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Non-negatively curved Kahler manifolds with
average quadratic curvature decay

ALBERT CHAU! AND LUEN-FA1 Tam?

Let (M,g) be a complete noncompact Kéhler manifold with
non-negative and bounded holomorphic bisectional curvature.
Extending our techniques developed in [A. Chau and L.-F. Tam.
On the complex structure of Kédhler manifolds with non-negative
curvature, J. Differs. Geom. 73 (2006), 491-530.], we prove that
the universal cover M of M is biholomorphic to C™ provided either
that (M, g) has average quadratic curvature decay, or M supports
an eternal solution to the Kahler-Ricci flow with non-negative and
uniformly bounded holomorphic bisectional curvature. We also
classify certain local limits arising from the Kéhler—Ricci flow in
the absence of uniform estimates on the injectivity radius.

1. Introduction

Generalizing the classical uniformization theorems to higher dimensions is
a central problem in the study of complex manifolds. It is a particularly
interesting problem on complete Kéhler manifolds. In this paper, we are
interested in complete noncompact Kéhler manifolds with positive curva-
ture. For such manifolds, there is a well-known conjecture by Yau [36]
which states that a complete noncompact Kéhler manifold with positive
holomorphic bisectional curvature is biholomorphic to C". Yau’s conjecture
in its full generality remains unsolved. The first major results supporting
the conjecture were obtained by Mok et al. [22], and the conjecture has since
been studied extensively, see [7,8,9,11, 12,21, 23,26, 28, 33, 34]. Recently in
[9] the authors proved the following.

Theorem 1.1. Let (M™,q) be a complete noncompact Kdahler manifold with
non-negative and bounded holomorphic bisectional curvature and mazximal
volume growth. Then M is biholomorphic to C™.
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Here, maximum volume growth means that
(1.1) Vol(B(p,r)) > C1r*";  ¥r € [0,00)

for some Cy > 0 and p € M. This assumption of maximum volume growth
is rather strong. Consider the following average quadratic curvature decay
condition

1 s
1.2 R <
( ) Vx(r) /BT(T) — 142

for some Cy > 0, all z € M and all » > 0. Here, B,(r) is the geodesic ball
around x with radius r and volume V,(r) and R is the scalar curvature of
M. Tt was conjectured by Yau that if (1.1) is true, then (1.2) will be sat-
isfied automatically for a complete noncompact Kahler manifold with non-
negative holomorphic bisectional curvature. Provided that the curvature is
bounded, this was recently confirmed by Ni [25] (this was earlier confirmed
by Chen-Tang-Zhu [11] for the case of dimension 2 and Chen-Zhu [13] in
all dimensions under the additional condition that the curvature operator is
non-negative). In general, (1.2) does not imply (1.1). For example, let M
satisfy (1.2) and let M; be the product of M and a flat torus. Then M; also
satisfies (1.2). But M; does not have maximal volume growth. However,
it is an open question whether (1.2) will imply (1.1) under the additional
assumption that M has positive bisectional curvature.

In [10,22,23,26,28] without assuming the maximum volume growth
condition, it was proved that if R decays faster than quadratic, then the
manifold M with non-negative holomorphic bisectional curvature must be
flat. Hence one would expect that Theorem 1.1 is still true if the maximum
volume growth condition is removed and is replaced by the weaker condition
(1.2). In this work, we confirm this expectation in the following:

Theorem 1.2. Suppose (M™,g) has holomorphic bisectional curvature
which is bounded, non-negative and has average quadratic curvature decay.
Then M is holomorphically covered by C™.

As in [9], we will use the Kéhler—Ricci flow:
(1.3) S ig(x,t) = —Riz(x, t);
Giz(2,0) = gi5(x).

The main difficulty in proving Theorem 1.2 with the methods in [9]
is the lack of good lower bound for the injectivity radius of g(t). Indeed,
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Theorem 1.2 was proved by the authors in [9] under the additional assump-
tion that the curvature operator is non-negative, in which case a good lower
bound on the injectivity radius can be obtained. Such lower bounds can also
be obtained if we assume M has maximum volume growth as in Theorem 1.1.

For (M,g) as in Theorem 1.2, it is now well known by [32,34] (see
also [27]) that (1.3) has a long-time solution g(t), 0 <t < co. If we let
g(z,t) = e7tg(x,e'), then we obtain a solution to the normalized Kihler—
Ricci flow

(14) gl 1) = ~Ri(a, 1) — gy 1

for —oo <t < co. Hence Theorem 1.2 can be viewed as a uniformization
theorem on eternal solutions of (1.4). Motivated by this, we will also prove
a uniformization theorem for eternal solutions to the Kahler—Ricci flow (1.3),
i.e., a smooth family of complete Kahler metrics g(¢) on M satisfying

(1.5) gtgij(a:,t) = —Riz(x,t)

for all t € (—o00,00). We have the following:

Theorem 1.3. Let (M, g(t)) be a complete eternal solution to (1.5) such
that for all t, g(t) has non-negative holomorphic bisectional curvature which
is uniformly bounded on M independent of t. Then M is holomorphically
covered by C".

Remark 1.4. Recall that by [10,22, 23,26, 28], if M is complete noncom-
pact with bounded non-negative bisectional curvature and if the curvature
decays faster than quadratic in the average sense, then M is flat. Hence The-
orem 1.2 addresses the maximal (quadratic) curvature decay case for nonflat
M. On the other hand, by the Harnack inequality [4] and the decay estimates
in [33, section 6] (see also [27, Corollary 2.1]), it is seen that the average
curvature of nonflat (M, g) in Theorem 1.3 cannot decay faster than linearly
uniformly at all points and so the decay rate is minimal in some sense by
[28]. So Theorem 1.3 addresses the case of minimal (linear) curvature decay.

By comparing (1.4) and (1.5), we may combine Theorems 1.2 and 1.3 as
follows:

Theorem 1.5. Let M™ be a noncompact complexr manifold. Suppose there
is a smooth family of complete Kdihler metrics g(t) on M such that for
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k=0 orl, g(t) satisfies

0
(1.6) &gij(x,t) = —Riz(x,t) — Kgiz(x, t)

for all t € (—o0,00) such that for every t, g(t) has uniformly bounded
non-negative holomorphic bisectional curvature on M independent of t.
Then M is holomorphically covered by C™.

