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Type II ancient solutions to the Ricci flow
on surfaces
Sun-Chin Chu

Type II (ancient) solutions to the Ricci flow on surfaces are not yet
classified. It is conjectured that the Rosenau solution and the cigar
are the only solutions, modulo scaling. In this paper, we mainly
study the backward limit and the circumference at spatial infinity
of Type II ancient solutions on noncompact surfaces.

1. Introduction

Recall that a solution to the Ricci flow is called ancient if it exists on a time
interval (−∞, ω) containing t0 for some t0 ∈ (−∞,∞). Let (Mn, g(t)) be a
solution to the Ricci flow. We define what it means to be a Type I or Type
II ancient solution as follows:

First, (Mn, g(t)) is a complete ancient solution with bounded curvature
(the bound may depend on time.)

• It is Type I if it satisfies

(1.1) sup
M×(−∞,t0]

|t||Rm(x, t)| < ∞.

• It is Type II if it satisfies

(1.2) sup
M×(−∞,t0]

|t||Rm(x, t)| = ∞.

Note that hypothesis (1.2) on a Type II ancient solution implies that the
metric must be nonflat.

In [11], Hamilton shows that the only Type I ancient solutions on surfaces
are the round sphere S

2 and the flat plane R
2, and their quotients. Therefore,

any nonflat complete ancient solution with bounded curvature on a non-
compact surface is Type II. That is, there does not exist a Type I nonflat
ancient solution on a noncompact surface. As we know so far, Type II
ancient solutions on surfaces have not been classified. It is conjectured that
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the noncompact case should correspond to the cigar soliton and compact
case to the Rosenau solution [19].

Of particular interest to us is to study Type II ancient solutions on
surfaces. By the strong maximum principle, we see that R(g(t)) ≡ 0 every-
where and it is flat, or R(g(t)) > 0 everywhere and it is diffeomorphic to S

2

or R
2. Here and throughout, let (R2, g(t)) denote a Type II ancient solution

to the Ricci flow. We shall see that such a solution can be extended to a
complete eternal solution, i.e., it is defined on (−∞,∞). Remark that the
curvature is still bounded at each time slice.

The paper is organized as follows. In Section 2, we study the limits
backwards in time, in a way analogous to a maximal solution of Type IIb in
[11], of Type II ancient solutions on surfaces. Proposition 2.5 shows that the
backward limit of such a solution is a multiple of the cigar soliton. In Section
3, we investigate the asymptotic volume ratio, total curvature, aperture and
circumference at spatial infinity of Type II ancient solutions on complete
noncompact surfaces. We shall see the scalar curvature of such a solution
decays to zero at spatial infinity, hence these quantities are preserved under
the Ricci flow. Theorem 3.4 shows that the circumference at spatial infinity
of such a solution is finite, therefore, the volume grows linearly. Since Rie-
mann surfaces are Kähler, this improves Ni’s theorem [13], namely that any
nonflat ancient solution to the Kähler–Ricci flow with bounded nonnegative
bisectional curvature has asymptotic volume ratio zero. By the Harnack
estimate, the function Rmax(t) = supR(·, t) is nondecreasing. Does a Type
II ancient solution on a surface satisfy limt→−∞ Rmax(t) > 0? Theorem 4.1
gives an affirmative answer to the noncompact case.

2. Taking limits backwards in time

In this section, we shall take limits backwards in time of Type II ancient
solutions on surfaces.

2.1. The compactness theorem

Recall the definition of convergence of pointed solutions to the Ricci flow.
To begin with, we fix a time interval (α, ω) with −∞ ≤ α < 0 and

0 < ω ≤ ∞.

Definition 2.1. A sequence {(Mn
k , gk(t), Ok)}k∈N, t ∈ (α, ω), of complete

pointed solutions to the Ricci flow converges to a complete pointed solution
to the Ricci flow (Mn

∞, g∞(t), O∞), t ∈ (α, ω), if there exist
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(1) an exhaustion {Uk}k∈N of M∞ by open sets with O∞ ∈ Uk, and

(2) a sequence of diffeomorphisms Φk : Uk → Vk = Φk(Uk) ⊂ Mk with
Φk(O∞) = Ok such that (Uk, Φ∗

k[gk(t)|Vk
]) converges in C∞ to

(M∞, g∞(t)) uniformly on compact sets in M∞ × (α, ω).

We review Hamilton’s compactness theorem for sequences of solutions
to the Ricci flow as follows.

