

is a future-directed non-space-like vector. Here, H0 is the mean curvature of
the isometric embedding into H

3
−κ2.
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W0 comes from the solution of the backward parabolic equation (5.3)
and is related to the square norm of the Killing spinor on H

3
−κ2 . W0 appro-

aches a constant vector as κ → 0. The comparison theorem holds when Ω
has more than one component and in higher dimension.

A common feature of Shi–Tam’s and Liu–Yau’s theorem is an idea of
Bartnik [2] (see also [23]) which is to glue together Ω with the outer compo-
nent of R

3\F0(Σ) along Σ. Pushing F0(Σ) along the outward normal direc-
tion gives a natural foliation of the outer component. In Shi–Tam’s case, the
joint is smoothed out by perturbing the flat metric in the transverse direc-
tion of the foliation so that the mean curvatures at the joint agree and the
new metric has zero scalar curvature and is asymptotically flat. The proof is
followed by the monotonicity formula of a mass expression and the positive
mass theorem for such a manifold. Liu and Yau were able to deal with the
general space-time case. The key point was a procedure followed in the proof
of the positive mass theorem by Schoen and Yau [21]. Out of an initial data
set (Ω, gij , pij), they constructed a new three-manifold with zero scalar cur-
vature while the original information of pij was retained. The mean curva-
ture is no longer continuous along the joint. Nevertheless, through a delicate
estimate, they were able to prove the existence of harmonic spinors to furnish
the proof of the positivity of the total mass. Positive mass theorems on mani-
folds with discontinuities have been proved by Shi-Tam [18] and Miao [13].

In our case, we suppose Σ has Gaussian curvature K > −κ2, for some
κ > 0. By a theorem of Pogorelov [17], Σ can be isometrically embedded
into the hyperbolic space H

3
−κ2 of constant sectional curvature −κ2, and the

embedding is unique up to a hyperbolic isometry in SO(3, 1). H
3
−κ2 is iden-

tified with the hyperboloid in the Minkowski space R
3,1; so this becomes an

embedding of Σ into R
3,1. Such embeddings are unique only when restricted

to H
3
−κ2 .

We remark that the second fundamental form of F0 is positive definite
by the Gauss formula. In particular, the mean curvature H0 > 0. Indeed
the Gauss formula says the sectional curvature Kab satisfies

Kab = −κ2 + haahbb − h2
ab,

where hab is the second fundamental form.
Our proof involves a construction similar to that of Bartnik, Shi–Tam,

and Liu–Yau. We glue Ω with the outer component of H
3
−κ2\F0(Σ) by

identifying the two embeddings and perturbing the hyperbolic metric in
the transverse direction so that the scalar curvature remains −6κ2 and the
metric is asymptotically hyperbolic. We also introduce the function W by
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solving a backward parabolic equation with a prescribed value at infinity.
We show that the difference of the weighted total mean curvature of the
leaves in the two metrics is monotone and is positive at infinity by a positive
mass theorem for asymptotically hyperbolic manifolds.

We remark that the positive mass theorems for the ADM mass (asymp-
totically flat) and the Bondi mass were first proved by Schoen and Yau
[19–22]. Witten [25] (see also [16]) then gave a different yet simpler proof
using a spinor argument. This argument is adapted by several authors
[14, 1, 24, 7, 8, 26] to study the mass and rigidity of asymptotically hyperbolic
manifolds. The formulation of the positive mass theorem for asymptotically
hyperbolic manifolds is more complicated than the asymptotically flat case
in that the non-trivial Killing spinor is involved. Our definition of mass
involves a particular foliation asymptotic to surfaces of constant mean cur-
vature. A perhaps more canonical one is the foliation by surfaces of constant
mean curvature constructed by Huisken and Yau [9]. We plan to investigate
this direction in the near future.

The paper is organized as the follows: In Section 2, we study the folia-
tion of the hyperbolic space and derive the growth estimates of the relevant
geometric quantities. Through the prescribed scalar curvature equation, we
obtain an asymptotically hyperbolic three-manifold (M, g′′) with scalar cur-
vature −6κ2. M is diffeomorphic to H

3
−κ2\Ω0, where Ω0 is the region in H

3
−κ2

enclosed by F0(Σ). The mean curvature of the inner boundary of M can be
prescribed to be any positive function H. In Section 3, we review Witten’s
Lichnerowicz formula for the hypersurface spin connection, and we express
the total mass of the (M, g′′) as the limit of an integral on the leave of the
foliation. In Section 4, we study the Killing spinors on H

3
−κ2 and calculate

the total mass of (M, g′′) explicitly. In Section 5, we derive the monotonic-
ity formula of the mass expression. In Section 6, we prove the positivity of
the total mass of (M, g′′) by gluing with Ω and choosing a suitable H. The
proofs of Theorem 1.3 and 1.4 are given at the end of Section 6.

2. Foliations with prescribed scalar curvature

2.1. Foliations on hyperbolic spaces

Let Σ be any (n − 1)-dimensional Riemannian manifold. We assume each
sectional curvature of Σ is not less than −κ2. Let F0 : Σ → H

n
−κ2 be an

isometric embedding and denote the image by Σ0 = F0(Σ). We deform Σ0
in the normal direction at unit speed in order to obtain a foliation of the
outer region of the surface Σ0 . This can be described by an ODE: for each
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p ∈ Σ, we consider ⎧⎪⎨
⎪⎩

d

dr
F (p, r) = N(p, r)

F (p, 0) = F0(p),

where F : Σ × [0,∞) → H
n
−κ2 and N is the unit outward normal of the sur-

face Σr = F (Σ, r). The parameter r represents the distance function to Σ0,
and Σr are exactly the level sets of r. For each fixed p ∈ Σ, F (p, r), 0 ≤ r <
∞, is a unit speed geodesic.

We fix a coordinate system (x1, . . . , xn−1) on Σ, and this gives a para-
metrization of each leaf Σr. Let gab(p, r) = 〈 ∂F

∂xa , ∂F
∂xb 〉, a, b = 1 . . . n − 1, be

the induced metric on the leave Σr. Therefore, the hyperbolic metric can
be written as dr2 + gab(p, r). For each p, gab(p, r) satisfies the ODE

(2.1)
d

dr
gab(p, r) = 2hab(p, r),

where hab(p, r) = 〈∇ ∂F

∂xa
N, ∂F

∂xb 〉 is the second fundamental form of Σr. By the
assumption of sectional curvature, hab(p, 0) > 0 for each p ∈ Σ. hab satisfies

d

dr
hab = gcdhachbd − R

(
∂F

∂xa
, N,

∂F

∂xb
, N

)
.(2.2)

In our case, R( ∂F
∂xa , N, ∂F

∂xb , N) = −κ2gab and ha
b = gachcb satisfies

d

dr
ha

b = −ha
ch

c
b + κ2δa

b .(2.3)

The mean curvature H0 = gabhab satisfies

d

dr
H0 = −|A|2 + (n − 1)κ2.(2.4)

Equation (2.3) is an integrable first order ODE system. Given any point
p ∈ Σ, choose a coordinate system so that hab(p, 0) = λa(p, 0)gab(p, 0) and
ha

b (p, 0) = λa(p, 0)δa
b is diagonalized with principal curvature λa(p, 0). By

the uniqueness of ODE system, the solution is a diagonal matrix ha
b (p, r) =
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λa(p, r)δa
b and the principal curvatures λa = λa(p, r) satisfy

d

dr
λa = −λ2

a + κ2.

