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Non-negatively curved Kähler manifolds with
average quadratic curvature decay

Albert Chau
1

and Luen-Fai Tam
2

Let (M, g) be a complete noncompact Kähler manifold with
non-negative and bounded holomorphic bisectional curvature.
Extending our techniques developed in [A. Chau and L.-F. Tam.
On the complex structure of Kähler manifolds with non-negative
curvature, J. Differs. Geom. 73 (2006), 491–530.], we prove that
the universal cover ˜M of M is biholomorphic to C

n provided either
that (M, g) has average quadratic curvature decay, or M supports
an eternal solution to the Kähler–Ricci flow with non-negative and
uniformly bounded holomorphic bisectional curvature. We also
classify certain local limits arising from the Kähler–Ricci flow in
the absence of uniform estimates on the injectivity radius.

1. Introduction

Generalizing the classical uniformization theorems to higher dimensions is
a central problem in the study of complex manifolds. It is a particularly
interesting problem on complete Kähler manifolds. In this paper, we are
interested in complete noncompact Kähler manifolds with positive curva-
ture. For such manifolds, there is a well-known conjecture by Yau [36]
which states that a complete noncompact Kähler manifold with positive
holomorphic bisectional curvature is biholomorphic to C

n. Yau’s conjecture
in its full generality remains unsolved. The first major results supporting
the conjecture were obtained by Mok et al. [22], and the conjecture has since
been studied extensively, see [7, 8, 9, 11, 12, 21, 23, 26, 28, 33, 34]. Recently in
[9] the authors proved the following.

Theorem 1.1. Let (Mn, g̃) be a complete noncompact Kähler manifold with
non-negative and bounded holomorphic bisectional curvature and maximal
volume growth. Then M is biholomorphic to C

n.
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Here, maximum volume growth means that

(1.1) V ol(B(p, r)) ≥ C1r
2n; ∀r ∈ [0,∞)

for some C1 > 0 and p ∈ M . This assumption of maximum volume growth
is rather strong. Consider the following average quadratic curvature decay
condition

(1.2)
1

Vx(r)

∫

Bx(r)
R ≤ C2

1 + r2

for some C2 > 0, all x ∈ M and all r > 0. Here, Bx(r) is the geodesic ball
around x with radius r and volume Vx(r) and R is the scalar curvature of
M . It was conjectured by Yau that if (1.1) is true, then (1.2) will be sat-
isfied automatically for a complete noncompact Kähler manifold with non-
negative holomorphic bisectional curvature. Provided that the curvature is
bounded, this was recently confirmed by Ni [25] (this was earlier confirmed
by Chen-Tang-Zhu [11] for the case of dimension 2 and Chen-Zhu [13] in
all dimensions under the additional condition that the curvature operator is
non-negative). In general, (1.2) does not imply (1.1). For example, let M
satisfy (1.2) and let M1 be the product of M and a flat torus. Then M1 also
satisfies (1.2). But M1 does not have maximal volume growth. However,
it is an open question whether (1.2) will imply (1.1) under the additional
assumption that M has positive bisectional curvature.

In [10, 22, 23, 26, 28] without assuming the maximum volume growth
condition, it was proved that if R decays faster than quadratic, then the
manifold M with non-negative holomorphic bisectional curvature must be
flat. Hence one would expect that Theorem 1.1 is still true if the maximum
volume growth condition is removed and is replaced by the weaker condition
(1.2). In this work, we confirm this expectation in the following:

Theorem 1.2. Suppose (Mn, g) has holomorphic bisectional curvature
which is bounded, non-negative and has average quadratic curvature decay.
Then M is holomorphically covered by C

n.

As in [9], we will use the Kähler–Ricci flow:

(1.3)

{

∂
∂t g̃ij̄(x, t) = −R̃ij̄(x, t);
g̃ij̄(x, 0) = gij̄(x).

The main difficulty in proving Theorem 1.2 with the methods in [9]
is the lack of good lower bound for the injectivity radius of g̃(t). Indeed,
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Theorem 1.2 was proved by the authors in [9] under the additional assump-
tion that the curvature operator is non-negative, in which case a good lower
bound on the injectivity radius can be obtained. Such lower bounds can also
be obtained if we assume M has maximum volume growth as in Theorem 1.1.

For (M, g) as in Theorem 1.2, it is now well known by [32, 34] (see
also [27]) that (1.3) has a long-time solution g̃(t), 0 ≤ t < ∞. If we let
g(x, t) = e−tg̃(x, et), then we obtain a solution to the normalized Kähler–
Ricci flow

(1.4)
∂

∂t
gij̄(x, t) = −Rij̄(x, t) − gij̄(x, t)

for −∞ < t < ∞. Hence Theorem 1.2 can be viewed as a uniformization
theorem on eternal solutions of (1.4). Motivated by this, we will also prove
a uniformization theorem for eternal solutions to the Kähler–Ricci flow (1.3),
i.e., a smooth family of complete Kähler metrics g(t) on M satisfying

(1.5)
∂

∂t
gij̄(x, t) = −Rij̄(x, t)

for all t ∈ (−∞,∞). We have the following:

Theorem 1.3. Let (M, g(t)) be a complete eternal solution to (1.5) such
that for all t, g(t) has non-negative holomorphic bisectional curvature which
is uniformly bounded on M independent of t. Then M is holomorphically
covered by C

n.

Remark 1.4. Recall that by [10, 22, 23, 26, 28], if M is complete noncom-
pact with bounded non-negative bisectional curvature and if the curvature
decays faster than quadratic in the average sense, then M is flat. Hence The-
orem 1.2 addresses the maximal (quadratic) curvature decay case for nonflat
M . On the other hand, by the Harnack inequality [4] and the decay estimates
in [33, section 6] (see also [27, Corollary 2.1]), it is seen that the average
curvature of nonflat (M, g) in Theorem 1.3 cannot decay faster than linearly
uniformly at all points and so the decay rate is minimal in some sense by
[28]. So Theorem 1.3 addresses the case of minimal (linear) curvature decay.

