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Minimal Lagrangian surfaces in S
2 × S

2

Ildefonso Castro and Francisco Urbano

We deal with the minimal Lagrangian surfaces of the Einstein–
Kähler surface S

2 × S
2, studying local geometric properties and

showing that they can be locally described as Gauss maps of min-
imal surfaces in S

3 ⊂ R
4. We also discuss the second variation

of the area and characterize the most relevant examples by their
stability behaviour.

1. Introduction

The theory of minimal surfaces in three-dimensional Riemannian manifolds
of constant sectional curvature is a classical topic in differential geometry
which has been developed in large. Recently, many geometers became inter-
ested in minimal surfaces of three-dimensional manifolds of type Σ × R,
where Σ is a Riemann surface like the 2-sphere S

2 or the hyperbolic space
H

2. As an illustrative example, we refer to [1] and references therein.
When the ambient space M is a four-dimensional Riemannian manifold

of constant sectional curvature, there are different approaches to the theory
of minimal surfaces (see among others [2]) that is especially rich if M is an
Einstein–Kähler surface. In this case, one can study their minimal surfaces
according to their behaviour with respect to the Kähler structure, consid-
ering in this way important families of surfaces: complex surfaces (which
are always minimal), Lagrangian surfaces, totally real surfaces, etc. (see, for
instance, [3]). The most relevant ambient space in this setting is the complex
projective plane, whose minimal surfaces have been extensively studied.

Besides the complex projective plane, there is only one more Hermitian
symmetric space of compact type and complex dimension 2: the Einstein–
Kähler surface S

2 × S
2. In this article, we start the study of its mini-

mal Lagrangian surfaces. In section 2, we give a brief introduction to the
geometry of S

2 × S
2 as well as its Lagrangian surfaces, defining a function

C on the surface (called the associated Jacobian) which is studied in depth

217



218 Ildefonso Castro and Francisco Urbano

and will play an important role along the paper. In Section 3, we show two
recipes for constructing Lagrangian surfaces of S

2 × S
2: as graphs of area-

preserving diffeomorphisms of the sphere S
2 (see Example 3.1) or as Gauss

maps of certain surfaces of the Euclidean space R
4 (see Example 3.3).

In Section 4, we first classify the compact Lagrangian surfaces of S
2 × S

2

with non-null parallel mean curvature vector (Theorem 4.1), by defining two
holomorphic differentials on the surface that allow to prove that the asso-
ciated Jacobian C is an isoparametric function. We also study the general
properties of the minimal Lagrangian surfaces of S

2 × S
2, showing that the

zeroes of the non-negative function 1 − 4C2 are the zeroes of a holomorphic
2-differential defined on the surface (see Proposition 4.2 for some conse-
quences of this fact). Secondly, we classify the minimal Lagrangian surfaces
of S

2 × S
2 with constant Gauss curvature and provide rigidity results about

the Gauss curvature of these surfaces (Theorem 4.3). The Gauss maps of
orientable minimal surfaces of S

3 ⊂ R
4 are a significant source of examples

of minimal Lagrangian surfaces of S
2 × S

2 (see Section 4.3). In Theorem
4.4, we prove a local converse of this fact, by establishing that any simply
connected minimal Lagrangian surface of S

2 × S
2 such that 1 − 4C2 has no

zeroes is the Gauss map of a minimal surface of S
3 ⊂ R

4.
A significant fact that also motivates the present paper is that the only

example of extremal metric on a Klein bottle, i.e., a critical metric for the
functional first eigenvalue of the Laplacian, recently discovered by Jakobson
et al. [4], can be described as the induced metric on the minimal Lagrangian
Klein bottle embedded in S

2 × S
2 defined by

B =
{
((x, z), (y, w)) ∈ S

2 × S
2/2x = y, �(

√
zw) = �(

√
zw)

}
,

where we consider S
2 = {(x, z) ∈ R × C/x2 + |z|2 = 1}. As a consequence,

B is a Hamiltonian stable minimal Lagrangian surface, i.e., a minimal
Lagrangian surface stable for the area under Hamiltonian deformations of
S

2 × S
2.

In Section 5, we study the second variation of the area functional for com-
pact minimal Lagrangian surfaces of S

2 × S
2 proving the following unique-

ness results:

The totally geodesic Lagrangian sphere

M0 =
{
(x,−x) ∈ S

2 × S
2/x ∈ S

2}

is the unique stable minimal Lagrangian compact surface of
S

2 × S
2.
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The totally geodesic Lagrangian sphere M0, the totally geodesic
Lagrangian torus

T =
{
(x, y) ∈ S

2 × S
2/x1 = y1 = 0

}

and the minimal Lagrangian Klein bottle B are the unique Hamil-
tonian stable minimal Lagrangian compact surfaces of S

2 × S
2

with genus g ≤ 2, when the surface is orientable, and with Euler
characteristic χ ≥ 0, when the surface is non-orientable.
The index of an unstable minimal Lagrangian compact surface
of S

2 × S
2 is at least 2 and it is 2 only for the totally geodesic

Lagrangian torus T.

2. Lagrangian surfaces in S
2 × S

2

Let S
2 be the unit sphere in the Euclidean space R

3 endowed with its
standard Euclidean metric 〈, 〉 and its structure of Riemann surface given
by Jxv = x × v, for any v ∈ TxS

2, x ∈ S
2, where × stands for the vecto-

rial product in R
3. Its Kähler 2-form is the area 2-form ω0 defined by

ω0(v, w) = 〈Jxv, w〉 = det{x, v, w} for any v, w ∈ TxS
2.

We endow S
2 × S

2 with the product metric (also denoted by 〈, 〉) and
the product complex structure J given by

J(x,y)(v) = (Jxv1, Jyv2) = (x × v1, y × v2),

for any v = (v1, v2) ∈ T(x,y)(S2 × S
2), (x, y) ∈ S

2 × S
2, which becomes S

2 × S
2

in a Kähler surface. Its Kähler 2-form is ω = π∗
1ω0 + π∗

2ω0, where πi, i = 1, 2,
are the projections of S

2 × S
2 onto S

2.
The group of isometries of S

2 × S
2 is the subgroup of the orthogonal

group O(6) given by

(2.1)
{(

A 0
0 B

)
,

(
0 A
B 0

)
/A, B ∈ O(3)

}
.

The subgroup of holomorphic (resp., subset of antiholomorphic) isometries of
S

2 × S
2 is defined by the additional conditions A, B ∈ SO(3) (resp., detA =

det B = −1). We point out that there are isometries of S
2 × S

2 neither
holomorphic nor antiholomorphic.
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Considering S
2 × S

2 ⊂ S
5(

√
2) ⊂ R

6 and denoting by σ̃ the second fun-
damental form of S

2 × S
2 into R

6, we have that

(2.2) σ̃(v, w) = (−〈v1, w1〉x,−〈v2, w2〉y),

where v = (v1, v2), w = (w1, w2) ∈ T(x, y)(S2 × S
2), (x, y) ∈ S

2 × S
2 ⊂ R

3 × R
3.

It is clear that σ̃ satisfies

(2.3) σ̃(Jv, Jw) = σ̃(v, w),

which implies that the mean curvature vector H̃ of S
2 × S

2 in R
6 is given

by

(2.4) 2H̃(x,y) = −(x, y), ∀(x, y) ∈ S
2 × S

2.

In particular, S
2 × S

2 is a minimal hypersurface of S
5(

√
2). Using now the

Gauss equation of S
2 × S

2 into R
6, we obtain that S

2 × S
2 is an Einstein–

Kähler surface of constant scalar curvature 4.
As a Hermitian symmetric space, we can identify S

2 × S
2 with the Grass-

mann manifold G+(2, 4) of oriented 2-planes in the Euclidean space R
4 in the

following way. Let Λ2
R

4 = {v ∧ w/v, w ∈ R
4} ≡ R

6 be the space of 2-vectors
in R

4 endowed with the Euclidean metric 〈〈, 〉〉 given by

〈〈v ∧ w, v′ ∧ w′〉〉 = 〈v, v′〉〈w, w′〉 − 〈v, w′〉〈w, v′〉,

for any v, w, v′, w′ ∈ R
4. We define the subspaces Λ2

±R
4 of Λ2

R
4 generated

by the unit vectors

E1
± =

1√
2
(e1 ∧ e2 ± e3 ∧ e4),

E2
± =

1√
2
(e1 ∧ e3 ± e4 ∧ e2),

E3
± =

1√
2
(e1 ∧ e4 ± e2 ∧ e3),

where {e1, e2, e3, e4} is an oriented orthonormal frame of R
4, and denote by

S
2
± the unit spheres in the 3-spaces Λ2

±R
4.