It is easy to see in case when λa(p, 0) ≥ κ, λa(p, r) = κ coth(κ(μa + r))
with λa(p, 0) = κ coth(κμa) is a solution of this ODE and limr→∞ λa = κ
is independent of the initial condition. If λa(p, 0) < κ, we may replace coth
by tanh and the results are similar. Since only the asymptotic behavior at
infinity will be relevant, for simplicity we shall restrict to the case λa(p, 0) ≥
κ in the following discussions.

Now we can solve Equation (2.1). Since λa = κ coth(κ(μa + r)) are the
eigenvalues of ha

b , we have hab = κ coth(κ(μa + r))gab, and the gab satisfy

d

dr
gab = 2κ coth(κ(μa + r))gab.

We may assume gab(p, 0) = δab by choosing coordinates near p. Since
the solution of initial value problem⎧⎪⎨

⎪⎩
d

dr
ηa = 2κ coth(κ(μa + r))ηa

ηa(0) = 1

is ηa(r) = sinh2(κ(μa+r))
sinh2(κμa) , we obtain

(2.5) gab(p, r) =
sinh2(κ(μa + r))

sinh2(κμa)
δab.

The volume element of Σr is thus

√
det gab(p, r) =

n−1∏
a=1

sinh(κ(μa + r))
sinh(κμa)

√
det gab(p, 0).

It is clear that g̃ab(p, r) = e−2κrgab(p, r) is uniformly equivalent to the
standard metric of S

n−1 for any r.
The mean curvature of Σr is

(2.6) H0(p, r) =
n−1∑
a=1

κ coth(κ(μa + r)).
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By the Gauss formula, the sectional curvature Kab is

Kab(p, r) = −κ2 + κ2 coth(κ(μa + r)) coth(κ(μb + r)),

and the scalar curvature Rr of Σr is
(2.7)

Rr(p, r) = −(n − 1)(n − 2)κ2 + 2κ2
∑
a<b

coth(κ(μa + r)) coth(κ(μb + r)).

The limits are
(2.8)

lim
r→∞

H0(p, r) = (n − 1)κ, lim
r→∞

Kab(p, r) = 0 and lim
r→∞

Rr(p, r) = 0.

It is useful to view the total space as Σ × [0,∞) with the metric gab(r) on
each r-slice. In the case when n = 3, the normalized metric g̃ab = e−2κrgab

has scalar curvature e2κrRr which approaches

4κ2 eκ(μ1−μ2) + eκ(μ2−μ1)

eκ(μ1+μ2)
.

Unlike the flat case (see [18]), this is in general not a round metric on the
sphere.

Another approach to deriving formulae in this section is to express the
embedding of Σr in terms of the coordinate function of R

3,1:

(2.9) X(F (p, r)) = cosh κrX(F (p, 0)) +
sinhκr

κ
N(p, 0),

where N(p, 0) is the outward normal of Σ0 tangent to H
3
−κ2 as a vector

in R
3,1.
All the formulae in this section can be verified by this explicit embedding.

Also, the normalization e−κrX(F (p, r)) approaches X + 1
κN which lies in the

light cone.

2.2. Prescribed scalar curvature equation

Following the assumption in the previous section, we suppose Σ0 bounds a
region Ω0 ⊂ H

3
−κ2 , and denote M = H

n
−κ2\Ω0. By the assumption on the

sectional curvature of Σ, the hyperbolic metric g′ on M can be written
as dr2 + gab(p, r) where r is the geodesic distance to Σ0, and gab(p, r) is
the induced metric on the level set Σr of r. The mean curvature of Σr

with respect to the outward normal in the hyperbolic metric is denoted
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by H0. We consider a new metric g′′ on M of the form u2dr2 + gab(p, r)
with prescribed scalar curvature −n(n − 1)κ2. Notice that g′′ = u2dr2 +
gab(p, r) induces the same metric on the leaf Σr. u then satisfies the following
parabolic PDE (see Equation (1.10) in [18]):

(2.10) 2H0
∂u

∂r
= 2u2Δru + (u − u3)(Rr + n(n − 1)κ2),

where Δr is the Laplace operator and Rr is the scalar curvature of Σr.
We also require the initial condition

(2.11) u(p, 0) =
H0(p, 0)

H(p)

to be satisfied where H is a positive function defined on Σ. The mean
curvature of Σr in the new metric is then H(p, r) = 1

uH0(p, r).
For simplicity, we shall focus on the n = 3 case in the rest of the section.

The general case can be derived similarly. The solution of

2H0
∂u

∂r
= 2u2Δru + (u − u3)(Rr + 6κ2)

can be compared to the solution of the ODE

(2.12)
d

dr
f = h(r)(f − f3), f(0) = min

p∈Σ
u(p, 0),

where h(r) = minx∈Σr

Rr+6κ2

2H0
. The solution of (2.12) is

f =
(

1 + K exp(−2
∫ r

0
h(r)dr)

)−1/2

, where K satisfies f(0) = (1 + K)−1/2.

By the maximum principle, we have u(p, r) ≥ min{f(r), 1} > 0. The upper
bound for u can be obtained similarly. From these, it is not hard to see that
u satisfies the C0 estimate:

(2.13) |u − 1| < Ce−3κr.

We prove the following result.

Theorem 2.1. Let Σ0 be an embedded convex surface in H
3
−κ2 , and let Ω0

be the region enclosed by Σ0 in H
3
−κ2. Let M = H

3
−κ2\Ω0 and Σr be the level

set of the distance function r to Σ0. Let g′ be the hyperbolic metric on M
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which can be written as the form g′ = dr2 + gab(p, r), where gab(p, r) is the
induced metric on Σr. Let u be the solution of

(2.14)

⎧⎪⎪⎨
⎪⎪⎩

2H0
∂u

∂r
= 2u2Δru + (u − u3)(Rr + 6κ2)

u(p, 0) =
H0(p, 0)

H(p)

for a positive function H(p) defined on Σ0. Here, H0 is the mean curvature,
Δr is the Laplace operator and Rr is the scalar curvature of Σr. Then

(1) The solution exists for all time and

lim
r→∞

e3κr(u − 1) = v∞

is a smooth function.

(2) g′′ = u2dr2 + gab(p, r) is a complete asymptotically hyperbolic metric
on M with scalar curvature −6κ2.

Proof. We recall the expressions of the mean curvature H0 and the scalar
curvature Rr of Σr in the n = 3 case:

H0 = κ (coth(κ(μ1 + r)) + coth(κ(μ2 + r))),

Rr = 2κ2 (coth(κ(μ1 + r)) coth(κ(μ2 + r)) − 1) .
(2.15)

Denote v = e3κr(u − 1). Then v satisfies

∂

∂r
v =

u2

H0
Δrv +

[
3κ − u(u + 1)(Rr + 6κ2)

2H0

]
v.

By (2.15), we have

Rr + 6κ2

H0
− 3κ = O(e−2κr),

and thus by (2.13)

3κ − u(u + 1)(Rr + 6κ2)
2H0

= O(e−2κr).