By comparing (1.4) and (1.5), we may combine Theorems 1.2 and 1.3 as
follows:

Theorem 1.5. Let Mn be a noncompact complex manifold. Suppose there
is a smooth family of complete Kähler metrics g(t) on M such that for
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κ = 0 or 1, g(t) satisfies

(1.6)
∂

∂t
gij̄(x, t) = −Rij̄(x, t) − κgij̄(x, t)

for all t ∈ (−∞,∞) such that for every t, g(t) has uniformly bounded
non-negative holomorphic bisectional curvature on M independent of t.
Then M is holomorphically covered by C

n.

By [5], if in Theorem 1.5 we also assume that the Ricci curvature is
positive and the scalar curvature attains its maximum in spacetime, then
(M, g(t)) is a gradient Kähler–Ricci soliton of steady type if κ = 0, and of
expanding type if κ = 1. If this is the case, then one may use the results on
gradient Kähler-Ricci solitons in [3, 8] to conclude that M is biholomorphic
to C

n. Hence Theorem 1.5 can also be considered as a generalization of the
results in [3, 8].

2. Local limit solution

Before we prove the main result, observe that if we take π : ̂M → M to
be the universal holomorphic covering of M in Theorem 1.5 and let ĝ(t) =
π∗(g(t)), then (̂M, ĝ) still satisfies the conditions of the theorem. To prove
the theorem, it is sufficient to prove that ̂M is biholomorphic to C

n. By [6],
we may further assume that the Ricci curvature of ĝ(x, t) is positive for all
x and t. Hence from now on we assume that M in Theorem 1.5 is simply
connected and g(t) has positive Ricci curvature for all t.

Let (M, g(t)) be as above satisfying the conditions of Theorem 1.5. Fix
some point p ∈ M , some time sequence tk → ∞ and consider the sequence
(M, g(tk + t), p) of long-time solutions to the Kähler–Ricci flow centered at
p. Suppose the injectivity radius of g(t) at p has a uniform lower bound.
Then by Hamilton’s compactness [17], this sequence has a convergent sub-
sequence converging to a solution h(t) to the Kähler–Ricci flow on a limit
complex manifold N . Furthermore, by Cao’s classification of limits for
Kähler–Ricci flow [5], this limit must either be a steady or expanding gra-
dient Kähler–Ricci soliton, depending on whether λ = 0 or λ = 1. In this
section, we show that in the absence of an injectivity radius estimate, we
may still have such a soliton limit, but in a local sense. We will con-
sider a certain locally lifted subsequence limit of (M, g(tk + t), p) around
p. Our first goal will be to show that this local limit is also either an
expanding or steady gradient Kähler–Ricci soliton in a certain sense (The-
orem 2.1). We will then relate this to the local asymptotic behavior of
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g(t) at p in our main Theorem 2.2. In the absence of injectivity radius
estimates, Glickenstein [16] constructed a global limit solution from a solu-
tion to the Ricci flow as above, allowing for the possibility of Gromov
Hausdorff convergence to a limiting metric space of dimension lower than
that of M . We refer the reader to [16] for details on the construction of
this limit and its application, and in particular to [14, 15] for applications
in three dimensions. Our local limit is just the first step of Glickenstein’s
construction and in fact depends only on Proposition 2.1 and the simple
fact that a lifting of a solution to the Ricci flow is still a solution to the
flow. For recent work relating this and, in general, on the existence and
classification of limits to the Ricci flow, we refer to the works of Ye [37]
and Lott [20].

By [18, 31, 34], from the time independent bounds on the curvature of
g(t), we have corresponding uniform bounds on all covariant derivatives of
the curvature by the Kähler–Ricci flow. Hence for t ≥ a with a > −∞, we
may assume that these bounds on all covariant derivatives of the curvature
of g(t) are also time independent. The proof of Proposition 1.2 in [35] then
gives (see also [9, Proposition 2.1]):

Proposition 2.1. There exist positive constants r and C such that for each
t ≥ −1 there is a holomorphic map Φt from the Euclidean ball D(r) (centered
at the origin of C

n with radius r) to M satisfying the following:

(i) Φt is a local biholomorphism from D(r) to M ;

(ii) Φt(0) = p;

(iii) Φ∗
t (g(t))(0) = ge;

(iv) 1
C ge ≤ Φ∗

t (g(t)) ≤ Cge in D(r).

(v) for any 0 < α < 1, and k ≥ 0, the standard Ck+α norm of Φ∗
t (g(t)) in

D(r) is bounded by a constant C ′ which is independent of t ≥ −1.

where ge is the standard metric on C
n.

Remark 2.2. Proposition 1.2 in [35] only requires the first covariant deriva-
tive of the scalar curvature of g(t) to be bounded independent of t. In our
case, however, we have bounds on all covariant derivatives of the Riemannian
curvature tensor independent of k. Condition (v) is derived by continuing
the argument in [35] or [9].

As in [9], the following proposition is crucial:
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Proposition 2.3. Let λ1(t) ≥ · · · > λn(t) > 0 be the eigenvalues of Rij̄(p, t)
relative to gij̄(p, t).

(i) For any τ > 0,

φ =
det(Rij̄(p, t) + τgij)

det(gij̄(p, t))

is nondecreasing in t.

(ii) There is a constant C > 0 such that λn(t) ≥ C for all t ≥ 0.

(iii) For 1 ≤ i ≤ n, the limit limt→∞ λi(t) exists.

(iv) Let μ1 > · · · > μl > 0 be the distinct limits in (iii) and let ρ > 0 be
such that the intervals [μk − ρ, μk + ρ] for 1 ≤ k ≤ l are disjoint. For
any t, let Ek(t) be the sum of the eigenspaces corresponding to the
eigenvalues λi(t) such that λi(t) ∈ (μk − ρ, μk + ρ). Let Pk(t) be the
orthogonal projection (with respect to g(t)) onto Ek(t). Then there
exists T > 0 such that if t > T and if w ∈ T

(1,0)
p (M), |Pk(t)(w)|t is

continuous in t, where | · |t is the length measured with respect to the
metric g(p, t).