Theorem 2.2. [11]. Let {(Mn
k , gk(t), Ok)}k∈N, t ∈ (α, ω), be a sequence of

complete pointed solutions to the Ricci flow such that

(i) (uniformly bounded curvatures)

|Rmk|k ≤ C0 on Mk × (α, ω)

for some constant C0 < ∞ independent of k, and

(ii) (injectivity radius estimate at t = 0)

inj(Ok, gk(0)) ≥ i0

for some constant i0 > 0.

Then, there exists a subsequence {jk}k∈N such that {(Mjk
, gjk

, Ojk
)} con-

verges to a complete pointed solution to the Ricci flow (Mn
∞, g∞(t), O∞),

t ∈ (α, ω), as k → ∞.

Remark 2.3. (1) In fact, if there is a subsequence (Mjk
, gjk

(0), Ojk
) con-

vergent to a limit (M∞, g∞, O∞), then there is a subsequence which
converges at all times. (2) For the Ricci flow, it is known that curva-
ture bounds on (α, ω) imply bounds on all derivatives of the curvature on
[α + ε, ω) for any ε > 0. Thus, we need only to assume the curvature bound
for solutions to the Ricci flow.

2.2. The backward limit

Let us first take a look at the Rosenau solution [19].
Let M2 be the cylinder R × S1, where S1 is the circle of radius 1. We

define a solution g(x, θ, t), t < 0, to the Ricci flow on M2 by

g(x, θ, t) =
sinh(−t)

cosh x + cosh t
(dx2 + dθ2).
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It is easy to justify that the solution g(x, θ, t) extends to a complete ancient
solution to the Ricci flow on the sphere S

2. This complete ancient solution
on S

2 is the so-called Rosenau solution.
By straightforward computation, the scalar curvature of the metric is

given by

R(x, θ, t) =
1 + cosh t · cosh x

sinh(−t)(cosh x + cosh t)
> 0,

and attains its maximum curvature at the poles x = ±∞:

Rmax(t) = lim
|x|→∞

1 + cosh t · cosh x

sinh(−t)(cosh x + cosh t)
= coth(−t) > 0

for all t < 0. Since limt→0− Rmax(t) = ∞, the Rosenau solution is ancient,
but not eternal. Note that the Rosenau solution has a Type I singularity as
t ↗ 0. By the fact that

lim
t→0−

R(x, θ, t)
Rmax(t)

= 1 for all (x, θ) ∈ R × S1,

the normalized solution converges to the round sphere S
2 as t → 0−. On the

other hand, we have

sup
S2×(−∞,−1]

|t|R = sup
(−∞,−1]

|t| coth(−t) = ∞,

which means that it is a Type II ancient solution on S
2.

To study the limits backwards in time, in a way analogous to a maximal
solution of Type IIb in [11], of Type II ancient solutions on surfaces, we
need the following.

Lemma 2.4. Suppose that (Mn, g(t)) is a Type II ancient solution and
satisfies the injectivity radius bound, namely

(2.1) inj(M, g(t)) ≥ c
√

K(t)
at each time t,

where c is a positive constant and

K(t) = sup
x∈M

|Rm(x, t)|.

Then, there exists a sequence of dilations of the solution which converges to
a Type II singularity model.
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Proof. Let {γj} be any sequence with γj ↗ 1, and choose any sequence of
time Tj ↘ −∞, and pick (xj , tj) ∈ M × [Ti, 0] such that

|tj |(tj − Tj)|Rm(xj , tj)| ≥ γj sup
M×[Tj ,0]

|t|(t − Tj)|Rm(x, t)|.

Now consider the dilated solutions

gj(t) = |Rm(xj , tj)| · g

(
tj +

t

|Rm(xj , tj)|

)
.

By the injectivity radius bound (2.1) and definition of gj , we obtain

inj(xj , gj(0)) ≥ c.

Each solution gj exists on the time interval (−∞, ω−tj

|Rm(xj ,tj)|), which contains
the subinterval [−αj , ωj ] with

αj = (tj − Tj) |Rm (xj , tj)| and ωj = −tj |Rm (xj , tj)| .

By definition, we have

1
1/αj + 1/ωj

=
αjωj

αj + ωj
=

|tj |(tj − Tj)|Rm(xj , tj)|
|Tj |

≥ γj sup
M×[Tj ,0]

|t|(t − Tj)|Rm(x, t)|
|Tj |

→ ∞ as j → ∞ since Tj → −∞.

This implies that limj→∞ αj = ∞ and limj→∞ ωj = ∞. Therefore, for any
given α, ω > 0, the interval (−αj , ωj) contains the subinterval (−α, ω) for j
sufficiently large.

