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A general gap theorem for submanifolds
with parallel mean curvature in R"*?

HoNG-WEI XU AND JUAN-RU GU

Let M™ (n > 3) be an n-dimensional complete submanifold with
parallel mean curvature in R"*?. Denote by H and S the mean
curvature and the squared length of the second fundamental form
of M, respectively. By using a direct method, we prove that if
fM(S—nHQ)”/QdM < C(n), where C(n) is an explicit positive
constant depending only on n, then S = nH?, i.e., M" is a totally
umbilical submanifold. In particular, if H =0, then M = R"; if
H #0, then M = S™(1/H). It improves the gap theorems pro-
posed by Lei Ni and Xu.

1. Introduction

An important problem in global differential geometry is the study of relations
between geometrical invariants and structures of Riemannian manifolds or
submanifolds. After the pioneering rigidity theorem for closed minimal
submanifolds in a sphere proposed by Simons [12], Lawson [5], Chern et
al. [2] and Li and Li [6] improved the Simons’ pinching constant for n-
dimensional closed minimal submanifolds in S™*?(1) to max{ﬁ, %n},
which is optimal for minimal surfaces and minimal hypersurfaces in a sphere.
The following result, known as rigidity theorem for submanifolds with paral-
lel mean curvature in a sphere, was first proved by Okumura [10], Yau [22],
and later by Xu [17] and finally by Alencar—do Carmo [1] for codimension 1
case and Xu [18] for codimension p case independently, as stated

Theorem 1.1. For a given constant H > 0 and positive integers n(>2),
p, there exists a positive number C1(n,p, H) with the following property: if
M™ is an n-dimensional closed submanifold in an (n+p)-dimensional unit
sphere S™P(1) with parallel mean curvature vector having norm H, and if
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S is the squared norm of the second fundamental form satisfying
S S Cl(napa H)7

then M is congruent to one of the following:

0 5" (Fri)

(ii) the isoparametric hypersurface S*~! (Vﬁ) x St (ﬁ) in S"TL(1);

(iii) one of the Clifford minimal hypersurfaces S* (ﬁ) x Snk < ”;k>
in S"TY(1), fork=1,...,n —1;

(iv) the Clifford torus S'(ry) x S*(rq) in S3(r) with constant mean cur-
vature Hy, where 11,19 = [2(1 + H?) & 2Ho(1 + H*)Y/2]71/2 = (1 +
H? - HZ)™Y? and 0 < Hy < H;

(v) the Veronese surface in S*( 1Jer ).

]

Here \ and C1(n,p, H) are given by

nH + \/n2H% 4+ 4(n — 1)

N\ =
2(n—1)
and
Cl(n>p7 H)
A(n, H), forp=1 orp=2 and H # 0,
= 1

min{A(n, H), §(2n +5nH?)}, forp>3, orp=2and H =0,

where

n3H? n(n —
A(n,H):n-{-Q(anl) _ ;(n_Qi)Iir\/nZHZ_{_zl(n—l).

In particular, if H # 0, and if
S < C2(”ap)v

then M is either a totally umbilical sphere in S"P(1), a Clifford isoparamet-
ric hypersurface in an (n + 1)-dimensional sphere, or the Veronese surface
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in S4(\/1Jer)' Here

2vn—1, forp<2, orn>8andp >3,
Ca(n,p) =4 2
gn, forn <7 andp > 3.

Further discussions in this direction have been carried out by Shiohama
and Xu [21, 13, 14]. However, all these results have pointwise condition for S.
It seems to be interesting to study rigidity for minimal submanifolds under
L™2-pinching condition for S. The L™/2-pinching theorem for minimal sub-
manifolds in a sphere was initiated by Shen [11], and later investigated by
Wang [16], Lin and Xia [8] and Xu [19]. In [20], Xu proved the following
theorem.

Theorem 1.2. Let M™ be an n-dimensional closed submanifold with par-
allel mean curvature in S™P(1). If fM(S—nH2)”/2dM < C3(n), where
C3(n) is an explicit positive constant depending only on n, then M is a
totally umbilical sphere.

The total curvature [,,(S —nH 2yn/2 dM is also called Willmore func-
tional [3]. In the case where M is a complete minimal hypersurface in R"*1,
Ni [9] obtained the following theorem.