Define Δ̃r = e2κrΔr. Then Δ̃r is uniformly equivalent to the Laplace
operator of the standard metric on S2. When n − 1 = 2, this is the Laplace
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operator of g̃ab by the conformal invariance. Thus,

2e2κr ∂

∂r
v =

2u2

H0
Δ̃v + O(1)v.

Take t = − 1
4κe−2κr. Then 2e2κr ∂

∂r = ∂
∂t and the equation becomes

∂

∂t
v =

2u2

H0
Δ̃v + O(1)v.

This equation holds for t = − 1
4κ(r = 0) to t = 0(r = ∞). It is not hard

to show that the solution exists and converges to a smooth function v∞ on
Σ0, and we have

(2.16) lim
r→∞

e−3κr(u − 1) = v∞.

We can then apply the standard Schauder estimate to get derivative bounds
for u.

We define the gauge transformation as in [1]:

(2.17) A : (TM, g′) −→ (TM, g′′)

by A( ∂
∂r ) = 1

u
∂
∂r and A(X) = X for all X ∈ TΣr, or A = 1

udu ⊗ ∂
∂u + ea ⊗

ea. We can then check that |A − I| = O(e−3κr) and |∇′A| = O(e−3κr). �

3. Lichnerowicz formula and the mass expression

Let (Ω, gij) be a compact three-manifold with boundary ∂Ω. Let {ei}i=1,2,3
be a local orthonormal frame on Ω. We choose the frame so that e3 is the
outward normal to ∂Ω and {ea}a=1,2 are tangent to ∂Ω.

Let ∇ denote the Riemannian spin connection and ∇∂Ω be the connec-
tion when restricted to ∂Ω. Recall the Killing connection ∇̂ is defined by

∇̂V = ∇V +
√

−1
2

κc(V )·

The relations among these connections are

∇̂ea
ψ = ∇ea

ψ +
√

−1
2

κc(ea) · ψ

= ∇∂Ω
ea

ψ +
1
2

2∑
b=1

habc(e3) · c(eb) · ψ +
√

−1
2

κc(ea) · ψ,
(3.1)
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for a = 1, 2. Here, hab = 〈∇ea
e3, eb〉 is the second fundamental form of ∂Ω.

We first recall the following formula for Killing connections (see for
example [1]):
(3.2)∫

Ω

(
|∇̂ψ|2 +

1
4
(R + 6κ2)|ψ|2 − |D̂ψ|2

)
=

∫
∂Ω

〈ψ, (∇̂e3 + c(e3) · D̂)ψ〉.

Here D̂ is the Killing Dirac operator, D̂ψ = c(ei) · ∇̂ei
ψ. The right hand

side becomes ∫
∂Ω

〈ψ, c(e3) · c(ea) · ∇̂ea
ψ〉.

We calculate using (3.1)

c(e3) · c(ea) · ∇̂ea
ψ

= c(e3) · c(ea) · ∇∂Ω
ea

ψ +
1
2
habc(ea) · c(eb) · ψ −

√
−1κc(e3) · ψ.

We recall that the Clifford multiplication on ∂Ω satisfies c∂Ω(ea) = c(ea)·
c(e3), and thus c(e3) · c(ea) · ∇∂Ω

ea
= −D∂Ω, the Dirac operator on ∂Ω. Also,

using the property of the Clifford multiplication, it is not hard to see hab

c(ea) · c(eb) = −H.

Proposition 3.1. Let (Ω, gij) be a compact three-manifold with boundary
∂Ω, then for any spinor ψ we have

∫
Ω

(
|∇̂ψ|2 +

1
4
(R + 6κ2)|ψ|2 − |D̂ψ|2

)

=
∫

∂Ω

〈
ψ, −D∂Ωψ − 1

2
Hψ −

√
−1κc(e3) · ψ

〉
,

where e3 is the outward normal of ∂Ω and H = 〈∇ea
e3, ea〉 is the mean

curvature.

In our situation, there are two metrics on M = H
3
−κ2\Ω0. One is the

hyperbolic metric g′ = dr2 + gab(r), where gab(r) is the induced metric on
Σr and e−2κrgab(r) is uniformly equivalent to the standard metric on S2.
The other metric is g′′ = u2dr2 + gab(r).
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g′ and g′′ induce the same metrics on Σr while the unit normal vectors
are different. They are denoted by e′′

3 = 1
u

∂
∂r and e′

3 = ∂
∂r for g′′ and g′,

respectively.
As in [1], we define the gauge transformation

(3.3) A : (TM, g′) −→ (TM, g′′)

by A( ∂
∂r ) = 1

u
∂
∂r and A(X) = X for all X ∈ TΣr, or A = 1

udu ⊗ ∂
∂u + ea ⊗

ea. A satisfies the relation

g′′(A(X), A(Y )) = g′(X, Y ).

As was remarked in [1], A also defines a fiberwise isometry of the asso-
ciated Riemannian spinor bundles S(M, g′) and S(M, g′′) and satisfies

A(c′(V ) · ψ) = c′′(A(V )) · A(ψ),

where c′ and c′′ are the Clifford multiplication associated with g′ and g′′.
Denote the Riemannian connections of g′ and g′′ by ∇′ and ∇′′, and

define a new connection ∇ by

∇ψ = A∇′(A−1ψ).

∇′′ and ∇ are both metric connections for g′′, but ∇ has non-zero
torsion. ∇′, ∇′′ and ∇ extend to spin connections on the corresponding
spinor bundles.

Definition 3.2. φ′
0 is said to be a Killing spinor with respect to ∇′ if

∇′
V φ′

0 = −
√

−1
2

κc′(V ) · φ′
0.

Proposition 3.3. Let (M, g′′) be as in Theorem 2.1 and A be the gauge
transformation defined in (3.3). Let φ′

0 be a Killing spinor with respect to
∇′ on H

3
−κ2 and φ0 = Aφ′

0. Then

(3.4) −DΣrφ0 =
1
2
H0φ0 +

√
−1κc′′(e′′

3) · φ0.
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Proof. First of all, we have ∇ea
φ0 = A(∇′

ea
A−1φ0) = A(∇′

ea
φ′

0). Thus,

(3.5) ∇ea
φ0 = −

√
−1
2

κc′′(ea) · φ0.

By definition,

(3.6) DΣrφ0 = −c′′(e′′
3) · c′′(ea) · ∇Σr

ea
φ0.

Now, we relate ∇Σr
ea

φ0 and ∇ea
φ0. From the definition of the spin

connection, we have,

∇ea
φ0 =

1
2

∑
b<c

〈∇ea
eb, ec〉c′′(eb) · c′′(ec) · φ0

+
1
2

2∑
b=1

〈∇ea
eb, e

′′
3〉c′′(eb) · c′′(e′′

3) · φ0.(3.7)

Recall that the relation between ∇ and ∇′ is

∇ψ = A∇′(A−1ψ).

Also A(e′
3) = e′′

3, and A(X) = X for all X ∈ TΣr.
We calculate the terms in (3.7) and get ∇ea

eb = A(∇′
ea

eb) and
〈∇ea

eb, ec〉 = 〈∇′
ea

eb, ec〉. Now 〈∇ea
eb, e

′′
3〉 = 〈A(∇′

ea
eb), e′′

3〉 = 〈A(∇′
ea

eb),
A(e′

3)〉 = 〈∇′
ea

eb, e
′
3〉 = −h0

ab. Thus

(3.8) ∇ea
φ0 = ∇Σr

ea
φ0 − 1

2
h0

abc
′′(eb) · c′′(e3) · φ0.

