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A general gap theorem for submanifolds
with parallel mean curvature in Rn+p

Hong-wei Xu and Juan-ru Gu

Let Mn (n ≥ 3) be an n-dimensional complete submanifold with
parallel mean curvature in Rn+p. Denote by H and S the mean
curvature and the squared length of the second fundamental form
of M , respectively. By using a direct method, we prove that if∫

M
(S − nH2)n/2dM < C(n), where C(n) is an explicit positive

constant depending only on n, then S ≡ nH2, i.e., Mn is a totally
umbilical submanifold. In particular, if H = 0, then M = Rn; if
H �= 0, then M = Sn(1/H). It improves the gap theorems pro-
posed by Lei Ni and Xu.

1. Introduction

An important problem in global differential geometry is the study of relations
between geometrical invariants and structures of Riemannian manifolds or
submanifolds. After the pioneering rigidity theorem for closed minimal
submanifolds in a sphere proposed by Simons [12], Lawson [5], Chern et
al. [2] and Li and Li [6] improved the Simons’ pinching constant for n-
dimensional closed minimal submanifolds in Sn+p(1) to max{ n

2−1/p , 2
3n},

which is optimal for minimal surfaces and minimal hypersurfaces in a sphere.
The following result, known as rigidity theorem for submanifolds with paral-
lel mean curvature in a sphere, was first proved by Okumura [10], Yau [22],
and later by Xu [17] and finally by Alencar–do Carmo [1] for codimension 1
case and Xu [18] for codimension p case independently, as stated

Theorem 1.1. For a given constant H ≥ 0 and positive integers n(≥2),
p, there exists a positive number C1(n, p, H) with the following property: if
Mn is an n-dimensional closed submanifold in an (n+p)-dimensional unit
sphere Sn+p(1) with parallel mean curvature vector having norm H, and if
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S is the squared norm of the second fundamental form satisfying

S ≤ C1(n, p, H),

then M is congruent to one of the following:

(i) Sn
(

1√
1+H2

)
;

(ii) the isoparametric hypersurface Sn−1
(

1√
1+λ2

)
×S1

(
λ√

1+λ2

)
in Sn+1(1);

(iii) one of the Clifford minimal hypersurfaces Sk

(√
k
n

)

× Sn−k

(√
n−k

n

)

in Sn+1(1), for k = 1, . . . , n − 1;

(iv) the Clifford torus S1(r1) × S1(r2) in S3(r) with constant mean cur-
vature H0, where r1, r2 = [2(1 + H2) ± 2H0(1 + H2)1/2]−1/2, r = (1 +
H2 − H2

0 )−1/2 and 0 ≤ H0 ≤ H;

(v) the Veronese surface in S4( 1√
1+H2 ).

Here λ and C1(n, p, H) are given by

λ =
nH +

√
n2H2 + 4(n − 1)
2(n − 1)

and

C1(n, p, H)

=

⎧
⎨

⎩

A(n, H), for p = 1, or p = 2 and H �= 0,

min{A(n, H),
1
3
(2n + 5nH2)}, for p ≥ 3, or p = 2 and H = 0,

where

A(n, H) = n +
n3H2

2(n − 1)
− n(n − 2)H

2(n − 1)

√
n2H2 + 4(n − 1).

In particular, if H �= 0, and if

S ≤ C2(n, p),

then M is either a totally umbilical sphere in Sn+p(1), a Clifford isoparamet-
ric hypersurface in an (n + 1)-dimensional sphere, or the Veronese surface
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in S4( 1√
1+H2 ). Here

C2(n, p) =

⎧
⎨

⎩

2
√

n − 1, for p ≤ 2, or n ≥ 8 and p ≥ 3,

2
3
n, for n ≤ 7 and p ≥ 3.

Further discussions in this direction have been carried out by Shiohama
and Xu [21, 13, 14]. However, all these results have pointwise condition for S.
It seems to be interesting to study rigidity for minimal submanifolds under
Ln/2-pinching condition for S. The Ln/2-pinching theorem for minimal sub-
manifolds in a sphere was initiated by Shen [11], and later investigated by
Wang [16], Lin and Xia [8] and Xu [19]. In [20], Xu proved the following
theorem.