If {v1, v2} is an oriented orthonormal frame of a plane P ∈ G+(2, 4) and
take v3, v4 in such a way that {v1, v2, v3, v4} is an oriented orthonormal
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frame in R
4, then the map

G+(2, 4) −→ S
2
+ × S

2
−

P �−→
(

1√
2
(v1 ∧ v2 + v3 ∧ v4),

1√
2
(v1 ∧ v2 − v3 ∧ v4)

)

defines a diffeomorphism.
Let Φ = (φ, ψ): Σ → S

2 × S
2 be an immersion of a surface Σ and denote

by g = φ∗〈, 〉 + ψ∗〈, 〉 the induced metric. The immersion Φ is said to be
Lagrangian if Φ∗ω = 0, i.e., φ∗ω0 + ψ∗ω0 = 0. This means that

0 = 〈J dΦp(v), dΦp(w)〉 = 〈J dφp(v), dφp(w)〉 + 〈J dψp(v), dψp(w)〉,

for any p ∈ Σ and v, w ∈ TpΣ. That is, dΦp(TpΣ) is a Lagrangian 2-plane in
TΦ(p)(S2 × S

2).
The following Lemma, whose proof is left to the reader, will be useful

along the paper.

Lemma 2.1. Let P be a 2-plane in T (S2 × S
2) and let u = (u1, u2), v =

(v1, v2) be an orthonormal basis of P . The following assertions are equiva-
lent:

(1) P is Lagrangian,

(2) |u1| = |v2|, |u2| = |v1|,
(3) |u1|2 + |v1|2 = |u2|2 + |v2|2 = 1.

If Φ = (φ, ψ): Σ → S
2 × S

2 is an immersion of an oriented surface with
area 2-form ωΣ, we can define the Jacobians of φ and ψ by

φ∗ω0 = Jac (φ) ωΣ, ψ∗ω0 = Jac (ψ) ωΣ.

Hence, when Σ is oriented, Φ is Lagrangian if and only if Jac (φ) = −Jac (ψ).
We will call the function

(2.5) C := Jac (φ) = −Jac (ψ)

the associated Jacobian of the oriented Lagrangian surface Σ. Moreover, if
Σ is compact, we have that

(2.6) deg (φ) = −deg (ψ) =
1
4π

∫

Σ
C ωΣ := d.
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We will call this number d the degree of the oriented compact Lagrangian
surface Σ.

In general, when Σ is not necessarily orientable, it is also well-defined
the function

C2 = 〈Jdφp(e1), dφp(e2)〉2 = 〈Jdψp(e1), dψp(e2)〉2

= |dφp(e1) × dφp(e2)|2 = |dψp(e1) × dψp(e2)|2,

where {e1, e2} is an orthonormal basis of (TpΣ, g). If R̄ denotes the curvature
operator of S

2 × S
2, from (2.2) and Lemma 2.1 it is easy to prove that

R̄(e1, e2, e2, e1) = 2C2. So the Gauss equation of Φ can be written as

(2.7) K = 2C2 + 2|H|2 − |σ|2
2

,

where K is the Gauss curvature of Σ, H the mean curvature of Φ and σ
the second fundamental form of Φ. If {e1, e2} is an orthonormal basis of
(TpΣ, g), using Lemma 2.1, we have that

(2.8) |dφp(e1)|2 + |dφp(e2)|2 = |dψp(e1)|2 + |dψp(e2)|2 = 1.

In particular, the ranks of dφ and dψ at any point of Σ are always positive.
Hence, if C ≡ 0, then the ranks of dφ and dψ at any point must be necessarily
1 and so both functions φ and ψ define curves in S

2. It is clear that the
product of two spherical curves is a Lagrangian surface in S

2 × S
2 with null-

associated Jacobian. In conclusion, we get the following result.

Proposition 2.2. Let Φ: Σ → S
2 × S

2 be a Lagrangian immersion. Then
C ≡ 0 if and only if Φ is locally the product immersion of two spherical
curves

I × I ′ −→ S
2 × S

2

(t, s) �−→ (α(t), β(s)).

If we consider the product of two great circles of S
2, we obtain a Lagran-

gian surface congruent to

(2.9) T =
{
(x, y) ∈ S

2 × S
2/x1 = y1 = 0

}
≡ S

1 × S
1.

Of course, the associated Jacobian of T is null and its degree is zero. In
addition, T is totally geodesic and flat.
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We also get from (2.5) and Lemma 2.1 that

(
|dφp(e1)|2 − |dφp(e2)|2

)2 + 4〈dφp(e1), dφp(e2)〉2(2.10)

=
(
|dψp(e1)|2 − |dψp(e2)|2

)2 + 4〈dψp(e1), dψp(e2)〉2 = 1 − 4C2(p),

which implies that C2(p) ≤ 1/4 and the equality holds if and only if φ and
ψ are conformal maps at p ∈ Σ. If C2 ≡ 1/4, we have that φ and ψ are
conformal maps and (2.8) implies that

(2.11) φ∗〈, 〉 = ψ∗〈, 〉 =
g

2
.

In particular, φ and ψ are local diffeomorphisms. Thus, the immersion Φ
can be locally reparametrized by

Φ = (i, F ): U ⊂ S
2 −→ S

2 × S
2,

where i is the inclusion of an open set U into S
2 and F is a diffeomorphism

from U onto F (U). But (2.11) means that F is the restriction to U of an
isometry A of S

2. Moreover, as A∗ω0 + ω0 = 0, we have that detA = −1. So
our immersion is locally holomorphically congruent to (i,−i): U → S

2 × S
2

by the holomorphic (see (2.1)) isometry ( I 0
0 −A ). We summarize this in the

following result.

Proposition 2.3. If Φ: Σ → S
2 × S

2 is a Lagrangian immersion, then
C2 ≤ 1/4 and C2 ≡ 1/4 if and only if Φ(Σ) is congruent to an open sub-
set of the Lagrangian surface M0 of S

2 × S
2 defined by

(2.12) M0 =
{
(x,−x) ∈ S

2 × S
2/x ∈ S

2} .

It is easy to check that M0 is totally geodesic with C ≡ 1/2, d = 1 and
its Gauss curvature is constant K ≡ 1/2.

In [5], it was proved that the totally geodesic Lagrangian surfaces of
S

2 × S
2 are congruent to open subsets of M0 or T.

We now study the orientable compact Lagrangian surfaces embedded in
S

2 × S
2.

Proposition 2.4. Let Φ: Σ → S
2 × S

2 be a Lagrangian immersion of an
orientable compact surface Σ. If Φ is an embedding, then either the genus
of Σ is zero and the degree of Φ is ±1 or the genus of Σ is 1 and the degree
of Φ is zero.
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Proof. In that follows, we use the notation of [3, Section 3]. We denote
by [Σ] ∈ H2(Σ, Z) the fundamental homology class of Σ and by Φ∗[Σ]# ∈
H2(S2 × S

2, Z) the Poincaré dual of Φ∗[Σ] ∈ H2(S2 × S
2, Z). The self-

intersection number of Φ is defined by

IΦ = (Φ∗[Σ]# ∪ Φ∗[Σ]#)([S2 × S
2]).

Since Φ is an embedding, it is given by IΦ = χ(T⊥Σ), where χ(T⊥Σ) is the
Euler number of the normal bundle. But

(Φ∗[Σ]# ∪ Φ∗[Σ]#)([S2 × S
2]) = (Φ∗[Σ]#)(Φ∗[Σ]# ∩ [S2 × S

2])

= (Φ∗[Σ]#)(Φ∗[Σ]),

and, using that Φ is a Lagrangian immersion, χ(T⊥Σ) = −χ(Σ) = 2(g − 1),
where g is the genus of Σ. Hence, we obtain that

(2.13) (Φ∗[Σ]#)(Φ∗[Σ]) = 2(g − 1).

On the other hand, if x is a point of S
2, we know that [S2 × {x}], [{x} ×

S
2] ∈ H2(S2 × S

2, Z) are generators of H2(S2 × S
2, Z) ≡ Z

2. Then it is well
known that their Poincaré duals satisfy:

([S2 × {x}]#)([S2 × {x}]) = 0, ([S2 × {x}]#)([{x} × S
2]) = 1,

([{x} × S
2]#)([S2 × {x}]) = 1, ([{x} × S

2]#)([{x} × S
2]) = 0.

As Φ∗[Σ] = deg (φ)[S2 × {x}] + deg (ψ)[{x} × S
2], we obtain that

([Φ∗[Σ]#)([Φ∗[Σ]) = 2 deg (φ)deg (ψ).