By [5], if in Theorem 1.5 we also assume that the Ricci curvature is
positive and the scalar curvature attains its maximum in spacetime, then
(M, g(t)) is a gradient Kahler—Ricci soliton of steady type if £ = 0, and of
expanding type if k = 1. If this is the case, then one may use the results on
gradient Kéhler-Ricci solitons in [3, 8] to conclude that M is biholomorphic
to C". Hence Theorem 1.5 can also be considered as a generalization of the
results in [3, §].

2. Local limit solution

Before we prove the main result, observe that if we take m : M — M to
be the universal holomorphic covering of M in Theorem 1.5 and let g(t) =
7 (g(t)), then (M, g) still satisfies the conditions of the theorem. To prove
the theorem, it is sufficient to prove that M is biholomorphic to C". By [6],
we may further assume that the Ricci curvature of g(x,t) is positive for all
x and t. Hence from now on we assume that M in Theorem 1.5 is simply
connected and ¢(t) has positive Ricci curvature for all ¢.

Let (M, g(t)) be as above satisfying the conditions of Theorem 1.5. Fix
some point p € M, some time sequence t; — oo and consider the sequence
(M, g(ty +t),p) of long-time solutions to the Kéhler-Ricci flow centered at
p. Suppose the injectivity radius of g(¢) at p has a uniform lower bound.
Then by Hamilton’s compactness [17], this sequence has a convergent sub-
sequence converging to a solution h(t) to the Kdhler—Ricci flow on a limit
complex manifold N. Furthermore, by Cao’s classification of limits for
Kéahler—Ricci flow [5], this limit must either be a steady or expanding gra-
dient Kahler—Ricci soliton, depending on whether A =0 or A = 1. In this
section, we show that in the absence of an injectivity radius estimate, we
may still have such a soliton limit, but in a local sense. We will con-
sider a certain locally lifted subsequence limit of (M, g(tx +t),p) around
p. Our first goal will be to show that this local limit is also either an
expanding or steady gradient Kédhler—Ricci soliton in a certain sense (The-
orem 2.1). We will then relate this to the local asymptotic behavior of
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g(t) at p in our main Theorem 2.2. In the absence of injectivity radius
estimates, Glickenstein [16] constructed a global limit solution from a solu-
tion to the Ricci flow as above, allowing for the possibility of Gromov
Hausdorff convergence to a limiting metric space of dimension lower than
that of M. We refer the reader to [16] for details on the construction of
this limit and its application, and in particular to [14,15] for applications
in three dimensions. Our local limit is just the first step of Glickenstein’s
construction and in fact depends only on Proposition 2.1 and the simple
fact that a lifting of a solution to the Ricci flow is still a solution to the
flow. For recent work relating this and, in general, on the existence and
classification of limits to the Ricci flow, we refer to the works of Ye [37]
and Lott [20].

By [18,31, 34], from the time independent bounds on the curvature of
g(t), we have corresponding uniform bounds on all covariant derivatives of
the curvature by the Kahler—Ricci flow. Hence for ¢t > a with a > —o0, we
may assume that these bounds on all covariant derivatives of the curvature
of g(t) are also time independent. The proof of Proposition 1.2 in [35] then
gives (see also [9, Proposition 2.1]):

Proposition 2.1. There exist positive constants r and C such that for each
t > —1 there is a holomorphic map ®; from the Euclidean ball D(r) (centered
at the origin of C™ with radius r) to M satisfying the following:

(i) @y is a local biholomorphism from D(r) to M;
(i) ®:(0) = p;
(iil) @7 (9(t))(0) = ge;
(iv) &ge < @f(g(t)) < Cge in D(r).
(v) for any 0 < a < 1, and k > 0, the standard C*+ norm of ®}(g(t)) in
D(r) is bounded by a constant C' which is independent of t > —1.

where g is the standard metric on C™.

Remark 2.2. Proposition 1.2 in [35] only requires the first covariant deriva-
tive of the scalar curvature of g(t) to be bounded independent of t. In our
case, however, we have bounds on all covariant derivatives of the Riemannian
curvature tensor independent of k. Condition (v) is derived by continuing
the argument in [35] or [9].

As in [9], the following proposition is crucial:
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Proposition 2.3. Let A\i(t) > --- > \,(t) > 0 be the eigenvalues of Riz(p, t)
relative to gi;(p,t).

(i)

(i)
(iii)
(iv)

For any 7 > 0,
det(Ri;(p, t) + 79gij)
det(gi(p, 1))

¢ =

1s nondecreasing in t.
There is a constant C > 0 such that A\, (t) > C for all t > 0.
For 1 <i < n, the limit limy_, o A\;(t) exists.

Let pg > -+ > py >0 be the distinct limits in (iii) and let p >0 be
such that the intervals [, — p, k. + p] for 1 < k <1 are disjoint. For
any t, let Ex(t) be the sum of the eigenspaces corresponding to the
eigenvalues \i(t) such that \i(t) € (pu — p, pr + p). Let Py(t) be the
orthogonal projection (with respect to g(t)) onto Ey(t). Then there
exists T >0 such that if t >T and if w € Tél’o)(M), | Pe(t)(w)|¢ is
continuous in t, where | - |¢ is the length measured with respect to the
metric g(p,t).

Proof. The proof is identical to the proof of Proposition 3.1 in [9] for k = 1.
Suppose £ = 0. By Theorem 2.3 in [5], if

OR;7 7
(2.1) Zig = =52 + ¢" Ryly
then
(2.2) Ziw'w! >0
for any w € T (M). Let p;; = Ri; + 7¢i; and denote its inverse by (p™).
7 J 7
We have
0 o) o,
1 = 7 i — ¢ g
bt 08¢ =P pgPi1 ~ 97 590
/9 _
=pY <Rr - TRz‘-) + 97 Ry
(2.3) ot v J 7

i <_ngRiiRk3 - TRz’a‘) +9"R;;

i <_gklRi[Rkj - Tpij) +72p7gi; + 97 Rz
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Now at the point (p,t), we choose a unitary basis such that g;; = d;; and
Ri; = Xidij. Then pj; = (A\; + 7)d;; and p7 = (\; + T)*léij. Hence, we have

n

Qlo ¢>—Z Al —Tn—{—zn: 72 +zn:)\-
ot 8¢ = Ai+T i:l)\i—i_T 7 ‘

i=1 i=
(2.4) "y 2
— i A
;()\Z‘—FT T+)\i+’r+ >

=0.