Proof. The proof is identical to the proof of Proposition 3.1 in [9] for κ = 1.
Suppose κ = 0. By Theorem 2.3 in [5], if

(2.1) Zij̄ =
∂Rij̄

∂t
+ gkl̄Ril̄Rkj̄

then

(2.2) Zij̄w
iwj̄ ≥ 0

for any w ∈ T (1,0)(M). Let pij̄ = Rij̄ + τgij̄ and denote its inverse by (pij̄).
We have

∂

∂t
log φ = pij̄ ∂

∂t
pij̄ − gij̄ ∂

∂t
gij̄

= pij̄

(

∂

∂t
Rij̄ − τRij̄

)

+ gij̄Rij̄

≥ pij̄
(

−gkl̄Ril̄Rkj̄ − τRij̄

)

+ gij̄Rij̄

= pij̄
(

−gkl̄Ril̄Rkj̄ − τpij̄

)

+ τ2pij̄gij̄ + gij̄Rij̄

(2.3)
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Now at the point (p, t), we choose a unitary basis such that gij̄ = δij and
Rij̄ = λiδij . Then pij̄ = (λi + τ)δij and pij̄ = (λi + τ)−1δij . Hence, we have

∂

∂t
log φ ≥ −

n
∑

i=1

λ2
i

λi + τ
− τn +

n
∑

i=1

τ2

λi + τ
+

n
∑

i=1

λi

=
n

∑

i=1

(

−λ2
i

λi + τ
− τ +

τ2

λi + τ
+ λi

)

= 0.

(2.4)

From this (i) follows. The proof of (ii)–(iv) is similar to the proof of (ii)–(iv)
in Proposition 3.1 of [9]. �

For each k, consider the lifted family of metrics gk(t) := Φ∗
tk

g(tk + t)
on D(r) for t ∈ [−1,∞), say. Then it is easy to see that gk(t) solves the
Kähler–Ricci flow (1.6) on D(r). Then by Proposition 2.1 and the Kähler–
Ricci flow it follows that some subsequence of gk(t) converges to a smooth
limit family h(t), uniformly on compact subsets of D(r) × (−1,∞). It is easy
to see that these are Kähler metrics on D for all t and that h(t) solves (1.6).
Moreover, by Proposition 2.3, the eigenvalues of the Ricci tensor Rh

ij̄(t) of
h(t) at the origin are equal to lims→∞ λi(s) for any t ∈ [0,∞). Therefore,
μ1 > μ2 > · · · > μl > 0 are distinct eigenvalues of Rh

ij̄(t) at the origin. By
the uniform bounds on the covariant derivatives of the curvature tensor of
h(t) in D(r) × (−1,∞), and by Proposition 2.3, we may have the following
inequality on D(r), for t ≥ −1/2, and by choosing a smaller r if necessary:

(2.5) Rh
ij̄ ≥ Chij̄.

Theorem 2.4. Let Rch
ij̄(t) be the Ricci tensor of the metric hij̄(t) on D(r).

(i) For each t ∈ [0,∞) we have

Rch
ij̄(t) + κhij̄(t) = fij̄(t)

for some smooth real-valued function f(t) on D(r) such that fij(t) = 0
and the gradient of f(t) in h(t) is zero at the origin.

(ii) Let μ1 > μ2 > · · · > μl > 0 be as above. For 1 ≤ i ≤ l, let Ei be the
eigenspace corresponding to μi of Rich(0, 0) at t = 0 at the origin with
respect to h(0). Then Ei is also the eigenspace corresponding to μi of
Rich(0, t) for all t ≥ 0 at the origin with respect to h(t), 1 ≤ i ≤ l.
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To prove the theorem, we first prove a lemma which is a direct
modification of the results in [5]. In the case of κ = 1, it will be more
convenient to consider the transformed metric h̃(t) = th(log t) which solves
(1.6) on D(r) × [e−1,∞) with κ = 0. It is clear that h̃(t) is the limit of
the transformed sequence g̃k(t) := tgk(log t) uniform on compact sets of
D(r) × [e−1,∞) which also satisfy (1.6) with κ = 0.

Let Zij̄ and Zk
ij̄ be the Harnack quadratic tensors corresponding to h̃(t)

and g̃k(t), respectively, as defined in Theorem 2.1 in [5]. Namely for any
holomorphic vector (V i) at a point q ∈ D(r),

(2.6) Zij̄ =
∂

∂t
Rh̃

ij̄ + h̃lk̄Rh̃
ik̄R

h̃
lj̄ + Rh̃

ij̄,kVk̄ + Rh̃
ij̄,k̄Vk + Rh̃

ij̄kl̄Vk̄Vl +
1
t
Rh̃

ij̄

and Zk
ij̄ is defined similarly. Denote the trace h̃ij̄Zij̄ of Zij̄ by Z. Note

that Z is a smooth function defined on the holomorphic tangent bundle
T (1,0)(D(r)).

In case κ = 0, then let Qij̄ and Qk
ij̄ be the Harnack quadratic tensors

corresponding to h(t) and gk(t), respectively, as defined in Theorem 2.3 in
[5]. Namely for any holomorphic vector (V i) at a point x ∈ D(r),

(2.7) Qij̄ =
∂

∂t
Rh

ij̄ + hlk̄Rh
ik̄R

h
lj̄ + Rh

ij̄,kVk̄ + Rh
ij̄,k̄Vk + Rh

ij̄kl̄Vk̄Vl

and Qk
ij̄ is defined similarly. Denote the trace hij̄Qij̄ of Qij̄ by Q.

Lemma 2.5.

(i) For any holomorphic vector V ∈ T (1,0)(D(r)), Zij̄ is a non-negative
quadratic form. Moreover, if Z is positive at some point x0 ∈ D(r) for
all V ∈ T

(1,0)
x0 (D(r)) at t = t0, then Z is positive for all t > t0 and for

V ∈ T (1,0)(D(r)).

(ii) For any holomorphic vector V ∈ T (1,0)(D(r)), Qh
ij̄ is a non-negative

quadratic form. Moreover, if Qh is positive at some point x0 ∈ D(r)
for all V ∈ T

(1,0)
x0 (D(r)) at t = t0, then Qh is positive for all t > t0 and

for V ∈ T (1,0)(D(r)).

Proof. For any holomorphic vector W , Zk
ij̄W

iW j̄ ≥ 0 for all k by Theorem
2.1 in [5]. Since Zij̄ is the limit of the Zk

ij̄’s on D(r) for all t, Zij̄W
iW j̄ ≥ 0.

This proves the first statement of (i). The first statement of (ii) can be
proved similarly.