Using that deg (ψ) = −deg (φ), from (2.13), we finally get that g − 1 =
−deg (φ)2, what proves the Proposition. �

Remark 2.5. The totally geodesic Lagrangian surfaces M0 and T defined
in (2.12) and (2.9) show that the result proved in Proposition 2.4 is the best
possible one.

In the following result, we show that M0 and the product of two closed
spherical curves are the only examples of compact Lagrangian surfaces in
S

2 × S
2 with constant associated Jacobian.
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Proposition 2.6. There do not exist Lagrangian immersions of compact
surfaces in S

2 × S
2 with constant C2 ∈ (0, 1/4).

Proof. Let Φ = (φ, ψ): Σ → S
2 × S

2 be a Lagrangian immersion of a compact
surface such that C2 is constant, 0 < C2 < 1/4. First, since C2 does not
have zeroes, the rank of dφ and dψ is 2 at any point of Σ. So φ and ψ are
local diffeomorphisms and the compactness of Σ implies that they are in fact
diffeomorphisms. Therefore Σ is a sphere, Φ must be an embedding and we
can consider that C (which is well defined) is a constant C ∈ (0, 1/2). Then
Proposition 2.4 says that the degree d = 1 and so Area(Σ)C = 4π from (2.6).

Next we prove that the Gauss curvature of Σ is also constant, concretely
K = 2C2. Using the definition (2.5) of C and Lemma 2.1, we have that

2C(p) = 〈JdΦp(e1), dΦ̂p(e2)〉, p ∈ Σ,

where {e1, e2} is an oriented orthonormal frame in TpΣ and Φ̂ = (φ,−ψ). If
v ∈ TpΣ, then

(2.14) 2v(C) = 〈σ(v, e2), JdΦ̂p(e1)〉 − 〈σ(v, e1), JdΦ̂p(e2)〉 = 0.

Using that the trilinear form (u, v, w) �→ 〈σ(u, v), Jw〉 is fully symmetric for
a Lagrangian surface, we can write

σ(e1, e1) = λJe1 + ηJe2, σ(e1, e2) = ηJe1 + μJe2, σ(e2, e2) = μJe1 + νJe2,

with λ, η, μ, ν ∈ R. Putting in (2.14) v = e1 and v = e2, respectively, and
using that {e1, e2} is an orthonormal frame, we get that

(μ − λ) 〈dφp(e1), dφp(e2)〉 + η(|dφp(e1)|2 − |dφp(e2)|2) = 0,
(ν − η) 〈dφp(e1), dφp(e2)〉 + μ (|dφp(e1)|2 − |dφp(e2)|2) = 0.

Taking into account that 1 − 4C2(p) > 0, from (2.10), the last equations
imply that μ(μ − λ) = η(ν − η). But this is equivalent to |σ|2 = 4|H|2 at
any arbitrary point p. The Gauss equation (2.7) now gives K = 2C2. The
Gauss–Bonnet theorem says that 2 Area(Σ)C2 = 4π, but we proved that
Area(Σ)C = 4π. Thus we get C = 1/2, which is a contradiction to the
hypothesis. �

3. Examples of Lagrangian surfaces

In this section, we emphasize two interesting ways of construction of Lagran-
gian surfaces in S

2 × S
2.
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3.1. Graphs of area-preserving diffeomorphisms

Let F : U ⊆ S
2 → S

2 be a smooth map defined on an open set U of S
2 and

consider the graph of F ,

Φ: U −→ S
2 × S

2

Φ(x) = (x, F (x)).

We have that Φ is Lagrangian if and only if ω0 + F ∗ω0 = 0. In particular,
F must be a local diffeomorphism.

When U = S
2, F must be a diffeomorphism and the last equation means

that −F preserves the area of S
2. As a summary:

Example 3.1. If F : S
2 → S

2 is an area-preserving diffeomorphism, the
graph of −F :

M =
{
(x,−F (x)) ∈ S

2 × S
2/x ∈ S

2} ,

is a Lagrangian surface of S
2 × S

2. In particular, the totally geodesic Lagran-
gian surface M0 defined in (2.12) is the graph of the antipodal map −I :
S

2 → S
2.

On the other hand, if Φ = (φ, ψ): Σ → S
2 × S

2 is a Lagrangian immer-
sion of a surface Σ and p ∈ Σ satisfies C2(p) �= 0, then there exists an open
neighbourhood U around p such that φ, ψ: U → S

2 are diffeomorphisms onto
their images, and so Φ(U) is the graph of F = −ψ ◦ φ−1.

Globally, if Φ: Σ → S
2 × S

2 is a Lagrangian immersion of a connected
compact surface Σ such that C2 has no zeroes, then Σ is a sphere, Φ is
an embedding and Φ(Σ) is the graph of an area-preserving diffeomorphism
(with the opposite sign) of the sphere S

2.

Remark 3.2. The result proved in Proposition 2.6 is not true if we do not
assume the compactness of the surface, because we can-construct examples
of non-compact Lagrangian surfaces in S

2 × S
2 whose associated Jacobian

is constantly λ, for any λ ∈ (0, 1/2). In fact, we consider the map F : S
2 −

{N, S} → S
2 defined by

F (x, y, z) = (−ei(
√

1−4λ2/λ) tanh−1 z(x + iy), z),

where N = (0, 0, 1) and S = (0, 0,−1). Then, it is straightforward to check
that F is an area-preserving diffeomorphism from S

2 − {N, S} onto itself,
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and so the graph of −F ,

S
2 − {N, S} −→ S

2 × S
2

(x, y, z) �−→
(
(x, y, z), (ei(

√
1−4λ2/λ) tanh−1 z(x + iy),−z)

)
,

is a Lagrangian embedding. It is an easy exercise to verify that the above
Lagrangian graph has constant associated Jacobian C = λ.

3.2. Gauss maps of certain surfaces of R
4

Let Ψ: Σ → R
4 be an immersion of an oriented surface Σ, and

Φ: Σ −→ G+(2, 4)
Φ(p) = dΨp(TpΣ),

its Gauss map. If {e1, e2} is an oriented orthonormal basis of dΨp(TpΣ),
taking into account the identification given in Section 2, Φ can be written as

Φ = (φ, ψ): Σ −→ S
2
+ × S

2
− ⊂ Λ2

R
4,

where

φ(p) =
1√
2
(e1 ∧ e2 + e3 ∧ e4) ≡ E1

+(p),

ψ(p) =
1√
2
(e1 ∧ e2 − e3 ∧ e4) ≡ E1

−(p),

{e1, e2, e3, e4} being an oriented orthonormal frame of R
4 at Ψ(p). Looking

at Φ in Λ2
R

4 ≡ R
6, we note that Φ(p) = φ(p) + ψ(p) =

√
2(e1 ∧ e2) while

Φ̂(p) = φ(p) − ψ(p) =
√

2(e3 ∧ e4).
For any vector v ∈ TpΣ, it is easy to obtain that

dφp(v) = (〈σ̂(v, e2), e3〉 + 〈σ̂(v, e1), e4〉) E2
+(p)

+ (〈σ̂(v, e2), e4〉 − 〈σ̂(v, e1), e3〉) E3
+(p),(3.1)

dψp(v) = (〈σ̂(v, e2), e3〉 − 〈σ̂(v, e1), e4〉) E2
−(p)

+ (〈σ̂(v, e2), e4〉 + 〈σ̂(v, e1), e3〉) E3
−(p),

where σ̂ stands for the second fundamental form of the immersion Ψ. Hence,
a point p ∈ Σ satisfies that dim Ker dΦp > 0 if and only if there exists a
non-null vector v ∈ TpΣ such that σ̂(v, w) = 0,∀w ∈ TpΣ, i.e., the index of
relative nullity [6] of Ψ at p is positive.
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Using that JE2
±(p) = E3

±(p) and the Ricci equation of Ψ, from (3.1), we
get that

〈dΦp(v), dΦp(w)〉 = 2
(
2〈σ̂(v, w), Ĥ〉 − K̂〈v, w〉

)
,(3.2)

〈JdΦp(v), dΦp(w)〉 = −2R̂⊥(v, w, e3, e4),

∀ v, w ∈ TpΣ, where Ĥ, K̂ and R̂⊥ are the mean curvature vector, the Gauss
curvature and the normal curvature operator, respectively, associated to the
immersion Ψ. Using (3.2), we arrive at the following conclusion.

