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An invariant for triples in the Shilov boundary
of a bounded symmetric domain

Jean-Louis Clerc

Let D be a bounded symmetric domain, G its group of biholomor-
phic diffeomorphisms and S its Shilov boundary. We define a func-
tion ι : S × S × S −→ R, which is invariant under G. This invari-
ant generalizes the Maslov index as defined for the Shilov bound-
ary of a tube-type domain (see [2, 3, 4]) and the angular invariant
constructed by E. Cartan for the unit sphere in C

2 (see [1]).

1. Introduction

In a paper published in 1932 (cf. [1]), Elie Cartan studied the geometry of
the unit sphere S in C

2,

S = {(x, y) ∈ C
2 | xx + yy = 1}

under the action of the group G of holomorphic transformations (defined in
a neighborhood of S) preserving S. A better understanding of the geometry
of S is achieved by using another realization of S. On C

3 consider the
Hermitian form h given by

h((z, x, y), (z′, x′, y′)) = zz′ − xx′ − yy′.

The space S of complex lines in C
3, which are istropic with respect to h, is

in one-to-one correspondence with S by the mapping

S � (x, y) �−→ C(1, x, y) ∈ S.

The group SU(h) � SU(1, 2) acts on C
3 preserving the form h and hence

the isotropic lines. This gives raise to an action of G = PSU(1, 2) on S,
which, after conjugation by the correspondence between S and S, gives the
classical homographic action of G on S.
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Among several other results, Cartan constructed an invariant for triples
in S. For v1, v2, v3 ∈ C

3 \ {0}, consider the complex number

(1.1) J(v1, v2, v3) = h(v1, v2)h(v2, v3)h(v3, v1).

Observe that, under replacement of v1 by λ1v1 (resp. v2 by λ2v2, v3 by
λ3v3), where λ1 (resp. λ2, λ3) is any nonzero complex number, the quantity
J is multiplied by |λ1|2|λ2|2|λ3|2, hence the argument of J depends only on
the triple of complex lines (Cv1, Cv2, Cv3). To be more precise (and this
observation will be of importance later on), observe that, if v1 and v2 are two
isotropic nonzero vectors in C

3, then h(v1, v2) = 0 implies that Cv1 + Cv2 is
totally isotropic for h, and hence v1 and v2 are proportional. So, if σ1, σ2, σ3
are three distinct points in S, define, following Cartan

(1.2) j(σ1, σ2, σ3) = arg J(v1, v2, v3),

where v1 (resp. v2, v3) is any nonzero vector of σ1 (resp. σ2, σ3). As the
quantity J is invariant under SU(h), the quantity j is invariant under the
action of G. As h is Hermitian symmetric, one more property of j is that
it is skew symmetric with respect to permutation of the points σ1, σ2, σ3.
Notice for further reference that this suggests to extend the definition of j
by requiring that the value of j(σ1, σ2, σ3) is 0 if (at least) two points among
σ1, σ2, σ3 cöıncide.

Obviously, Cartan’s construction is valid as well for the unit sphere in
C

n, under the action of G = PSU(1, n). The case n = 1 is even of special
interest. As before, the unit sphere S = {z ∈ C, |z| = 1} is in one-to-one
correspondence with the space of isotropic lines in C

2 for the Hermitian
form h on C

2 given by

h((z, x), (z′, x′)) = zz′ − xx′,

the correspondence being

eiθ �−→ C(1, eiθ)

The remarkable fact (not immediately trivial) is that the quantity

(1.3) J(v1, v2, v3) = h(v1, v2)h(v2, v3)h(v3, v1),

or the quantity

(1.3′) j(eiθ1 , eiθ2 , eiθ3) = (1 − ei(θ1−θ2))(1 − ei(θ2−θ3))(1 − ei(θ3−θ1))
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is pure imaginary for any isotropic vectors v1, v2, v3 (resp. for any θ1, θ2, θ3
∈ R). Hence, in this case, Cartan’s invariant takes (on triples of distinct
points in S) only two values: −π

2 and π
2 . They correspond to the two orbits

under G in the space of (proper) triples, corresponding to the orientation of
the triple which may or may not agree with the counterclockwise orientation
of the unit circle. Another model for the unit circle is the Lagrangian man-
ifold of real lines in the symplectic space R

2 under the action of the group
G = Sp(R) � SL(2, R). In this interpretation, Cartan’s invariant (up to a
factor −π

2 ) is nothing but the Maslov triple index (see [2] for details).
In this paper, we consider any bounded symmetric domain D. Let G be

(the neutral component of) its group of biholomorphic diffeomorphisms, and
let S be its Shilov boundary. The action of any element g ∈ G extends to a
neighborhood of D and preserves S. For triples (σ1, σ2, σ3) ∈ S3, we con-
struct an invariant for the action of G, which generalizes Cartan’s invariant.
If D happens to be of tube type, this program was achieved in [3], follow-
ing previous work in collaboration with Ørsted (see [2, 4]). As it was the
case for the unit circle in C (which is the Shilov boundary of the tube-type
domain D = {z ∈ C, |z| < 1}), the invariant in the tube-type case is always
an integer (after normalization), and this corresponds to the geometric fact
that G has a finite number of (open) orbits in S3. This is not the case when
D is not of tube type.

A further study of Cartan’s invariant can be found in [5]. For the classical
theory of the Maslov index, see [6]. For the case of the Stiefel manifold,
viewed as the Shilov boundary of the unit ball in End(Cp, C

q), a more
general invariant was studied in [7]. For the same space, the paper [8] gives
a direct generalization of Cartan’s invariant and some interesting geometric
applications.

Let us sketch the construction of the invariant. Let first z1, z2, z3 be
three points in D. Form the oriented geodesic triangle T (z1, z2, z3), and
consider any surface Σ in D which has this triangle as boundary. We may
integrate the Kähler form ω of the domain D on Σ and obtain a real number

(1.4) ϕ(z1, z2, z3) =
∫

Σ
ω

(not depending on Σ as the Kähler form is closed), which we call the symplec-
tic area of the triangle T (z1, z2, z3). As the Kähler form is invariant under
G, this gives an invariant for triples in D. Now for σ1, σ2, σ3 ∈ S3, define

(1.5) ι(σ1, σ2, σ3) =
1
π

lim
zj−→σj

ϕ(z1, z2, z3).
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The difficulty is to show that there is actually a limit. In the generic case,
i.e., for mutually transverse triples (see precise definition in [4]), the limit
exists without any restriction. However, for the singular triples, one needs
to restrict the way zj approaches σj . This is where the notion of Γ-radial
convergence is required. Note that this restricted approach to the boundary
is already needed in the case of the unit circle, for triples in which two
points coincide. In fact, let σ1 and σ2 = σ3 be points of the unit circle. As
z1 approaches σ1, z2 and z3 approach σ2, the invariant ϕ(z1, z2, z3) (which
is nothing but the oriented area of the geodesic triangle T (z1, z2, z3) for
the Poincaré metrics of the disc) may approach any value between −π and
π. However if one demands that z2 and z3 approach σ2 = σ3 along curves
which are radial (= normal to S) at σ2, then ϕ(z1, z2, z3) tends to 0, which,
as noticed earlier, ought to be the value of ι(σ1, σ2, σ3). In higher rank, the
corresponding statement requires more work.