From this (i) follows. The proof of (ii)—(iv) is similar to the proof of (ii)—(iv)
in Proposition 3.1 of [9]. O

For each k, consider the lifted family of metrics gi(t) := ®; g(tp +1)
on D(r) for t € [-1,00), say. Then it is easy to see that g (t) solves the
Kéhler-Ricci flow (1.6) on D(r). Then by Proposition 2.1 and the Kéhler—
Ricci flow it follows that some subsequence of g (t) converges to a smooth
limit family h(¢), uniformly on compact subsets of D(r) x (—1,00). It is easy
to see that these are Ké&hler metrics on D for all ¢ and that h(t) solves (1.6).
Moreover, by Proposition 2.3, the eigenvalues of the Ricci tensor R?]—(t) of
h(t) at the origin are equal to lims o Ai(s) for any ¢ € [0,00). Therefore,
1 > pg > - >y > 0 are distinet eigenvalues of R?]—(t) at the origin. By
the uniform bounds on the covariant derivatives of the curvature tensor of
h(t) in D(r) x (—1,00), and by Proposition 2.3, we may have the following
inequality on D(r), for ¢ > —1/2, and by choosing a smaller r if necessary:

(2.5) R} > Chy.

Theorem 2.4. Let Rc?j(t) be the Ricci tensor of the metric hiz(t) on D(r).

(i) For each t € [0,00) we have
Rel(t) + khig(t) = fiy(t)

for some smooth real-valued function f(t) on D(r) such that f;;(t) =0
and the gradient of f(t) in h(t) is zero at the origin.

(ii) Let pg > po > -+ > p; >0 be as above. For 1 <i <1, let E; be the
eigenspace corresponding to p; of Ric™(0,0) att =0 at the origin with
respect to h(0). Then E; is also the eigenspace corresponding to p; of
Ric"(0,t) for all t > 0 at the origin with respect to h(t), 1 <i <.
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To prove the theorem, we first prove a lemma which is a direct
modification of the results in [5]. In the case of Kk =1, it will be more
convenient to consider the transformed metric h(t) = th(logt) which solves
(1.6) on D(r) x [e~!,00) with x = 0. It is clear that h(t) is the limit of
the transformed sequence §i(t) := tgi(logt) uniform on compact sets of
D(r) x [e7!, 00) which also satisfy (1.6) with x = 0.

Let Z;; and ij be the Harnack quadratic tensors corresponding to h(t)
and gg(t), respectively, as defined in Theorem 2.1 in [5]. Namely for any
holomorphic vector (V%) at a point ¢ € D(r),

0

_ h | 7lkph ph ho o1 h h

ViVl + %Rﬁlj
and ij is defined similarly. Denote the trace izijZij of Z;; by Z. Note
that Z is a smooth function defined on the holomorphic tangent bundle
T0O(D(r)).

In case k =0, then let Q;; and Q% be the Harnack quadratic tensors
corresponding to h(t) and gi(t), respectively, as defined in Theorem 2.3 in
[5]. Namely for any holomorphic vector (V%) at a point x € D(r),

0

h Ik ph ph h h h
27) Q= g Rig+ KRR + Riz Vi + Ry gV + Ry

and Q% is defined similarly. Denote the trace hijQij of Q7 by Q.

ViVi

Lemma 2.5.

(i) For any holomorphic vector V.€ TUO(D(r)), Zi; is a non-negative
quadratic form. Moreover, if Z is positive at some point xo € D(r) for
all Ve Téi’o) (D(r)) at t =tg, then Z is positive for all t >ty and for
V e TAO(D(r)).

(ii) For any holomorphic vector V € TWO)(D(r)), thj is a mon-negative
quadratic form. Moreover, if Q" is positive at some point xoy € D(r)
forallV € TJE(}’O) (D(r)) att = to, then Q" is positive for allt > to and

for Ve TN (D(r)).

Proof. For any holomorphic vector W, Z%Win > 0 for all k¥ by Theorem
2.1 in [5]. Since Zj is the limit of the Z’s on D(r) for all t, Zi;W*W7 > 0.
This proves the first statement of (i). The first statement of (ii) can be
proved similarly.

To prove the second statement in (i), assume there is some z¢ € D(r)
and tg > e ! so that Z >0 for all V € ngi’o)(D(r)). Given any T > to,
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we note that for C' > 0 there exists some K > 0 such that given any point
(z,t) € D(r) x [to, T] and V € T (D(r)), with Euclidean length ||V|| >
K, we must have

(2.8) Z>C

at (z,t) and V. This follows from (2.6), (2.5) and the fact that the curvature
tensor of A(t) and its covariant derivatives in time and space are uniformly
bounded on D X [tg,T] by constants independent of space and time by our
estimates on the g;s. Hence there exist a neighborhood U of zy and € > 0
such that Z > e for all holomorphic vector V at x € U at t = t.

Choose a smooth function F' on D(r) such that F(zg) >0, F is zero
outside a small neighborhood of z¢ and Z — % >0 for all V in T (D(r))
at t = to.

Let F evolve by the heat equation on D x [ty, T'| with the following initial
and boundary conditions:

0 .
&F =NF in DXty T]

(2.9) F=0 on 0D X [ty,T]
F(z,ty) = F(x)

where A; is the Laplacian relative to iL(t) F' is then strictly positive in
D x (tg,T] by the strong maximum principle [29, Theorem 5, Chapter 3.
We will show that Z := Z — L is also non-negative for all V and (z,t) €
D x (tg,T]. Without loss of generality we may assume h is smooth up to
the boundary of D(r). Let Z assume its minimum over all (z,t) € D(r) x
[to,T] and V, at some point (z,t;) and some vector V. This minimum
exists by compactness and by (2.8). Now assume this minimum is negative.
Then by the initial condition of F, we must have t; > tg. Also, by the
non-negativity of Z and the zero Dirichlet boundary condition on F', we
must have z strictly inside D(r). As in [5], we may then extend Vp locally
around (z,t;) in space-time such that (3.2) in [5] holds. At (z,¢1) we then

have
0 ~ 0 F
i Z F
— 7. Rh _ 92 -
(2.10) = ZiRj; — 27 + 25
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P Z
= ZR); — 2~
> 0.