On the other hand, for all (x, t) ∈ M × (−α, ω), we see that

|Rmj(x, t)| =
1

|Rm(xj , tj)|

∣∣∣∣Rm
(

x, tj +
t

|Rm(xj , tj)|

)∣∣∣∣

≤ (tj − Tj)|tj |
γj

(
tj − Tj + t

|Rm(xj ,tj)|

) ∣∣∣tj + t
|Rm(xj ,tj)|

∣∣∣

=
αjωj

γj(αj + t)(ωj − t)

uniformly bounded for j sufficiently large since αj → ∞, ωj → ∞
and γj ↗ 1.
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Consequently, we conclude that the sequence (M, gj(t), xj), −α < t < ω,
satisfies the hypotheses of Hamilton’s compactness theorem. It follows that
there exits a subsequence of (M, gj(t), xj) which limits to a complete pointed
eternal solution (M̄, ḡ(t), x̄) satisfying

sup
M̄×(−∞,∞)

|Rm| ≤ 1 = |Rm(x̄, 0)|,

that is, the limit is a Type II singularity model. The lemma follows. �

Since a Type II ancient solution on a surface has positive curvature every-
where, the metric satisfies the injectivity radius bound (2.1). Lemma 2.4
implies that the backward limit of such a solution is a Type II singularity
model. By construction, the only curvature is positive and attains its max-
imum in space–time, therefore, it follows from [11] that the limit must be
a multiple of the cigar soliton. We conclude this section with the following
proposition.

Proposition 2.5. If a complete ancient solution to the Ricci flow on a
surface with bounded curvature is not a quotient of the round sphere or of
the flat plane, then the ancient solution is Type II. Moreover, the backward
limit of such a solution is a multiple of the cigar soliton.

As a corollary, we see that the backward limit of the Rosenau solution
is the cigar soliton.

Remark 2.6. Proposition 2.5 is also obtained independently by Chow
et al. [4].

3. The geometry at spatial infinity of Type II ancient
solutions on R

2

In this section, first we recall the asymptotic volume ratio, total curvature,
aperture and circumference at infinity of complete noncompact surfaces with
bounded positive curvature. Next, we study these quantities of Type II
ancient solutions on R

2. We shall see that these quantities are preserved
under the Ricci flow. Ni [13] proves that any nonflat ancient solution to
the Kähler–Ricci flow with bounded nonnegative bisectional curvature has
asymptotic volume ratio zero. For Riemann surfaces, Theorem 3.4 improves
Ni’s theorem since finite circumference at infinity implies that the volume
grows linearly, hence that the asymptotic volume ratio is zero.
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3.1. The geometry of complete surfaces at infinity

Suppose that (Mn, g) is a complete Riemannian manifold with nonnegative
Ricci tensor. The Bishop–Gromov theorem says that the function

r → Vol(B(p, r))
ωnrn

,

where B(p, r) = {x | dist(x, p) < r}, is monotone decreasing for any p ∈ M.
The asymptotic volume ratio αg is defined by

αg = lim
r→∞

Vol(B(p, r))
ωnrn

,

which is independent of p and invariant under dilation. It is known that

(3.1) αgωnrn ≤ Vol(B(p, r)) ≤ ωnrn.

Suppose that (R2, g) is a complete surface with bounded positive curva-
ture. Let o ∈ R

2 be some point which we call the origin. Denote by Bs the
open ball of radius s around the origin o, �(s) the length of ∂Bs and A(s)
the area of Bs. Recall that the total curvature τg and aperture Ag of the
metric g are given by

τg =
∫

R2

Kdμg and Ag = lim
s→∞

�(s)
s

,

respectively. Note that the aperture is also independent of the choice of the
origin and invariant under dilation. It follows from the Hartman theorem [12]
that we have

(3.2a) lim
s→∞

�(s)
s

= 2π −
∫

R2

K dμg

and

(3.2b) lim
s→∞

A(s)
2s2 = 2π −

∫

R2

K dμg.

By the Cohn–Vossen theorem, the right-hand side of (3.2a) is nonnegative
for a complete noncompact convex surface, that is, the total curvature is at
most 2π. Clearly, the left-hand side of (3.2b) is a multiple of the asymptotic
volume ratio.
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From (3.2a) and (3.2b), for complete noncompact convex surfaces we see
that the aperture is positive if and only if the asymptotic volume ratio is
positive. Since Riemann surfaces are Kähler, for a complete nonflat ancient
solution with bounded curvature on R

2, combining (3.2a) and (3.2b) to Ni’s
theorem [13] shows that the aperture is also zero. Therefore, we have that if
the aperture of a complete ancient solution with bounded curvature on R

2

is positive, then the metric is flat.
Since the scalar curvature of a Type II ancient solution on R

2 is posi-
tive and bounded, by the Bernstein-Bando-Shi estimates, injectivity radius
estimate and the fact that the total curvature is at most 2π, the scalar cur-
vature of such solutions decays to zero at spatial infinity. It follows from
[11] that the aperture and asymptotic volume ratio are preserved under the
Ricci flow. Consequently, the total scalar curvature is also preserved under
the flow.