Example 3.3. The Gauss map Φ: Σ → S
2
+ × S

2
− of an immersion Ψ: Σ →

R
4 of an oriented surface Σ is a Lagrangian immersion if and only if Ψ has

flat normal connection and the index of relative nullity of Ψ is zero. In
particular, the Gauss map of any immersion Ψ: Σ → S

3 ⊂ R
4 of an oriented

surface Σ into the three-dimensional unit sphere is a Lagrangian immersion.

Remark 3.4. If Ψ is a minimal immersion of an oriented surface (with flat
normal connection and negative Gauss curvature), from (3.1), we get that
both components φ and ψ of its Gauss map Φ are conformal and (2.10) says
that C2 ≡ 1/4. In this case, Φ(Σ) must be congruent to an open set of M0
according to Proposition 2.3.

If we consider the totally geodesic S
2 ⊂ S

3 ⊂ R
4, then it is an exercise

to check that its Gauss map is also the totally geodesic Lagrangian surface
M0 defined in (2.12).

It is also easy to obtain that the Gauss map of the Clifford torus {(z, w) ∈
S

3 ⊂ C
2/|z| = |w| = 1/

√
2} is given by

(z, w) ∈ S
1
(

1√
2

)
× S

1
(

1√
2

)
�−→ 2 ((0,−zw), (0, z̄w)) ∈ S

2 × S
2,

where S
2 = {(x, z) ∈ R × C/x2 + |z|2 = 1}. We note it is a 2-fold covering

of the totally geodesic Lagrangian torus T given in (2.9).

4. Minimal Lagrangian surfaces

Let Φ = (φ, ψ): Σ → S
2 × S

2 be a Lagrangian immersion of a surface Σ. If
{e1, e2} is an orthonormal frame in Σ, then {e1, e2, Je1, Je2} is an orthonor-
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mal frame in Φ∗T (S2 × S
2), and using (2.3) and (2.4), we deduce that the

mean curvature vector H̄ of Σ into R
6 is given by

(4.1) H̄ = H + H̃ = H − 1
2
Φ.

We consider a local isothermal parameter z = x + iy on Σ, in such a
way that

〈Φz, Φz〉 = 〈φz, φz〉 + 〈ψz, ψz〉 = 0,(4.2)

|Φz|2 = |φz|2 + |ψz|2 =
e2u

2
,

where the derivatives respect to z and z̄ are given by ∂z = 1
2

(
∂
∂x − i ∂

∂y

)
,

∂z̄ = 1
2

(
∂
∂x + i ∂

∂y

)
. Taking into account that 〈Φzz, JΦz̄〉 = 〈Φzz̄, JΦz〉, the

Gauss equation of Φ and (4.1) imply that

Φzz̄ =
e2u

2

(
H − 1

2
Φ

)
,(4.3)

Φzz = 2uzΦz + 〈H, JΦz〉JΦz + 2e−2u〈Φzz, JΦz〉JΦz̄ − 1
2
〈Φz, Φ̂z〉Φ̂,

where Φ̂ = (φ,−ψ).
Also, from (2.8) and (4.2), we obtain that

(4.4) |Φz|2 = 2|φz|2 = 2|ψz|2 =
e2u

2
.

Finally, using (2.5), we can write

(4.5) 〈JΦz̄, Φ̂z〉 = −ie2uC

and deduce that

(4.6) Φ̂z = 2e−2u〈Φz, Φ̂z〉Φz̄ − 2iCJΦz.

This yields

(4.7) e4u(1 − 4C2) = 4|〈Φz, Φ̂z〉|2 = 16|〈φz, φz〉|2 = 16|〈ψz, ψz〉|2.

4.1. Lagrangian surfaces in S
2 × S

2 with parallel mean curvature
vector

We first classify the compact Lagrangian surfaces of S
2 × S

2 with non-null
parallel mean curvature vector.
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Theorem 4.1. Let Φ: Σ → S
2 × S

2 be a Lagrangian immersion with
non-null parallel mean curvature vector of a compact surface Σ. Then Φ
is congruent to a finite covering of one of the embedded tori

Ta,b =
{
(x, y) ∈ S

2 × S
2/x1 = a, y1 = b

}
,

with a, b ∈ [0, 1), a2 + b2 > 0.

Proof. Since the mean curvature vector H is a non-null parallel vector field
and the immersion is Lagrangian, JH is also a non-trivial parallel vector
field on Σ. Hence the surface Σ is flat. Using (2.7), this implies that
|σ|2 = 4(|H|2 + C2). Therefore, taking the 2-fold oriented covering of Σ
if necessary, Σ is a torus.

Using (4.3), we can check that the 1-differential Υ on Σ defined by

Υ(z) = 〈H, JΦz〉 ⊗ dz,

is holomorphic. Since Υ does not vanish because H is non-null, we can nor-
malize it by Υ = (1/2)(dz), i.e., 2〈H, JΦz〉 = 1. Differentiating this equality
and using again (4.3), we have that

0 = 〈H, JΦz〉z = 〈H, 2uzJΦz〉 = uz.

This means that u is constant, say μ ∈ R, and so |H|2 = 4e−2μ〈H, JΦz̄〉2 =
e−2μ.

We now define a 4-differential on Σ by

Ξ(z) =
(
8〈H, JΦz〉〈Φzz, JΦz〉 + 〈Φz, Φ̂z〉2

)
⊗ (dz)4

=
(
4〈Φzz, JΦz〉 + 〈Φz, Φ̂z〉2

)
⊗ (dz)4.

Using (4.3), (4.6) and the fact that u is constant, it is easy to prove that Ξ
is also holomorphic. Since Σ is a torus, Ξ can be written as Ξ = λeiθ(dz)4,
with λ ≥ 0 and θ ∈ R.

Under these conditions, we are going to compute the gradient and the
Laplacian of C. From (4.5), (4.3) and (4.6), we obtain that

iCz =
e−2μ

2
〈Φz, Φ̂z〉 − 2e−4μ〈Φzz, JΦz〉〈Φz̄, Φ̂z̄〉.

Since |∇C|2 = 4e−2μ|Cz|2, using (4.2) and (4.7), we obtain that

|∇C|2 =
1 − 4C2

2
(
e−2μ + 2C2) − 8e−8μ�(〈Φzz, JΦz〉〈Φz̄, Φ̂z̄〉2),
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where � denotes real part. But as Ξ = λeiθ(dz)4 we have that

λ2 = e4μ + 4e6μC2 +
e8μ

16
(
1 − 4C2)2 + 8�(〈Φzz, JΦz〉〈Φz̄, Φ̂z̄〉2).

The last two equations allow to get that

(4.8) |∇C|2 =e−4μ(1 − λ2e−4μ)+
8e−2μ(1+4C2) + (1−4C2)(1+12C2)

16
.

On the other hand, differentiating Cz with respect to z̄ and using (4.3) and
(4.6), we obtain that

Czz̄ = −C

(
1 +

e2μ

4
+ e2μC2

)
.

Since ΔC = 4e−2μCzz̄, we finally deduce that

(4.9) Δ C = −C(1 + 4e−2μ + 4C2).

Equations (4.8) and (4.9) mean that the function C is isoparametric.
Then we follow a standard reasoning. We work on the open set U , where

∇C �= 0. We are going to prove that U = ∅ and so C must be constant. For
this purpose, taking into account that K = 0, the Bochner formula says that

1
2
Δ|∇C|2 = 〈∇C,∇(ΔC)〉 +

2∑

i=1

|∇ei
∇C|2,

where {e1, e2} is any orthonormal frame on U . Using (4.8) and (4.9), we
can easily prove that

Δ|∇C|2 = C(1 + 4e−2μ − 12C2)ΔC + (1 + 4e−2μ − 36C2)|∇C|2,
〈∇C,∇(ΔC)〉 = −(1 + 4e−2μ + 12C2)|∇C|2.

We now take on U the orthonormal frame {e1 = ∇C/|∇C|, e2}. From (4.8)
and (4.9), it is not difficult to obtain that

2∑

i=1

|∇ei
∇C|2 = C2

(
1
2

+ 2e−2μ − 6C2
)2

+ C2
(

3
2

+ 6e−2μ − 2C2
)2

.