Theorem 1.2. Let Mn be an n-dimensional closed submanifold with par-
allel mean curvature in Sn+p(1). If

∫
M (S − nH2)n/2dM < C3(n), where

C3(n) is an explicit positive constant depending only on n, then M is a
totally umbilical sphere.

The total curvature
∫
M (S − nH2)n/2 dM is also called Willmore func-

tional [3]. In the case where M is a complete minimal hypersurface in Rn+1,
Ni [9] obtained the following theorem.

Theorem 1.3. Let Mn (n ≥ 4) be an n-dimensional complete minimal
hypersurface in Rn+1. Then, there exists an explicit positive constant C4(n)
depending only on n such that if

∫
M Sn/2dM < C4(n), M must be a totally

geodesic hyperplane.

In the present article, we mainly study the Ln/2-pinching problem for
n-dimensional complete submanifolds with parallel mean curvature in the
Euclidean space Rn+p. By using a direct method, we obtain the following
gap theorem.

Theorem 1.4. Let Mn (n ≥ 3) be an n-dimensional complete submanifold
with parallel mean curvature in Rn+p. Denote by H and S the mean cur-
vature and the squared length of the second fundamental form of M , respec-
tively. If

∫
M (S − nH2)n/2dM < C(n), where C(n) is an explicit positive

constant depending only on n, then S ≡ nH2, i.e., Mn is a totally umbil-
ical submanifold. In particular, if H = 0, then M = Rn; if H �= 0, then
M = Sn(1/H).
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Consequently, we have the following corollary.

Corollary 1.5. Let Mn (n ≥ 3) be an n-dimensional complete minimal
submanifold in Rn+p. Then there exists an explicit positive constant C(n)
depending only on n such that if

∫
M Sn/2dM < C(n), M must be a totally

geodesic submanifold Rn.

More general, we obtain the following theorem.

Theorem 1.6. Let Mn (n ≥ 3) be an n-dimensional complete submanifold
with parallel mean curvature in Fn+p(c), where Fn+p(c) is an (n + p)-
dimensional complete simply connected space form with non-negative
constant curvature c. Denote by H and S the mean curvature and the
squared length of the second fundamental form of M , respectively. If

∫
M (S −

nH2)n/2dM < C(n), where C(n) is an explicit positive constant depending
only on n, then S ≡ nH2, i.e., Mn is a totally umbilical submanifold. In par-
ticular, if c + H2 = 0, then M = Rn; if c + H2 �= 0, then M = Sn( 1√

c+H2 ).

Remark 1.7. When c = 1 and M is compact, Theorem 1.6 reduces to
Theorem 1.2. When c = 0, H = 0, p = 1 and n ≥ 4, Theorem 1.6 reduces
to Theorem 1.3. In fact, one can see from the proof of Lemma 3.3 that
Theorem 1.4 is equivalent to Theorem 1.6.

2. Notation and lemmas

Let Mn be an n-dimensional Riemannian submanifold immersed in an
(n + p)-dimensional Euclidean space Rn+p. We shall make use of the fol-
lowing convention on the range of indices:

1 ≤ A, B, C, . . . ≤ n + p; 1 ≤ i, j, k, . . . ≤ n; n + 1 ≤ α, β, γ, . . . ≤ n + p.

Choose a local orthonormal frame field {eA} in Rn+p such that, restricted to
M , the ei’s are tangent to M . Let {ωA} and {ωAB} be the dual frame field
and the connection 1-forms of Rn+p, respectively. Restricting these forms
to M , we have

ωαi =
∑

j

hα
ijωj , hα

ij = hα
ji,(2.1)

Rijkl =
∑

α

(hα
ikh

α
jl − hα

ilh
α
jk),(2.2)
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Rαβkl =
∑

i

(hα
ikh

β
il − hα

ilh
β
ik),(2.3)

h =
∑

α,i,j

hα
ijωi ⊗ ωj ⊗ eα,(2.4)

ξ =
1
n

∑

α,i

hα
iieα,(2.5)

where Rijkl, Rαβkl, h and ξ are the curvature tensor, the normal curvature
tensor, the second fundamental form and the mean curvature vector of M ,
respectively.

We define

S = |h|2, H = |ξ|, Hα = (hα
ij)n×n.

Definition 2.1. M is called a submanifold with parallel mean curvature if
ξ is parallel in the normal bundle of M . In particular, M is called minimal
if ξ = 0.