As a bonus to this definition/theorem, we obtain a further property of
the invariant (for original Cartan’s invariant, this property had been noticed
in [5, ch.7]). It satisfies a cocycle property , namely

(1.6) ι(σ1, σ2, σ3) = ι(σ1, σ2, σ4) + ι(σ2, σ3, σ4) + ι(σ3, σ1, σ4)

for any σ1, σ2, σ3, σ4 ∈ S. In fact, the same property is already satisfied by
the function ϕ(z1, z2, z3), and it is merely a consequence of Stokes formula
and the fact that the Kähler form is closed.

Section 2 introduces notation and results of the geometry of bounded
symmetric domains, both in the bounded and the unbounded realizations.
The presentation uses the theory of positive Hermitian Jordan triple sys-
tems. Section 3 introduces the wedge structure on S and the related notion
of Γ-radial convergence at a point of the Shilov boundary. Section 4 contains
a technical result, written in the framework of Euclidean Jordan algebras
and their complexifications, which might be of independent interest. Sec-
tion 5 gives the construction and states the main properties of the invariant
ι. Section 6 gives a geometric description of the triples in S corresponding
to the maximal value of the invariant ι.

2. Bounded symmetric domains and positive Hermitian
Jordan triple systems

This section is devoted to a detailed presentation of bounded symmetric
domains, using the theory of positive Hermitian Jordan triple systems. For
general references, see [9]. The link of this point of view with the more
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classical Lie group theory approach (see [10]) is exposed in [11] or in [12].
The presentation in [13] is also relevant. For the theory of Euclidean Jordan
algebras, see [14].

A Jordan triple system W is a real vector space together with a trilinear
map { . , . , .} : W × W × W −→ W , which satisfies

{x, y, z} = {z, y, x}(2.1)

{a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z} + {x, y, {a, b, z}}
(2.2)

for all a, b, x, y, z ∈ W .
For x, y ∈ W denote by x�y the linear endomorphism of W defined by

(x�y) z = {x, y, z}

and by Q(x) the linear endomorphism of W defined by

Q(x)z = {x, z, x}.

Define the trace form τ on W by

τ(x, y) = tr(x�y).

The Jordan triple system is said to be nondegenerate if, as a bilinear form,
τ is nondegenerate. If this is the case, then τ is symmetric. Moreover, for
x, y ∈ W

(x�y)t = y�x,

where, for A ∈ End(W ), At is used for the transpose of A with respect to τ .
A nondegenerate Hermitian Jordan triple system W is a complex vector

space, together with a map { . , . , .} : W × W × W −→ W, such that
{x, y, z} is complex linear in x and z, conjugate-linear in y, and such that
W

R, { . , . , .} is a nondegenerate Jordan triple system, where W
R stands for

W viewed as a real vector space. Abusing somewhat notation, set

τ(x, y) = tr
C
(x�y),

which is then a nondegenerate Hermitian form on W. If if τ happens to
be positive definite, then W is said to be a positive Hermitian Jordan triple
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system (PHJTS). Now, for x, y ∈ W,

(x�y)∗ = y�x,

where A∗ stands for the complex adjoint of A with respect to the Hermitian
form τ .

Let W be a PHJTS. If x is an element of W, then its odd powers x(2n+1)

are defined by the induction formula

x(2n+1) = {x2n−1, x, x}.

An element c ∈ W is said to be a tripotent if c(3) = {c, c, c} = c.
There is a (partial) order relation on tripotents. For c, d, two tripotents

of W, the relation c ≺ d is true if and only if there exists a tripotent c′, such
that

(i) c�c′ = 0 (orthogonality of c and c′)

(ii) d = c + c′.

A nonzero tripotent is said to be primitive if it is minimal for this order
among nonzero tripotents. Any tripotent c can be written as a sum of pair-
wise orthogonal primitive tripotents, say c = c1 + c2 + · · · + ck. The number
k of primitive tripotents in such a decomposition of c depends only on c and
is called the rank of c.

One of the main results in the theory of PHJTS is the spectral theorem.

Proposition 2.1. Every x ∈ W can be written uniquely

(2.3) x =
k∑

j=1

λjcj ,

where (cj)1≤j≤k are paiwise orthogonal nonzero tripotents which are real
linear combinations of powers of x, and λj satisfy

0 < λ1 < λ2 < · · · < λk .

The identity (2.3) is called the spectral decomposition of x. The λj are
called the eigenvalues of x. The largest eigenvalue is the spectral norm of x,
denoted by |x|. As notation suggests, the map x �→ |x| can be shown to be
a (complex Banach) norm on W. Moreover, |x| = ‖Q(x)‖ = 1

2‖x�x‖, where
the operator norm ‖A‖ for any A ∈ EndR(W) is computed with respect to
the inner product on W induced by τ .
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Theorem 2.2. The unit ball of (W, | · |) is a bounded symmmetric domain.
Conversely, any bounded symmetric domain is biholomorphically equivalent
to such a unit ball.

In other words, any bounded symmetric domain can be realized as the
unit ball for the spectral norm of some PHJTS. For a proof of this important
result, see [9].

Let G = G(D) be the neutral component of the group of holomorphic
diffeomorphisms of D. It is a semi-simple Lie group, which acts transitively
on D. Let K be the stabilizer of 0 in G. The subgroup K is a maximal
subgroup of G, and D � G/K. Denote by r be the rank of D as a symmetric
space.

Let c be a nonzero tripotent of W. Then W decomposes as

(2.4) W = W2 ⊕ W1 ⊕ W0,

where Wj = Wj(c) is the eigenspace of c�c corresponding to the eigenvalue
1
2j. The Wj are pairwise orthogonal and satisfy the rule

(2.5) {Wj , Wk, Wl} ⊂ Wj−k+l, {W2, W0, W} = {W0, W2, W} = {0}.

This decomposition of W will be referred to as the Peirce decomposition
with respect to c.

Proposition 2.3. Let e be a tripotent in W. The following are equivalent

(i) e is a maximal tripotent

(ii) e has rank r

(iii) W0(e) = {0}
(iv) e is an extremal point of the convex set D.