Theorem 1.3. Let M"™(n >4) be an n-dimensional complete minimal
hypersurface in R™ L. Then, there exists an explicit positive constant Cy(n)
depending only on n such that if [, SM2AM < Ca(n), M must be a totally
geodesic hyperplane.

In the present article, we mainly study the L™2-pinching problem for
n-dimensional complete submanifolds with parallel mean curvature in the
Euclidean space R"™P. By using a direct method, we obtain the following
gap theorem.

Theorem 1.4. Let M"™ (n > 3) be an n-dimensional complete submanifold
with parallel mean curvature in R™"P. Denote by H and S the mean cur-
vature and the squared length of the second fundamental form of M, respec-
tively. If fM(S—nH2)”/2dM < C(n), where C(n) is an explicit positive
constant depending only on n, then S =nH?, i.e., M™ is a totally umbil-
ical submanifold. In particular, if H =0, then M =R"; if H # 0, then
M =S"(1/H).
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Consequently, we have the following corollary.

Corollary 1.5. Let M™(n > 3) be an n-dimensional complete minimal
submanifold in R"P. Then there exists an explicit positive constant C(n)
depending only on n such that if [, S™2dM < C(n), M must be a totally
geodesic submanifold R™.

More general, we obtain the following theorem.

Theorem 1.6. Let M™ (n > 3) be an n-dimensional complete submanifold
with parallel mean curvature in F"P(c), where F"P(c) is an (n+ p)-
dimensional complete simply connected space form with non-negative
constant curvature c¢. Denote by H and S the mean curvature and the
squared length of the second fundamental form of M, respectively. If [, (S —
nH?)"2dM < C(n), where C(n) is an explicit positive constant depending
only on n, then S = nH?, i.e., M™ is a totally umbilical submanifold. In par-

: ~ 2 _ _Rn.; 2 _ 1
ticular, if c+ H* =0, then M =R"; if c+ H* #£0, then M = S”(W)

Remark 1.7. When ¢=1 and M is compact, Theorem 1.6 reduces to
Theorem 1.2. When ¢=0,H =0,p=1 and n > 4, Theorem 1.6 reduces
to Theorem 1.3. In fact, one can see from the proof of Lemma 3.3 that
Theorem 1.4 is equivalent to Theorem 1.6.

2. Notation and lemmas

Let M™ be an n-dimensional Riemannian submanifold immersed in an
(n + p)-dimensional Euclidean space R"*?. We shall make use of the fol-
lowing convention on the range of indices:

1<ABC,...<n+p;, 1<ijk...<n n+1<aq,8,7...<n+p.

Choose a local orthonormal frame field {e4} in R"*? such that, restricted to
M, the e;’s are tangent to M. Let {wa} and {wap} be the dual frame field
and the connection 1-forms of R™"P, respectively. Restricting these forms
to M, we have

(2.1) Wai = 3 hw;, b = S,
J

(2.2) Riju = Y (high$i — hijhs,).

[0}
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(2.3) Ragr = > _(hShy — hihl}),
(2.4) h=> hfw & w; & ea,
a7i7j
1
2.5 = - hiiea,
(2.5) £=— Z fie

where Rjjii, Rogri, h and £ are the curvature tensor, the normal curvature
tensor, the second fundamental form and the mean curvature vector of M,
respectively.

We define

S = |h’27 H=[{, Hy,= (h?])nxn
Definition 2.1. M is called a submanifold with parallel mean curvature if

¢ is parallel in the normal bundle of M. In particular, M is called minimal
if £€=0.

When £ # 0, we choose e,41 such that e,y; || &, tr Hyr1 =nH and
trHg=0,n+2<8<n-+p. Set

Sp=Y (M52 Sr= > (W%
%] 1,7,8#n+1

The following lemmas will be used in the proof of our main results.

Lemma 2.2. If M"™ is a submanifold with parallel mean curvature in a
space form of constant curvature, then either H =0, or H is constant and
H,+1H, = HyHy 11, for all a.

Lemma 2.3 [6,19]. Let M™ be a submanifold with parallel mean curvature
in R"*P.

(i) If H =0, then

(2.6) 585> S0 () — ulp)S”
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(ii) If H # 0, then

—ASH > (hh?
.5,k
(2.7) + (Sy —nH?) 2nH2—S—M\/S—nH2 ,
n(n —1)
1
A5 > S (W) +nH > tr(Ha H3)
i1j1k1ﬂ¢n+1 ﬂfﬂ-{—l
(2.8) = S [ (Ha Ho)P — ulp — 1)SE forp# 1.
B#EN+1
Here
1 form=1,
2.9 =
(2.9) pu(m) g form > 2.