Now recall that the circumference at infinity of a complete noncompact
surface (M2, g) is defined by

Cg = sup
K

inf
U

{�(∂U)|∀ compact set K ⊂ M,∀ open set U ⊃ K}.

For any monotone sequence of compact sets Kn exhausting a complete
noncompact surface, we see that

Cg ≥ sup
n

inf
U⊃Kn

�(∂U).

On the other hand, for any compact set K, there exists a Kn with K ⊂ Kn

so that we have

inf
U⊃K

�(∂U) ≤ inf
U⊃Kn

�(∂U).

Hence, it follows that

(3.3) Cg = sup
n

inf
U⊃Kn

�(∂U) = lim
n→∞

inf
U⊃Kn

�(∂U).

Since the scalar curvature of a Type II ancient solution on R
2 vanishes

at spatial infinity, for any time interval [a, b] containing t0 there exists a
monotone exhaustion sequence of compact sets Kn with

0 < R(x, t) <
1
n

for (x, t) ∈ (R2\Kn) × [a, b].
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Let γ(s) be a fixed parameterized curve on R
2. Then the length evolves by

the formula

d

dt
�g(t)(γ) =

d

dt

∫

γ

√
g(∂s, ∂s) ds =

∫

γ
−R

2

√
g(∂s, ∂s) ds.

This implies that

− 1
2n

�g(t)(∂U) ≤ d

dt
�g(t)(∂U) < 0

for any set U with Kn ⊂ U and t ∈ [a, b]. Therefore, we have

e−(1/2n)(t−a) inf
U⊃Kn

�g(a)(∂U) ≤ inf
U⊃Kn

�t(∂U) ≤ e−(1/2n)(b−t) inf
U⊃Kn

�g(b)(∂U)

for t ∈ [a, b].
We conclude this with the following

Lemma 3.1. If the circumference at infinity of an ancient solution (with
bounded curvature at each time slice) on R

2 is finite for some t0, then it is
constant in time.

To explore the aperture and circumference at infinity of Type II ancient
solutions on R

2, we employ the theory of isometric embedding to the surface
(R2, g(t)) as follows.

In [18], Pogorelov shows that every complete smooth metric with pos-
itive curvature, given on a plane, is realizable as an unbounded smooth
convex surface M2 in R

3. By a result of Stoker [21], coordinates in R
3

can be so chosen that {z = 0} ≡ R
2 is a supporting hyperplane to M at

the origin O = (0, 0, 0) ∈ R
3, and M is the graph of a nonnegative strictly

convex function f : Ω ⊂ {z = 0} → R, where Ω is the image of M under the
orthogonal projection π : R

3 → {z = 0}. Let o ∈ R
2 denote the preimage of

the origin O under the embedding. Thus, we can identify the point o with
the origin O. In what follows, we shall freely realize without explicit men-
tion a pointed surface (R2, g, o) as the graph of a nonnegative strictly convex
smooth function f as above.

Now take the graph of f over the sublevel set {f ≤ n} as the com-
pact set Kn. By a result of Greene and Shiohama [7], the length of level
sets is monotone increasing. Together with (3.3) and the observation that
infU⊃Kn

�(∂U) = �({f = n}), this implies that Cg = �(∂Ω).
There is an essential difference between surfaces with τ = 2π and sur-

faces with τ < 2π. Considering a convex cone as an example, it is known
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that a complete metric with positive curvature given on a plane may be
realized by unbounded convex surface in more than one way. This is always
the case [17] if the total curvature of the manifold is less than 2π. On the
other hand, it is known [18] that for any complete noncompact surface of
nonnegative curvature with τ = 2π, there is a unique complete convex sur-
face in R

3 isometric to it up to congruence. In particular, if Cg < ∞, say
Cg = 2π, then the embedded surface is inside a circular cylinder of radius π.
This implies that the tangent cone of the surface is a ray, thus we see that
Ag = 0 and τg = 2π by (3.2a). Therefore, we have that the embedding is
always rigid if we have Cg(t) < ∞.

As a corollary of Lemma 3.1, we have the following

Lemma 3.2. The isometric embedding of a Type II ancient solution
(R2, g(t)) is rigid for all t provided that we have Cg(t0) < ∞ for some
t0 ∈ (−∞, ω).