To prove the second statement in (i), assume there is some x0 ∈ D(r)
and t0 ≥ e−1 so that Z > 0 for all V ∈ T

(1,0)
x0 (D(r)). Given any T > t0,
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we note that for C > 0 there exists some K > 0 such that given any point
(x, t) ∈ D(r) × [t0, T ] and V ∈ T

(1,0)
x (D(r)), with Euclidean length ||V || >

K, we must have

(2.8) Z > C

at (x, t) and V . This follows from (2.6), (2.5) and the fact that the curvature
tensor of h̃(t) and its covariant derivatives in time and space are uniformly
bounded on D × [t0, T ] by constants independent of space and time by our
estimates on the g̃′

ks. Hence there exist a neighborhood U of x0 and ε > 0
such that Z ≥ ε for all holomorphic vector V at x ∈ U at t = t0.

Choose a smooth function F on D(r) such that F (x0) > 0, F is zero
outside a small neighborhood of x0 and Z − F

t20
≥ 0 for all V in T (1,0)(D(r))

at t = t0.
Let F evolve by the heat equation on D × [t0, T ] with the following initial

and boundary conditions:

∂

∂t
F = ΔtF in D × [t0, T ]

F = 0 on ∂D × [t0, T ]
F (x, t0) = F (x)

(2.9)

where Δt is the Laplacian relative to h̃(t). F is then strictly positive in
D × (t0, T ] by the strong maximum principle [29, Theorem 5, Chapter 3].
We will show that Z̃ := Z − F

t2 is also non-negative for all V and (x, t) ∈
D × (t0, T ]. Without loss of generality we may assume h̃ is smooth up to
the boundary of D(r). Let Z̃ assume its minimum over all (x, t) ∈ D(r) ×
[t0, T ] and V , at some point (x, t1) and some vector V0. This minimum
exists by compactness and by (2.8). Now assume this minimum is negative.
Then by the initial condition of F , we must have t1 > t0. Also, by the
non-negativity of Z and the zero Dirichlet boundary condition on F , we
must have x strictly inside D(r). As in [5], we may then extend V0 locally
around (x, t1) in space-time such that (3.2) in [5] holds. At (x, t1) we then
have

(

∂

∂t
− Δt

)

Z̃ =
(

∂

∂t
− Δt

)

Z + 2
F

t3

= Zij̄R
h̃
jı̄ − 2

Z

t
+ 2

F

t3
(2.10)
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= Zij̄R
h̃
jı̄ − 2

Z̃

t
> 0.

But this contradicts the fact that Z̃ is minimal at (x, t1) and V0. Thus Z̃ is
non-negative as claimed, which completes the proof of (i) of the lemma.

We now consider the second statement of (ii). Assume there is some
x0 ∈ D(r) and t0 ≥ 0 such that Q is positive at (x0, t0) for all V . As before,
for any T > t0 we observe that given any C > 0, there exists some K > 0
such that given any point (x, t) ∈ D(r) × [t0, T ] and V ∈ T

(1,0)
x (D(r)) with

Euclidean length ||V || > K, we must have Z > C at (x, t) and V .
Hence we can choose a smooth function F on D such that F (x0) > 0, F

is zero outside a small neighborhood of x0 and Q − F ≥ 0 for all V every-
where on D(r) at t = t0. Let F evolve by heat equation on D × [t0, T ] with
the following initial and boundary conditions:

∂

∂t
F = ΔtF in D(r) × [t0, t]

F = 0 on ∂D(r) × [t0, T ]
F (x, t0) = F (x)

(2.11)

where Δt is the Laplacian relative to h(t). F is then strictly positive
in D × (t0, T ] by the strong maximum principle. Now given any ε > 0,
we will show that Q̃ := Q − F + εet is non-negative for all V and (x, t) ∈
D(r) × (t0, T ]. Letting ε approach zero, this will prove that Q − F is non-
negative for all V and (x, t) ∈ D(r) × (t0, T ], thus proving the lemma.

Let Q̃ assume its minimum over all (x, t) ∈ D(r) × [t0, T ] and V , at
some point (x, t) and some vector V0. Now assume this minimum is neg-
ative. Then by our initial condition of F , we must have t > t0. Also,
by the non-negativity of Q and the zero Dirichlet boundary condition on
F , we must have x strictly inside D(r). We may then extend V0 locally
around (x, t) in space-time such that (3.1) in [5] holds. At (x, t) we then
have

(

∂

∂t
− Δt

)

Q̃ =
(

∂

∂t
− Δt

)

Q + εet

= Qij̄R
h̃
jī + εet

> 0.

(2.12)
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But this contradicts the fact that Q̃ is minimal at (x, t) and V0. Thus Q̃ is
non-negative as claimed, which completes the proof of (ii). �
Proof of Theorem 2.4. (i): We begin with the case where κ = 1 in Theorem
2.4. With the same notations as in the Lemma 2.5, by Proposition 2.3 and
the arguments following (3.7) in [9], we see that

tRh̃(0, t)

is constant for all t ∈ [e−1,∞) where Rh̃ is the scalar curvature of h̃. Thus at
the space time point (0, t) we have Rh̃ + t ∂

∂tR
h̃ = 0. Applying Lemma 2.1

and following the exact argument in the proof of Theorem 4.2 in [5], we
conclude that for each t ∈ [e−1,∞) there is a smooth real-valued function
f̃(t) on D(r) such that the gradient of f̃(t) is holomorphic and is zero at the
origin. Moreover, we have

(2.13) Rch̃
ij̄ = f̃ij̄ +

1
t
h̃ij̄.

Transforming h̃ back to h, it is easy to see that (i) in Theorem 2.4 is true
for κ = 1.

We now consider the case of κ = 0. By Proposition 2.3 we have Rh(0, t)
is constant for t ∈ [0,∞), and in particular, ∂

∂tR
h = 0 at the space time

point (0, t). Applying Lemma 2.5 and following the exact argument in the
proof of Theorem 4.1 in [5], we conclude that for each t ∈ [0,∞) there is a
smooth real-valued function f(t) on D(r) such that the gradient of f(t) is
holomorphic and is zero at the origin. Moreover, we have

(2.14) Rch
ij̄ = fij̄.