But this contradicts the fact that Z is minimal at (z,t;) and Vp. Thus Z is
non-negative as claimed, which completes the proof of (i) of the lemma.

We now consider the second statement of (ii). Assume there is some
zo € D(r) and ty > 0 such that Q is positive at (zg,to) for all V. As before,
for any T >ty we observe that given any C > 0, there exists some K > 0
such that given any point (z,t) € D(r) X [to,T] and V € Tx(l’o)(D(r)) with
Euclidean length ||V|| > K, we must have Z > C at (z,t) and V.

Hence we can choose a smooth function F' on D such that F(z¢) > 0, F
is zero outside a small neighborhood of ¢y and Q — F > 0 for all V' every-
where on D(r) at t = to. Let F evolve by heat equation on D X [tg, T] with
the following initial and boundary conditions:

gtF =AF in D(r) X [to, t]

(2.11) F=0 on 0D(r)x [to,T]
F(z,t0) = F(x)

where A; is the Laplacian relative to h(t). F' is then strictly positive
in D x (tg,T] by the strong maximum principle. Now given any € > 0,
we will show that Q := Q — F + ee! is non-negative for all V and (z,t) €
D(r) x (to,T]. Letting e approach zero, this will prove that  — F' is non-
negative for all V' and (z,t) € D(r) x (to,T], thus proving the lemma.

Let Q assume its minimum over all (z,t) € D(r) x [to,T] and V, at
some point (x,t) and some vector V. Now assume this minimum is neg-
ative. Then by our initial condition of F', we must have t > 3. Also,
by the non-negativity of () and the zero Dirichlet boundary condition on
F, we must have z strictly inside D(r). We may then extend V{ locally
around (z,t) in space-time such that (3.1) in [5] holds. At (z,t) we then

have
) Nz .

= Q@R% + el
> 0.

(2.12)
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But this contradicts the fact that Q is minimal at (z,¢) and Vy. Thus Q is
non-negative as claimed, which completes the proof of (ii). O

Proof of Theorem 2.4. (i): We begin with the case where k = 1 in Theorem
2.4. With the same notations as in the Lemma 2.5, by Proposition 2.3 and
the arguments following (3.7) in [9], we see that

tRM(0, 1)

is constant for all t € [e™!, 00) where RfL is the scalar curvature of h. Thus at
the space time point (0,t) we have R" + t%Rh = 0. Applying Lemma 2.1
and following the exact argument in the proof of Theorem 4.2 in [5], we
conclude that for each ¢ € [e™!, 00) there is a smooth real-valued function
f(t) on D(r) such that the gradient of f(t) is holomorphic and is zero at the
origin. Moreover, we have

(2.13) RC;} = fig+ S hig.

Transforming h back to h, it is easy to see that (i) in Theorem 2.4 is true
for k = 1.

We now consider the case of k = 0. By Proposition 2.3 we have R"(0,1)
is constant for ¢ € [0,00), and in particular, %Rh =0 at the space time
point (0,¢). Applying Lemma 2.5 and following the exact argument in the
proof of Theorem 4.1 in [5], we conclude that for each ¢ € [0, 00) there is a
smooth real-valued function f(¢) on D(r) such that the gradient of f(¢) is
holomorphic and is zero at the origin. Moreover, we have

(2.14) Rc}y = fir.

This completes the proof of (i) in Theorem 2.4.

(ii): Let A\; > --- > A, > 0 be the eigenvalues of Rc" at 0. Note that
they are independent of t. Suppose v € TO1 ’O(D(r)) is not an eigenvector for
RcM(0,0) for A\x. We will show that v cannot be an eigenvector for Rc?(0,t)
for all t € (0,00) for Ag. It is sufficient to prove that the quantity

F(t) F= |Rch(07t)(v7 ) - )‘kh(ovt)(v7 )ﬁz(t)

(2.15) = 1% (0,4)(RI(0, ) — Axhiz(0, 1))
(RJ(0,8) = Al (0,6)0!

can never be zero since this is zero at ¢ if and only if v is an eigenvector
for Rc"(0,t) with eigenvalue ;. Let to € [0,00) be arbitrary. Choose a
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holomorphic coordinate in D(r) such that at 0 € D(r) we have h;;(to) = di;
and th]-(to) = Aidi;. Let f(t) be as in Lemma 2.5. It is not hard to show that
we may choose some 1 > § > 0 such that starting at any point p € D(dr) we
may flow along —1V f(to) for t € [0, 1] while staying inside D(r) and let ¢; be
the local biholomorphism determined by the flow. Note that the origin is a
fixed point of the flow because V f(t) = 0 at the origin. Let g(t) = ¢} (h(to))
be the soliton metric on D(dr) x [0,1) with initial condition g(0) = h(to).
Then at 0 € D(67), in the above coordinates, we have g;(t) = e~ (Ait#)ts,,
and RY(t) = Nie~QitRts. For any k we then have

G(t) = ‘ch(oa t)(’U, ) - Akg(ov t)(U, )‘g(t)
(2.16) — Z()‘l - )\k)Q‘,Ui’2ef()\i+I€)t
and thus

G'(0) = =N+ r)(Ni = M)
(2.17) ik
> — (A1 + K)G(0).

From the above equation, the fact that g(0) = h(tg) on D(dr), and the fact
that both g(t) and h(to+t)) solve (1.6) on D(dr) x [0,1), it follows that
G(0) = F(tg) and G'(0) = F'(to). Hence for any choice of k we have F'(tg) >
(M + &) F(to). But tg € [0,00) is arbitrary. Thus for any k we have F'(t) >
(A1 + K)F(t) for all t € [0,00). It is now easy to see that if F'(0) # 0, then
F(t) cannot be zero for any ¢. This completes the proof of our claim.