By using the same argument as in [20], we have the following lemma.

Lemma 2.4. Let M™ be a submanifold with parallel mean curvature in
R"P. Set f. = (Sy — nH? + n52)1/27 9e =[St +n(p — 1)52]1/2; he = (S +
npe?)'/2. Then

(i) of H #0, then

n n+2
(2.10) > (hg? > — (VLI
0,5,k
n+2
(2.11) Do ()= = IVeP Jorp#1.

Z7]7k7/6¢n+1

(ii) If H =0, then

(2.12) S (g > "R wn .

a7i7j7k
From [4, 20], we have the following lemma.

Lemma 2.5. Let M™(n > 3) be a compact submanifold with or without
boundary with parallel mean curvature in R™"P. Then for all t € R™, and



General gap theorem 181

fe oy M), f>0 (if the boundary OM # 0, floar = 0), f satisfies

2 (n —2)* 1 2 2 1 2
191182 - | e M B = 22 (143 ) 118
(2.13)

where D(n) = 2™(1 + n) )/ (n — 1)*1(7;1/71 and o, = volume of the unit
ball in R™.

3. Proof of theorems

We first define our pinching constants as follows

a(n) forp=1and H # 0,
min{«a(n), 5(n)} for p=2and H # 0,

B(n,p, H) = { min {a(n), ;ﬂ(n)} for p > 3 and H # 0,

~v(n) forp=1and H =0,
\gfy(n) forp>2and H =0,
n/2 n/2
(3.1) C(n) = min {a”/2<n>, EOIREO] } ,

where

a(n) = 2nan D2 (n)[(anbn)? + (1 + an) /(2 + by) /%] 72,

an = (% —n+2)(n—27%n*n -1 b,=(n-2)>%*2n-2)"1,
B(n) =n(n* —n+2)(n—-2)°D2(n)[n*(n —1)2 + (n? —n+2)(n — 2)] 7,
y(n) = (n® —n+2)(n—2)2D72(n)[n3(n — 1)%] 7.

To prove Theorem 1.4, we give the following key lemma.

Lemma 3.1. Let M™ (n > 3) be a complete submanifold with parallel mean
curvature in R"P. Suppose that H # 0 and ||S —nH?||, o < a(n). Then
M is a pseudo-umbilical submanifold. In particular, if p =1, then M is a
hypersphere in R, Here ||S — nH?|| = [[,,(S — nH?)KdM]Y K.
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Proof. Putting f. = (Sg —nH? +ne?)'/?, f=(Sg —nH?)Y?, we have
Af? = Af?. By Lemmas 2.3 and 2.4, we obtain

1 2 —2)H
(32) ta2s"t2vrpy g2 |oam?— g P ZDH o
2 n nn—1)
We choose a cut-off function ¢r € C°°(M) such that
1, if z € Br(q),
dr(z) =<0, if z € M\ Bar(q),

6r(x) € [0,1) and [Vén| < 3, if & € Banla) \ Br(a),

where B, (q) is the geodesic ball in M with radius r centered at ¢ € M. In
particular, if M is compact, and if R > d, where d is the diameter of M, then
¢r =1 on M. Multiplying gb%ffk_z(k‘ > 1) on both sides of inequality (3.2)
and integrating by parts, we get

on? — g~ M 2DH s nH2] dM

n(n—1)

0> / o3 22 2
M

n+2 2 k|2
+nk2/M¢R|st| dM

1 1
3 | V@RV - [ ke in

n(n—2)H

nin—1

= / oRfR2f2 |2nH? — S — S —nH?|dM
M

+2n/<:—n+2
nk?