This completes the proof of (i) in Theorem 2.4.
(ii): Let λ1 ≥ · · · ≥ λn > 0 be the eigenvalues of Rch at 0. Note that

they are independent of t. Suppose v ∈ T 1,0
0 (D(r)) is not an eigenvector for

Rch(0, 0) for λk. We will show that v cannot be an eigenvector for Rch(0, t)
for all t ∈ (0,∞) for λk. It is sufficient to prove that the quantity

F (t) : = |Rch(0, t)(v, ·) − λkh(0, t)(v, ·)|2h(t)

= hjk̄(0, t)(Rh
ij̄(0, t) − λkhij̄(0, t))vi

· (Rh
lk̄(0, t) − λkhlk̄(0, t))vl

(2.15)

can never be zero since this is zero at t if and only if v is an eigenvector
for Rch(0, t) with eigenvalue λk. Let t0 ∈ [0,∞) be arbitrary. Choose a
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holomorphic coordinate in D(r) such that at 0 ∈ D(r) we have hij̄(t0) = δij̄

and Rh
ij̄(t0) = λiδij̄. Let f(t) be as in Lemma 2.5. It is not hard to show that

we may choose some 1 > δ > 0 such that starting at any point p ∈ D(δr) we
may flow along −1

2∇f(t0) for t ∈ [0, 1] while staying inside D(r) and let ϕt be
the local biholomorphism determined by the flow. Note that the origin is a
fixed point of the flow because ∇f(t) = 0 at the origin. Let g(t) = ϕ∗

t (h(t0))
be the soliton metric on D(δr) × [0, 1) with initial condition g(0) = h(t0).
Then at 0 ∈ D(δr), in the above coordinates, we have gij̄(t) = e−(λi+κ)tδij̄

and Rg
ij̄(t) = λie

−(λi+κ)tδij̄. For any k we then have

G(t) := |Rcg(0, t)(v, ·) − λkg(0, t)(v, ·)|2g(t)

=
∑

i�=k

(λi − λk)2|vi|2e−(λi+κ)t(2.16)

and thus

G′(0) =
∑

i�=k

−(λi + κ)(λi − λk)2|vi|2

≥ −(λ1 + κ)G(0).
(2.17)

From the above equation, the fact that g(0) = h(t0) on D(δr), and the fact
that both g(t) and h(t0 + t)) solve (1.6) on D(δr) × [0, 1), it follows that
G(0) = F (t0) and G′(0) = F ′(t0). Hence for any choice of k we have F ′(t0) ≥
−(λ1 + κ)F (t0). But t0 ∈ [0,∞) is arbitrary. Thus for any k we have F ′(t) ≥
−(λ1 + κ)F (t) for all t ∈ [0,∞). It is now easy to see that if F (0) 	= 0, then
F (t) cannot be zero for any t. This completes the proof of our claim.

From the claim, we conclude that if v is an eigenvector of h(t) for t > 0
with eigenvalue λk, then v must be in Ek. Since the multiplicity of each
eigenvalue μk is constant in t, from this it is easy to see the theorem is true.

�
Now given (M, g(t)) as in the beginning of the section, we denote the

eigenvalues of Rc(p, t) by λi(t) for i = 1, ..., n as before, and we let μk, Ek(t)
and Pk(t) for k = 1, ..., l be as in Proposition 2.3. We let nm for m = 1,
1, . . . , l + 1 with n1 = 0 and nl+1 = n be such that λi ∈ (μm − ρ, μm + ρ)
for all nm < i ≤ nm+1 and m = 1, . . . , l and t sufficiently large such that the
intervals [μm − ρ, μm + ρ] are disjoint as in Proposition 2.3 part (iv). For
any nonzero vector v ∈ T 1,0

p (M), let v(t) = v/|v|t, where |v|t is the length of
v with respect to g(t) and vi(t) = Pi(t)v(t).

We now show that Theorem 4.1 in [9] is also true for (M, g(t)) in our case;
that Rc(p, t) can be “diagonalized” simultaneously near infinity and that g(t)
is “Lyapunov regular”, to borrow a notion from dynamical systems (see [1]).
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Theorem 2.6. Let (M, g(t)) be as described in the beginning of the section.
Then V = T

(1,0)
p (M) can be decomposed orthogonally with respect to g(0) as

V1 ⊕ · · · ⊕ Vl so that the following are true:

(i) If v is a nonzero vector in Vi for some 1 ≤ i ≤ l, then limt→∞ |vi(t)| =
1 and thus limt→∞ Rc(v(t), v̄(t)) = μi and

lim
t→∞

1
t

log
|v|2t
|v|20

= −μi − κ.

Moreover, the convergence are uniform over all v ∈ Vi \ {0}.
(ii) For 1 ≤ i, j ≤ l and for nonzero vectors v ∈ Vi and w ∈ Vj where i 	= j,

limt→∞〈v(t), w(t)〉t = 0 and the convergence is uniform over all such
nonzero vectors v, w.

(iii) dimC(Vi) = ni+1 − ni for each i.

(iv)
l

∑

i=1

(−μi − κ) dimC Vi = lim
t→∞

1
t

log
det(gij̄(t))
det(gij̄(0)

.

Proof. Let tk → ∞ and construct gk with limit h(t) as in Theorem 2.4.
Observe that since h(t) is a smooth limit of the gk(t)′s on D(r) × [0,∞),
the analog of Lemma 3.2 in [9] is true in our case. Using this and (ii) in
Theorem 2.4, we may prove the theorem by contradiction exactly as in the
proof of Theorem 4.1 in [9]. �

3. Transition maps

Let (M, g(t)) be as in Theorem 1.5 and let p ∈ M be fixed. In addition,
we will assume that Rij̄ ≥ a′gij̄ for some a′ > 0 at p and t = 0. Then by
Proposition 2.3, there exists a > 0 such that

(3.1) Rij̄ ≥ agij̄

at p for all t ≥ 0. Since the covariant derivatives Riemannian curvature
tensor Rmt of g(t) is uniformly bounded, we can conclude that by choosing
a possibly smaller a > 0, that (3.1) is still true in Bt(p, R) for some R > 0
independent of t, where Bt(p, R) is the geodesic ball of radius R with center
at p with respect to the metric g(t). Since Bt1(p, R) ⊂ Bt2(p, R) for t2 ≥ t1
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as g(t) is shrinking, we have

(3.2) Lt2(γ) ≤ e− a

2
(t2−t1)Lt1(γ)

for any curve in Bt1(p, R). Here Lt denotes the length function with respect
to g(t).