When ξ �= 0, we choose en+1 such that en+1 ‖ ξ, trHn+1 = nH and
trHβ = 0, n + 2 ≤ β ≤ n + p. Set

SH =
∑

i,j

(hn+1
ij )2, SI =

∑

i,j,β �=n+1

(hβ
ij)

2.

The following lemmas will be used in the proof of our main results.

Lemma 2.2. If Mn is a submanifold with parallel mean curvature in a
space form of constant curvature, then either H = 0, or H is constant and
Hn+1Hα = HαHn+1, for all α.

Lemma 2.3 [6, 19]. Let Mn be a submanifold with parallel mean curvature
in Rn+p.

(i) If H = 0, then

(2.6)
1
2
ΔS ≥

∑

α,i,j,k

(hα
ijk)

2 − μ(p)S2.
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(ii) If H �= 0, then

1
2
ΔSH ≥

∑

i,j,k

(hn+1
ijk )2

+ (SH − nH2)

[

2nH2 − S − n(n − 2)H
√

n(n − 1)

√
S − nH2

]

,(2.7)

1
2
ΔSI ≥

∑

i,j,k,β �=n+1

(hβ
ijk)

2 + nH
∑

β �=n+1

tr(Hn+1H
2
β)

−
∑

β �=n+1

[tr(Hn+1Hβ)]2 − μ(p − 1)S2
I for p �= 1.(2.8)

Here

(2.9) μ(m) =

⎧
⎨

⎩

1 for m = 1,
3
2

for m ≥ 2.

By using the same argument as in [20], we have the following lemma.

Lemma 2.4. Let Mn be a submanifold with parallel mean curvature in
Rn+p. Set fε = (SH − nH2 + nε2)1/2, gε = [SI + n(p − 1)ε2]1/2, hε = (S +
npε2)1/2. Then

(i) if H �= 0, then

∑

i,j,k

(hn+1
ijk )2 ≥ n + 2

n
|∇fε|2,(2.10)

∑

i,j,k,β �=n+1

(hβ
ijk)

2 ≥ n + 2
n

|∇gε|2 for p �= 1.(2.11)

(ii) If H = 0, then

(2.12)
∑

α,i,j,k

(hα
ijk)

2 ≥ n + 2
n

|∇hε|2.

From [4, 20], we have the following lemma.

Lemma 2.5. Let Mn (n ≥ 3) be a compact submanifold with or without
boundary with parallel mean curvature in Rn+p. Then for all t ∈ R+, and
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f ∈ C1(M), f ≥ 0 (if the boundary ∂M �= ∅, f |∂M = 0), f satisfies

‖∇f‖2
2 ≥ (n − 2)2

4(n − 1)2(1 + t)

[
1

D2(n)
‖f‖2

2n/(n−2) − H2
(

1 +
1
t

)

‖f‖2
2

]

,

(2.13)

where D(n) = 2n(1 + n)(n+1)/n(n − 1)−1σ
−1/n
n and σn = volume of the unit

ball in Rn.

3. Proof of theorems

We first define our pinching constants as follows

B(n, p, H) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(n) for p = 1 and H �= 0,

min{α(n), β(n)} for p = 2 and H �= 0,

min
{

α(n),
2
3
β(n)

}

for p ≥ 3 and H �= 0,

γ(n) for p = 1 and H = 0,

2
3
γ(n) for p ≥ 2 and H = 0,

C(n) = min

{

αn/2(n),
[
2
3
β(n)

]n/2

,

[
2
3
γ(n)

]n/2
}

,(3.1)

where

α(n) = 2nanD−2(n)[(anbn)1/2 + (1 + an)1/2(2 + bn)1/2]−2,

an = (n2 − n + 2)(n − 2)2[n4(n − 1)2]−1, bn = (n − 2)2(2n − 2)−1,

β(n) = n(n2 − n + 2)(n − 2)2D−2(n)[n4(n − 1)2 + (n2 − n + 2)(n − 2)2]−1,

γ(n) = (n2 − n + 2)(n − 2)2D−2(n)[n3(n − 1)2]−1.

To prove Theorem 1.4, we give the following key lemma.