Using the last three expressions on the Bochner formula, after a long straight-
forward computation, we finally arrive at

0 = 16e8μC4 + (288e6μ + 72e8μ)C2 + 48λ2 − 48e4μ − 24e6μ − 3e8μ,
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which implies that C is constant on each connected component of U . This is
impossible and so U = ∅. Thus, ∇ C = 0 and C must be constant. Looking
at (4.9), we deduce that C ≡ 0. Proposition 2.2 says that Φ is locally the
product of two spherical curves. In this family of surfaces, it is easy to check
that H is parallel and non-null if and only if both curves have constant
curvature non-simultaneously zero, i.e., both curves are circles of S

2. This
finishes the proof. �

4.2. Geometric properties

Let Φ = (φ, ψ): Σ → S
2 × S

2 be a minimal Lagrangian immersion of a surface
Σ. The first equation of (4.3) implies that φzz̄ = − e2u

4 φ and ψzz̄ = − e2u

4 ψ.
This means that φ, ψ: (Σ, g) → (S2, 〈, 〉) are harmonic maps. Thus, the asso-
ciated Hopf differential

Θ(z) = 〈φz, φz〉 ⊗ (dz)2 = −〈ψz, ψz〉 ⊗ (dz)2 =
1
2
〈Φz, Φ̂z〉 ⊗ (dz)2

is holomorphic. Hence Θ vanishes identically or it has isolated zeroes. From
(4.7), we have that

(4.10) 16|Θ|2 = e4u(1 − 4C2).

Therefore, either C2 is constantly 1/4 and, according to Proposition 2.3, our
surface is congruent to an open subset of M0, or the points where C2 = 1/4
are isolated.

On the other hand, using some properties of harmonic maps studied by
Schoen and Yau in [7] (see also Chapter 5 of [8]), we have that, if Θ is
not identically zero, the functions (1 + 2C)/4 and (1 − 2C)/4, outside the
isolated points where they vanish, satisfy (see Lemma 5.2.1 in [8] or formulae
(16) and (18) in [7]):

(4.11) Δ log
1 + 2C

4
= 2K − 2C, Δ log

1 − 2C

4
= 2K + 2C.

Taking into account all this information, we obtain the following result.

Proposition 4.2. Let Φ: Σ → S
2 × S

2 be a minimal Lagrangian immersion
of a surface Σ. Then:

(1) Either C2 ≡ 1/4 and Φ(Σ) is an open set of the totally geodesic Lagran-
gian surface M0 or the points of Σ where C2 = 1/4 are isolated.
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(2) If Σ is a sphere, then Φ(Σ) is congruent to M0. In particular, a
real projective plane cannot be immersed in S

2 × S
2 as a minimal

Lagrangian surface.

(3) If Σ is a compact orientable surface of genus g ≥ 1, then the degree d
of Φ satisfies

1 − g − d = −N−

4
, 1 − g + d = −N+

4
,

being N− (respectively, N+) the sum of all orders for all zeroes of
1 + 2C (respectively, 1 − 2C). In particular, if Σ is a torus, then C2 <
1/4 and the degree of Φ is zero, i.e.,

∫
Σ C dvg = 0.

Proof. Part (1) is clear. If Σ is a sphere, the Riemann–Roch theorem says
that Θ ≡ 0, which means C2 ≡ 1/4 and part (2) follows. Part (3) is proved
integrating (4.11) and using Lemma 5.2.3 in [8] or formulae (6) and (7)
in [7]. �

Next we prove some general properties of the minimal Lagrangian sur-
faces of S

2 × S
2 related with their Gauss curvatures.

Theorem 4.3. Let Φ: Σ → S
2 × S

2 be a minimal Lagrangian immersion of
a surface Σ.

(1) If the Gauss curvature K of Σ is constant, then Φ(Σ) is congruent to
some open subset of the totally geodesic Lagrangian surfaces M0 or T.

(2) If Σ is complete and the Gauss curvature K is non-negative, then Φ(Σ)
is congruent to the sphere M0 or to the torus T.

(3) If Σ is complete, the Gauss curvature K is non-positive and 1 − 4C2 ≥
ε > 0 for some constant ε, then Φ(Σ) is congruent to T.

Proof. From (4.5) and (4.7), we get that

(4.12) |∇C|2 =
(1 − 4C2)(2C2 − K)

2
, ΔC = −C(1 + 4C2 − 4K).

Suppose now that K ≡ a, with a ∈ R. Then (4.12) says that the function
C is isoparametric. We follow a similar reasoning to the used in the proof
of Theorem 4.1. We work on the open set U where ∇C �= 0. We are going
to prove that U = ∅ and so C must be constant. Using that K ≡ a, the
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Bochner formula gives

1
2
Δ|∇C|2 = a|∇C|2 + 〈∇C,∇(ΔC)〉 +

2∑

i=1

|∇ei
∇C|2,

where {e1, e2} is any orthonormal frame on U . Using (4.12), it is easy to
prove that

Δ|∇C|2 = 2C(1 + 2a − 8C2)ΔC + 2(1 + 2a − 24C2)|∇C|2,
〈∇C,∇(ΔC)〉 = −(1 − 4a + 12C2)|∇C|2.

We take on U the orthonormal frame {e1 = ∇C/|∇C|, e2}. From (4.12), we
obtain that

2∑

i=1

|∇ei
∇C|2 = C2(1 + 2a − 8C2)2 + C2(2 − 2a − 4C2)2.

Using the last three expressions on the Bochner formula, we finally arrive at

0 = (1 − 4C2)
((

3a2

2 − a

)
+ (9a − 4)C2

)
,

which implies that C is constant on each connected component of U . This
is impossible and so U = ∅. Hence, ∇C = 0 and so C is constant. But
using once again (4.12), we obtain that C = 0 or C2 = 1/4. In the first case,
Proposition 2.2 says that Φ is locally the product of two spherical curves. In
this family of surfaces, it is easy to check that H is null if and only if both
curves have zero curvature, i.e., both curves are great circles of S

2 and this
leads to T. In the second case, Proposition 2.3 leads to M0. This finishes
the proof of part (1).

In order to prove parts (2) and (3), we first compute the Laplacian of
the non-negative function 1 − 4C2. In fact, from (4.12), it is clear that

(4.13) Δ(1 − 4C2) = 4K(1 − 4C2) + 16C2|σ|2.

If K ≥ 0, then (4.13) says that 1 − 4C2 is a subharmonic function that
satisfies 1 − 4C2 ≤ 1. Since Σ is a complete non-negative curved surface,
the maximum principle implies that 1 − 4C2 is constant. From (4.13), we
have that K = C ≡ 0 or σ ≡ 0. This finishes the proof of part (2).
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To prove part (3), we make use of (4.12) in order to obtain

(4.14) Δ log (1 − 4C2) = 4K.

Then (4.14) implies that g0 = (1 − 4C2)1/2g is a flat and complete metric
and hence Σ is parabolic. If Δ0 is the Laplacian of g0, then we deduce from
(4.14) that

Δ0 log(1 − 4C2) =
4K

(1 − 4C2)1/2 ≤ 0.

We have that log(1 − 4C2) is a superharmonic function and is indeed boun-
ded away from zero if 1 − 4C2 ≥ ε > 0. So it must be constant and so K ≡ 0
what finishes the proof. �

4.3. Minimal Lagrangian surfaces as Gauss maps

We emphasize important examples of minimal Lagrangian surfaces of S
2 ×

S
2. Let Ψ: Σ → R

4 be an immersion of an oriented surface Σ and Φ =
(φ, ψ): Σ → S

2
+ × S

2
− its Gauss map (see Section 3.2). It is well known [9]

that Φ is harmonic if and only if Ψ has parallel mean curvature vector.
From (3.2), Φ is a conformal map if and only if AĤ = |Ĥ|2I, where A is the
Weingarten endomorphism of the immersion Ψ and I denotes the identity
map. Thus, Φ is minimal if Ψ has parallel mean curvature vector and
AĤ = |Ĥ|2I. If Ψ is minimal, then Φ(Σ) must be an open set in M0 (see
Remark 3.4). If Ĥ is non-null, we deduce that Ψ is a minimal immersion in
a three-dimensional sphere of radius 1/|Ĥ|. Up to translations and scale, we
can consider that Ψ lies in the three-dimensional sphere of radius 1 centred
at 0. In conclusion:

The Gauss map Φ = (φ, ψ): Σ → S
2
+ × S

2
− of a minimal immer-

sion Ψ: Σ → S
3 of an oriented surface Σ in the three-dimensional

unit sphere is a minimal Lagrangian immersion in S
2 × S

2.

We focus our attention in this last case. Let Ψ: Σ → S
3 be a minimal

immersion of an oriented surface in S
3 and let σ̂ be now its second funda-

mental form. The Gauss equation of Ψ is written as K̂ = 1 − |σ̂|2/2. We
obtain from (3.2) that the induced metrics g and ĝ on Σ by the immersions
Φ and Ψ, respectively, are conformal. Concretely:

(4.15) g = (2 + |σ̂|2)ĝ.
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Moreover, using (3.1), (4.15) and the Gauss equation of Ψ, it is not dif-
ficult to check that the associated Jacobian C of the minimal Lagrangian
immersion Φ coming from the Gauss map of Ψ (which is defined by C(p) =
〈Jdφp(v), dφp(w)〉, where {v, w} is an oriented orthonormal frame in (Σ, g))
is given by

(4.16) C =
2 − |σ̂|2

2(2 + |σ̂|2) =
K̂

2 + |σ̂|2 .