From the claim, we conclude that if v is an eigenvector of h(t) for ¢ > 0
with eigenvalue A\, then v must be in Fjy. Since the multiplicity of each

eigenvalue uy is constant in ¢, from this it is easy to see the theorem is true.
O

Now given (M, g(t)) as in the beginning of the section, we denote the
eigenvalues of Rc(p,t) by A\i(t) for i = 1,...,n as before, and we let py, Ex(t)
and Py(t) for k=1,...,] be as in Proposition 2.3. We let n,, for m =1,
1,...,1+ 1 with n; =0 and n;y; = n be such that \; € (m — p, o + p)
for all ny, <t < npyppand m=1,...,1 and ¢ sufficiently large such that the
intervals [pm, — p, ftm + p] are disjoint as in Proposition 2.3 part (iv). For
any nonzero vector v € Tp"" (M), let v(t) = v/|v|;, where |v]; is the length of
v with respect to g(t) and v;(t) = P;(t)v(t).

We now show that Theorem 4.1 in [9] is also true for (M, g(t)) in our case;
that Rc(p,t) can be “diagonalized” simultaneously near infinity and that g(t)
is “Lyapunov regular”, to borrow a notion from dynamical systems (see [1]).
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Theorem 2.6. Let (M, g(t)) be as described in the beginning of the section.
ThenV = Tlgl’o)(M) can be decomposed orthogonally with respect to g(0) as
Vi®--- @V, so that the following are true:

(i) If v is a nonzero vector in V; for some 1 < i <1, then limy_,o |v;(t)| =
1 and thus lim;_,oo Re(v(t),v(t)) = pi and

lim flog% = —l; — K.
AT g

Moreover, the convergence are uniform over all v € V; \ {0}.

(ii) Forl <i,j <l and for nonzero vectorsv € V; and w € V; where i # j,
limy o0 (v(t), w(t)): = 0 and the convergence is uniform over all such
nonzero vectors v, w.

(iii) dimc (Vi) = niy1 — n; for each i.
(iv)

!
1. det(g;;(t))
—p; — k) dime V; = lim - log ———~ 22
;( pi = ) dime V. oo 08 det(g;;(0)

Proof. Let ty — oo and construct g with limit h(¢) as in Theorem 2.4.
Observe that since h(t) is a smooth limit of the gx(t)'s on D(r) x [0, 00),
the analog of Lemma 3.2 in [9] is true in our case. Using this and (ii) in
Theorem 2.4, we may prove the theorem by contradiction exactly as in the
proof of Theorem 4.1 in [9]. O

3. Transition maps

Let (M,g(t)) be as in Theorem 1.5 and let p € M be fixed. In addition,
we will assume that R;; > a’g;; for some o’ >0 at p and ¢t =0. Then by
Proposition 2.3, there exists a > 0 such that

(3.1) Ri7 > agiz

at p for all t > 0. Since the covariant derivatives Riemannian curvature
tensor Rmy of g(t) is uniformly bounded, we can conclude that by choosing
a possibly smaller a > 0, that (3.1) is still true in B;(p, R) for some R > 0
independent of ¢, where By(p, R) is the geodesic ball of radius R with center
at p with respect to the metric g(¢). Since By, (p, R) C By, (p, R) for to > t;



134 Albert Chau and Luen-Fai Tam

as ¢(t) is shrinking, we have
(3.2) Ly (7) < e 370, (4)

for any curve in By, (p, R). Here L; denotes the length function with respect
to g(t).

Recall that by Proposition 2.1, there exist » > 0 and C' > 0 indepen-
dent of ¢ > 0 and a holomorphic maps ®; : D(r) — M with the following
properties:

(i) @, is a local biholomorphism from D(r) onto its image;

(i) :(0) = p;

(iii) @7 (g(t))(0) = ge;
) 59e < ®f(g(t)) < Cge in D(r).

(iV Je

where g, is the standard metric on C". Let T > 0 and denote ®;7 simply
by ®;. In this section, we want to construct injective holomorphic maps
F; from D(p) to D(p) for some p such that ®; = ®;;1 o F;11. We should
emphasize that ®; may not be a covering map.

In this section, we always assume that ¢ > 0. By property (iv) and
reducing r if necessary, we may assume that ®,(D(r)) C Bi(p, R), where
R > 0 is such that (3.2) is true. In fact, we have the following:

Lemma 3.1. For any 0 < p < r, there exists Ry > 0 independent of t such
that

3.3) B (p.,) € ®AD() € B )

Proof. By (iv) above, it is easy to see that

®(D(p)) C Bi(p,Ch)

for some Cy > 0 independent of ¢, where Bi(p,r) is the geodesic ball with
radius r centered at p with respect to g(¢). On the other hand, B(0,C2) C
D(p) for some Cy > 0 independent of ¢, where B.(0,C3) is the geodesic ball
with radius Cy centered at 0 with respect to ®;(g(¢)). Hence

©,(D(p)) D ®4(B4(0,C2)) D Bi(p, Cs).

From this it is easy to see the lemma follows. O
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Lemma 3.2. For any 0 < p <r, where r is as in (i)-(iv), there exists
p1 > 0 independent of t, satisfying the following for any t: Let v be a smooth
curve in M with v(0) = q such that q € Bi(p,p1) and Li(y) < p1. Then
®y(z) = q for some z € D(§), and for all such z there is a unique lift 5 of
v by ®; so that ¥(0) = z and ¥ C D(§).