Recall that by Proposition 2.1, there exist r > 0 and C > 0 indepen-
dent of t ≥ 0 and a holomorphic maps Φt : D(r) → M with the following
properties:

(i) Φt is a local biholomorphism from D(r) onto its image;

(ii) Φt(0) = p;

(iii) Φ∗
t (g(t))(0) = ge;

(iv) 1
C ge ≤ Φ∗

t (g(t)) ≤ Cge in D(r).

where ge is the standard metric on C
n. Let T > 0 and denote ΦiT simply

by Φi. In this section, we want to construct injective holomorphic maps
Fi from D(ρ) to D(ρ) for some ρ such that Φi = Φi+1 ◦ Fi+1. We should
emphasize that Φi may not be a covering map.

In this section, we always assume that t ≥ 0. By property (iv) and
reducing r if necessary, we may assume that Φt(D(r)) ⊂ Bt(p, R), where
R > 0 is such that (3.2) is true. In fact, we have the following:

Lemma 3.1. For any 0 < ρ < r, there exists R1 > 0 independent of t such
that

(3.3) Bt

(

p,
1
R 1

)

⊂ Φt(D(ρ)) ⊂ Bt(p, R1)

Proof. By (iv) above, it is easy to see that

Φt(D(ρ)) ⊂ Bt(p, C1)

for some C1 > 0 independent of t, where Bt(p, r) is the geodesic ball with
radius r centered at p with respect to g(t). On the other hand, ̂Bt(0, C2) ⊂
D(ρ) for some C2 > 0 independent of t, where ̂Bt(0, C2) is the geodesic ball
with radius C2 centered at 0 with respect to Φ∗

t (g(t)). Hence

Φt(D(ρ)) ⊃ Φt( ̂Bt(0, C2)) ⊃ Bt(p, C2).

From this it is easy to see the lemma follows. �
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Lemma 3.2. For any 0 < ρ ≤ r, where r is as in (i)–(iv), there exists
ρ1 > 0 independent of t, satisfying the following for any t: Let γ be a smooth
curve in M with γ(0) = q such that q ∈ Bt(p, ρ1) and Lt(γ) < ρ1. Then
Φt(z) = q for some z ∈ D(ρ

8), and for all such z there is a unique lift γ̃ of
γ by Φt so that γ̃(0) = z and γ̃ ⊂ D(ρ

2).

Proof. Let ρ1 > 0 be determined later. Let q ∈ Bt(p, ρ1) and let γ(s), 0 ≤
s ≤ ρ1 be a curve from q parametrized by arc-length with respect to g(t).
Suppose z ∈ D(ρ

8) with Φt(z) = q
Since Φt is a local biholomorphism, there exists s0 > 0 and a curve γ̃

from z with γ̃ ⊂ D(1
8ρ) such that Φt ◦ γ̃ = γ on [0, s0]. Let A be the set of

s, such that γ has a lift γ̃ in D(1
2ρ) on [0, s] with γ̃(0) = z . Since Φt is a

local biholomorphism, A is open in [0, ρ1]. Suppose sk → s and sk ∈ A. By
(iv), there is a constant C > 0 which is independent of t such that

C−1Le(γ̃|[0,sk]) ≤ Lt(γ|[0,sk]) ≤ ρ1,

where Le is the length with respect to ge. Hence

Le(γ̃|[0,sk]) ≤ Cρ1 ≤ 1
4
ρ

if ρ1 < 1
4C ρ. Note that since γ̃(0) = z ∈ D(1

8ρ), we may assume that γ̃(sk) →
z1 for some z1 ∈ D(3

8ρ). From this it is easy to see that γ can be lifted up
to s while staying in D(1

2ρ) . Hence A is also closed. Since Φt is a local
biholomorphism, the lifting must be unique. In particular, by choosing
a smaller ρ1 which is independent of t, we conclude that every minimal
geodesic from p with length less than ρ1 can be lifted to a curve in D(1

8ρ).
Hence for all q ∈ Bt(p, ρ1), there is a point z ∈ D(1

8ρ) such that Φt(z) = q.
This completes the proof of the lemma. �

Lemma 3.3. Fix t ≥ 0. Let 0 < ρ ≤ r be given and let ρ1 be as in Lemma
3.2. Given any ε > 0, there exists δ > 0 satisfying the following properties:

Let γ(τ), β(τ), τ ∈ [0, 1] be smooth curves from q ∈ Bt(p, ρ1) with length
less than ρ1 and let z0 ∈ D(1

8ρ) with Φt(z0) = q. Let γ̃, ˜β be the liftings from
z0 of γ and β as described in Lemma 3.2. Suppose dt(γ(τ), β(τ)) < δ for all
τ ∈ [0, 1], then de(γ̃(1), ˜β(1)) < ε. Here dt is the distance in g(t) and de is
the Euclidean distance.

Proof. Since Φt is a local biholomorphism, there is σ > 0 such that Φt is a
biholomorphism onto its image when restricted on D(z, σ) for all z ∈ D(1

2ρ),
where D(z, σ) is the Euclidean ball with center at z and radius σ.
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Let q, z0, γ, β, γ̃ and ˜β as in the lemma. Since γ̃ ⊂ D(1
2ρ), by property

(iv) of Φt, there exists C1 > 0 such that

(3.4) Φt(D(γ̃(τ)), σ) ⊃ Bt(γ(τ), C−1
1 σ)

and

(3.5) de(γ̃(τ), z) ≤ C1dt(γ(τ), Φt(z))

for all z ∈ D(γ̃(τ), σ) with Φt(z) ∈ Bt(γ(τ), C−1
1 σ). Note that C1 is inde-

pendent of the curves γ and β.
Given 0 < ε < σ, let 0 < δ < C−1

1 ε < C−1
1 σ. Suppose β and ˜β are as in

the lemma such that dt(γ(τ), β(τ)) < δ for all τ . Since γ̃(0) = ˜β(0) = z0, we
have de(γ̃(τ), ˜β(τ)) < ε in [0, τ0] for some τ0 > 0. Let A be the set τ in [0, 1]
such that de(γ̃(τ ′), ˜β(τ ′)) < ε for all τ ′ ∈ [0, τ ]. Then A is nonempty and is
open. Suppose τk ∈ A and τk → τ . Then

de(γ̃(τ), ˜β(τ)) ≤ ε.