The set of all maximal tripotents is a compact submanifold S of W. It is
the Shilov boundary of D in the sense of complex analysis. It is the unique
closed orbit of G in ∂D, and the group K is already transitive on S.

A maximal family of orthogonal primitive tripotents in W is called a
Jordan frame. It consists of r (primitive, mutually orthogonal) tripotents
c1, c2, . . . , cr.
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For x, y ∈ W, set

(2.6) B(x, y) = Id−x�y + Q(x)Q(y).

Observe that B(x, y) is a C-linear endomorphism of W. It is a holomorphic
polynomial with respect to the variable x and antiholomorphic with respect
to y. If B(x, y) is invertible, then x and y are said to be transverse and this
relation is denoted by x�y. It is a symmetric relation.

There is an alternative realization of the same spaces, called the unboun-
ded realization, which is obtained through a Cayley transform.

Fix e a maximal tripotent in W. Then W2 = W2(e) has a natural struc-
ture of complex Jordan algebra for the Jordan product defined by

(2.7) x ◦ y = {x, e, y}.

The element e is the neutral element of this Jordan algebra. Moreover, Q(e)
maps W2 into itself, and can be shown to be a conjugate-linear involution of
W2. For a ∈ W2, set a∗ = Q(e)a. The space of fixed points of this involution
U = {a ∈ W2 | a = a∗} inherits a structure of real Euclidean Jordan algebra.
Standard notation for Jordan algebra (see [14]) is used freely throughout the
paper, such as Ω ⊂ U for the (open) cone of squares, L(x) for the multipli-
cation by x, P (x) = 2L(x)2 − L(x2) for the quadratic operator associated
to x and det for the determinant polynomial on U (or W2).

To any a ∈ W2 associate the endomorphism Φ(a) of W1 given by

(2.8) Φ(a)v = 2{a, e, v}.

Then for a ∈ U , the endomorphism Φ(a) is self-adjoint with respect to the
inner product on W1 induced by the form τ , and satisfies

Φ(a ◦ b) =
1
2
(Φ(a)Φ(b) + Φ(b)Φ(a)), Φ(e) = IdW1 .

In other words, Φ is a representation of the Euclidean Jordan algebra U on
W1. Finally, let Ψ : W1 × W1 −→ W2 be the bilinear map defined by

(2.9) Ψ(v, v′) = {v, v′, e}.

Then Ψ is Hermitian and positive definite in the sense that

(2.10) Ψ(v, v′) = Ψ(v′, v)∗, Ψ(v, v) ∈ Ω, Ψ(v, v) = 0 ⇐⇒ v = 0.
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A further property of Φ and Ψ is the following relation

(2.11) Ψ(Φ(x)v, Φ(x)v′) = P (x)(Ψ(v, v′))

for all x ∈ U, v, v′ ∈ W1.

Proposition 2.4. Let e be a maximal tripotent. Let W = W2 ⊕ W1 be the
corresponding Peirce decomposition of W. Then x = x2 + x1 is transverse
to e if and only if det(e − x2) �= 0.

Proof. A routine computation shows that B(x, e) as an endomorphism of
W has the following block realization with respect to the decomposition
W = W2 ⊕ W1 :

B(x, e) =

⎛
⎝Id2 − 2L(x2) + P (x2) 0

∗ Id1 −Φ(x2)

⎞
⎠ .

As Id2 − 2L(x2) + P (x2) = P (e − x2) and Id1 − Φ(x2) = Φ(e − x2) and
Φ(z) is invertible if and only if z is invertible (and then Φ(z)−1 = Φ(z−1)),
it is clear that the invertibility in W2 of e − x2 is the necessary and sufficient
condition for the invertibility of B(x, e). Proposition 2.4 follows.

Corresponding to the data U, Ω, Ψ, W1, let γD be the Siegel domain of
the second kind defined by

(2.12) γD = {(x + iy, v), x, y ∈ U, v ∈ W1 | y − Ψ(v, v) ∈ Ω}.

The (unbounded) domain γD is biholomorphically equivalent to the domain
D. The correspondence between the two domains has an explicit description
as a Cayley transform γ = γe, which is defined (as a rational map on W2 ×
W1) by

(2.13) γe(x2, x1) = (i(e + x2)(e − x2)−1, Φ((e − x2)−1)x1).

For x = x2 + x1 ∈ D, e − x2 is invertible in W2, and hence the Cayley trans-
forms is well-defined on D. More generally, the Cayley transform is defined
precisely on the elements x ∈ W which are transverse to e (thanks to Propo-
sition 2.4). In particular, the Cayley transform is defined on

(2.14) S�
e = {x ∈ S | x�e} = {x = x2 + x1 ∈ S | det(e − x2) �= 0}.



156 Jean-Louis Clerc

This is a dense open set in S, and its image under γe is given by

(2.15) γS′ = {(x + iΨ(v, v), v) | x ∈ U, v ∈ W1}.

�

3. The wedge structure on S and the notion of Γ-radial
convergence

Let M be a manifold. For each point x ∈ M , let Γx be a nontrivial convex
open cone in the tangent space TxM at x, and assume that the cone Γx

depends smoothly on x. Then we say that M is given a wedge structure.
The concept of causal structure is more common. This is the case where one
demands that the cone be proper (its closure does not contain any line), but
it is important for our purpose not to make this requirement. In the case at
hand, we might also call this structure a weakly causal structure.

A wedge diffeomorphism is a diffeomorphism F : M −→ M such that,
at each point x ∈ M , the differential DF (x) maps the cone Γx ⊂ TxM into
the cone ΓF (x) ⊂ TF (x)M . If G is a Lie group acting by diffeomorphisms
on M , the wedge structure is said to be invariant under G if each g ∈ G ⊂
Diff(M) is a wedge diffeomorphism. Assume moreover that the action of
G on M is transitive. Choose a base point o in M , and let H = Go be
the stabilizer of o in G. An invariant wedge structure on M is completely
determined by the cone Γo ⊂ ToM � g/h. This cone has to be invariant
under the tangent action of Ad(H) on g/h. But conversely, given such an
invariant cone Γo ⊂ g/h, one can unambiguously propagate that cone to
endow M with a G-invariant wedge structure.

The Shilov boundary S of a bounded symmetric space has a natural
wedge structure. On the Shilov boundary of a tube-type domain, it has
been known that there is a natural causal structure (see [15, 16]). From
another point of view, for any bounded symmetric domain, there is a natural
Cauchy-Riemann structure on S. The wedge structure we will consider on
S is a mixed version of these two structures.