Proof. Let p1 > 0 be determined later. Let ¢ € Bi(p, p1) and let y(s), 0 <
s < p1 be a curve from ¢ parametrized by arc-length with respect to g(t).
Suppose z € D(§) with ®4(z) = ¢

Since @, is a local biholomorphism, there exists sg > 0 and a curve 5
from z with ¥ C D(4p) such that ®; 0% =~ on [0, so]. Let A be the set of
s, such that v has a lift 7 in D(3p) on [0, s] with 5(0) = z . Since ¥, is a
local biholomorphism, A is open in [0, p1]. Suppose s — s and s € A. By
(iv), there is a constant C' > 0 which is independent of ¢ such that

C_lLe(;ﬂ[O,sk]) < Lt(’y’[o,sk]) < p1,

where L. is the length with respect to g.. Hence

~ 1
Le(lo,5) = Cp1 = 4p

if p1 < 45p. Note that since 7(0) = z € D(4p), we may assume that J(sj) —

z1 for some 2z € D(%p). From this it is easy to see that v can be lifted up
to s while staying in D(%p) . Hence A is also closed. Since ®; is a local
biholomorphism, the lifting must be unique. In particular, by choosing
a smaller p; which is independent of ¢, we conclude that every minimal
geodesic from p with length less than p; can be lifted to a curve in D(%p).
Hence for all ¢ € B.(p, p1), there is a point z € D(%p) such that ®.(z) = q.
This completes the proof of the lemma. ([l

Lemma 3.3. Fizt > 0. Let 0 < p < r be given and let p1 be as in Lemma
3.2. Given any € > 0, there exists § > 0 satisfying the following properties:

Let y(7), B(7), T € [0,1] be smooth curves from q € By(p, p1) with length
less than p1 and let zy € D(%p) with ®(20) = q. Let7, B be the liftings from
20 of v and B as described in Lemma 3.2. Suppose di(v(7),3(7)) < 6 for all
T €[0,1], then do(7(1),5(1)) < €. Here d; is the distance in g(t) and d. is
the Fuclidean distance.

Proof. Since ®; is a local biholomorphism, there is ¢ > 0 such that ®; is a
biholomorphism onto its image when restricted on D(z, o) for all z € D(% 0),
where D(z,0) is the Euclidean ball with center at z and radius o.
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Let q, 20, 7, 3, 7 and 3 as in the lemma. Since ~ C D(%p), by property
(iv) of &y, there exists C; > 0 such that

(3.4) ®,(D(3(7)),0) 2 Bi(y(7),Cy 'o)
and
(3.5) de(Y(7), 2) < Crdi(y(7), Pi(2))

for all z € D(3(7),0) with ®;(z) € By(y(7),Cy o). Note that Cy is inde-
pendent of the curves v and . ~

Given 0 <e<o,let 0 <9 < Cl_le < Cl_la. Suppose 8 and (3 are as in
the lemma such that di(y(7), (7)) < d for all 7. Since 7(0) = 8(0) = 2o, we
have d.(7(7), B(7)) < € in [0, 70] for some 79 > 0. Let A be the set 7 in [0, 1]
such that de.(3(7"), 8(7")) < € for all 7/ € [0,7]. Then A is nonempty and is
open. Suppose 7, € A and 7, — 7. Then

d(3(7), (7)) < e.

Since € < 0, § < Cy o, by (3.5) and the fact that ®,(F(7)) = (1), ®+(3(7))
= (1), we have

de(y(7), B(7)) < Crdi(7(7), B(7)) < C16 <.
Hence 7 € A and A = [0,1]. This completes the proof of the lemma. O

Apply Lemma 3.2 to p = r and choose p; as in the lemma. Note that p; is
independent of 4 and T'. For any z € D(r), let v*(7), 0 <7 < 1, be the line
segment from 0 to z, and let v = ®; o v*. By (3.2) and property (iv) for &,
there is a constant C7 > 0 independent of ¢ and 7" such that

(3.6) Livi(7) < e 2TLi(y) < Cre 21

Now we choose T > 0 large enough so that Cie” 271 < p;. Then by Lemma
3.2, there is a unique lift 7 of v by ®;; so that 7(0) = 0 and 7 C D(5). We
then define Fj11(z) =7(1). Fiy1 is then well-defined by the uniqueness of
the lifting. We have:

Lemma 3.4. The maps F;11 satisfy the following:
(a) Fi+1 : D(T) — D(%), E+1(O) =0 and ®; = (I)i—l-l e} Fi+1~

(b) For each i, Fiy1 is a local biholomorphism.



Non-negatively curved Kéhler manifolds 137

()

bilv] < [F1 (0)v] < balv]

for some 0 < by < by <1 for all i and for all vector v € C", where F’
is the Jacobian of F.

(d) There exist r > 11 >0 and 0 < 0 < 1 independent of i such that
|Fit1(2)] < 02|
for all v and for all z € D(r1) and Fi41 s injective on D(ry).
+

Proof. (a) follows immediately from the definition of Fj;;.

To prove (b), let us first prove that Fjy; is continuous. Let zy € D(r),
~v*(1), 0 < 7 < 1, be the line segment from 0 to zp, v = ®; o v* and 7 is the
lift of v by ®;41 with 7(0) = 0. Let w =75(1) = Fi+1(20). Given € > 0, let
6 > 0 be as in Lemma 3.3 for ®;,1.

We may assume that |z9| < 1 —n for some 1 > 0. Since ®; is uniformly
continuous on D(1 —n/2), there exists o > 0 such that if |23 — 22| < 0,
21,22 € D(l — 77/2), then di(CI)i(zl), (I)i(ZQ)) < 4.

Moreover, it is easy to see that we can find ¢’ > 0 such that if |zg — (| <
', then the ray 5* defined on [0,1] from 0 to ¢ satisfies [y*(7) — 5*(7)| < o
and §* C D(1 —n/2). Let ¢ be such a point in D(r) with §* as above and
let 8 = ®; o 8*. Hence we have

dis1(Y(7), B(7)) < di(y(7), B(7)) < 6.

By Lemma 3.3, if § is the lift of 3 by ®;41 with 5(0) = 0, then [F(1) —
B(1)| < e. That is to say, |Fi+1(z0) — Fi+1(¢)| < € and Fj1; is continuous.

Now it is easy to see that Fjy; is a local biholomorphism. In fact,
suppose Fji1(z) = w and suppose ®;(z) =z and ®;1(w) =y. Let ¢ >0
be such that ®; and ®;;; are biholomorphisms when restricted on D(z,€;)
and D(w, €1), respectively. Since Fj 1 is continuous, we can find 0 < d1 < €;
such that F;11(D(z,01)) C D(w,€1). Since ®; = ®;41 o F;;1, we have

-1
Fii1=0, 09

on B(z,01). Hence F;41 is a local biholomorphism.