Remark 3.3. In [5], Daskalopoulos and Hamilton introduce the width w(g)
of a metric g on the plane. Let F : R

2 → [0,∞) denote a proper function,
i.e., F−1(c) is compact for every c ∈ [0,∞). The width of F is given by

w(F ) = sup
c

�({F = c}).

Then, the width w(g) is given by the infimum of w(F ) over all smooth proper
functions F , that is

w = inf
F

w(F ).

It is clear that if the metric is complete and has positive curvature, then
we have

w(g) = Cg

since the surface is realizable as the graph of a (proper) strictly convex
function.

3.2. Circumference of (R2, g(t)) at infinity

For Riemann surfaces, Theorem 3.4 improves Ni’s theorem since the finite-
ness of circumference at infinity implies that the volume grows linearly.
Consequently, we see that the asymptotic volume ratio is 0.

Theorem 3.4. The circumference at spatial infinity of a Type II ancient
solution (R2, g(t)) is finite and independent of time.
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Proof. Let us begin the proof with the following observation.

Lemma 3.5. Suppose that (R2, g0) is a complete surface with positive and
bounded curvature. Then, there exists a positive constant C independent of
x ∈ R

2 and r > 0 such that

(3.4)
1

Vol(B(x, r))

∫

B(x,r)
R dμ ≤ C

r
.

Proof. We may assume without loss of generality that R(x) ≤ 2 for all x.
By the injectivity radius estimate of Meyer and Gromoll, inj(R2, g0) has a
lower bound π. Therefore, it follows from Yau’s theorem that there exists a
positive constant C (independent of x) such that

Vol(B(x, r)) ≥ Cr for r ≥ 1.

Combining this estimate with the Cohn–Vossen theorem shows that

1
Vol(B(x, r))

∫

B(x,r)
R dμ ≤ 1

Vol(B(x, r))

∫

R2

R dμ ≤ 4π

Cr
for r ≥ 1.

On the other hand, for r < 1, it is easy to see that

1
Vol(B(x, r))

∫

B(x,r)
R dμ ≤ 1

Vol(B(x, r))

∫

B(x,r)
2 dμ = 2.

Therefore, the lemma follows. �

Remark 3.6. Since Riemann surfaces are Kähler, it follows from Shi’s
theorem [20] that the ancient solution g(t) can be extended to an eternal
solution still with bounded curvature at each time slice. This fact plays a
role in the proof of Lemma 3.8.

For convenience, let k(x, r) denote the average of the scalar curvature
over B(x, r) with respect to g(0), that is,

k(x, r) =
1

Vol(B(x, r))

∫

B(x,r)
Rg(0) dμg(0).

From the fact that the aperture of a Type II ancient solution on R
2 is

zero, we have τ = 2π by (3.2b), therefore, the isometric embedding of the
surface (R2, g(t)) is rigid. Let o and f as given in Section 3.1. Denote the
sublevel set {f ≤ n} by Ω, and let ρ = dist(o, ∂Ω) and r = maxp∈∂Ω dist(o, p).
It is clear that Ω ↪→ (R2, g, o) is a compact domain with non-empty convex
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boundary ∂Ω. We may combine the results of Lemma 35.3.1 and
Theorem 35.3.2 in [2] to conclude that Ω has a boundary star-like with
respect to o and satisfies

Vol(Ω) ≥ ρ

2
�(∂Ω).

Combining this estimate with the facts that

ρ ≤ r ≤ ρ + �(∂Ω) and �(∂Ω) = o(r) as r → ∞,

we obtain

Vol(B(o, r)) ≥ Vol(Ω) ≥ ρ

2
�(∂Ω) >

r

4
�(∂Ω)

for r sufficiently large, and hence

r · 1
Vol(B(o, r))

∫

B(o,r)
R dμ < r · 4

r�(∂Ω)

∫

R2

R dμ =
8π

�(∂Ω)
.

Therefore, we obtain the following.

Lemma 3.7. Let Γ be the level curve {f = n} and r = maxp∈Γ dist(p, o).
Then, for r sufficiently large, we have

(3.5) rk(o, r) <
8π

�(Γ)
.

On the basis of an observation of Ni and Tam (Proposition 2 in [16]),
we have the following.

Lemma 3.8.

(3.6) lim sup
r→∞

rk(o, r) > 0.

Proof. The proof proceeds along the same lines as in [16]. For the conve-
nience of the reader, we give the proof here.
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To obtain a contradiction, we suppose that

lim sup
r→∞

rk(o, r) = 0,

that is,

k(o, r) = o

(
1
r

)
as r → ∞.