Hence, from (4.16), we deduce that −1/2 < C ≤ 1/2 and the points where
C = 1/2 correspond to the isolated zeroes of σ̂. In addition, if Σ is compact,
using (2.6), (4.15), (4.16) and the Gauss–Bonnet theorem, its degree d is
given by

d =
1
4π

∫

Σ
C dvg =

1
4π

∫

Σ
K̂ dvĝ = 1 − g,

where g is the genus of Σ. In particular (see Proposition 4.2), N− = 0 and
N+ = 8(g − 1).

On the other hand, another “Gauss map” N : Σ → S
3 is defined pointwise

for Ψ: Σ → S
3 ⊂ R

4 as the image of the unit normal in S
3 translated to the

origin in R
4. The image N(Σ) is called a polar variety in [10] and it is a

minimal surface with singularities occurring at the points where K̂ = 1. If
we consider the Gauss map of N , we find a minimal Lagrangian immersion
in S

2 × S
2 which induces the same metric that Ψ but changes the sign of C.

One can check that it is exactly the Gauss map Φ of Ψ with the opposite sign.
Moreover, we can choose N in such a way that the pair {Ψ, N} is oriented in
a compatible way so that (see Section 3.2) Φ̂ = (φ,−ψ) =

√
2(Ψ ∧ N). The

immersion

Φ̂: Σ −→ S
2
+ × S

2
− ⊂ S

5(
√

2)

defines [10] a minimal immersion in S
5(

√
2) which is known as the bipolar

of Ψ. Thus we deduce that the Gauss map Φ = (φ, ψ) and the bipolar
Φ̂ = (φ,−ψ) of the immersion Ψ are congruent immersions since Φ̂ = IΦ,
but we point out that the isometry I = ( I 0

0 −I ) is neither holomorphic nor
antiholomorphic (see Section 1).

Thanks to the work of [10] and using this procedure we can assert:

Every compact Riemann surface of arbitrary genus can be imme-
rsed in S

2 × S
2 as a minimal Lagrangian surface.
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The next result shows that, outside a set of isolated points, any minimal
Lagrangian surface in S

2 × S
2 is locally the Gauss map of a minimal oriented

surface in S
3.

Theorem 4.4. Let Φ: Σ → S
2 × S

2 be a minimal Lagrangian immersion of
a simply connected surface Σ with C2 < 1/4. Then Φ is congruent to the
Gauss map of a minimal immersion Ψ: Σ → S

3 ⊂ R
4 in the three-dimensional

unit sphere of R
4.

Proof. Since Φ is minimal and C2 < 1/4, from (4.10) we know that Θ(z) =
〈Φz,Φ̂z〉

2 ⊗ (dz)2 is a holomorphic 2-differential without zeroes. So, up to a
change of complex coordinate on Σ if necessary, we can normalize it on Σ
by Θ(z) = eiθ(dz)2, θ ∈ R. This implies that

(4.17) 〈Φz, Φ̂z〉 = 2eiθ,

and (4.7) gives

(4.18) 1 − 4C2 = 16e−4u.

Then (4.3), (4.5) and (4.17) lead to

ie2uCz = 4e−iθe−2u〈Φzz, JΦz〉,

so that we obtain that

e8u|Cz|2 = 16|〈Φzz, JΦz〉|2 = e6u|σ|2.

Using this in the Gauss equation (2.7), we deduce that the Gauss curvature
K of the surface is given by K = 2C2 − e2u|Cz|2/2. Since 4uzz̄ = −e2uK,
from (4.3) and (4.6), we can finally reach that the Gauss and Codazzi equa-
tions of the Lagrangian immersion Φ are equivalent to

(4.19) 2uzz̄ + e2uC2 − e4u|Cz|2
4

= 0, 1 − 4C2 = 16e−4u.

Taking into account that −1 < 2C < 1, we can now define the function v on
Σ by tanh 2v = 2C. Using (4.18), we have that e2u = 4 cosh 2v and it is easy
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to check that Equations (4.19) are equivalent to the sinh-Gordon equation

(4.20) vzz̄ +
sinh 2v

2
= 0.

It is well known [11] that for any solution v of (4.20) there exists a one-parameter
family Ψϑ: (Σ, e2v|dz|2) → S

3, ϑ ∈ R, of minimal isometric immersions of
our simply connected surface, where its associated holomorphic 2-differential
Ξϑ(z) = 〈Ψϑ

z , Nϑ
z 〉 ⊗ (dz)2, with Nϑ the unit normal to Ψϑ such that {Ψϑ

x, Ψϑ
y ,

Ψϑ, Nϑ} is an oriented frame, has been normalized by Ξ = eiϑ(dz)2/2.
We now study the Gauss map Φϑ of Ψϑ. The Gauss equation of Ψϑ gives

that the norm of its second fundamental form is given by 2e−4v and then
(4.15) implies that the induced metric by Φϑ is given by e2u|dz|2. In addi-
tion, (4.16) says that the associated Jacobian to Φϑ is C. Using a complex
coordinate on Σ, we can write (see Section 3.2) Φϑ = −2

√
2 ie−2v Ψϑ

z ∧ Ψϑ
z̄

and Φ̂ϑ =
√

2 Ψϑ ∧ Nϑ and it is not difficult to get that the holomorphic
2-differential associated to Φϑ is Θϑ(z) = −ieiϑ(dz)2. In addition, Equation
(4.20) means that the functions u and C satisfy the compatibility Equations
(4.19). Therefore, our immersion Φ is congruent to the Gauss map Φθ+π/2

of Ψθ+π/2. �

4.4. A distinguished example

We emphasize an interesting example of a Klein bottle studied in [4, 12]
whose double cover is an S

1-equivariant minimal torus in S
4. Up to con-

gruences, we are going to look at it as a minimal Lagrangian Klein bottle
embedded in S

2 × S
2. We consider S

2 = {(x, z) ∈ R × C/x2 + |z|2 = 1} and
define

(4.21) B =
{
((x, z), (y, w)) ∈ S

2 × S
2/2x = y, �(

√
zw) = �(

√
zw)

}
,

where √ stands for the main branch of the square root. We must point out
that |z|2 = 1 − y2/4 ≥ 3/4. We are able to give a conformal parametriza-
tion of the universal covering of B by means of elementary Jacobi elliptic
functions (see [13] for background):

(4.22) ΦB = (φ, ψ): R
2 −→ S

2 × S
2
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with

φ(t, s) =
1

3 dn(
√

3t)

(
−sn(2

√
3t), i(2 sn2(

√
3t) − 3)e4is/

√
3
)

,

ψ(t, s) =
1

3 dn(
√

3t)

(
−2 sn(2

√
3t),−i(4 sn2(

√
3t) − 3)e−2is/

√
3
)

,

where sn, cn and dn stand for the sine amplitude, the cosine amplitude and
the delta amplitude with modulus p = 2

√
2/3.

The corresponding group of transformations in R
2 which defines B is

generated by

(t, s) �−→
(

t +
2
√

3K

3
, s

)

, (t, s) �−→
(√

3K

3
− t, s +

√
3π

2

)

,

where K is the complete elliptic integral of the first kind with modulus
p = 2

√
2/3.

We remark that ΦB is the Gauss map of the minimal immersion Ψ: R
2 →

S
3 given by

Ψ(t, s) =
(
cn(

√
3t) ei

√
3s, sn(

√
3t) eis/

√
3
)

.

This is also a conformal parametrization of the universal covering of Law-
son’s τ3,1 torus described in [10] by the orthogonal parametrization (u, v) �→
(cos v e3iu, sin v eiu). In addition, the Gauss map of Lawson’s τ3,1 torus is a
4-fold covering of the double cover torus of B. Following the notation of
the proof of Theorem 4.4, Lawson’s τ3,1 torus corresponds to the solution
v = v(t) = log(

√
3 dn(

√
3t)) of Equation (4.20) depending on only one vari-

able, satisfying tanh v(0) = 1/2, v′(0) = 0 and choosing ϑ = π/2 (or θ = 0).
We point out that ΦB is a minimal immersion in S

4(
√

2) (note that B
lies in the hyperplane 2x = y of R

6), and making use of (4.22), it is not
difficult to compute the area of B using the above data. A straightforward
computation leads to Area(B) = 12πE, where E is the complete elliptic
integral of the second kind with modulus p = 2

√
2/3. Then Theorems 1.3.1

and 1.4.1 in [4] show that the first positive eigenvalue λ1 of the Laplacian
Δ (acting on functions) of the Klein bottle B is λ1(B) = 1.