Lemma 3.1. Let Mn (n ≥ 3) be a complete submanifold with parallel mean
curvature in Rn+p. Suppose that H �= 0 and ‖S − nH2‖n/2 < α(n). Then
M is a pseudo-umbilical submanifold. In particular, if p = 1, then M is a
hypersphere in Rn+1. Here ‖S − nH2‖K = [

∫
M (S − nH2)KdM ]1/K .
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Proof. Putting fε = (SH − nH2 + nε2)1/2, f = (SH − nH2)1/2, we have
Δf2

ε = Δf2. By Lemmas 2.3 and 2.4, we obtain

(3.2)
1
2
Δf2

ε ≥ n + 2
n

|∇fε|2 + f2

[

2nH2 − S − n(n − 2)H
√

n(n − 1)

√
S − nH2

]

.

We choose a cut-off function φR ∈ C∞(M) such that

φR(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if x ∈ BR(q),
0, if x ∈ M \ B2R(q),

φR(x) ∈ [0, 1] and |∇φR| ≤ 1
R

, if x ∈ B2R(q) \ BR(q),

where Br(q) is the geodesic ball in M with radius r centered at q ∈ M . In
particular, if M is compact, and if R ≥ d, where d is the diameter of M , then
φR ≡ 1 on M . Multiplying φ2

Rf2k−2
ε (k ≥ 1) on both sides of inequality (3.2)

and integrating by parts, we get

0 ≥
∫

M
φ2

Rf2k−2
ε f2

[

2nH2 − S − n(n − 2)H
√

n(n − 1)

√
S − nH2

]

dM

+
n + 2
nk2

∫

M
φ2

R|∇fk
ε |2dM

+
1
2

∫

M
∇(φ2

Rf2k−2
ε )∇f2

ε dM − 1
2

∫

M
div(φ2

Rf2k−2
ε ∇f2

ε )dM

=
∫

M
φ2

Rf2k−2
ε f2

[

2nH2 − S − n(n − 2)H
√

n(n − 1)

√
S − nH2

]

dM

+
2nk − n + 2

nk2

∫

M
φ2

R|∇fk
ε |2dM + 2

∫

M
φRf2k−1

ε ∇φR∇fεdM

≥
∫

M
φ2

Rf2k−2
ε f2

[

2nH2 − S − n(n − 2)H
√

n(n − 1)

√
S − nH2

]

dM

+
2nk − n + 2

nk2

∫

M
φ2

R|∇fk
ε |2dM + 2

∫

M
φRf2k−1

ε ∇φR∇fεdM

+ σ

∫

M
φRf2k−1

ε ∇φR∇fεdM − ρσ

2

∫

M
φ2

Rf2k−2
ε |∇fε|2dM

− σ

2ρ

∫

M
|∇φR|2f2k

ε dM(3.3)
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for all ρ, σ ∈ R+. Taking k =
n

2
, σ =

4(n2 − n + 2)
n2 − n

R − 2 and ρ =
n2

2Rσ
,

where R >
n3

2(n2 − 2n + 4)
, we get

0 ≥
∫

M
φ2

Rfn−2
ε f2

[

2nH2 − S − n(n − 2)H
√

n(n − 1)

√
S − nH2

]

dM

− Rσ2

n2

∫

M
fn

ε |∇φR|2dM

+
[
4(n2 − n + 2)

n3 − 1
R

] (∫

M
φ2

R|∇fn/2
ε |2dM

+ n

∫

M
φRfn−1

ε ∇φR∇fεdM

)

≥ −
[
4(n2 − n + 2)

n3 − 1
R

+
Rσ2

n2

] ∫

M
fn

ε |∇φR|2dM

+
[
4(n2 − n + 2)

n3 − 1
R

] ∫

M
|∇(φRfn/2

ε )|2dM

+
∫

M
φ2

Rfn−2
ε f2

[

2nH2 − S − n(n − 2)H
√

n(n − 1)

√
S − nH2

]

dM.(3.4)

By Lemma 2.5, we have

‖∇(φRfn/2
ε )‖2

2 ≥ (n − 2)2

4(n − 1)2(1 + t)

[
1

D2(n)
‖φRfn/2

ε ‖2
2n/(n−2)

− H2
(

1 +
1
t

)

‖φRfn/2
ε ‖2

2

]