Plug (3.8) in (3.6) and multiply by c′′(e′′
3) to derive

(3.9) DΣrφ0 = −c′′(e′′
3) · c′′(ea) ·

[
∇ea

φ0 +
1
2
h0

abc
′′(eb) · c′′(e′′

3) · φ0

]
.

Plug (3.5) into (3.9), and we obtain the equality. �

Definition 3.4. For any spinor field ψ on (M, g′′), we define the mass
expression to be

mr(ψ) :=
∫

Σr

〈ψ, −DΣrψ〉 − 1
2

∫
Σr

H|ψ|2g′′ −
∫

Σr

〈ψ,
√

−1κc′′(e′′
3)ψ〉.

By Proposition 3.3, we obtain
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Corollary 3.5. Let φ′
0 be a Killing spinor with respect to ∇′ on H

3
−κ2 and

φ0 = Aφ′
0, then the mass expression for φ0 is

(3.10) mr(φ0) =
1
2

∫
Σr

(H0 − H)|φ0|2g′′ .

Of course |φ0|2g′′ = |Aφ′
0|2g′′ = |φ′

0|2g′ .

4. Killing spinors on hyperbolic spaces

We first recall the model for the hyperbolic space H
3
−κ2 of sectional curva-

ture −κ2. Let R
3,1 be the Minkowski space with the space-time coordinates

X = (x1, x2, x3, t)

and the Lorentz metric dx3
1 + dx3

2 + dx2
3 − dt2. H

3
−κ2 can be identified with

the space-like hypersurface

{
(x1, x2, x3, t) ∈ R

3,1 | x2
1 + x2

2 + x2
3 − t2 = − 1

κ2 , t > 0
}

.

The following parametrization using the polar coordinates (r′, θ, ψ) on
R

3 is particularly useful:

(x1, x2, x3, t) =
1
κ

(sinhκr′ cos θ, sinhκr′

sin θ cos ψ, sinhκr′ sin θ sin ψ, cosh κr′).(4.1)

This is indeed the geodesic coordinates given by the exponential map,
where r′ is the geodesic distance. The induced metric in this coordinate
system is then

g′ = dr′2 +
(sinhκr′)2

κ2 (dθ2 + sin2 θdψ2),

where dθ2 + sin2 θdψ2 is the standard metric on S2 in spherical coordinates.
The future-directed unit time-like normal of H

3
−κ2 is then e0 = κX. The

second fundamental form is p = κg′. By picking a trivialization, the space
of spinor fields on H

3
−κ2 can be identified with the space of smooth functions
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valued in C
2. A Killing spinor φ′ on H

3
−κ2 satisfies the equation

(4.2) ∇′
V φ′ +

√
−1
2

κc′(V ) · φ′ = 0 for any tangent vector V,

where ∇′ is the spin connection. The Killing spinors on hyperbolic spaces
were studied by Baum [3]. In the (r′, θ, ψ) coordinate system, they can be
found by a calculation similar to the one in [26](the case κ = 1). They are
of the form:

(4.3) φ′
0,a =

⎡
⎢⎢⎢⎣

exp
(

κr′

2
+ i

ψ

2

)
cos

θ

2
exp

(
κr′

2
− i

ψ

2

)
sin

θ

2

− exp
(

−κr′

2
+ i

ψ

2

)
sin

θ

2
exp

(
−κr′

2
− i

ψ

2

)
cos

θ

2

⎤
⎥⎥⎥⎦
[
a1

a2

]
,

where a =
[
a1
a2

]
∈ C

2 is a constant spinor in this trivialization.

We calculate the square norm of φ′
0,a.

|φ′
0,a|2 = (|a1|2 + |a2|2) cosh κr′ + (|a1|2 − |a2|2) sinhκr′ cos θ

+ (a1ā2 + ā1a2) sinhκr′ sin θ cos ψ

+
√

−1(a1ā2 − ā1a2) sinhκr′ sin ψ sin θ.

This can be written in terms of X as

(4.4) |φ′
0,a|2 = −κX · ζ(a),

where · is the Lorentz inner product in R
3,1 and ζ(a) ∈ R

3,1 is
(4.5)(

−(|a1|2 − |a2|2),−(a1ā2 + ā1a2),−
√

−1(a1ā2 − ā1a2), |a1|2 + |a2|2
)
.

Denote ∂
∂x1

= E1, ∂
∂x2

= E2, ∂
∂x3

= E3 and ∂
∂t = E0, and pick the follow-

ing trivialization of the Clifford matrices for this orthonormal
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basis of R
3,1:

c(E1) =

[√
−1 0
0 −

√
−1

]
,

c(E2) =

[
0

√
−1

√
−1 0

]
,

c(E3) =

[
0 1

−1 0

]

and c(E0) =

[√
−1 0
0

√
−1

]
.

ζ can be expressed as

ζ(a) =
√

−1(〈c(E1)a, a〉E1 + 〈c(E2)a, a〉E2

+ 〈c(E3)a, a〉E3 − 〈c(E0)a, a〉E0),(4.6)

where 〈·, ·〉 is the Hermitian product on C
2.

From this expression, it is clear that ζ(a) is independent of the choice of
the orthonormal frames in the Minkowski space. It can be checked directly
that ζ maps C

2 onto the future directed light cone C0 = {x2
1 + x2

2 + x2
3 −

t2 = 0, t > 0}. In fact, the restriction of ζ to S3 ⊂ C
2 gives the Hopf map

onto S2 = C0 ∩ {t = 1}.
To summarize,

Proposition 4.1. For any a =
[
a1
a2

]
∈ C

2, the square norm of the Killing

spinor φ′
0,a (4.3) on H

3
−κ2 is given by

|φ′
0,a|2 = −κX · ζ(a),

where X = (x1, x2, x3, t) is the Minkowski position vector and ζ is defined
in (4.5).

In terms of the Clifford multiplication.

|φ′
0,a|2 = −

√
−1κ〈c(X)a, a〉.

Denote the Hessian of |φ′
0,a|2 on H

3
−κ2 by ∇∇−κ2 |φ′

0,a|2. Since X · ζ(a) is
a linear function on R

3,1 and the second fundamental form of H
3
−κ2 is given
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by κg′; it is not hard to see that

∇∇−κ2 |φ′
0,a|2 = κ2〈·, ·〉|φ′

0,a|2.

We calculate

Δr|φ′
0,a|2 =

2∑
i=1

∇∇−κ2 |φ′
0,a|2(ei, ei) − 〈∇|φ′

0,a|2, �H0〉,

where �H0 is the mean curvature vector of Σr.
As �H0 = H0

∂
∂r , we have

(4.7) H0
∂|φ′

0,a|2

∂r
= −Δr|φ′

0,a|2 + 2κ2|φ′
0,a|2.

This equation will be used to define the vector-valued function W0 in
the statements of Theorem 1.3 and 1.4.

We shall express the limit of the mass expression for φ0,a = Aφ′
0,a:

lim
r→∞

∫
Σr

(H0 − H)|φ0,a|2 = −κ lim
r→∞

∫
Σr

(H0 − H)X · ζ(a)

by the Gauss map of Σ0.
Given a surface F0 : Σ → H

3
−κ2 , we consider the associated map

γ0 : Σ → C0

into the light cone by

(4.8) γ0 = κX(F0) + N,

where N is the normal to Σ0 in H
3
−κ2 .