Since ε < σ, δ < C−1
1 σ, by (3.5) and the fact that Φt(γ̃(τ)) = γ(τ), Φt(˜β(τ))

= β(τ), we have

de(γ̃(τ), ˜β(τ)) ≤ C1dt(γ(τ), β(τ)) ≤ C1δ < ε.

Hence τ ∈ A and A = [0, 1]. This completes the proof of the lemma. �
Apply Lemma 3.2 to ρ = r and choose ρ1 as in the lemma. Note that ρ1 is
independent of i and T . For any z ∈ D(r), let γ∗(τ), 0 ≤ τ ≤ 1, be the line
segment from 0 to z, and let γ = Φi ◦ γ∗. By (3.2) and property (iv) for Φt,
there is a constant C1 > 0 independent of i and T such that

(3.6) Li+1(γ) ≤ e− a

2
T Li(γ) ≤ C1e

− a

2
T r.

Now we choose T > 0 large enough so that C1e
− a

2
T r < ρ1. Then by Lemma

3.2, there is a unique lift γ̃ of γ by Φi+1 so that γ̃(0) = 0 and γ̃ ⊂ D( r
2). We

then define Fi+1(z) = γ̃(1). Fi+1 is then well-defined by the uniqueness of
the lifting. We have:

Lemma 3.4. The maps Fi+1 satisfy the following:

(a) Fi+1 : D(r) → D( r
2), Fi+1(0) = 0 and Φi = Φi+1 ◦ Fi+1.

(b) For each i, Fi+1 is a local biholomorphism.
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(c)

b1|v| ≤ |F ′
i+1(0)v| ≤ b2|v|

for some 0 < b1 ≤ b2 < 1 for all i and for all vector v ∈ C
n, where F ′

is the Jacobian of F .

(d) There exist r > r1 > 0 and 0 < θ < 1 independent of i such that

|Fi+1(z)| ≤ θ|z|

for all i and for all z ∈ D(r1) and Fi+1 is injective on D(r1).

Proof. (a) follows immediately from the definition of Fi+1.
To prove (b), let us first prove that Fi+1 is continuous. Let z0 ∈ D(r),

γ∗(τ), 0 ≤ τ ≤ 1, be the line segment from 0 to z0, γ = Φi ◦ γ∗ and γ̃ is the
lift of γ by Φi+1 with γ̃(0) = 0. Let w = γ̃(1) = Fi+1(z0). Given ε > 0, let
δ > 0 be as in Lemma 3.3 for Φi+1.

We may assume that |z0| ≤ 1 − η for some η > 0. Since Φi is uniformly
continuous on D(1 − η/2), there exists σ > 0 such that if |z1 − z2| < σ,
z1, z2 ∈ D(1 − η/2), then di(Φi(z1), Φi(z2)) < δ.

Moreover, it is easy to see that we can find δ′ > 0 such that if |z0 − ζ| <
δ′, then the ray β∗ defined on [0, 1] from 0 to ζ satisfies |γ∗(τ) − β∗(τ)| < σ
and β∗ ⊂ D(1 − η/2). Let ζ be such a point in D(r) with β∗ as above and
let β = Φi ◦ β∗. Hence we have

di+1(γ(τ), β(τ)) ≤ di(γ(τ), β(τ)) < δ.

By Lemma 3.3, if ˜β is the lift of β by Φi+1 with ˜β(0) = 0, then |γ̃(1) −
˜β(1)| < ε. That is to say, |Fi+1(z0) − Fi+1(ζ)| < ε and Fi+1 is continuous.

Now it is easy to see that Fi+1 is a local biholomorphism. In fact,
suppose Fi+1(z) = w and suppose Φi(z) = x and Φi+1(w) = y. Let ε1 > 0
be such that Φi and Φi+1 are biholomorphisms when restricted on D(z, ε1)
and D(w, ε1), respectively. Since Fi+1 is continuous, we can find 0 < δ1 < ε1
such that Fi+1(D(z, δ1)) ⊂ D(w, ε1). Since Φi = Φi+1 ◦ Fi+1, we have

Fi+1 = Φ−1
i+1 ◦ Φi

on Be(z, δ1). Hence Fi+1 is a local biholomorphism.
To prove (c), by properties (ii), (iii) of Φt, the fact that Fi+1 = Φ−1

i+1 ◦ Φi

near the origin, the fact that Rij̄(t) is uniformly bounded and (3.1), it is easy
to see that (c) is true.
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To prove (d), by gradient estimates, we have

Fi+1(z) = Fi+1(0) + F ′
i+1(0)z + Hi(z) = F ′

i+1(0)z + Hi(z),

where |H ′
i(z)| ≤ C|z| for some constant C independent of i on D(1

2r), say.
Hence by (c), there exist r > r1 > 0 and 1 > η > 0, independent of i such
that Fi+1 : D(r1) → D(r1) so that

|Fi+1(z)| ≤ θ|z|

for all i and for all z ∈ D(r1) and Fi+1 is injective on D(r1). �
By this lemma and Theorem 2.6, using the method in [9, §5], see also

[19, 30], we can prove the following:

Lemma 3.5. Let Fi be as in Lemma 3.4. There exist biholomorphisms Gi

on C
n and polynomial maps Ti with the following properties:

(a) Ti(0) = 0, T ′
i (0) = Id, and supz∈D(1) |Ti(z)| ≤ C1 for some constant

C1 independent of i.

(b) Gi(0) = 0 and for all open sets, U containing the origin

∞
⋃

k=1

(Gk ◦ · · · ◦ G1)−1(U) = C
n.

(c) There exist 0 < r2 < r1 and C2 > 0 independent of k ≥ 1 such that

G−1
k+1 ◦ G−1

k+2 ◦ · · · ◦ G−1
k+l ◦ Tk+l ◦ Fk+l ◦ · · · ◦ Fk+2 ◦ Fk+1

converges uniformly on D(r2) as l → ∞ to an injective holomorphic
map Ψk such that

D(C−1
2 r2) ⊂ Ψk(D(r2)) ⊂ D(C2r2).