We shall see that this, in conjunction with Lemma 3.5, suffices to claim that
the surface must be flat, in contradiction with hypothesis (1.2) on a Type
II ancient solution.

Let (Mm, gαβ̄(x, t)) be a solution to the Kähler–Ricci flow. Denote by
F (x, t) the log of the volume element, that is,

F (x, t) = log

(
det(gαβ̄(x, t))
det(gαβ̄(x, 0))

)

.

We thus have

(3.7) F (x, t) = −
∫ t

0
R(x, τ) dτ.

For convenience, let m(t) = infM F (·, t).

Sublemma 3.9 [16]. Suppose (Mn, gαβ̄) is a complete noncompact Kähler
manifold with nonnegative and bounded bisectional curvature, and the aver-
age function k satisfies estimate

(3.8) k(x, r) ≤ C

r
.

If there exists some point x0 ∈ M such that

(3.9) k(x0, r) = o

(
1
r

)
as r → ∞,

then we have

(3.10) lim
t→∞

−F (x, t)
t

= 0

and

(3.11) lim
t→∞

R(x, t) = 0

for all x ∈ M.
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Proof. Recall that Shi’s theorem [20] implies that the ancient solution g(t)
can be extended to an eternal solution. Since k(x0, r) = o(1/r) implies
k(x, r) = o(1/r) for all x ∈ M, it suffices to prove that estimates (3.10) and
(3.11) are valid for x0.

It follows from Theorem 7.10 in [20], Corollary 2.1 in [14] and estimate
(3.8) that we have

−m(t) ≤ Ct1/2(1 − m(t))1/2,

hence that

(3.12) 1 − m(t) ≤ C(1 + t) for all t.

This, together with Theorem 2.1 in [14], implies that

−F (x0, t) ≤ C

[(
1 +

t(1 − m(t))
r2

) ∫ r

0
sk(x0, s) ds − tm(t)(1 − m(t))

r2

]

≤ C

[(
1 +

t2

r2

) ∫ r

0
sk(x0, s) ds +

t3

r2

]

for some constant C. By (3.9), for any given ε > 0, there exists a positive
constant r0 such that k(x0, r) ≤ ε/r whenever r > r0. Putting r = t/

√
ε in

the above inequality, we get

−F (x0, t) ≤ C

[
(1 + ε)

∫ r0

0
sk(x0, s) ds + (1 + ε)ε(r − r0) + εt

]

≤ C

[∫ r0

0
sk(x0, s) ds +

√
εt + εt

]

for t sufficiently large. By dividing both sides of the inequality by t, and
letting t → ∞ and then ε → 0, we conclude that estimate (3.10) holds for x0.

The trace Harnack inequality says that the function t �→ tR(x, t) is incre-
asing in time, hence that

sR(x, s) · 1
t

≤ R(x, t) for 0 < s < t.

Integrate over t from 1 to 2s to get

sR(x, s) ln 2s ≤
∫ 2s

1
R(x, t) dt = −F (x, 2s) −

∫ 1

0
R(x, t) dt by (3.7).
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Then using estimate (3.10), we have

R(x, s) ≤ −F (x, 2s)
s ln 2s

−
∫ 1
0 R(x, t) dt

s ln 2s
= o

(
1
s

)
as s → ∞,

and hence estimate (3.11) follows. �

Applying the sublemma to the Riemann surface (R2, g(t)) gives

lim
t→∞

R(x, t) = 0 for all x ∈ R
2,

which, together with the Harnack estimate, shows that R(x, t) ≡ 0 every-
where. This leads to a contradiction. The result follows. �

By Lemma 3.7, we conclude that

lim
r→∞

rk(o, r) = 0,

provided that the circumference of the solution at infinity is infinite. The
theorem follows, since this is a contradiction of the fact that

lim sup
r→∞

rk(o, r) > 0.
�

4. The lower bound on Rmax

Since the scalar curvature of such solutions decays to zero at spatial infinity,
the scalar curvature attains its maximum at each time slice. By the Harnack
estimate, the function Rmax(t) = max R(·, t) is nondecreasing. Does a Type
II ancient solution on a surface satisfy limt→−∞ Rmax(t) > 0? The main
result of this section, Theorem 4.1 below, gives an affirmative answer to
the noncompact case. By Theorem 3.4, we may assume without loss of
generality that C = 2π.

Theorem 4.1. If (R2, g(t)) is a Type II ancient solution with C = 2π, then
we have Rmax(t) ≥ 4 for all t.