The wedge structure will be described first in the unbounded realization
of D. For simplicity, let us modify the notation by setting U = U ⊗R C = W2
and V = W1. With this notation, recall (2.12)

γD = {(x + iy, v) | x, y ∈ U, v ∈ V, y − Ψ(v, v) ∈ Ω},

whereas
γS′ = {(x + iy, v) | x, y ∈ U, v ∈ V, y = Ψ(v, v)}
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Choose o = (0, 0) as origin in γS′. The tangent space to γS at o is a real
vector subspace of W, given by the condition y = 0, hence realized as U ⊕ V.
Then let Γo = Ω + V.

Proposition 3.1. Let g be any holomorphic diffeomorphism of γD, such
that g(o) = o. Then Dg(o) Γo ⊂ Γo.

Recall first that any holomorphic diffeomorphism of D extends to a
neighborhood of D, and similarly for γD. Let ω ∈ Ω, and consider the path

γ : [0, 1] −→ iU, γ(t) = itω.

For t > 0, γ(t) ∈ γD, so that

g(γ(t)) = γ1(t) = (x1(t) + iy1(t), v1(t)) ∈ γD.

So, for any t > 0, y1(t) − Ψ(v1(t), v1(t)) ∈ Ω, and a fortiori y1(t) ∈ Ω.
Hence, ẏ1(0) ∈ Ω and

(3.1) γ̇1(0) = Dg(o) iω ∈ U ⊕ iΩ ⊕ V.

But as Dg(o) is C-linear and maps the tangent space to S at o into itself,
we also have

Dg(o)(U ⊕ V) ⊂ U ⊕ V, Dg(o)(V) ⊂ V.

Hence, after multiplication by i,

Dg(o)(iΩ) ⊂ iU ⊕ V,

which together with (3.1) implies

(3.2) Dg(o)(iΩ) ⊂ iΩ ⊕ V.

But Dg(o) is invertible, and hence the image of an open set is open, so that

(3.3) Dg(o)(iΩ) ⊂ iΩ ⊕ V,

which, after multiplication by i (recalling that g is holomorphic), implies

(3.4) Dg(o)(Ω ⊕ V) ⊂ Ω ⊕ V.
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Thus, the wedge Ω ⊕ V is invariant by the stabilizer of o in γG = γ ◦ G ◦ γ−1,
and hence defines an invariant wedge structure on γS′. The correspond-
ing description of the wedge structure on S is obtained by inverse Cayley
transform.

Proposition 3.2. There exists a unique G-invariant wedge structure (Γσ,
σ ∈ S) on S, such that Γ−e = −iΩ ⊕ V.

Sketch of the proof. As a consequence of (2.13), one has γe(−e) = o and
one can show that

Dγ(−e) =
(

i

2
IdU,

1
4
IdV

)
.

The proposition follows, by taking the inverse image of the cone Ω ⊕ V.
A curve (γ(t), 0 ≤ t ≤ 1) is said to be Γ-radial at some point σ ∈ S if

(3.5) γ(0) = σ, γ(t) ∈ D for 0 < t ≤ 1, and γ̇(0) ∈ iΓσ.

Proposition 3.3. Let σ ∈ S, and let (γ(t), 0 ≤ t ≤ 1) be a Γ-radial curve
at σ. Let g ∈ G. Then (g(γ(t)), 0 ≤ t ≤ 1) is a Γ-radial curve at g(σ).

As the differential of g at σ is C-linear, Proposition 3.3 is a consequence
of the invariance of the cone field (Γσ, σ ∈ S).

There is a similar notion in the noncompact model. As we will have to
work in this setting, let us give a more explicit description of a Γ-radial curve.
First, let again o = (0, 0) ∈ γS′. A curve γ(t) = (u(t), v(t)) is Γ-radial at o
if there exists ω ∈ Ω and v ∈ V such that, as t ↓ 0,

(3.6) γ(t) = (itω, tv) + O(t2).

For a ∈ U and b ∈ V, the transformation

(3.7) (u, v) �−→ (u + a + 2iΨ(v, b) + iΨ(b, b), v + b)

belongs to γG and maps the origin o = (0, 0) to (a + iΨ(b, b), b), which is
the general point of γS′. So, a Γ-radial curve at the point (a + iΨ(b, b), b)
is obtained from a Γ-radial curve at (0, 0) by this transform, hence has the
following behavior as t ↓ 0

(3.8) γ(t) = (a + iΨ(b, b) + itω + 2itΨ(v, b), b + tv) + O(t2),

with ω ∈ Ω and v ∈ V.
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4. A geometric lemma for a Jordan algebra

This section, except for notation, can be read independently of the first
sections. We make free use of definitions, notation and results of [14]. We
assume for commodity that U is a simple Euclidean Jordan algebra. Denote
by e its unit, by 〈. , .〉 the standard invariant inner product. Let r be the
rank of U . For c, a nonzero idempotent of U , we denote by U1 = U1(c), U 1

2
=

U 1
2
(c), U0 = U0(c) the eigenspaces of L(c), and let

U = U1 ⊕ U 1
2

⊕ U0

be the corresponding Peirce decomposition of U . Further denote by Ω1
(resp. Ω0) the open cone associated to the Euclidean Jordan algebra U1
(resp. U0).

We need a couple of results, which are certainly known to experts (see
exercice in [14, p. 59]), but we could not find accessible references.

Lemma 4.1. Ω1 = Ω ∩ U1.

Proof. Let x1 be in U1. Let x1 = λ1c1 + · · · + λscs be its spectral decom-
position in U1, where s is the rank of U1 and {c1, c2, . . . , cs} is a Jordan
frame in U1. So x1 belongs to Ω1 if and only if all λi are nonnegative.
But the system (ci)1≤i≤s can be completed in a Jordan frame (ci)1≤i≤r of
U , so that the spectral decomposition of x1 as an element of U is x1 =
λ1c1 + · · · + λscs + 0 cs+1 + · · · + 0 cr. So x1 belongs to Ω under the same
conditions on the (λi) as before. The lemma follows. �

Lemma 4.2. Let y ∈ U 1
2

and z ∈ U0. Assume that y + z ∈ Ω. Then y = 0
and z ∈ Ω0.

Proof. If U is of rank 1 (i.e., U � R), there is nothing to prove. Next assume
that U is of rank 2. So, let V be a (finite dimensional) Euclidean vector
space, and let U = R ⊕ V , with Jordan product

(λ, v)(μ, w) = (λμ + v.w, λw + μv),

with unit element e = (1, 0) and inner product given by

〈(λ, v), (μ, w)〉 = λμ + v.w.
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The closed cone Ω is characterized by

(λ, v) ∈ Ω ⇐⇒ λ ≥ 0, λ2 − v.v ≥ 0.

The only idempotents of interest are those of rank 1, they are of the form
c = (1

2 , v), with v ∈ V and ‖v‖ = 1
2 . Then

U1 = R

(
1
2
, v

)
, U 1

2
= {(0, w)|w ∈ V, v.w = 0}, U0 = R

(
1
2
,−v

)
.