> / s22 2 |anm? — s - M2 e
M

n(n —1)

/ 62|V M + 2 / RS2 IV RV fodM
_M M

mk—n+2 -
LIk ont2 / 63|V fE2AM + 2 / SRS IV GRY fodM
nk: M M

p / OrfE VSRV fodM — % / O% 22V f. 2 dM
M M

33) 5 [ [VonPam
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4(n? —n+2) n?
for all Rt. Taking k= —,0=——— = 2 _9and p=
or all p,o € aking 3 7 and p s

n3

where R > m, we get

l\'J\S

0> /M PRSI

n(n —

oI — 6 ”“’“”f}m} iy

Lia / ffrwRPdM

n
+ n/M ¢ng—1v¢RVf€dM>

[4("2_“2) =+ }/ Y

> _
o R

_|_|:4(n_n+2_:|/ ’V ¢an/2 QdM

(3.4) / PRSI S [2nH2 S — ﬂ\/s — nH2] dM.

n(n—1)

By Lemma 2.5, we have

IV rf2 )13 > o

(35) - (14 7) lons2 18]

for all t € RT. From (3.4) and (3.5), we obtain

1
|:D2< ) ”qufg/QH%n/(n—Z)

2 _ 2
02_[41(727H—2)_1+R0]

i 2dM
n3 R /M fe |V¢R|

[AR(n? —n +2) — n®](n — 2)?
T o L A A

- HZ( )cha ”/2||2] +/ R fI 22 {nH? — (S — nH?)
M

1 [n(n—2)2H?
-3 [l(n—l)

(3.6) +1(S - nHQ)] } dM
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for alll € RT. As e — 0, (3.6) becomes

4(n? — 2 1 2
02—[W—+RZ]/ SV ér[PdM
n R n M

4R(n* — n+2) — n3)(n — 2)? n
+[ (4Rn3(n)1)2(1£t) ) |:D2( )H¢Rf /2||2n/n 2)

-2 (14 1) lowr g

n 27172
+ |t = 0D o

) 162 oIS — 2]

4(n? —n+2 1 n
5+ 2] [ pivontan

-
[ 1
+{ [AR(n? — n + 2) — n?¥](n — 2)?
-
{

4Rn3(n — 1)2D?(n)(1 4+ t)

1t ) HS—nqun/Q} 1625 2y

)2H2
+{nH? — n—l)
[AR(n? —n+2) — n¥(n — 2)2H? n/
s - L

where [ € RT. Since [, f"dM < a™/%(n), as R — oo, we get

) 4n?-n+2) 1 Ro? 9
< = O 4 Y
0= th}lgo |: n3 R + n?2 /]\/[f | ¢R‘ M

. [4n?>—-n+2) 1  Ro?] 1 N
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From (3.7) and (3.8), we obtain

0> [ (0= nt2)(n—2)
[n?’(n —1)2D%(n)(1 + 1)
l
_ (1 - 2) IS — nH2\n/z] A ([ 0% " |njn—2)

n(n—2)2H? (n®> —n+2)(n—2)2H?
2A(n—1) n3(n — 1)t

N [nH _ } lim [rf™?|2
R—o0

(3.9)

for all t, 1 € RT. We take

n? —n+2)(n — 2)2 n—2)27" n—2)2
=)= n4(_7t—)(1)2 )[1_2(1(%)1)} S

This together with (3.9) yields

[ (n? —n+2)(n —2)?
n3(n—1)2D%(n)(1 + (1))

l .
~ (1 5) 18 - o] i 14T o <0

where [ € R™ satisfying

_9)2
2(n—1)
By a computation, we have
1 n3(n —1)2D?(n)a(n)
max = .
> o2 2+DA+tl) 2(n?2—n+2)(n-—2)2

So,
[a(n) = 18 = nF2]1y2] Y [[63f" /) < 0.
From the assumption
IS = nH? /2 < a(n),

we conclude that f = 0, i.e., Sy = nH?. Therefore, M is a pseudo-umbilical
submanifold. If p = 1, then S — nH? = f? =0, i.e., M is the totally umbil-
ical sphere S"(1/H) in R"*1. O
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Now we are in a position to give the proof of Theorem 1.4.

Proof of Theorem 1.4. If H #0 and p=1, the assertion follows from
Lemma 3.1.