5. Second variation of minimal Lagrangian surfaces

Let Φ: Σ → S
2 × S

2 be a minimal Lagrangian immersion of a compact sur-
face Σ. We identify the sections on the normal bundle Γ(T⊥Σ) with the



240 Ildefonso Castro and Francisco Urbano

1-forms on Σ by

Γ(T⊥Σ) ≡ Ω1(Σ)(5.1)
ξ ≡ α

α being the 1-form on Σ defined by α(v) = ω(Φ∗v, ξ) for any v tangent to Σ.
In this way, the Jacobi operator of the second variation of the area becomes
in an intrinsic operator, which is given by [14]

L: Ω1(Σ) −→ Ω1(Σ)
α �−→ Δα + α,

where, in general, Ωp(Σ), p = 0, 1, 2, is the space of p-forms on Σ and Δ
is the Laplacian of the induced metric, i.e., Δ = δd + dδ, where δ is the
codifferential operator of the exterior differential d.

Hence, the index of Φ, that we will denote by Ind (Σ), is the number of
eigenvalues (counted with multiplicity) of Δ: Ω1(Σ) → Ω1(Σ) less than 1.

In order to study the Jacobi operator, we consider the Hodge decompo-
sition

Ω1(Σ) = H(Σ) ⊕ d Ω0(Σ) ⊕ δΩ2(Σ),

which allows to write, in a unique way, any 1-form α as α = α0 + dg + δβ, α0
being a harmonic 1-form, g a real function and β a 2-form on Σ. The space of
harmonic 1-forms, H(Σ), is the kernel of Δ and its dimension is the first Betti
number β1(Σ) of Σ. As Δ commutes with d and δ, the positive eigenvalues
of Δ: Ω1(Σ) → Ω1(Σ) are the positive eigenvalues of Δ:Ω0(Σ) → Ω0(Σ) joint
to the positive eigenvalues of Δ:Ω2(Σ) → Ω2(Σ). Therefore,

(5.2) Ind (Σ) = β1(Σ) + Ind0(Σ) + Ind2(Σ),

where Ind0(Σ) is the number of positive eigenvalues (counted with multipl-
icity) of Δ: Ω0(Σ) → Ω0(Σ) less than 1 and Ind2(Σ) is the number of positive
eigenvalues (counted with multiplicity) of Δ: Ω2(Σ) → Ω2(Σ) less than 1.

The variational vector fields of the Hamiltonian deformations of the
Lagrangian surface Σ are the normal components of the Hamiltonian vector
fields on S

2 × S
2. If F : S

2 × S
2 → R is a smooth function and X = J∇̄F is

its associated Hamiltonian vector field on S
2 × S

2, the 1-form associated to
the normal component of X, via identification (5.1), is d(F ◦ Φ). Thus, our
minimal Lagrangian compact surface Σ is Hamiltonian stable, i.e., stable
under Hamiltonian deformations, if the first positive eigenvalue of Δ acting
on Ω0(Σ) is at least 1. But from (4.1), we have that Φ: Σ → S

5(
√

2) is also a
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minimal immersion and so ΔΦ + Φ = 0, i.e., 1 is an eingenvalue of Δ. Hence
Σ is Hamiltonian stable if the first positive eigenvalue of Δ acting on Ω0(Σ)
is 1.

Precisely, the first eigenvalue of Δ (acting on functions) of the Lagran-
gian sphere M0 defined in (2.12) is 1 and it is clear that the same happens to
the Lagrangian torus T defined in (2.9). In Section 4.4, we showed the same
property for the Klein bottle B defined in (4.21). As a consequence, we have
that M0, T and B are Hamiltonian stable minimal Lagrangian surfaces in
S

2 × S
2.

If the compact surface Σ is orientable, the star operator �: Ω0(Σ) →
Ω2(Σ) says us that the eigenvalues of Δ acting on Ω0(Σ) or on Ω2(Σ) are
the same, and so Ind0(Σ) = Ind2(Σ). Thus if Σ is a minimal Lagrangian
compact orientable surface of S

2 × S
2 with genus g, then

(5.3) Ind (Σ) = 2 g + 2 Ind0(Σ).

Using (5.3), we get that M0 is stable and Ind(T) = 2.
In the following result we provide variational characterizations of the

examples M0, T and B in this context.

Theorem 4.5. Let Φ: Σ → S
2 × S

2 be a minimal Lagrangian immersion of
a compact surface Σ. Then

(1) If Σ is stable, then Φ(Σ) is the totally geodesic Lagrangian sphere M0.

(2) If Σ is Hamiltonian stable and Σ is orientable with genus g ≤ 2, then
Φ is an embedding and Φ(Σ) is either the totally geodesic sphere M0
or the totally geodesic torus T.

(3) If Σ is a Hamiltonian stable Klein bottle, then Φ is an embedding and
Φ(Σ) is the Klein bottle B described in Section 4.4.

(4) If Σ is unstable, then Ind(Σ) ≥ 2 and the equality holds if and only if
Φ is an embedding and Φ(Σ) is the totally geodesic torus T.

Remark 4.6. Part (1) shows that the result proved in Corollary 5.2 in [15]
is the best possible. Also, since the totally geodesic sphere M0 is a complex
surface with respect to the complex structure J = (J,−J) on S

2 × S
2, we

have that M0 is area minimizing in its homology class. In addition, in [16],
it was proved that the totally geodesic torus T is area minimizing under
Hamiltonian deformations of S

2 × S
2.
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Proof. We begin by recalling a result of Simon [17] which will be used in the
proof of this theorem.

Let Ψ: M → R
n be an immersion of a compact surface M with mean

curvature vector H̄ and maximum multiplicity μ, i.e., there exist μ points
{p1, . . . , pμ} on M such that Ψ(pi) = a, for all 1 ≤ i ≤ μ. Then

∫

M
|H̄|2dA ≥ 4πμ,

and the equality holds if and only if H̄ is given on M̃ = M − {p1, . . . , pμ} by
H̄ = −2(Ψ−a)⊥

|Ψ−a|2 , where ⊥ stands for normal component. This condition about
the mean curvature H̄ means that Ψ−a

|Ψ−a|2 : M̃ → R
n is a minimal immersion.

In this setting, the minimal Lagrangian immersion Φ produces an immer-
sion Φ: Σ → R

6 which is minimal into S
5(

√
2). From (4.1), in this case,

H̄ = −Φ/2 and we obtain that

Area (Σ) ≥ 8πμ,

and the equality holds if and only if Φ = 4 (Φ−a)⊥

|Φ−a|2 , where μ is the maximum
multiplicity of Φ. Since now a ∈ S

5(
√

2) and Φ is normal to the surface,
the last equation becomes 〈Φ, a〉Φ = 2a⊥. From here, it is not difficult to
conclude that Φ is the totally geodesic sphere M0. As a summary, we have
obtained that

(5.4) Area (Σ) ≥ 8πμ

and the equality holds if and only if Φ is an embedding and Φ(Σ) is congruent
to M0, whose area is 8π.

Now we can prove (1). From (5.2), if Σ is stable, then β1(Σ) = 0,
which implies, taking into account Proposition 4.2(2), that Φ(Σ) is con-
gruent to M0.

To prove (2), we only have to consider the cases g = 1, 2. If the genus
of Σ is 1, i.e., Σ is a Hamiltonian stable torus, then the first eigenvalue of
the Laplacian acting on functions is 1. So we have a minimal immersion
Φ: Σ → S

5(
√

2) of a torus Σ, where 1 is the first eigenvalue of the Laplacian.
A result of El Soufi and Ilias [18] says us that Σ is flat and then Theorem
4.3 shows that it must be the totally geodesic torus T.

If the genus of Σ is 2, we use a known argument. From the Brill–Noether
theory, we can get a non-constant meromorphic map ϕ: Σ → S

2 of degree
d ≤ 2. Then there exists a Moebius transformation F : S

2 → S
2 such that
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∫
Σ(F ◦ ϕ) = 0, and using that the first positive eigenvalue of Δ is 1, we have

∫

Σ
|∇(F ◦ ϕ)|2 ≥

∫

Σ
|F ◦ ϕ|2 = Area(Σ).