,(3.5)

for all t ∈ R+. From (3.4) and (3.5), we obtain

0 ≥ −
[
4(n2 − n + 2)

n3 − 1
R

+
Rσ2

n2

] ∫

M
fn

ε |∇φR|2dM

+
[4R(n2 − n + 2) − n3](n − 2)2

4Rn3(n − 1)2(1 + t)

[
1

D2(n)
‖φRfn/2

ε ‖2
2n/(n−2)

− H2
(

1 +
1
t

)

‖φRfn/2
ε ‖2

2

]

+
∫

M
φ2

Rfn−2
ε f2 {

nH2 − (S − nH2)

− 1
2

[
n(n − 2)2H2

l(n − 1)
+ l(S − nH2)

]}

dM(3.6)



184 Hong-Wei Xu and Juan-Ru Gu

for all l ∈ R+. As ε → 0, (3.6) becomes

0 ≥ −
[
4(n2 − n + 2)

n3 − 1
R

+
Rσ2

n2

] ∫

M
fn|∇φR|2dM

+
[4R(n2 − n + 2) − n3](n − 2)2

4Rn3(n − 1)2(1 + t)

[
1

D2(n)
‖φRfn/2‖2

2n/(n−2)

− H2
(

1 +
1
t

)

‖φRfn/2‖2
2

]

+
[

nH2 − n(n − 2)2H2

2l(n − 1)

]

‖φRfn/2‖2
2

−
(

1 +
l

2

)

‖φ2
Rfn‖n/(n−2)‖S − nH2‖n/2

= −
[
4(n2 − n + 2)

n3 − 1
R

+
Rσ2

n2

] ∫

M
fn|∇φR|2dM

+
{

[4R(n2 − n + 2) − n3](n − 2)2

4Rn3(n − 1)2D2(n)(1 + t)

−
(

1 +
l

2

)

‖S − nH2‖n/2

}

‖φ2
Rfn‖n/(n−2)

+
{

nH2 − n(n − 2)2H2

2l(n − 1)

− [4R(n2 − n + 2) − n3](n − 2)2H2

4Rn3(n − 1)2t

}

‖φRfn/2‖2
2,(3.7)

where l ∈ R+. Since
∫
M fndM < αn/2(n), as R → ∞, we get

0 ≤ lim
R→∞

[
4(n2 − n + 2)

n3 − 1
R

+
Rσ2

n2

] ∫

M
fn|∇φR|2dM

≤ lim
R→∞

[
4(n2 − n + 2)

n3 − 1
R

+
Rσ2

n2

]
1

R2

∫

M
fndM = 0.(3.8)
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From (3.7) and (3.8), we obtain

0 ≥
[

(n2 − n + 2)(n − 2)2

n3(n − 1)2D2(n)(1 + t)

−
(

1 +
l

2

)

‖S − nH2‖n/2

]

lim
R→∞

‖φ2
Rfn‖n/(n−2)

+
[

nH2 − n(n − 2)2H2

2l(n − 1)
− (n2 − n + 2)(n − 2)2H2

n3(n − 1)2t

]

lim
R→∞

‖φRfn/2‖2
2

(3.9)

for all t, l ∈ R+. We take

t = t(l) =
(n2 − n + 2)(n − 2)2

n4(n − 1)2

[

1 − (n − 2)2

2l(n − 1)

]−1

, l >
(n − 2)2

2(n − 1)
.

This together with (3.9) yields
[

(n2 − n + 2)(n − 2)2

n3(n − 1)2D2(n)(1 + t(l))

−
(

1 +
l

2

)

‖S − nH2‖n/2

]

lim
R→∞

‖φ2
Rfn‖n/(n−2) ≤ 0,

where l ∈ R+ satisfying

l >
(n − 2)2

2(n − 1)
.

By a computation, we have

max
l> (n−2)2

2(n−1)

1
(2 + l)(1 + t(l))

=
n3(n − 1)2D2(n)α(n)
2(n2 − n + 2)(n − 2)2

.

So,
[
α(n) − ‖S − nH2‖n/2

]
lim

R→∞
‖φ2

Rfn‖n/(n−2) ≤ 0.