It is not hard to check the image of γ0 is in the light cone, and in fact
the projection of γ0 gives the hyperbolic Gauss map [6].

Proposition 4.2. Let M be given as in the assumption of Theorem 2.1.
For an asymptotically Killing spinor φ0,a = Aφ′

0,a on (M, g′′), we have

lim
r→∞

∫
Σr

(H0 − H)|φ0,a|2 = −2κ

∫
Σ∞

v∞γ0(x) · ζ(a),

where γ0 is defined by (4.8) and v∞ is defined in Theorem 2.1. Σ∞ is
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Σ equipped with the metric gab(∞) = limr→∞ e−2κrgab(r) or the pull-back
metric by γ0.

Proof. By formula (2.9), we have

(4.9) γ0(p) = lim
r→∞

e−κrκX(F (p, r)).

On the other hand, by Proposition 4.1, we have

(4.10) −γ0 · ζ(a) = lim
r→∞

e−κr|φ′
0,a|2.

The limiting metric gab(∞) is well defined by (2.5). By Proposition 4.1,
we have ∫

Σr

(H0 − H)|φ0,a|2 = −
∫

Σr

H0(1 − u−1)κX · ζ(a).

The integrand can be regrouped as

H0(1 − u−1)κX · ζ(a) = H0
[
e3κr(1 − u−1)

] [
e−κrκX · ζ(a)

]
e−2κr.

The proposition now follows from (2.8), (2.16), that limr→∞ H0 = 2κ,
and that the volume form of gab(r) grows like e2κr. �

5. The monotonicity formula

In this section, we will define the function W0 found in the statements of
Theorem 1.3 and 1.4. Recall we have an isometric embedding F0 of Σ into
H

3
−κ2 , and Σ0 = F0(Σ) has Gaussian curvature > −κ2. This determines a

foliation and the associated geometric quantities gab(r), H0, Rr and Δr on
the leaves Σr (see Section 2). We consider them as one-parameter families
on the fixed space Σ by the natural parametrization. The function u is
obtained by solving the initial value problem (2.14). F0 also determines
the map γ0 : Σ → C0 into the light cone. For any constant spinor a ∈ C

2,
−γ0 · ζ(a) is a positive function defined on Σ that satisfies (4.10).

W is defined to be the solution of the following PDE:

(5.1)

⎧⎪⎨
⎪⎩

H0

u

∂W

∂r
= −ΔrW + 2κ2W

lim
r→∞

e−κrW (p, r) = −γ0(p) · ζ(a).

The equation is a backward parabolic equation. It is nevertheless solv-
able because the value of W is prescribed at infinity. Of course the equation
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is motivated by (4.7), and W plays the role of the squared norm of the
Killing spinors in this case.

Lemma 5.1. Equation (5.1) has a unique positive solution W on (M, g′′).

Proof. By Proposition 4.1 and (4.9), we can pretend W (p, ∞) = limr→∞
|φ′

0,a|2. To be precise, we set W̃ = e−κrW . Then W̃ satisfies

∂

∂r
W̃ = − u

H0
ΔrW̃ + κ2

(
2u

H0
− 1

κ

)
W̃ .

Recall that Δ̃r = e2κrΔr is the Laplace operator of the rescaled metric
g̃ab which is bounded, and thus

2e2κr ∂

∂r
W̃ = − 2u

H0
Δ̃rW̃ + 2κ2e2κr

(
2u

H0
− 1

κ

)
W̃ .

By (2.13) and (2.8), we have | 2u
H0

− 1
κ | < Ce−3κr. We reparametrize this

equation by taking τ = 1
4κe−2κr. Then 2e2κr ∂

∂r = − ∂
∂τ ; and the equation

becomes

(5.2)

⎧⎪⎪⎨
⎪⎪⎩

∂

∂τ
W̃ =

2u

H0
Δ̃rW̃ − 2κ2e2κr

(
2u

H0
− 1

κ

)
W̃

W̃ (·, τ = 0) = −γ0 · ζ(a).

This is now a forward linear parabolic equation for τ = 0 (r = ∞) to
τ = 1

4κ(r = 0). Since W̃ > 0 at τ = 0, it remains positive by the maximum
principle. Thus, W is positive as well. �

Now we prove a monotonicity formula that generalizes the one in [18]:

Proposition 5.2. Let M be given as in the assumption of Theorem 2.1.
For any W satisfying (5.1), the quantity

mW (r) =
∫

Σr

(H0 − H)W

is monotone decreasing in r, and

lim
r→∞

∫
Σr

(H0 − H)W = lim
r→∞

∫
Σr

(H0 − H)|φ0,a|2.
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Proof. Recall that H = H0
u . We compute

d

dr
mW =

∫
Σr

∂H0

∂r
(1 − u−1)W + H0u

−2 ∂u

∂r
μ

+ H0(1 − u−1)
dW

dr
+ (H0)2(1 − u−1)W.

Plugging in Equation (2.14) and integrating by parts, we obtain

∫
Sr

(
∂H0

∂r
+ H2

0

)
(1 − u−1)W +

1
2
(u−1 − u)(Rr + 6κ2)W

+ H0(1 − u−1)
dW

dr
+

∫
(u − 1)ΔrW.

The Gauss formula says

Rr = −2κ2 + |H0|2 − |A|2.

Combine this with Equation (2.4) to obtain

∂H0

∂r
+ H2

0 = Rr + 4κ2.

We check the following identity holds:

(Rr + 4κ2)(1 − u−1) +
1
2
(u−1 − u)(Rr + 6κ2)

= −1
2
u−1(u − 1)2(Rr + 2κ2) − 2κ2(u − 1),

and thus

dm

dr
= −1

2

∫
u−1(u − 1)2(Rr + 2κ2)W

+
∫

(u − 1)
(

H0

u

dW

dr
+ ΔrW − 2κ2W

)
.

The second term on the right hand side vanishes by (5.1). Our assump-
tion implies Rr > −2κ2, and thus dm

dr ≤ 0.
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By the prescribed value of (5.1) at ∞,

lim
r→∞

∫
Σr

(H0 − H)W = lim
r→∞

∫
Σr

H0(1 − u−1)e3κr(e−κrW )e2κr

= −
∫

Σ∞

2κv∞γ0 · ζ(a).

By Proposition 4.2, this equals

1
κ

lim
r→∞

∫
Σr

(H0 − H)|φ0,a|2.

�

Since the Equation (5.1) is linear, we may as well consider a four-vector
valued function W : Σ × [0,∞) → R

3,1 that satisfies

(5.3)

⎧⎪⎨
⎪⎩

H0

u

dW
dr

= −ΔrW + 2κ2W

limr→∞ e−κrW(p, r) = −γ0(p).

Set W = W · ζ(a). We obtain the following.

Proposition 5.3. Let M be given as in the assumption of Theorem 2.1.
If W satisfies (5.3), the quantity∫

Σr

(H0 − H)W · ζ(a)

is monotone decreasing in r for any ζ(a), and

lim
r→∞

∫
Σr

(H0 − H)W · ζ(a) = lim
r→∞

∫
Σr

(H0 − H)|φ0,a|2.