Proof. By the strong maximum principle, and the fact that the surface is
nonflat, we have R(g(t)) > 0 for all t. Since A = 0 and C = 2π, it follows
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from Theorem 7.11 in [3] that we have the following splitting:

(
R

2, g(t), pi

)
→ R × S

1 if pi → ∞,

which shows that the injectivity radius is at most π. This implies that the
supremum of the sectional curvature on the surface is at least 1, hence that

2 ≤ Rmax(g(t)) < ∞ for all t.

This enables us to take a pointed limit of the sequence (R2, g̃j(t), xj), where
the (unnormalized) metric g̃j(t) is defined by

g̃j(t) = g(tj + t),

and points and times (xj , tj) are chosen as in Lemma 2.4. By Proposition 2.5,
there exists a subsequence of (R2, g̃j(t), xj) which limits to a pointed limit
(R2, g̃(t), O), which is a multiple of the cigar soliton with

Rmax(g̃) = Rg̃(O) = lim
j→∞

Rg̃j
(xj)

= lim
j→∞

Rg(tj)(xj) ∈ [2,∞).

(Note that the limit g̃ is independent of the choice of the sequence (xj , tj) if
it satisfies R(xj , tj) = Rmax(g(tj)) and tj → −∞.) Therefore, we obtain that

(4.1) 2 ≤ Rmax(g̃(t)) < ∞.

Indeed, we can improve the lower bound by the following.

Lemma 4.2. The (unnormalized) backward limit (R2, g̃(t), O) is a multiple
of the cigar soliton with Cg̃ ≤ 2π. Moreover, we have 4 ≤ Rmax(g̃).

Combining this estimate with the Harnack estimate, we have

Rmax(g(t)) ≥ Rmax(g̃) ≥ 4

for all t as claimed. Theorem 4.1 follows. �
Proof of Lemma 4.2. We first introduce some notation. Let ḡk and ḡk(t)
denote the metric g(−k) and the solution g(t − k), respectively. We realize
the surface (R2, ḡk) as the graph of a nonnegative strictly convex smooth
function fk as in Section 3.1. Let Ik, Mk and pk denote the isometric
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embedding, embedded hypersurface and point I−1
k ((0, 0, 0)) ∈ R

2, respec-
tively. Since the total curvature equals 2π, the embedding Ik is unique up to
isometry. By convenient abuse of notation, denote by {f ≤ n} and {f = n}
the graphs of any given function f over the sets {f ≤ n} and {f = n}, and
still call them the sublevel set {f ≤ n} and level set {f = n}, respectively.

To show that Cg̃ ≤ 2π, we investigate the pointed limit of the sequence
(R2, ḡk(t), pk) as follows.

Sublemma 4.3. The sequence (R2, ḡk(t), pk) converges to a complete poin-
ted limit (R2, ḡ(t), p) with Cḡ ≤ 2π. Consequently, we have Aḡ = 0 and τḡ =
2π. Furthermore, the embedding I : (R2, ḡ(0)) ↪→ R

3 is unique up to con-
gruence.

Proof. Since (R2, g(t)) is a Type II ancient solution, the complete pointed
surfaces (R2, ḡk(t), pk) have uniformly bounded curvature on any given finite
interval containing t = 0 and satisfy the injectivity radius estimate at t = 0.
By Hamilton’s compactness theorem, the sequence (R2, ḡk(t), pk) subcon-
verges to an eternal solution (R2, ḡ(t), p) with uniformly bounded curvature.
Denote by ḡ the metric ḡ(0). As noted, the surface (R2, ḡ) is realizable as
the graph of a nonnegative strictly convex smooth function f . Let I and M
denote the isometric embedding and embedded hypersurface, respectively.
It is clear that we have I(p) = (0, 0, 0) ∈ M ⊂ R

3.
By the strong maximum principle we have either Rḡ(t) ≡ 0 or Rḡ(t) > 0

everywhere in space–time. We now claim that the curvature is positive. The
sequence (Mk, ḡk, O) subconverges to the corresponding embedded pointed
surface (M, ḡ, O). Note that if Rḡ ≡ 0, then the embedded surface must be
a cylinder or a plane, which is impossible because the surface Mk is always
inside the set {(x, y, z) ∈ R

3|x2 + y2 ≤ π2, z ≥ 0}. Therefore, Rḡ > 0. In
other words, the solution (R2, ḡ) is nonflat as claimed.