Let y = (0, w) ∈ U 1
2

and z = (λ
2 , −λv) ∈ U0. Assume that y + z = (λ

2 , −λv

+ w) belongs to Ω. Then λ2

4 − (λ2

4 + w.w) = −w.w ≥ 0. This forces w = 0,
and the assertion of the lemma follows.

Now consider the general case. Let y ∈ U 1
2
, z ∈ U0 and assume that y +

z ∈ Ω. Choose a primitive idempotent c1 in U1, and a primitive idempotent
c0 in U0. As c1 and c0 are orthogonal, c1 + c0 is an idempotent (of rank
2), and P (c1 + c0) is the projection on a (rank 2) Euclidean Jordan algebra,
which we denote by J . As (c1, c0) is a Jordan frame of J , the corresponding
Peirce decomposition of J is

J = Rc1 ⊕ J 1
2

⊕ Rc0,

where P (c1 + c0)U 1
2

= J 1
2
. Let us make the following observation. If x

is any element in Ω, then P (x) belongs to the structure group of U and
preserves the cone Ω. By continuity, for any x ∈ Ω, P (x) maps Ω into
Ω. So this can be applied to any idempotent, as idempotents belong to
Ω. So, P (c1 + c0)(y + z) = y 1

2
+ z0 belongs to Ω ∩ J , which by the previous

lemma is nothing but the closure in J of the positive cone of J . Using
the rank 2 result, it follows that y 1

2
= 0. But the choice of the primitive

idempotents c1 in U1 and c0 in U0 is free. So, let c = c1 + · · · + cs (resp.
e − c = cs+1 + · · · + cr) be a Peirce decomposition of c (resp. e − c) as a
sum of mutually orthogonal primitive idempotents. Now

U 1
2

=
⊕

1≤i≤s<j≤r

U 1
2
(ci + cj).

For any couple (i, j) with 1 ≤ i ≤ s, s + 1 ≤ j ≤ r, the previous argument
shows that P (ci + dj)y = 0, and hence y = 0. Lemma 4.2 follows. �

Lemma 4.3. Let x1, x2 ∈ Ω. Assume that 〈x1, x2〉 = 0. Then x1x2 = 0.
If moreover x1 ∈ Ω, then x2 = 0.
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The second assertion is merely a consequence of the fact that Ω is
self-adjoint. In general, there exists a Jordan frame (ci), 1 ≤ i ≤ r such that
x1 = λ1c1 + · · · + λscs, with λi > 0 for 1 ≤ i ≤ s for some s, 1 ≤ s < r)
(the cases where s = 0 or s = r are trivial). Let c = c1 + · · · + cs and let
U = U1 ⊕ U 1

2
⊕ U0 be the corresponding Peirce decomposition of U . Let

x2 = ξ1 + ξ 1
2

+ ξ0 be the corresponding decomposition of x2. Now 〈x1, x2〉 =
〈x1, ξ1〉 = 0. But x1 belong to the interior of the positive cone Ω1 of U1,
whereas ξ1 ∈ Ω1. This forces ξ1 = 0. So x2 = ξ 1

2
+ ξ0, and the condition

x2 ∈ Ω implies, by Lemma 4.2, that ξ 1
2

= 0, so that x2 ∈ U0. The lemma
follows.

Lemma 4.4. Let u1 ∈ U1 and u 1
2

∈ U 1
2
. Assume that u1u 1

2
= 0 and assume

that u1 is invertible as an element of U1. Then u 1
2

= 0.

In fact, for any element u ∈ U1, L(u) maps U 1
2

into itself. Moreover, let
Φ(u) be the endomorphism of U 1

2
defined by

U 1
2

� v �−→ Φ(u)v = 2uv ∈ U 1
2
.

Then Φ is known to be a representation of U1 on U 1
2

(see [14]). In particular,

Φ(uu′) =
1
2
(Φ(u)Φ(u′) + Φ(u′)Φ(u)), Φ(c) = Id .

Let u ∈ U1 be invertible in U1. Its inverse in U1 is of the form u′ = p(u),
where p ∈ R[X]. As Φ is a representation, one has Φ(p(u)) = p(Φ(u)), and
hence Φ(u) is invertible and Φ(u)−1 = Φ(u′). The lemma follows.

Lemma 4.5. Let b ∈ U and y ∈ Ω. Assume that 〈by, b〉 = 0. Then by = 0.

Proof. Let b ∈ U and y ∈ Ω, and let b =
∑k

j=1 λjcj be the spectral expres-
sion of b, where the (cj)1≤j≤k are orthogonal (non-necessarily primitive)
idempotents, and the (λj)1≤j≤k are the nonzero distinct eigenvalues of b.
Then b2 =

∑k
j=1 λ2

jcj , so that the condition 〈by, b〉 = 0 implies

(4.1)
k∑

j=1

λ2
j 〈y, cj〉 = 0.

As for any j, 1 ≤ j ≤ k, λj �= 0 and 〈y, cj〉 ≥ 0, (4.1) forces 〈y, cj〉 = 0 for
every j, 1 ≤ j ≤ k. As y, cj ∈ Ω, this in turn implies, by Lemma 4.3, cjy = 0
for any j and so by = 0.



162 Jean-Louis Clerc

For c any idempotent of U , use the notation det1 (resp. det0) for the
determinant of the Jordan algebra U1 (resp. U0). Let us complexify the
Peirce decomposition of U to obtain

(4.2) U = U1(c) ⊕ U 1
2
(c) ⊕ U0(c).

The tube associated to U is the open set TΩ in U defined by

TΩ = U + iΩ = {z = x + iy | x, y ∈ U, y ∈ Ω}.

Observe that any element of TΩ is invertible in U. This property is no longer
true for all points in the boundary of TΩ, but some substitute is valid. The
following technical proposition will be the key point to justify the limit
process (1.5) needed for handling singular triples. �

Proposition 4.6. Let z ∈ TΩ, z �= 0. There exists an idempotent c ∈ U
such that z ∈ U1(c) and z is invertible as an element of U1(c).

Proof. If z is invertible in U, then take c = e and the corresponding proper-
ties are satisfied. So we may (and hence do) assume that L(z) is not invert-
ible. Hence, there exists u ∈ U, u �= 0 such that zu = 0. Let z = x + iy and
u = a + ib, with x, y, a, b ∈ U . Then zu = 0 reads

xa − yb = 0, xb + ya = 0.

As y ∈ Ω,

〈xa, b〉 = 〈yb, b〉 ≥ 0, 〈xb, a〉 = −〈ya, a〉 ≤ 0.