To prove (c), by properties (ii), (iii) of @4, the fact that F;11 = <I>Z._+11 od;
near the origin, the fact that R;;(¢) is uniformly bounded and (3.1), it is easy
to see that (c) is true.
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To prove (d), by gradient estimates, we have
Fiy1(2) = Fip1(0) + F11(0)z + Hi(2) = F{11(0)z + Hy(2),

where |H/(z)| < C|z| for some constant C independent of i on D(3r), say.
Hence by (c), there exist » > r; > 0 and 1 > n > 0, independent of i such
that F;11 : D(r1) — D(r1) so that

|Fira(2)] < 0]2|

for all ¢ and for all z € D(ry) and Fjy; is injective on D(ry). O

By this lemma and Theorem 2.6, using the method in [9, §5], see also
[19,30], we can prove the following:

Lemma 3.5. Let F; be as in Lemma 3.4. There exist biholomorphisms G;
on C™ and polynomial maps T; with the following properties:

(a) T;(0) =0, T;(0) = Id, and sup,cpq)|Ti(2)| < C1 for some constant
C1 independent of i.
(b) Gi(0) =0 and for all open sets, U containing the origin

(Gro---0Gr) ' (U) = C™
k=1

(¢) There exist 0 < 1o <11 and Cy > 0 independent of k > 1 such that

-1 -1 -1
Gk+1OGk+20"'OGk+lOTk+lOFk+lo"'OFk+20Fk+1

converges uniformly on D(re) as | — oo to an injective holomorphic
map V. such that

D(C;lrg) C \I/k(D(T’Q)) C D(CQTQ).

(d) By choosing ro smaller if necessary, we may have that T; is injective
on D(rg) such that T; " is defined on D(r2) and T, *(D(r2)) C D(r)
for all 1.

4. Proof of the main theorem

We are now ready to prove Theorem 1.5. By the remark at the beginning of
§2, we may assume that M is simply connected and ¢(¢) has positive Ricci
curvature for all ¢.
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Let ®; be as in the previous section so that one can define F; as in
Lemma 3.4. Let G;, T;, ro, C1 and Cs be as in Lemma 3.5. We want to
construct a biholomorphism from C™ onto M as follows: Let ; = (G;o0---0
G1)71(D(r2)) and define

S;i=®; 0T ' oGio---0Gy,

which is defined on €2; by Lemma 3.5.

Theorem 1.5 will be proved if we can prove that .S; converges to a
bihololomorphism from C™ onto M. We will prove this in several steps
as described in the following lemmas.

Lemma 4.1. For all z € C", lim;_,o Si(2) = S(2) exists.

Proof. Let k be fixed and consider Uy, = (G o--- o0 Gl)*l(ﬁD(rz)), where
Cy, 7o are as in Lemma 3.5(c). Let ¥y as in Lemma 3.5(c). Since the con-
vergence in the lemma is uniform in D(ry), and G];il o Gl;l2 0---0 Gl;il o
Tyti0 Fippo0---0 Fgyo0 Fiiq and Uy are injective, we can find 0 < p < ro

and [y such that

G’;_’l_l o G’;_’l_z O---0 G/;—il-l (e] Tk+l (e] Fk—l—l O---0 Fk+2 (e} Fk+1(D(p))

(4.1) oD <2é2'r2>

if [ >1g. Hence for every [ > [y we have: for every z € Uy, there exists
¢ € D(p) such that

(4.2)

Gl_l o~--oG,;1 oG,:j_1 o-~-oG,:_il_loTkHoFk+lo---oFk+20Fk+1(Q) = z.

Hence

Sk41(2) = Ppy1 0 Ty ) 0 Gy o+ 0 Gi(2)
(4.3) = ®p10 Fryr 00 Fpo0 Fip1(Q)
= Op(¢)-

Take two such subsequences (;; and Q; such that ¢;; — w and Q;_ = as

Jj — oo with w,w’ € D(p). Since the convergence in Lemma 3.5 is uniform,
by (4.2) we have

Gl_lo---oGglo\I'k(w):z:Gflo-'-oGlzlo\Pk(w/).
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Hence we must have w = w’ and so (; — w as | — oo. By (4.3), we have

l—o0

(4.4) .
=®p0W, " oGLo---0G(2).

Hence S = lim;_,o S; exists on Uy. By Lemma 3.5, |J, Uy = C", from
this the lemma follows. O

Lemma 4.2. S is a local biholomorphic map from C™ into M.

Proof. This follows immediately from (4.4). O

Lemma 4.3. For any e > 0, |J, ®1(D(e)) = M.

Proof. Since the Ricci curvature of ¢(0) is positive, for any R > 0, we have

Riz(x,0) > agiz(x,0) for some a > 0 for all x € By(p, R), which is the geo-

desic ball with respect to g(0). Let A;(z,t) be the eigenvalues of Rj;(x,t)

with respect to g(t). Then \;(z,t) < C for some constant C' independent of

z and ¢. On the other hand, by Proposition 2.6, we have [[;_; \i(z,t) > a™

for x € By(p, R). Hence there exists b > 0 independent of ¢ such that
Riz(x,t) > bgiz(x,t)

for all ¢t >0 and x € By(p, R). By the Ké&hler-Ricci flow equation, we
conclude that

Bo(p,R) C By(p,e” + 'R).

From this and Lemma 3.1 the lemma follows. O
Lemma 4.4. S is surjective.

Proof. From the proof of Lemma 4.1, we conclude that

S(C™) > @po ;! (D (2102r2>)

for all k. From this, Lemma 4.3 and the proof of Lemma 3.5 (c) (see [9, §5]),
it is easy to see that S(C") = M. O

Lemma 4.5. S is injective.
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Proof. Suppose there exists distinct z1, zo € C" such that S(z1) = S(22) = q.
Let o(7), 0 < 7 < 1 be the line segment from z; to zo. Let y = S o o. Then ~y
is a smooth closed curve in M starting from ¢. Since M is simply connected,
we can find a smooth homotopy «a(s,7), 0 < s,7 <1, with «(0,7) = ~v(7),
a(l,7) = q (the constant map), and a(s,0) = a(s,1) = ¢ for all s.