Since the graph of fk subconverges to the graph of f , the level curve
f−1

k {c} uniformly subconverges to the level curve f−1{c}. As seen in sec-
tion 3.1, the length of level curves of f converges to Cḡ, thus for any η > 0
there exists a positive constant c0 such that

�({f = c}) > Cḡ − η

for all c ≥ c0. On the other hand, by Theorem 1 in [1, p. 225], we have

lim inf
k→∞

�({fk = c}) ≥ �({f = c}),
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thus there also exits a positive integer k0 such that

�({fk0 = c}) > Cḡ − 2η

for all c > c0. This implies that

2π = Cḡk0
> �({fk0 = c})
> Cḡ − 2η

for all η > 0. Therefore, we see that Cḡ ≤ 2π as claimed. The rest of the
proof is immediate from Lemma 3.2. �

Intuitively, the point pk should be close to the point, denoted by qk,
where the curvature Rḡk

attains its maximum. This motivates us to take a
pointed limit of the sequence (R2, ḡk, qk) and have the following.

Sublemma 4.4. The sequence (R2, ḡk, qk) converges to a pointed limit
(R2, ḡ, q̄).

Proof. We first claim that the set {pk,pj,qj}∞
j=k is uniformly bounded in the

pointed surface (R2, ḡk, pk), k ≥ N , for some positive integer N .
It follows from Sublemma 4.3 that for any given ε > 0, there exist a

positive number d > 0 and a positive integer N such that

(4.2a)
∫

{f<d}
Kḡdvḡ > 2π − ε

and

(4.2b)
∫

{fk<d}
Kḡk

dvḡk
> 2π − 2ε

for k ≥ N .
Since Rḡk

(pk) → Rḡ(O) > 0 as k → ∞, there exists a positive integer
k1 ≥ N such that

(4.3) Rḡk
(pk) >

1
2
Rḡ(O)

for k ≥ k1. Combining (4.3), (4.1) and the Harnack estimate [9], we get the
following estimates:

(4.4a) Rḡk
(qj) ≥ Rḡj

(qj) = Rmax(ḡj) ≥ 2
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and

(4.4b) Rḡk
(pj) ≥ Rḡj

(pj) >
1
2
Rḡ(O)

for all j ≥ k ≥ k1. As a consequence of the injectivity radius control on Mk,
gradient estimate on scalar curvature Rḡk

and (4.2a), (4.2b), (4.4a), (4.4b),
we obtain uniform estimates on

dist(pj , {fk < d}) and dist(qj , {fk < d})

for all j ≥ k ≥ k1, which implies that the set {pk,pj, qj}∞
j=k is uniformly

bounded in the pointed surface (R2, ḡk, pk), k ≥ k1. Therefore, the sequence
(R2, ḡk, qk) converges to a pointed limit (R2, ḡ, q̄). �

Note that, as pointed out, the sequence (R2, ḡk, qk) converges to the
pointed limit (R2, g̃, p). By the rotational symmetry of the cigar soliton, we
have q̄ = p and hence g̃ coincides with ḡ. From Sublemma 4.3, the circumfer-
ence of (R2, g̃(t)) at infinity is at most 2π as claimed. Since (R2, g̃) is a mul-
tiple of the cigar soliton with Cg̃ ≤ 2π, Lemma 4.2 follows immediately. �

As a result of Theorem 4.1, the scalar curvature assumes its maximum
in space–time provided that C = 2π and R(x, t) ≤ 4. This means that the
solution is indeed a Type II singularity model. By Hamilton’s theorem [10],
such a solution must be the cigar soliton. Therefore, we obtain the following.

Corollary 4.5. If (R2, g(t)) is a Type II ancient solution with C = 2π and
R(x, t) ≤ 4 for all (x, t) ∈ (−∞,∞) × R

2, then it is the cigar soliton.

We end this section by the following.

Remark 4.6. S. Angenent (see Appendix A in [22]) and L. Wu [22] observe
that the logarithmic fast diffusion equation

(4.5)
∂

∂t
u = � log u

on the plane R
2, where � denotes the Euclidean Laplace operator on R

2,
represents the evolution of the conformally flat metric with

g = u(dx2 + dy2)

under the Ricci flow. The equivalence follows from the facts that the confor-
mal metric g has scalar curvature R = −(� log u)/u and in two dimensions
Rij = (1/2)Rgij . Daskalopoulos and Sesum [6] study the classification of
eternal solutions of equation (4.5). They show that any positive smooth
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eternal solution u(x, y, t) is a gradient soliton of the form

u(x, y, t) =
2

β(|x − x0|2 + |y − y0|2 + δe2βt)

for some (x0, y0) ∈ R
2 and some positive constants β, δ, provided that the

solution u defines a complete metric of bounded curvature and bounded
width. Note that Theorem 3.4 removes the hypothesis of the width being
finite.
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