From the assumption

‖S − nH2‖n/2 < α(n),

we conclude that f ≡ 0, i.e., SH ≡ nH2. Therefore, M is a pseudo-umbilical
submanifold. If p = 1, then S − nH2 = f2 ≡ 0, i.e., M is the totally umbil-
ical sphere Sn(1/H) in Rn+1. �
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Now we are in a position to give the proof of Theorem 1.4.

Proof of Theorem 1.4. If H �= 0 and p = 1, the assertion follows from
Lemma 3.1.

If H �= 0 and p ≥ 2, we see from the assumption that ‖S − nH2‖n/2 <
α(n). It follows from Lemma 3.1 that SH = nH2, i.e., Hn+1 = HI, where I
is the unit matrix. By Lemmas 2.2, 2.3 and 2.4, we have

(3.10)
1
2
Δg2

ε =
1
2
Δg2 ≥ n + 2

n
|∇gε|2 + g2[nH2 − μ(p − 1)g2],

where gε = [SI + n(p − 1)ε2]1/2 and g = S
1/2
I . Multiplying φ2

Rg2k−2
ε (k ≥ 1)

on both sides of the above inequality and integrating by parts, where φR is
the cut-off function defined in Lemma 3.1, we obtain

0 ≥
∫

M
φ2

Rg2k−2
ε g2[nH2 − μ(p − 1)(S − nH2)]dM

+
n + 2
nk2

∫

M
φ2

R|∇gk
ε |2dM

+
1
2

∫

M
∇(φ2

Rg2k−2
ε )∇g2

εdM − 1
2

∫

M
div(φ2

Rg2k−2
ε ∇g2

ε)dM

≥
∫

M
φ2

Rg2k−2
ε g2[nH2 − μ(p − 1)(S − nH2)]dM

+
2nk − n + 2

nk2

∫

M
φ2

R|∇gk
ε |2dM + 2

∫

M
φRg2k−1

ε ∇φR∇gεdM

+ σ

∫

M
φRg2k−1

ε ∇φR∇gεdM − ρσ

2

∫

M
φ2

Rg2k−2
ε |∇gε|2dM

− σ

2ρ

∫

M
|∇φR|2g2k

ε dM(3.11)

for all ρ, σ ∈ R+. Taking k =
n

2
, σ =

4(n2 − n + 2)
n2 − n

R
− 2, ρ =

n2

2Rσ
,

where R >
n3

2(n2 − 2n + 4)
, we get

0 ≥ −
[
4(n2 − n + 2)

n3 − 1
R

+
Rσ2

n2

] ∫

M
gn
ε |∇φR|2dM

+
[
4(n2 − n + 2)

n3 − 1
R

] ∫

M
|∇(φRgn/2

ε )|2dM

+
∫

M
φ2

Rgn−2
ε g2[nH2 − μ(p − 1)(S − nH2)]dM.(3.12)
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By Lemma 2.5, we have

‖∇(φRgn/2
ε )‖2

2 ≥ (n − 2)2

4(n − 1)2(1 + t)

[
1

D2(n)
‖φRgn/2

ε ‖2
2n/(n−2)

−H2
(

1 +
1
t

)

‖φRgn/2
ε ‖2

2

]

(3.13)

for all t ∈ R+. From (3.12) and (3.13), we obtain

0 ≥ −
[
4(n2 − n + 2)

n3 − 1
R

+
Rσ2

n2

] ∫

M
gn
ε |∇φR|2dM

+
[4R(n2 − n + 2) − n3](n − 2)2

4Rn3(n − 1)2(1 + t)

[
1

D2(n)
‖φRgn/2

ε ‖2
2n/(n−2)

− H2
(

1 +
1
t

)

‖φRgn/2
ε ‖2

2

]

+
∫

M
φ2

Rgn−2
ε g2[nH2 − μ(p − 1)(S − nH2)]dM.(3.14)

As ε → 0, we have

0 ≥ −
[
4(n2 − n + 2)

n3 − 1
R

+
Rσ2

n2

] ∫

M
gn|∇φR|2dM

+
[4R(n2 − n + 2) − n3](n − 2)2

4Rn3(n − 1)2(1 + t)

[
1

D2(n)
‖φRgn/2‖2

2n/(n−2)

− H2
(

1 +
1
t

)

‖φRgn/2‖2
2

]

+
[
nH2‖φRgn/2‖2

2 − μ(p − 1)‖S − nH2‖n/2‖φ2
Rgn‖n/(n−2)