If H#0 and p > 2, we see from the assumption that ||S —nH?||,,» <
a(n). Tt follows from Lemma 3.1 that Sy = nH?, i.e., H,y1 = HI, where I
is the unit matrix. By Lemmas 2.2, 2.3 and 2.4, we have

1 1
(3.10) §Ag§ ==

5 ? + ¢*[nH? — pu(p — 1)g%),

where g. = [S; +n(p — 1)e?]Y/? and g = S}/Z. Multiplying ¢%g2*2(k > 1)
on both sides of the above inequality and integrating by parts, where ¢p is
the cut-off function defined in Lemma 3.1, we obtain

2/ 620222 H? — u(p — 1)(S — nH)|dM
”*2/ S3IV gk 2aM
/ V(ohrgZ* ) Vg2dM — % /M div(¢hg2**Vg2)dM
/ p%92 2 nH? — p(p — 1)(S — nH?)|dM
+ 22 [ GIVgEPaM 42 [ ong? I VonVga

_ g _
to / org? VRV g.dM — P2 / g2 2|V g M
M 2 Ju

o
a5 [ [VerPgau
2p Ju
for all o RT. Takin k—ﬁa—w n 2 —n—Q
p7 '3 g _27 - n2 R 7p_2R0_’
here R n t
whnere >m,wege
4n —n+2 1 Ro?
> [ME B L BT [ grivonkan
n2

+[4n —n—|—2 _}/ V(6n gn/Z)IZdM

(3.12) +/ dhg" 3¢ [nH? — p(p — 1)(S — nH?)|dM.
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By Lemma 2.5, we have

n— 2)2
HV(QSRgnﬂ)H% 2 4(n(_ 1)2()1 + 1) |:D2( )”¢R95 H2n/(n 2)
(3.13) e (1 T ) ngnﬂug}

for all t € R™. From (3.12) and (3.13), we obtain

4n®>-n+2) 1 Ro? " 5
o2 [ [ o
[AR(n? — n +2) — n3](n — 2)? I 22
ARn3(n — 1)2(1 +¢) D2( ) 192 32

- (14 7) lons2 1]

(3.14) / d%g" g2 [nH? — pu(p — 1)(S — nH?)|dM.

_|_

As e — 0, we have

4n®>-n+2) 1 Ro? 5
e Mt n dM

e /Mg Vo
[AR(n% — n +2) — n3|(n — 2)? I 2”2
ARn3(n — 1)2(1 + 1) D2( 1989 \zn/n-2)

1
- (14 ) lona™ 1

+ [“H2||¢R9n/2”% — uw(p = VIS — nH?| /2l 6%9™ ) (n—2)
4(n? —n+2 1 Ro? n
= [(713) TR 2 ] / IVor|*dM

[4R(n% — n +2) — n3|(n — 2)?
* { IR (n — 12D2(n)(1 1 1)

0> - |

+

~ ulp —1>||s—nH2un/2} 162" /s

R(n? — — —2)2H?
D e =W
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where t € R*. Since [, g"dM < C(n), as R — oo, we get

. [4n?-n+2) 1 Ro? 9
<1 —_— 4 — "V pr|*dM
O_Rgréo[ n3 R /Mg Vorl
4n*?-n+2) 1 Ro?] 1
1 < lim | | = "dM = 0.
(3.16) —Rféo[ n? R™ n? | R? /Mg

As R — o0, (3.15) becomes

(n? —n+2)(n —2)?
n3(n—1)2D%(n)(1 +1t)

o |

1l = DS = 1| Jim 163" -2

(n? —n+2)(n—2)?H?

23
n3(n —1)%t

(3.17) + [nH2 - ] lim ||¢rg
R—oo

for all t € R*. By taking t = (n?> —n + 2)(n — 2)2[n*(n — 1)?]7!, we have

{ n(n? —n +2)(n — 2)?
D2(n)[n*(n —1)* + (n? = n+2)(n — 2)?]

. 2
x P}gréo 19%9" In/(n—2) <0,

—up -1 - nH2Hn/2}

which implies
(3.18) [8(n) = u(p = DIIS = nH? [l o] Jim (879" |njn—2) <O
—00
It is easy to see from the assumption that
IS — B0 < B(n) u(p — 1).

This together with (3.18) gives g = 0. So,

S—nH?*>=f?>+4¢>=0.
Therefore, M is the totally umbilical sphere S™(1/H) in R"*?.

If H =0, it follows from Lemmas 2.3 and 2.4 that

n+2
n

1 1
(3.19) FANE=SAS > [Vhe|? — u(p)S?,

where h. = [S + npe?]'/2. Multiplying ¢%h2*~2(k > 1) on both sides of
inequality (3.19) and integrating by parts, where ¢p is the cut-off function
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defined in Lemma 3.1, we obtain

n+2
nk?