We notice that γ0 = limr→∞ e−κrκX is future-directed time-like and
−γ0 · ζ(a) ≥ 0 for any ζ(a). By the maximum principle and the follow-
ing characterization of future-directed time-like vectors, W(r) remains a
past-directed time-like vector.

Lemma 5.4. A four-vector v = (a1, a2, a3, b) is future-directed time-like
(non-space-like) if and only if v · ζ < 0 (≤ 0) for all ζ = (y1, y2, y3, 1) with
y2
1 + y2

2 + y2
3 = 1.
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6. Positivity of the mass expression

Given a convex isometric embedding F0 : Σ → H
3
−κ2 and a function H(0)

defined on Σ, we constructed an asymptotically hyperbolic metric g′′ =
u2dr2 + gab(r) on M = H

3
−κ2\Ω0, where gab(r) is the induced metric on the

leaves Σr and H(r) is the mean curvature of Σr with respect to the outward
normal in (M, g′′). Recall for each Killing spinor φ′

a,0 on H
3
−κ2 , we obtained

an asymptotic Killing spinor φa,0 = Aφ′
a,0 on (M, g′′). In this section, we

prove the mass expression

lim
r→∞

1
2

∫
Σr

(H0 − H)|φa,0|2

in Proposition 5.2 is positive under certain assumptions on H.
For a suitable chosen H(0), we prove there exists a Killing-harmonic

spinor φa on (M, g′′), D̂φa = 0, with the appropriate asymptotic behavior
to assure that
(6.1)

lim
r→∞

∫
Σr

〈φa, (∇̂νr
+ c′′(νr) · D̂)φa〉 = lim

r→∞

∫
Σr

〈φa,0, (∇̂νr
+ c′′(νr) · D̂)φa,0〉.

The left hand side can be shown to be non-negative by the Schrödinger–
Lichnerowciz formula for harmonic-Killing spinors. Now by Corollary 3.5,
the right hand side is the mass expression limr→∞

∫
Σr

(H0 − H)|φa,0|2g′′ .
Since the metric g′′ depends on the embedding F0 and H(0), the question

is now: For what kind of (F0(Σ),H(0)) can we fill in (M, g′′) with a compact
three-manifold Ω with boundary so that the resulting manifold has positive
total mass.

6.1. Riemannian version

The following theorem is a generalization of Shi–Tam [18] which corresponds
to the case when κ = 0.

Theorem 6.1. For κ > 0, let Ω be a compact three-manifold with smooth
boundary ∂Ω = Σ and with scalar curvature R ≥ −6κ2. Suppose Σ has posi-
tive mean curvature H with respect to the outward normal and has sectional
curvature K > −κ2. Let F0 be the isometric embedding of Σ into H

3
−κ2

and Ω0 be the region in H
3
−κ2 enclosed by F0(Σ). Suppose M = H

3
−κ2\Ω0

is equipped with the metric g′′ = u2dr2 + gab(r) so that u satisfies (2.14)
with H(0) = H. Let M̃ = M ∪F0 Ω be equipped with the metric g̃ij such
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that g̃ij = gij on Ω and g̃ij = g′′
ij on M . Let ∇̂V = ∇̃V +

√
−1
2 κc̃(V ) be the

Killing connection associated with g̃ij and D̂ = c̃(ei) · ∇̂ei
the Killing-Dirac

operator. Then for each Killing spinor φ′
0,a on H

3
−κ2 , there exists a Killing-

harmonic spinor φa, D̂φa = 0, on M̃ that is asymptotic to φ0,a = Aφ′
0,a in

the sense of (6.1).

Proof. We remark that the resulting metric g̃ is Lipschitz and R ≥ −6κ2

holds on (M̃\∂Ω, g̃ij).
Notice that we can choose a smooth structure (coordinates) near the

joint ∂Ω so the coefficients g̃ij are Lipschitz functions (see Liu–Yau [12]
Section 4.5). In the following, we denote by L2 and W 1,2, the space of L2

and W 1,2 sections of the spinor bundle S(M̃, g̃) as the completion of C∞

sections of compact support with respect to the smooth structure and the
corresponding norms.

For a Killing spinor φ′
a,0 on H

3
−κ2 , we obtain an asymptotic Killing spinor

φa,o = Aφ′
a,0 on (M, g′′). We can multiply φa,0 by a cut-off function f such

that fφa,0 is a smooth spinor defined on M̃ . By abusing notation, we still
denote this spinor on M̃ by φa,0.

Near infinity with respect to the connection ∇ = A∇′A−1, φa,0 satis-
fies ∇eb

φa,0 = −
√

−1
2 κc̃(eb) · φa,0 by (3.5). On the other hand, ∇̄ ∂

∂r
φa,0 =

−
√

−1
2

κ
u c̃( ∂

∂r )φa,0.
We compute

∇̂eb
φa,0 = ∇̃eb

φa,0 +
√

−1
2

κc̃(eb) · φa,0 = ∇̃eb
φa,0 − ∇eb

φa,0

and

∇̂ ∂

∂r
φa,0 = ∇̃ ∂

∂r
φa,0 − u∇ ∂

∂r
φa,0.

The difference of these two connections is estimated in Lemma 2.1 in
[1], and

|∇̂φa,0|g̃ ≤ C|A−1|g̃|∇′A|g̃|φa,0|g̃.

Since A = 1
udu ⊗ ∂

∂u + ea ⊗ ea and u and its derivatives are estimated by
(2.13), we have A−1 is bounded and ∇′A = O(e−3κr). Also |φa,0|2 = O(eκr).
Thus |∇̂φa,0| ≤ Ce−(5/2)κr. Since the volume element of (M, g′′) is u

√
det gab

and
√

det gab is of the order e2κr (see (2.5)), both D̂φa,0 and ∇̂φa,0 are in L2.
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We shall prove there exists a φ1 ∈ W 1,2 such that

D̂φ1 = −D̂φa,0.

This is done by showing that the map D̂ : W 1,2 → L2 is surjective.
We need the following relations which are easy to derive:

|∇̂ψ|2 = |∇̃ψ|2 +
3κ2

4
|ψ|2 +

√
−1κ

2
ei〈c̃(ei)ψ, ψ〉,

|D̂ψ|2 = |D̃ψ|2 +
9κ2

4
|ψ|2 +

3
√

−1κ

2
ei〈c̃(ei)ψ, ψ〉,

ei〈c̃(ei)ψ, ψ〉 = 〈D̃ψ, ψ〉 − 〈ψ, D̃ψ〉.

(6.2)

We proceed as in Lemma 4.4 and Proposition 3.3 of [1]. Define the
functional

l(ψ) =
∫

M̃
〈D̂ψ, D̂φa,0〉

on W 1,2.
Since D̂φa,0 ∈ L2, this functional is bounded on W 1,2. Define the

sesquilinear form

B(ψ, φ) =
∫

M̃
〈D̂ψ, D̂φ〉.

We shall show B is bounded and coercive on W 1,2. Then by Lax–Milgram,
there exists a φ1 ∈ W 1,2 such that for all ψ ∈ W 1,2 we have

(6.3) B(ψ, φ1) =
∫

M̃
〈D̂ψ, D̂φ1〉 = −

∫
M̃

〈D̂ψ, D̂φa,0〉.