]

≥ −
[
4(n2 − n + 2)

n3 − 1
R

+
Rσ2

n2

] ∫

M
gn|∇φR|2dM

+
{

[4R(n2 − n + 2) − n3](n − 2)2

4Rn3(n − 1)2D2(n)(1 + t)

− μ(p − 1)‖S − nH2‖n/2

}

‖φ2
Rgn‖n/(n−2)

+
{

nH2 − [4R(n2 − n + 2) − n3](n − 2)2H2

4Rn3(n − 1)2t

}

‖φRgn/2‖2
2,(3.15)
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where t ∈ R+. Since
∫
M gndM < C(n), as R → ∞, we get

0 ≤ lim
R→∞

[
4(n2 − n + 2)

n3 − 1
R

+
Rσ2

n2

] ∫

M
gn|∇φR|2dM

≤ lim
R→∞

[
4(n2 − n + 2)

n3 − 1
R

+
Rσ2

n2

]
1

R2

∫

M
gndM = 0.(3.16)

As R → ∞, (3.15) becomes

0 ≥
[

(n2 − n + 2)(n − 2)2

n3(n − 1)2D2(n)(1 + t)

− μ(p − 1)‖S − nH2‖n/2

]

lim
R→∞

‖φ2
Rgn‖n/(n−2)

+
[

nH2 − (n2 − n + 2)(n − 2)2H2

n3(n − 1)2t

]

lim
R→∞

‖φRgn/2‖2
2(3.17)

for all t ∈ R+. By taking t = (n2 − n + 2)(n − 2)2[n4(n − 1)2]−1, we have
{

n(n2 − n + 2)(n − 2)2

D2(n)[n4(n − 1)2 + (n2 − n + 2)(n − 2)2]
− μ(p − 1)‖S − nH2‖n/2

}

× lim
R→∞

‖φ2
Rgn‖n/(n−2) ≤ 0,

which implies

(3.18)
[
β(n) − μ(p − 1)‖S − nH2‖n/2

]
lim

R→∞
‖φ2

Rgn‖n/(n−2) ≤ 0.

It is easy to see from the assumption that

‖S − nH2‖n/2 < β(n)/μ(p − 1).

This together with (3.18) gives g ≡ 0. So,

S − nH2 = f2 + g2 ≡ 0.

Therefore, M is the totally umbilical sphere Sn(1/H) in Rn+p.

If H = 0, it follows from Lemmas 2.3 and 2.4 that

(3.19)
1
2
Δh2

ε =
1
2
ΔS ≥ n + 2

n
|∇hε|2 − μ(p)S2,

where hε = [S + npε2]1/2. Multiplying φ2
Rh2k−2

ε (k ≥ 1) on both sides of
inequality (3.19) and integrating by parts, where φR is the cut-off function
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defined in Lemma 3.1, we obtain

0 ≥ −μ(p)
∫

M
φ2

Rh2k−2
ε S2dM +

n + 2
nk2

∫

M
φ2

R|∇hk
ε |2dM

+
1
2

∫

M
∇(φ2

Rh2k−2
ε )∇h2

εdM − 1
2

∫

M
div(φ2

Rh2k−2
ε ∇h2

ε)dM

≥ −μ(p)
∫

M
φ2

Rh2k−2
ε S2dM +

2nk − n + 2
nk2

∫

M
φ2

R|∇hk
ε |2dM

+ 2
∫

M
φRh2k−1

ε ∇φR∇hεdM

+ σ

∫

M
φRh2k−1

ε ∇φR∇hεdM − ρσ

2

∫

M
φ2

Rh2k−2
ε |∇hε|2dM

− σ

2ρ

∫

M
|∇φR|2h2k

ε dM(3.20)

for all ρ, σ ∈ R+. Taking k =
n

2
, σ =

4(n2 − n + 2)
n2 − n

R
− 2, ρ =

n2

2Rσ
,

where R >
n3

2(n2 − 2n + 4)
, we get

0 ≥ −
[
4(n2 − n + 2)

n3 − 1
R

+
Rσ2

n2

] ∫

M
hn

ε |∇φR|2dM

+
[
4(n2 − n + 2)

n3 − 1
R

] ∫

M
|∇(φRhn/2

ε )|2dM

− μ(p)
∫

M
φ2

Rhn−2
ε S2dM.(3.21)

By Lemma 2.5, we have

(3.22) ‖∇(φRhn/2
ε )‖2

2 ≥ (n − 2)2

4(n − 1)2D2(n)
‖φRhn/2

ε ‖2
2n/(n−2).