But
∫
Σ |∇(F ◦ ϕ)|2 = 8π degree(F ◦ ϕ) = 8π degree(ϕ) ≤ 16π. Hence, we

obtain that Area(Σ) ≤ 16π. Taking into account (5.4), we finally get that
μ ≤ 2. But Proposition 2.4 implies that μ ≥ 2, obtaining the equality in the
last inequality. This gives a contradiction, because the equality can be only
attained by the totally geodesic M0. This finishes the proof of (2).

Suppose now that Σ is a Hamiltonian stable Klein bottle. Then we have
a minimal immersion Φ: Σ → S

5(
√

2) of a Klein bottle Σ such that 1 is the
first positive eigenvalue of Δ. From Theorem 1.2 in [12] (take into account
the comments in the next paragraph to the statement of the mentioned
theorem in [12]), we deduce that our immersion is an embedding and the
surface is the Klein bottle B. This proves (3).

Finally we prove (4). If Σ is unstable and orientable, using part (1),
the genus g of Σ satisfies that g ≥ 1 and, from (5.3), Ind (Σ) ≥ 2 and the
equality holds if and only if Σ is a Hamiltonian stable torus, which implies
that it is the totally geodesic torus T using part (2).

If Σ is non-orientable, let π: Σ̃ → Σ the 2:1 orientable Riemannian cov-
ering and τ : Σ̃ → Σ̃ the change of sheet involution. The spaces of forms on
Σ̃ can be decomposed in the following way:

Ωi(Σ̃) = Ωi
+(Σ̃) ⊕ Ωi

−(Σ̃), i = 0, 1, 2,

where

Ωi
±(Σ̃) = {α ∈ Ωi(Σ̃)/τ∗α = ±α}.

As π ◦ τ = π, the map α ∈ Ωi(Σ) �→ π∗α ∈ Ωi(Σ̃) allows to identify Ωi(Σ) ≡
Ωi

+(Σ̃), i = 0, 1, 2. In addition, as Σ is non-rientable, �τ∗ = −τ∗�, and so �
identifies Ω0

−(Σ̃) ≡ Ω2
+(Σ̃). Hence, we have the identification

Ω2(Σ) ≡ Ω0
−(Σ̃)

β ≡ f,

where π∗β = fωΣ̃, ωΣ̃ being the area 2-form on Σ̃. Since Σ is non-orientable,
the eigenvalues of Δ: Ω2(Σ) → Ω2(Σ) are positive, and so, taking into acc-
ount the above considerations, Ind2(Σ) is the number of eigenvalues (counted
with multiplicity) of Δ: Ω0

−(Σ̃) → Ω0
−(Σ̃) less than 1. Also, as Ind0(Σ) is the
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number of positive eigenvalues (counted with multiplicity) of Δ: Ω0
+(Σ̃) →

Ω0
+(Σ̃) less than 1, we obtain that

(5.5) Ind0(Σ) + Ind2(Σ) = Ind0(Σ̃),

corresponding to the minimal Lagrangian immersion Φ ◦ π: Σ̃ → S
2 × S

2.
We can consider that χ(Σ) ≤ 0 because there are not minimal Lagrangian

real projective planes in S
2 × S

2 according to Proposition 4.2(2). If χ(Σ) ≤
−2, then β1(Σ) ≥ 3 and (5.2) says that Ind (Σ) ≥ 3. If χ(Σ) = −1, then
β1(Σ) = 2 and (5.2) and (5.5) imply that

Ind (Σ) = 2 + Ind0(Σ) + Ind2(Σ) = 2 + Ind0(Σ̃).

But Σ̃ is an oriented compact surface of genus 2 and part (2) leads to
Ind0(Σ̃) ≥ 1. This implies that Ind (Σ) ≥ 3.

Finally, if Σ is a Klein bottle, then β1(Σ) = 1. If Ind2(Σ) = 0, using
the above description of Ind2, the first eigenvalue λ1 of Δ:Ω0

−(Σ̃) → Ω0
−(Σ̃)

satisfies λ1 ≥ 1. Hence

∫

Σ̃
|∇f |2 ≥

∫

Σ̃
f2, ∀f ∈ C∞(Σ̃) such that f ◦ τ = −f.

From Theorem 1 in [19], we can get a non-constant meromorphic map ϕ:Σ̃ →
S

2 satisfying ϕ ◦ τ = −ϕ of degree d ≤ 2. Thus, we obtain

∫

Σ̃
|∇ϕ|2 ≥

∫

Σ̃
|ϕ|2 = Area(Σ̃).

But
∫
Σ̃ |∇ϕ|2 = 8π degree(ϕ) ≤ 16π. So we get that Area(Σ̃) ≤ 16π. Since

Area(Σ̃) = 2 Area(Σ), from (5.4), we have that μ ≤ 1. Hence, μ = 1 and the
equality in (5.4) holds, which is impossible because Σ̃ would be the totally
geodesic sphere M0. Therefore, Ind1(Σ) ≥ 1 for any minimal Lagrangian
Klein bottle Σ of S

2 × S
2. Part (3) gives that Ind0(Σ) ≥ 1 for any min-

imal Lagrangian Klein bottle of S
2 × S

2 except for B. In this way, we
obtain that any minimal Lagrangian Klein bottle Σ different from B satisfies
Ind(Σ) ≥ 3.

To finish the proof, we must check that Ind2(B) ≥ 2. In fact, following
Section 4.4, we consider the functions f, g: B̃ → R defined by f(π(t, s)) =
cos(2s/

√
3), g(π(t, s)) = sin(2s/

√
3), where π: R2 → B̃ is the projection and
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B̃ is the 2:1 covering torus of B. As the involution τ :B̃ → B̃ is induced by
(t, s) �→ (

√
3K/3 − t, s +

√
3π/2), it is clear that f ◦ τ = −f and g ◦ τ = −g.

Following the proof of Theorem 4.4, the induced metric on R
2 is given by

e2u(t) = 4 cosh log(
√

3 dn(
√

3t)) and so e2u(t) ≥ 4. Then, for any real num-
bers a and b, we have that

Δ(af + bg)(π(t, s)) = e−2u(t) d2

ds2

(
a cos

2s√
3

+ b sin
2s√
3

)

= −4
3
e−2u(t)(af + bg)(π(t, s)).

But using that e−2u(t) ≤ 1/4, it follows that

−(af + bg)Δ(af + bg) ≤ 1
3

(af + bg)2 ,

which implies that

−
∫

B
(af + bg)L(af + bg) dA ≤ −2

3

∫

B
(af + bg)2 dA.

In conclusion, we have shown that there exists a two-dimensional subspace of
Ω0

−(B̃) whereon the quadratic form associated to the Jacobi operator Δ + 1
of B̃ is negative definite. So Ind2(B) ≥ 2 and this finishes the proof. �

In [20] Palmer characterized the totally geodesic 2-sphere of S
3 as the

only minimal compact orientable surface of S
3 such that its Gauss map is

Hamiltonian stable.
In the last result, we compute the index of the Gauss map of a compact

orientable minimal surface of S
3 in terms of the index of itself.

Proposition 4.7. Let Ψ: Σ → S
3 ⊂ R

4 be a minimal immersion of an ori-
entable compact surface Σ and Φ: Σ → S

2
+ × S

2
− its Gauss map. Then

Ind0 (Φ) = Ind (Ψ) − 1.

Moreover, if the genus of the surface g ≥ 1, then Ind 0(Φ) ≥ 4 and Ind (Φ) ≥
10, and the equality holds in some of the equalities if and only if Φ is a 2-fold
covering of the totally geodesic Lagrangian torus T (see Remark 3.4).

Proof. The Jacobi operator of the second variation of Ψ is given by L̂ =
Δ̂ + |σ̂|2 + 2 (see [21]), where Δ̂ is the Laplacian of the induced metric ĝ.
But from (4.15), the induced metric g by the immersion Φ is conformal to
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ĝ with g = (2 + |σ̂|2)ĝ. Hence, the quadratic form Q̂ associated to L̂ acting
on functions of Σ satisfies

Q̂(u, u) = −
∫

Σ
{uΔ̂u + (|σ̂|2 + 2)u2}dvĝ

= −
∫

Σ
(uΔu + u2)(|σ̂|2 + 2)dvĝ = −

∫

Σ
(uΔu + u2)dvg = Q(u, u),

where Q is the quadratic form associated to the operator Δ + 1. So Ind0 (Φ)
= Ind (Ψ) − 1, because to compute Ind0 (Φ), we only consider positive eigen-
values of Δ. Now, we use the main result proved in [21]: we have that if
g ≥ 1, then Ind (Ψ) ≥ 5 and the equality holds if and only if Ψ is the Clifford
torus. From (5.3) and the fact that the Gauss map of the Clifford torus is
the 2-fold covering of T (see Remark 3.4), we finish the proof. �
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