By Lemma 3.5, there exists 0 < p < ro and n > 0 which are independent
of i such that ¥; ! is defined on D(n) and

(15 w0 < 0 (30)
For p > 0 let p; > 0 be such that Lemma 3.2 is true. By the proof of Lemma
4.3, there exists ko such that if & > ko, then ¢ € By (p, p1) and Li(a(s,-)) <
p1 for all s, where Bg(p, p1) is the geodesic ball of radius p; at p relative
to g(kT), and Ly is the length with respect to g(kT"). We may also assume
that 0 C G7' o+ 0 G ' (D()), provided ky is large enough.

Now fix k > kg. Let ﬁz@ilono---oGloa. Then 7 C D(§) by
(4.5) and it is a lift of v by ®, by (4.4). Moreover, if ¥(0) = w;, and
7(1) = we, then wy # wa because G; and ¥y are injective. Since ®p(wy) =
@y (w2) = q € Bi(p, p1), by Lemma 3.2, for any s, there is a lift 3s(7) of
a(s, ) by @y such that 3,(0) = w1 and B, C D(§).

We claim that Bs(l) = wy. Let € > 0 be such that ®; is a biholomor-
phism onto its image when restricted on Be(ws, €). For such € > 0, let § > 0
be as in Lemma 3.3. On the other hand, let £ > 0 be such that

(4.6) di(a(s1,7),a(s2, 7)) < 9

for all 7, if |s; — s9| < €.

Hence by Lemma 3.3, if 0 < s < € then 8,(1) € Be(ws, €). But 35, (Bs(1))
= a(s, 1) = ¢, and @y is injective on B (w2, €). Thus we have 3s(1) = wy for
0 < s < & In particular, f¢(1) = wo. By (4.6) and Lemma 3.3, we can argue
as before and conclude that 525(1) = wy. Continue in this way, we have that
B1(1) = wy. On the other hand, 3 is a lift of a(1,-). Hence @4 (31 (7)) = ¢
for all 7. Since wy # wa, there is 7 with B (1) # wy and By (1) —wq| < 5.

2
This is impossible because ®, is a injective on B, (w2, €). O

Theorem 1.5 now follows from Lemmas 4.2, 4.4 and 4.5.

Corollary 4.6. Let (M,g(t)) be as in Theorem 1.5 and assume that g(0)
has positive Ricci curvature at some point p € M. Then M is biholomorphic
to C™. In particular, if (M, g) is as in Theorem 1.2 and the Ricci curvature
of g is positive at some point, then M is biholomorphic to C".
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Proof. Let (M,g(t)) as in Theorem 1.5. We begin by proving that M has
finite fundamental group. Suppose M has infinite fundamental group and let
M be the universal cover of M. Then M contains infinitely many preimages
Po,P1,--- of p € M, and for simplicity we will denote py simply by p. We
may also pull g(t) back to obtain a solution to (1.6) on M, and we denote
this solution again by g(t). Note that by [6], (M, g(t)) must have positive
Ricci curvature on all of M and for all —oo <t < oo since M is simply
connected and Ric(p,0) > 0 by assumption. Now for (M, g(t),p) consider
®, : D(r) -+ M be as in Proposition 2.1. Then by choosing r smaller, if
necessary, we may have the following for all ¢ > 0:

(al) Ricy > ¢ > 0in D(r) with respect to ®;(g(t)) for some constant c.

(a2) There exists 0 < § < 1 such that any point in D(d7) can be joined by
a geodesic from p in D(2r) with respect to ®;(g(t)).

(a3) There exists C' > 1 such that By(p, &p) C ®:(D(p)) C Bi(p, Cp) for all
p<T.

(al) follows from Propositions 2.1 and 2.3 and the fact that the covariant
derivatives of the curvature tensor is bounded. (a2) follows from Proposi-
tion 2.1 and the construction of ®; through the exponential map so that the
injectivity radius of ®;(g(¢)) at the origin is uniformly bounded below by a
positive constant. (a3) follows from the proof of Lemma 3.1.

Note that we must have limy o dg() (P, p) = 0. Also, by the proof of
Lemma 4.3, we know that the sets By(p,er), where € = %, exhaust M as
t — oo. Thus, we can find a subsequence of pg, also denoted by pi, and a
sequence t — oo such that py € 0By, (p, €r).

Now consider the sequence of pull-backs ®f (g(tx +t) on D(r). Then
by Theorem 2.4 we may assume the sequence converges on D(r) to some
h(t) satistying R;; + khi; = fi7 at t =0, where f is smooth, f;; =0 and
Vf(0) =0. Now for each k, let z; be an inverse image of p; under &,
(which exists by our construction of py). Then C~2§ < |z;| < ér for all k by
(a3), and hence we may also assume that z, — w, where C =267 < |w| < dr.

Moreover, if o is the covering map that maps pg to p, then g(t) =
o (g(1). o

For any pg, let F: M — M be a deck transformation taking p; to p.
Then for every ¢, F' is an isometry with respect to g(tx +t). Hence, for
every k, ®; (g(tx +t)) is the ‘same’ at the origin o and 23, and in particular
R(0,t) = R(zg,t) for all t. Thus, by letting k — oo, we have that R(w,t) is
constant in time since R(o,t) is constant in time. Furthermore, by the proof
of Theorem 2.4, we may have that V f(w) = 0.
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Now by (a2), we can join o to w by a geodesic w.r.t. h(0) parametrized
by arc-length. As in [18: Proof of Theorem 20.1], we may compute in real
coordinates x, as follows:

df dxgs
S DaDsf - Pz > 0
ds? 2 ds P -

since ;3 > 0, R;; + kh;; = fi7 and f;; = 0. But this is impossible as

ar_

0
ds

at the end points 0 and w. We have thus proved, by contradiction, that the
fundamental group of M must be finite.

It now follows by a well-known result (see [2, p. 35 and p. 40]) that M
must be simply connected, and thus biholomorphic to C™ by the conclusion
of Theorem 1.5. This completes the proof of the corollary. O
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