From (3.21) and (3.22), we obtain

0 ≥ −
[
4(n2 − n + 2)

n3 − 1
R

+
Rσ2

n2

] ∫

M
hn

ε |∇φR|2dM

+
[4R(n2 − n + 2) − n3](n − 2)2

4Rn3(n − 1)2D2(n)
‖φRhn/2

ε ‖2
2n/(n−2)

− μ(p)
∫

M
φ2

Rhn−2
ε S2dM.(3.23)
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As ε → 0, this implies

0 ≥ −
[
4(n2 − n + 2)

n3 − 1
R

+
Rσ2

n2

] ∫

M
hn|∇φR|2dM

+
[4R(n2 − n + 2) − n3](n − 2)2

4Rn3(n − 1)2D2(n)
‖φ2

RSn/2‖n/(n−2)

− μ(p)
∫

M
φ2

RSn/2+1dM

≥ −
[
4(n2 − n + 2)

n3 − 1
R

+
Rσ2

n2

] ∫

M
hn|∇φR|2dM

+
[4R(n2 − n + 2) − n3](n − 2)2

4Rn3(n − 1)2D2(n)
‖φ2

RSn/2‖n/(n−2)

− μ(p)‖φ2
RSn/2‖n/(n−2)‖S‖n/2.(3.24)

Since

lim
R→∞

[
4(n2 − n + 2)

n3 − 1
R

+
Rσ2

n2

] ∫

M
hn|∇φR|2dM = 0,

as R → ∞, (3.24) becomes

(3.25)
[
γ(n) − μ(p)‖S‖n/2

]
lim

R→∞
‖φ2

RSn/2‖n/(n−2) ≤ 0.

We see from the assumption that ‖S‖n/2 < γ(n)/μ(p). This together with
(3.25) implies S ≡ 0, i.e., M is the totally geodesic submanifold Rn in Rn+p.
This completes the proof of Theorem 1.4. �

Remark 3.2. We see from the proof above that the pinching constant in
Theorem 1.4 can be replaced by the constant Bn/2(n, p, H) defined in (3.1),
which is not less than C(n).

When the ambient space is a sphere with positive constant curvature c,
we have the following lemma.

Lemma 3.3. Let Mn (n ≥ 3) be an n-dimensional complete submanifold
with parallel mean curvature in an (n+p)-dimensional sphere Sn+p( 1√

c
),

where c is a positive constant. Denote by H and S the mean curvature
and the squared length of the second fundamental form of M , respectively.
If

∫
M (S − nH2)n/2dM < C(n), where C(n) is an explicit positive constant

depending only on n, then M is the totally umbilical sphere Sn( 1√
c+H2 ).



General gap theorem 191

Proof. It follows from the assumption that Sn+p( 1√
c
) = Fn+p(c). We consider

the composition of isometric immersions

i ◦ ϕ : Mn → Fn+p(c) → Rn+p+1,

where ϕ : Mn → Fn+p(c) is the isometric immersion, and i is the standard
isometric embedding of Fn+p(c) into Rn+p+1. Denote by H̃ and S̃ the mean
curvature and the squared length of the second fundamental form of the
isometric immersion i ◦ ϕ, respectively. Then i ◦ ϕ(M) is a complete sub-
manifold in Rn+p+1 with parallel mean curvature vector having norm H̃.
By the Gauss equation, we have

n(n − 1)c + n2H2 − S = n2H̃2 − S̃.

Substituting H̃2 = c + H2 into the above, we get S − nH2 = S̃ − nH̃2. The
claim follows directly from Theorem 1.4. �

Proof of Theorem 1.6. Combining Theorem 1.4 and Lemma 3.3, we com-
plete the proof of Theorem 1.6. �

Remark 3.4. By using the same argument as in Theorem 1.4, one can
obtain an analogous gap theorem for complete submanifold with parallel
mean curvature in hyperbolic space Hn+p(−1).
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