But 〈xa, b〉 = 〈xb, a〉, so that 0 = 〈yb, b〉. From Lemma 4.5 follows yb = 0.
Similarly, ya = 0, so that xa = yb = 0 and xb = ya = 0. Hence za = zb = 0.
But (a, b) �= (0, 0), and so without loosing any generality, we may assume
that u ∈ U .

So assume u ∈ U, u �= 0 such that xu = yu = 0. Using the spectral
decomposition of y, one can find an idempotent d ∈ U such that y ∈ U1(d)
and y is invertible in U1(d). Let u = u1 + u 1

2
+ u0 be the Peirce decomposi-

tion of u with respect to c. Then

0 = yu = y(u1 + u 1
2

+ u0) = yu1 + yu 1
2
.

But yu1 ∈ U1(d) and yu 1
2

∈ U 1
2
(d). This forces

yu1 = 0, yu 1
2

= 0.
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The second equality, thanks to Lemma 4.4, implies u 1
2

= 0. Moreover, as y

belongs to U1 ∩ Ω and is invertible in U1(d), y is in the open cone Ω1 = Ω1(d)
of U1(d), so that the first equality implies that u1 = 0. So u belongs to
U0(d). As U0(d) is a Euclidean Jordan algebra, there exists an idempotent
f ∈ U0(d) ⊂ U such that u ∈ U1(f) and u is invertible in U1(f). Now let
c = e − f . As f ∈ U0(d) and y ∈ U1(d), fy = 0 and hence y ∈ U1(c), whereas
u ∈ U0(c). Now let x = x1 + x 1

2
+ x0 be the Peirce decomposition of x with

respect to the idempotent c. As before, the equality xu = 0 implies x 1
2
u = 0,

and the fact that u is invertible in U0(c) = U1(f) implies x 1
2

= 0. Hence
we get

z = x1 + iy + x0,

where x1, y ∈ U1(c) and x0 ∈ U0(c).
Among all idempotents c in U such that z can be written as z = x1 +

iy + x0 with x1, y ∈ U1(c) and x0 ∈ U0(c), choose c minimal. In the cor-
responding decomposition z = x1 + iy + x0, the element x1 + iy has to be
invertible in U1(c). Otherwise, we could repeat for the Euclidean algebra
U1(c) and the element z1 = x1 + iy the first part of the proof, to get an
idempotent c′ �= c in U1(c) such that z1 = x′

1 + iy + x′
0, with x′

1, y ∈ U1(c′)
and x′

0 ∈ U0(c′). But then, one can write z = x′
1 + iy + x′

0 + x0, where
x′

1, y ∈ U1(c′) and x′
0 + x0 ∈ U0(c′), hence contradicting the minimality of c.

So there exists an idempotent c ∈ U such that z = x1 + iy + x0, where
x1 + iy is invertible in U1(c), and x0 ∈ U0(c). As 0 = det(z) = det1(x1 +
iy) det0x0, necessarily det0x0 = 0. If x0 = 0, then there is nothing more
to prove. If not, there exists an idempotent c′ ∈ U0(c), such that c′x0 =
x0 and x0 is invertible in U1(c′). Now c′′ = c + c′ is an idempotent in U ,
c′′z = z, and as x1 + iy is invertible in U1(c) and x0 is invertible in U1(c′),
hence z = (x1 + iy) + x0 is invertible in U1(c′′). This finishes the proof of
Proposition 4.6. �

Remark 4.7. Let U = Sym(2, R) be the Euclidean Jordan algebra of 2 × 2
symmetric matrices with real entries. Consider the element

z =

(
1 i

i −1

)
=

(
1 0
0 −1

)
+ i

(
0 1
1 0

)
.

As z �= 0 and z2 = 0, there is no idempotent c ∈ U such that z is invertible
in U1(c). This shows that some condition (like z ∈ TΩ) is needed in order
that the conclusion of Proposition 4.6 be valid.
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To illustrate Proposition 4.6, let us consider the case where U is the
Euclidean Jordan algebra of rank 2 and dimension 1 + d associated to the
Lorentz cone in R

1+d. So U = R ⊕ V , where V is a Euclidean vector space
of dimension d, with inner product denoted by 〈., .〉. The Jordan
product is

(λ, v)(μ, w) = (λμ + 〈v, w〉, λw + μv),

with inner product given by

〈(λ, v), (μ, w)〉 = λμ + 〈v, w〉

and determinant function given by

det(λ, v) = λ2 − 〈v, v〉.

The cone Ω is

Ω = {(λ, v) | λ2 − 〈v, v〉 > 0, λ > 0}.

Let z ∈ TΩ, z �= 0, and assume det z = 0. Then the content of Proposi-
tion 4.2 in this case is that z is a complex multiple of an idempotent of
rank 1 , that is to say of the form

z = ζ

(
1
2
,
1
2
f

)
, where f ∈ U, 〈f, f〉 = 1 and ζ ∈ C, ζ �= 0, �ζ ≥ 0.

This can be shown more directly as follows. Let z = x + iy = (λ + iμ, v +
iw). The condition det z = 0 is equivalent to

λ2 − 〈v, v〉 = μ2 − 〈w, w〉, λμ = 〈v, w〉.

As y ∈ Ω, 〈w, w〉 1
2 ≤ |μ|, so that also 〈v, v〉 1

2 ≤ |λ|. But, from Cauchy-
Schwarz inequality,

|λμ| = |〈v, w〉 | ≤ 〈v, v〉 1
2 〈w, w〉 1

2 ≤ |λ||μ|,

so that the equality is achieved, and hence v and w are proportional. As
μ = 〈w, w〉 1

2 and |λ| = 〈v, v〉 1
2 , the statement easily follows.
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Proposition 4.8. Let c be an idempotent in U and u be an invertible
element of U1(c). Let γ : [0, 1] → U be a smooth curve such that

(4.3) γ(0) = u, γ̇(0) = z1 + z 1
2

+ ω0,

where z1 ∈ U1(c), z 1
2

∈ U 1
2
(c) and ω0 ∈ Ω0. Then t �−→ arg det(γ(t)) is well-

defined for sufficiently small positive t. Furthermore, the limit t → 0 exists
and is independent of z1, z 1

2
and ω0.

Proof. From the assumptions, for t > 0, one has

(4.4) γ(t) = u + tz1 + tz 1
2

+ tω0 + O(t2).

For z ∈ U 1
2
(c), we let τ(z) = exp(2z�c) be the Frobenius transformation

(see [14, ch. VI]). The main property we will use is that for any v ∈ U,

(4.5) det(τ(z)v) = det v.