1 1
+ = / V(¢p%h2F=2)Vh2dM — = / div(¢%h2F2Vh2)dM
2 /m 2 /m

0> —u(p) /M SLZ2S2AN + /M BRIV 2aM
_ 2nk —n + 2
> —pu(p) /M GRS dM + B E— /M OR|VREPdM
+2 / prh2* "INV prVhodM
M

to / SRV §pVhedM — % / Zh2 2|V h [2dM
M M

(3.20) - U/ Vor|*h2FdM
2p Jur
4(n? —n+2 2
for all p,o€ R‘*‘.3 Taking k = g,a: (ann—i—) _ % 2= QZﬁ’
here R > S L we get
v 2(n? —2n+4)’
= n3 R n2 voC R
4n? —n+2) 1
—— -5 V(¢rh2?)|*dM
[t B wenne
(3.21) “ulp) [ kb s,
M
By Lemma 2.5, we have
(n—2)°

(3.22) IV (@rhZ/?)|3 =

2 = 4(n — 1)2D2(n) ||¢Rh?/2”§n/(n—2)

From (3.21) and (3.22), we obtain

4n*-n+2) 1 Ro? "
0> [(ng) —5 nQ] /M B2V dr|*dM
[AR(n% — n +2) — n3|(n — 2)? |6Rh/2|2
4Rn3(n — 1)2D2(n) Rt Hl2n/(n-2)

(3.23) — ulp) /M GHh 282,
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As ¢ — 0, this implies
4(n? — 2 1  Ro?
0> — w_erL /h"V¢R|2dM
n3 R n? | Jy

[AR(n? —n +2) — n¥](n — 2)?
4Rn3(n —1)2D2%(n)

162S™ 210/ (n—2)
—u(p)/ PRS2 dM
M

Z_[4(712—n+2) 1 | Ro*

_ n 2M
. = RQ}/Mh Vér|2d

[AR(n? —n+2) — n¥(n —2)
4Rn3(n — 1)2D2%(n)

(3.24) — 1) 16%S" 2l (-2 IS ln2-

Since

2
16552l (n—2)

4n?>-n+2) 1 Ro?

1' - @@ === _ . n 2M:
g [ B - g+ S | [ wentasr o

as R — 00, (3.24) becomes
(325) () - p@Sle] Jim (6520 <0.

We see from the assumption that ||S||,,j2 < y(n)/u(p). This together with
(3.25) implies S = 0, i.e., M is the totally geodesic submanifold R" in R"*?.
This completes the proof of Theorem 1.4. O

Remark 3.2. We see from the proof above that the pinching constant in
Theorem 1.4 can be replaced by the constant B™2(n, p, H) defined in (3.1),
which is not less than C(n).

When the ambient space is a sphere with positive constant curvature c,
we have the following lemma.

Lemma 3.3. Let M™(n > 3) be an n-dimensional complete submanifold
with parallel mean curvature in an (n+p)-dimensional sphere 5’"“’(%),

where ¢ is a positive constant. Denote by H and S the mean curvature
and the squared length of the second fundamental form of M, respectively.
If [,(S — nH?)"2dM < C(n), where C(n) is an explicit positive constant

depending only on n, then M is the totally umbilical sphere Sn(\/chrT)'
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Proof. It follows from the assumption that S”“’(%}) = F"*?(c). We consider

the composition of isometric immersions
iop: M" — F"P(c) — RMPTL

where ¢ : M™ — F"*P(c) is the isometric immersion, and 7 is the standard
isometric embedding of F"?(c) into R"*7*1. Denote by H and S the mean
curvature and the squared length of the second fundamental form of the
isometric immersion i o ¢, respectively. Then io p(M) is a complete sub-
manifold in R*P+! with parallel mean curvature vector having norm H.
By the Gauss equation, we have

n(n—1)c+n?H? - § =n?H? - §.

Substituting H? = ¢+ H? into the above, we get S —nH? = S — nH2. The
claim follows directly from Theorem 1.4. O

Proof of Theorem 1.6. Combining Theorem 1.4 and Lemma 3.3, we com-
plete the proof of Theorem 1.6. ([

Remark 3.4. By using the same argument as in Theorem 1.4, one can
obtain an analogous gap theorem for complete submanifold with parallel
mean curvature in hyperbolic space H" P (—1).
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