To see that B is bounded, recall on Ω we have,

∫
Ω

(
|∇̂ψ|2 +

1
4
(R + 6κ2)|ψ|2 − |D̂ψ|2

)

=
∫

∂Ω

〈
ψ, −D∂Ωψ − 1

2
Hψ −

√
−1κc(ν) · ψ

〉
,

where ν is the outward normal of Ω and −D∂Ω = c(ν) · c(ea)∇∂Ω
ea

ψ.
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Let M̃r ⊂ M̃ be the region with ∂M̃r = Σr. On M̃r\Ω, where the scalar
curvature R = −6κ2, we have

∫
M̃r\Ω

(|∇̂ψ|2 − |D̂ψ|2) =
∫

∂Ω

〈
ψ, D∂Ωψ +

1
2
Hψ +

√
−1κc′′(ν) · ψ

〉

+
∫

Σr

〈(∇̂νr
+ c′′(νr)D̂)ψ, ψ〉,

where νr is the outward normal of Σr. As the mean curvatures coincide
along the boundary, adding these up we obtain
(6.4)∫

M̃r

|∇̂ψ|2 − |D̂ψ|2 +
1
4

∫
Ω
(R + 6κ2)|ψ|2 =

∫
Σr

〈(∇̂νr
+ c′′(νr)D̂)ψ, ψ〉.

By assumption R is bounded. This shows B(ψ, ψ) ≤ C|ψ|2
W 1,2(M̃)

for
any ψ ∈ C∞

c . This holds for any ψ ∈ W 1,2, and the map B is bounded.
On the other hand, since R + 6κ2 ≥ 0 on Ω,∫

M̃r

|∇̂ψ|2 ≤
∫

M̃r

|D̂ψ|2

for any ψ ∈ C∞
c (M̃, S). By (6.2), this implies

|ψ|21,2 ≤ C

∫
M

|D̂ψ|2

for any ψ ∈ W 1,2.
Since B is bounded and coercive on W 1,2, by Lax–Milgram, there exists

a φ1 ∈ W 1,2 such that for all ψ ∈ W 1,2 we have (6.3). Thus, φa = φ1 + φa,0

satisfies
∫
M̃ 〈D̂ψ, D̂φa〉 = 0 for all ψ ∈ W 1,2.

Set Φ = D̂φa. Φ ∈ L2 and
∫
M̃ 〈D̂ψ, Φ〉 = 0 for any ψ ∈ W 1,2. Integrating

by parts, ∫
M̃

〈D̂ψ, Φ〉 =
∫

M̃
〈ψ, (D̂ + 3

√
−1κ)Φ〉,

for any ψ with compact support. This implies

D̂Φ + 3
√

−1κΦ = 0

weakly. Following Liu–Yau [12], we can find a coordinate system and a
smooth operator D′ so that D′Φ = fΦ and f is continuous. Therefore,
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Φ ∈ W 1,p near ∂Ω for p ≥ 2, and Φ ∈ C∞ elsewhere. As D̂Φ = −3
√

−1κΦ,
D̂Φ is in W 1,p as well. Consider

∫
M̃

〈D̂(η2Φ), D̂Φ〉 =
∫

M̃
〈η2Φ, (D̂ + 3

√
−1κ)D̂Φ〉

=
∫

M̃
〈η2Φ, D̂(D̂ + 3

√
−1κ)Φ〉 = 0.

Take η to be a cut-off function with |∇η| ≤ 1
r . We show that

∫
M̃r

|D̂Φ|2 ≤ C

r2

∫
M̃r

|Φ|2.

Take r → ∞. We obtain D̂Φ = 0 and together with D̂Φ = −3
√

−1κΦ,
we deduce Φ = 0 or D̂φa = 0, i.e., φa is a Killing-harmonic spinor.

To prove that φa has the desired asymptotic behavior, set B̂ = ∇̂νr
+

c̃(νr) · D̂. Then B̂ is self-adjoint on Σr. We write

∫
Σr

〈(∇̂νr
+ c′′(νr)D̂)φa, φa〉

=
∫

Σr

〈B̂φa,0, φa,0〉 +
∫

Σr

〈B̂φ1, φ1〉 +
∫

Σr

〈B̂φa,0, φ1〉 +
∫

Σr

〈φ1, B̂φa,0〉.

Since ∇̂φa,0 ∈ L2, φ1 ∈ W 1,2 and g′′ is of the form u2dr2 + gab(r) with
u → 1 uniformly, the last three terms all approach zero as r → ∞. �

6.2. General case

Let (Ω, gij , pij) be a compact initial data set. Suppose the boundary of Ω is
a smooth surface Σ with Gaussian curvature K and mean curvature H with
respect to the outward normal. We assume the mean curvature vector of Σ
is space-like or H > |trΣp|.

Let ḡij = gij + fifj be the metric on Ω from the solution of the Jang’s
equation with f ≡ 1 on Σ. For any κ > 0 satisfying K > −κ2, let F be the
isometric embedding of Σ into H

3
−κ2 ⊂ R

3,1 and Ω be the region in H
3
−κ2

enclosed by F (Σ). Suppose M = H
3
−κ2\Ω is equipped with the metric g′′ =

u2dr2 + gij(r) so that u satisfies (2.14) with H(p) =
√

H2 − (trΣp)2. Let
M̃ = M ∪F Ω be equipped with the metric g̃ij such that g̃ij = ḡij on Ω and
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g̃ij = g′′
ij on M . Define the Killing spin connection ∇̂ by

∇̂ei
= ∇̄ei

+
√

−1
2

κc̄(ei),

on (Ω, ḡ) and

∇̂ei
= ∇′′

ei
+

√
−1
2

κc′′(ei),

on (M, g′′).
The associated Dirac operator is then

D̂ = D̄ − 3
√

−1
2

κ,

on (Ω, ḡ) and

D̂ = D′′ − 3
√

−1
2

κ,

on (M, g′′).

Theorem 6.2. Under the above assumption, for each Killing spinor φ′
0,a

on H
3
−κ2 , there exists a Killing-harmonic spinor φa, D̂φa = 0 on M̃ and is

asymptotic to φ0,a = Aφ′
0,a in the sense of (6.1).

Proof. Recall on the solution of the Jang’s equation (Ω, ḡij), the scalar
curvature R̄ satisfies

(6.5) R̄ ≥ 2|X|2 − 2divX.

On the other hand, if we denote the outward normal to Ω by ν̄ and the
mean curvature by H̄ = 〈∇ea

ν̄, ea〉, then by Lemma 4 in [12],

(6.6) H̄ − 〈X, ν̄〉 ≥
√

H2 − (trΣp)2.

We have on Ω∫
Ω

|∇̂ψ|2 +
1
4

∫
Ω
(R̄ + 6κ2)|ψ|2 −

∫
Ω

|D̂ψ|2

=
∫

∂Ω
〈ψ, (∇̄ν̄ + c̄(ν̄) · D̄)ψ〉 +

√
−1κ〈ψ, c̄(ν̄)ψ〉.