Recall the following lemma (see [3] Lemma 2.2). �

Lemma 4.9. Let ξ1 be an invertible element in U1(c). Then, the map

(η1, z, η0) �−→ ζ = (ζ1, ζ 1
2
, ζ0) = τ(z)(η1 + η0),

U1(c) × U 1
2
(c) × U0(c) −→ U

is a local diffeomorphism near (ξ1, 0, 0). Its inverse is given by

η1(ζ) = ζ1

z(ζ) = Φ(ζ1)−1ζ 1
2

η0(ζ) = ζ0 − 2L(e − c)L(z(ζ))2ζ1.

As u is invertible in U1(c), we may apply the lemma to ξ1 = u. Hence, for
t small enough,

γ(t) = τ(z(γ(t)))(η1(γ(t)) + η0(γ(t))),

so that, using (4.5)

det(γ(t)) = det1(η1(γ(t))) det0(η0(γ(t))).

As t −→ 0,
η1(γ(t)) −→ u
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and hence
det1(η1(γ(t))) −→ det1(u) �= 0,

so that any determination of the corresponding argument has a limit when
t −→ 0, and the limit does not depend on γ̇(0).

Observe further that z(γ(t)) = O(t) and hence η0(γ(t)) = tω0 + O(t2) as
t ↓ 0, so that arg det0(η0(γ(t))) tends to 0 (mod 2π) as t ↓ 0. This finishes
the proof of the proposition.

5. Symplectic area of geodesic triangles and the invariant for
triples

Recall the setting of Sections 2 and 3. On D, there exists a Hermitian
metric which is invariant under G. It can be defined using the Bergman
kernel of the domain, but there is a normalization of the metric which is
more convenient for geometric purposes, by requiring that the minimal value
of the holomorphic sectional curvature to be −1 (see [4] for details). The
corresponding Kähler form ω is invariant under G and closed.

Given two points z1, z2 ∈ D, there is a unique geodesic segment con-
necting z1 to z2. So, for any triple of points z1, z2, z3 in D, we may form
the oriented geodesic triangle T (z1, z2, z3). Let Σ be any surface in D with
(oriented) boundary equal to T (z1, z2, z3). Then integrate the 2-form ω on
Σ to get the symplectic area of the triangle

ϕ(z1, z2, z3) =
∫

Σ
ω.

As the Kähler form ω is closed, this expression does not depend on the
surface Σ, but merely on its boundary, and hence defines a function ϕ(z1, z2,
z3). It turns out that the symplectic area can be computed explicitly (see [4,
17]). Let k(z, w) : D × D −→ C be the normalized automorphy kernel of D
(see [4] for definition). Then, for any triple (z1, z2, z3) ∈ D,

(5.1) ϕ(z1, z2, z3) = −(arg k(z1, z2) + arg k(z2, z3) + arg k(z3, z1)),

where arg k(z, w) is the unique determination of the argument of k(z, w)
which is continuous on D × D and which is 0 on the diagonal of D × D
(recall that k(z, z) > 0 for any z ∈ D).

Theorem 5.1. Let (σ1, σ2, σ3) ∈ S3. Then ϕ(z1, z2, z3) has a limit when,
for any j, 1 ≤ j ≤ 3, zj → σj along a Γ-radial curve.
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Proof. By using the action of G and the invariance of the symplectic area
under G, we may choose a maximal tripotent e ∈ W and assume that the
Cayley transform γ = γe is defined at σ1, σ2 and σ3. So, it is equivalent
to prove the analogous statement in the noncompact realization of D. The
normalized automorphy kernel γk in the unbounded picture reads: for (z, v)
and (z′, v′) in γD

(5.2) γk((u, v), (u′, v′)) =
(

det
(

u − u′

2i
− Ψ(v, v′)

))−2

.

The formula (5.2) comes from a general formula for the Bergman kernel
of a Siegel domain of the second kind (see [11 ch. III, section 6, ex 3]),
after adjusting the result to the normalization chosen for the corresponding
metric.

As the expression for γϕ is a sum of three similar terms, it suffices to
prove that each such term has a limit, and we may even assume that the
first point (say) is the base point o in γS′. So, Theorem 5.1 is a consequence
of the following lemma. �

Lemma 5.2. Let σ = (a + iΨ(b, b), b) ∈ γS′. Let λ ∈ Ω, w ∈ V and let

λ(t) = (u(t), v(t)) = (itλ, tw) + O(t2)

be a Γ-radial curve at the base point o. Let μ ∈ Ω, v ∈ V and let

μ(t) = (u′(t), v′(t)) = (a + iΨ(b, b) + itμ + 2itΨ(v, b), b + tv) + O(t2)

be a Γ-radial curve at σ (cf. (3.8)). Then arg γk(λ(t), μ(t)) has a limit as
t ↓ 0. The limit is independent of λ, w, μ and v.

Proof. Define

γ(t) =
u(t) − u′(t)

2i
− Ψ(v(t), v′(t)).

By an easy computation,

(5.3) γ(t) =
−a + iΨ(b, b)

2i
+ t

(
λ + μ

2
+ Ψ(v, b) − Ψ(w, b)

)
+ O(t2).

Observe that z = −a + iΨ(b, b) ∈ TΩ. Hence, from Proposition 4.6∗, there
exists an idempotent c ∈ U , such that z ∈ U1(c) and z is invertible in U1(c).

∗If z = 0, use c = 0 for the proof of the lemma.
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Use (2.11) to obtain

Ψ(Φ(e − c)b, Φ(e − c)b) = P (e − c)Ψ(b, b) = 0.

But, thanks to (2.10), this implies Φ(e − c)b = 0. In turn, using (2.11) again,
this implies

P (e − c)Ψ(v, b) = Ψ(Φ(e − c)v, Φ(e − c)b) = 0,

and so
Ψ(v, b) ∈ U1(c) ⊕ U 1

2
(c),

and similarly for Ψ(w, b). Let λ = λ1 + λ 1
2

+ λ0 (resp. μ = μ1 + μ 1
2

+ μ0)
be the Peirce decomposition of λ (resp. μ) with respect to c. Then (5.3)
can be rewritten as

γ(t) =
−a + iΨ(b, b)

2i
+ tz1 + tz 1

2
+ t

(
λ0 + μ0

2

)
+ O(t2),

where z1 ∈ U1(c), z 1
2

∈ U 1
2
(c). As λ0 + μ0 ∈ Ω0, the conditions of Proposi-

tion 4.8 are fulfilled, and so we may conclude that arg det γ(t) has a limit
as t ↓ 0, not depending on λ, μ nor on v, w, and hence the same is true for
arg γk(λ(t), μ(t)).

Following Theorem 5.1, define ι : S × S × S −→ R by

ι(σ1, σ2, σ3) =
1
π

lim
zj−→σj

ϕ(z1, z2, z3),

where, for each j, 1 ≤ j ≤ 3, zj tends to σj along a Γ-radial curve. �

Theorem 5.3. The function ι(σ1, σ2, σ3) satisfies the following relations:

(i) ι(gσ1, gσ2, gσ3) = ι(σ1, σ2, σ3)

(ii) ι(σπ(1), σπ(2), σπ(3)) = sgn(π) ι(σ1, σ2, σ3)

(iii) ι(σ1, σ2, σ3) = ι(σ1, σ2, σ4) + ι(σ2, σ3, σ4) + ι(σ3, σ1, σ4)

(iv) −r ≤ ι(σ1, σ2, σ3) ≤ r

for all σ1, σ2, σ3, σ4 ∈ S, g ∈ G and π any permutation of {1, 2, 3}.

Proof. The function ϕ satisfies the same properties on D × D × D, as was
shown in [4]. The corresponding properties for ι are clearly preserved
through the limit process. �
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6. Extremal values of Cartan’s invariant

The triples corresponding to the extremal values of the invariant ι have
a geometric description. For the unit sphere in C

2, this was observed by
Cartan. For general bounded symmetric domains, a characterization of the
extremal triples was obtained in [4], but only for mutually transverse triples
(see also [18]). Here we treat the general case.

Definition 6.1.2 Let Δ = {z ∈ C, |z| < 1} , D a bounded symmetric do-
main and ρ : Δ −→ D a holomorphic equivariant totally geodesic map. Then
ρ is said to be tight if ρ maps the boundary Σ = {σ ∈ C, |σ| = 1} into the
Shilov boundary S of D.

If e ∈ S, then the map

ρ : Δ −→ D, z �−→ ze

is a tight holomorphic embedding, and up to composition by an element of
G, every tight holomorphic imbedding can be realized in this way (cf. [11,
ch. III]).

Theorem 6.2. Let σ1, σ2, σ3 ∈ S and assume that ι(σ1, σ2, σ3) = r. Then,
for 1 ≤ i �= j ≤ 3, σi�σj, and there exists a unique tight holomorphic totally
geodesic imbedding ρ : Δ −→ D such that

σ1 = ρ(+1), σ2 = ρ(−1), σ3 = ρ(−i).

Only the first statement (the fact that a triple which realizes the maximal
value of the invariant ι has to be mutually transverse) is new. The second
statement, assuming the transversality property, was proved in [4]. For the
proof of the first statement, we need to recall a few results, which we state as
lemmas. Recall first that, by Bruhat’s theory, the G-orbits in S × S are easy
to analyze. There are exactly r + 1 orbits. Here is a more precise statement
(see e.g. [19] for a proof).

Lemma 6.3. Let c1, c2, · · · , cr be a Jordan frame of W. For 0 ≤ k ≤ r, let

εk = c1 + c2 + · · · + ck − ck+1 − · · · − cr,

and e = εr = c1 + c2 + · · · + cr. Any pair (σ1, σ2) ∈ S × S is G-conjugate
to some pair (e, εk) for a unique k, 0 ≤ k ≤ r.

2The definition is easily seen to cöıncide with the definition used in [4].
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Set μ(σ1, σ2) = k (transversality index) if the pair (σ1, σ2) is
G-conjugate to (e, εk).

Lemma 6.4. Let D be a bounded symmetric domain of tube type, of rank
r. Let σ1, σ2, σ3 ∈ S × S × S and assume μ(σ1, σ2) = k. Then

|ι(σ1, σ2, σ3)| ≤ r − k.

This a consequence of a geometric result proved in [19]. In fact, up to
G-action, there exists a Jordan frame c1, c2, . . . , cr such that

σ1 = c1 + c2 + · · · + cr, σ2 = c1 + · · · + ck − ck+1 − · · · − cr,

σ3 =
r∑

j=1

eiθjcj ,

where for 1 ≤ j ≤ r θj ∈ R/2πZ. Now,

ι(σ1, σ2, σ3) =
r∑

j=k+1

ι(1, −1, eiθj ),

where we use the same symbol ι for the Maslov index on the unit circle in
C. Lemma 6.4 follows immediately.

Lemma 6.5. Let D be a bounded symmetric domain of tube type, of rank
r. Let σ1, σ2 ∈ S × S and let μ(σ1, σ2) = k. For z ∈ D, let ϕ be the function
on S × S × D defined by

ϕ(σ1, σ2, z) = lim
z1−→σ1,z2−→σ2

ϕ(z1, z2, z),

where the limit is taken in the Γ-radial sense. Then

|ϕ(σ1, σ2, z)| < (r − k)π

for any z ∈ D.

As a function of z, ψ(z) = ϕ(σ1, σ2, z) is pluriharmonic in D (see the
argument in [4]). The function ψ is bounded by rπ and has Γ-radial limits
at all points of the Shilov boundary S, and, by Lemma 6.4, satisfies |ψ(σ)| ≤
(r − k)π for all σ ∈ S. A maximum principle then applies (cf. [20]), which
implies that the same bound is valid on D. The lemma follows as the
maximum cannot be reached in D.
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Lemma 6.6. Let D be a bounded symmetric domain. Let σ1, σ2 ∈ S × S
and let μ(σ1, σ2) = k. Then, for any σ3 ∈ S,

(6.1) |ι(σ1, σ2, σ3)| ≤ r − k.

Proof. From Lemma 6.3, we may assume that σ1 = e and σ2 ∈ W2(e). For
z ∈ D, let z′ be the orthogonal projection of z on W2(e). Let D′ = D ∩
W2(e). It is a bounded symmetric domain of tube type, of the same rank r
as D. Moreover, z′ ∈ D′ and (cf. [4])

ϕ(σ1, σ2, z) = ϕ′(σ1, σ2, z′),

where ϕ′ is the symplectic area for the tube-type domain D′. Now Lemma 6.5
implies |ϕ′(σ1, σ2, z′)| ≤ (r − k)π, and hence |ϕ(σ1, σ2, z)| ≤ (r − k)π. The
inequality (6.1) is obtained by letting z tend to σ3 along a Γ-radial curve. �

The proof of Theorem 6.2 is now easy. If ι(σ1, σ2, σ3) = r, then σ1�σ2,
because of Lemma 6.6, and similarly σ2�σ3 and σ3�σ1. This means that a
triple which realizes the maximum of the Cartan invariant must be mutually
transverse. Then Theorem 6.2 is a consequence of Theorem 4.7 in [4]. Need-
less to say, there is a similar result for triples in S which satisfy
ι(σ1, σ2, σ3) = −r. For applications of this result, see [8] or [18].
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[10] J. A. Wolf and A. Korányi A. Generalized Cayley transformations of
bounded symmetric domains, Amer. J. Math. 98 (1965), 899–939.

[11] I. Satake, Algebraic structures of symmetric domains, Kanô Memorial
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