(6.7)

Integrating by parts, we get

1
2

∫
∂Ω

〈X, ν̄〉|ψ|2 =
1
2

∫
Ω

divX|ψ|2 +
1
2

∫
Ω

X(|ψ|2).
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Formula (6.7) is equivalent to

∫
Ω

|∇̂ψ|2 +
1
4

∫
Ω
(R̄ + 6κ2 + 2divX)|ψ|2 +

1
2

∫
Ω

X(|ψ|2) −
∫

Ω
|D̂ψ|2

=
∫

∂Ω
〈ψ, (∇̄ν̄ + c̄(ν̄) · D̄)ψ〉 +

1
2

∫
∂Ω

〈X, ν̄〉|ψ|2 +
√

−1κ〈ψ, c̄(ν̄)ψ〉.
(6.8)

The boundary term can be written as

∫
∂Ω

〈
ψ, −D∂Ωψ − 1

2
H̄ψ +

1
2
〈X, ν̄〉ψ −

√
−1κc̄(ν̄) · ψ

〉
,

where −D∂Ωψ = c̄(ν̄) · c̄(ea) · ∇∂Ω
ea

ψ.
Let M̃r ⊂ M̃ be the region with ∂M̃r = Σr. On M̃r\Ω, we have

∫
M̃r\Ω

(|∇̂ψ|2 − |D̂ψ|2) =
∫

∂Ω

〈
ψ, D∂Ωψ +

1
2
H(0)ψ +

√
−1κc′′(ν̄) · ψ

〉

+
∫

Σr

〈(∇̂νr
+ c′′(νr) · D̂)ψ, ψ〉.

Adding these up, we obtain

∫
M̃r

|∇̂ψ|2 +
1
4

∫
Ω
(R̄ + 6κ2 + 2divX)|ψ|2 +

1
2

∫
Ω

X(|ψ|2)

=
∫

M̃r

|D̂ψ|2 +
∫

∂Ω

1
2

[√
H2 − (trΣp)2 − (H̄ − 〈X, ν̄〉)

]
|ψ|2

+
∫

Σr

〈(∇̂νr
+ c′′(νr) · D̂)ψ, ψ〉.(6.9)

Applying this to ψ ∈ C∞
c , the last term vanishes. Since

√
H2 − (trΣp)2 −

(H̄ − 〈X, ν〉) is bounded, the right hand side is bounded by
∫
Σ |ψ|2. The

Sobolev trace map W 1,2(Ω) → L2(∂Ω) is bounded (see, for example,
Theorem 9 of Liu–Yau [12]). Thus,

∫
∂Ω

|ψ|2 ≤ C|ψ|2W 1,2(Ω).

Define B as in the proof of Theorem 6.1, we see B is bounded.
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To prove B is coercive on W 1,2, we assume ψ ∈ C∞
0 so that the boundary

term on Σr vanishes for r large. By (6.5), (6.6), and (6.9),∫
M̃r

|D̂ψ|2 ≥
∫

M̃r

|∇̂ψ|2 +
1
4

∫
Ω
(2|X|2 + 6κ2)|ψ|2 +

1
2

∫
Ω

X(|ψ|2)

≥ 1
3

∫
M̃r

|∇̂ψ|2 + R,

where

R =
∫

Ω

[
2
3
|∇̂ψ|2 +

1
2
|X|2|ψ|2 +

3
2
κ2|ψ|2 +

1
2
X(|ψ|2)

]
.

We show the integrand of R is pointwise positive. When X = 0 at p,
this is certainly true. So we may assume X �= 0, and thus

|∇̂ψ|2 ≥ 1
|X|2 |∇̄Xψ +

√
−1
2

κc(X)ψ|2 ≥ 1
|X|2

(
|∇̄Xψ| − 1

2
κ|X||ψ|

)2

.

Also,

X(|ψ|2) = 〈∇̄Xψ, ψ〉 + 〈ψ, ∇̄Xψ〉 ≥ −2|∇̄Xψ||ψ|.

So the integrand of R is not less than

2
3

1
|X|2 |∇̄Xψ|2 − 2

3
1

|X| |∇̄Xψ|κ|ψ| +
5
3
κ2|ψ|2 +

1
2
|X|2|ψ|2 − |∇̄Xψ||ψ|,

which can be completed to a sum of squares

1
6

(
1

|X| |∇̄Xψ| − 2κ|ψ|
)2

+
1
2

(
1

|X| |∇̄Xψ| − |X||ψ|
)2

+ κ2|ψ|2.

Therefore, ∫
M̃r

|D̂ψ|2 ≥ 1
3

∫
M̃r

|∇̂ψ|2.

On the other hand,

(6.10)
∫

M̃r

|∇̂ψ|2 =
∫

M̃r

|∇̄ψ|2 +
3
4
κ2

∫
M̃r

|ψ|2.

Therefore, B is coercive on W 1,2.
Since B is bounded and coercive on W 1,2, by Lax–Milgram, there exists

a φ1 ∈ W 1,2 such that for all ψ ∈ W 1,2 (6.3) holds. Thus φa = φ1 + φa,0

satisfies
∫
M̃ 〈D̂ψ, D̂φa〉 = 0 for all ψ ∈ W 1,2.
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Set Φ = D̂φa. As in the previous case, integration by parts implies

D̂∗Φ = D̄Φ +
3
2
√

−1κΦ = 0

weakly. The rest of the proof is similar to the previous case. �

6.3. Proofs of Theorem 1.3 and 1.4

The positivity of the total mass limr→∞ mr(φa) can be restated as

Corollary 6.3. Under the assumption of Theorem 6.1 or 6.2

lim
r→∞

∫
Σr

(H0 − H)X

is a future-directed time-like vector, where X is the position vector of Σr as
in Proposition 4.1.

Proof. By Theorem 6.1 or 6.2, there exists a Killing-harmonic spinor φa on
M̃ that is asymptotic to φa,0 = Aφ′

a,0 in the sense of (6.1). For the Killing-
harmonic spinor φa, by Proposition 3.1∫

Σr

〈φa, (∇̂νr
+ c′′(νr) · D̂)φa〉g ≥ 0,

and thus we have

lim
r→∞

∫
Σr

〈φa,0, (∇̂νr
+ c′′(νr) · D̂)φa,0〉g ≥ 0.

By Proposition 3.1 and Corollary 3.5, this expression for φa,0 is the same as

lim
r→∞

∫
Σr

(H0 − H)|φa,0|2 = lim
r→∞

∫
Σr

(H0 − H)|φ′
a,0|2,

which, by Proposition 4.1, implies

−κ lim
r→∞

∫
Σr

(H0 − H)X · ζ(a) ≥ 0

for any a. Since ζ maps onto the light cone, this implies that the Lorentz
product of limr→∞

∫
Σr

(H0 − H)X with any future-directed light-like vector
is non-positive. �
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We are ready to prove Theorem 1.3 and 1.4.

Proof. In either case, we construct the manifold (M, g′′) with the appropri-
ate H(0) according to Theorem 6.1 or 6.2, we solve the Equation (5.3) on
(M, g′′), and we obtain a vector-valued function W.

Theorem 6.1 and 6.2 also imply, by Proposition 5.3 and Lemma 5.4, that

lim
r→∞

∫
Σr

(H0 − H)W · ζ(a) ≥ 0.

Now let W0 be the solution of W at r = 0, i.e., W(0). By the mono-
tonicity formula (Proposition 5.3),∫

Σ0

(H0 − H)W0 · ζ(a) ≥ lim
r→∞

∫
Σr

(H0 − H)W · ζ(a) ≥ 0,

and the theorems are proved. �
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