(d) By choosing r2 smaller if necessary, we may have that Ti is injective
on D(r2) such that T−1

i is defined on D(r2) and T−1
i (D(r2)) ⊂ D(r)

for all i.

4. Proof of the main theorem

We are now ready to prove Theorem 1.5. By the remark at the beginning of
§2, we may assume that M is simply connected and g(t) has positive Ricci
curvature for all t.
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Let Φi be as in the previous section so that one can define Fi as in
Lemma 3.4. Let Gi, Ti, r2, C1 and C2 be as in Lemma 3.5. We want to
construct a biholomorphism from C

n onto M as follows: Let Ωi = (Gi ◦ · · · ◦
G1)−1(D(r2)) and define

Si = Φi ◦ T−1
i ◦ Gi ◦ · · · ◦ G1,

which is defined on Ωi by Lemma 3.5.
Theorem 1.5 will be proved if we can prove that Si converges to a

bihololomorphism from C
n onto M . We will prove this in several steps

as described in the following lemmas.

Lemma 4.1. For all z ∈ C
n, limi→∞ Si(z) = S(z) exists.

Proof. Let k be fixed and consider Uk = (Gk ◦ · · · ◦ G1)−1( 1
2C2

D(r2)), where
C2, r2 are as in Lemma 3.5(c). Let Ψk as in Lemma 3.5(c). Since the con-
vergence in the lemma is uniform in D(r2), and G−1

k+1 ◦ G−1
k+2 ◦ · · · ◦ G−1

k+l ◦
Tk+l ◦ Fk+l ◦ · · · ◦ Fk+2 ◦ Fk+1 and Ψk are injective, we can find 0 < ρ < r2
and l0 such that

G−1
k+1 ◦ G−1

k+2 ◦ · · · ◦ G−1
k+l ◦ Tk+l ◦ Fk+l ◦ · · · ◦ Fk+2 ◦ Fk+1(D(ρ))

⊃ D

(

1
2C2

r2

)

(4.1)

if l ≥ l0. Hence for every l ≥ l0 we have: for every z ∈ Uk, there exists
ζl ∈ D(ρ) such that
(4.2)
G−1

1 ◦ · · · ◦ G−1
k ◦ G−1

k+1 ◦ · · · ◦ G−1
k+l ◦ Tk+l ◦ Fk+l ◦ · · · ◦ Fk+2 ◦ Fk+1(ζl) = z.

Hence

Sk+l(z) = Φk+l ◦ T−1
k+l ◦ Gk+l ◦ · · · ◦ G1(z)

= Φk+l ◦ Fk+l ◦ · · · ◦ Fk+2 ◦ Fk+1(ζl)
= Φk(ζl).

(4.3)

Take two such subsequences ζlj and ζl′j such that ζlj → w and ζl′j = w′ as
j → ∞ with w, w′ ∈ D(ρ). Since the convergence in Lemma 3.5 is uniform,
by (4.2) we have

G−1
1 ◦ · · · ◦ G−1

k ◦ Ψk(w) = z = G−1
1 ◦ · · · ◦ G−1

k ◦ Ψk(w′).
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Hence we must have w = w′ and so ζl → w as l → ∞. By (4.3), we have

lim
l→∞

Sk+l(z) = Φk(w)

= Φk ◦ Ψ−1
k ◦ Gk ◦ · · · ◦ G1(z).

(4.4)

Hence S = limi→∞ Si exists on Uk. By Lemma 3.5,
⋃

k Uk = C
n, from

this the lemma follows. �

Lemma 4.2. S is a local biholomorphic map from C
n into M .

Proof. This follows immediately from (4.4). �

Lemma 4.3. For any ε > 0,
⋃

k Φk(D(ε)) = M .

Proof. Since the Ricci curvature of g(0) is positive, for any R > 0, we have
Rij̄(x, 0) ≥ agij̄(x, 0) for some a > 0 for all x ∈ B0(p, R), which is the geo-
desic ball with respect to g(0). Let λi(x, t) be the eigenvalues of Rij̄(x, t)
with respect to g(t). Then λi(x, t) ≤ C for some constant C independent of
x and t. On the other hand, by Proposition 2.6, we have

∏n
i=1 λi(x, t) ≥ an

for x ∈ B0(p, R). Hence there exists b > 0 independent of t such that

Rij̄(x, t) ≥ bgij̄(x, t)

for all t ≥ 0 and x ∈ B0(p, R). By the Kähler–Ricci flow equation, we
conclude that

B0(p, R) ⊂ Bt(p, e− b+κ

2
tR).

From this and Lemma 3.1 the lemma follows. �

Lemma 4.4. S is surjective.

Proof. From the proof of Lemma 4.1, we conclude that

S(Cn) ⊃ Φk ◦ Ψ−1
k

(

D

(

1
2C2

r2

))

for all k. From this, Lemma 4.3 and the proof of Lemma 3.5 (c) (see [9, §5]),
it is easy to see that S(Cn) = M . �

Lemma 4.5. S is injective.
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Proof. Suppose there exists distinct z1, z2 ∈ C
n such that S(z1) = S(z2) = q.

Let σ(τ), 0 ≤ τ ≤ 1 be the line segment from z1 to z2. Let γ = S ◦ σ. Then γ
is a smooth closed curve in M starting from q. Since M is simply connected,
we can find a smooth homotopy α(s, τ), 0 ≤ s, τ ≤ 1, with α(0, τ) = γ(τ),
α(1, τ) = q (the constant map), and α(s, 0) = α(s, 1) = q for all s.

By Lemma 3.5, there exists 0 < ρ < r2 and η > 0 which are independent
of i such that Ψ−1

i is defined on D(η) and

(4.5) Ψ−1
i (D(η)) ⊂ D

(

1
8
ρ

)

For ρ > 0 let ρ1 > 0 be such that Lemma 3.2 is true. By the proof of Lemma
4.3, there exists k0 such that if k ≥ k0, then q ∈ Bk(p, ρ1) and Lk(α(s, ·)) <
ρ1 for all s, where Bk(p, ρ1) is the geodesic ball of radius ρ1 at p relative
to g(kT ), and Lk is the length with respect to g(kT ). We may also assume
that σ ⊂ G−1

1 ◦ · · · ◦ G−1
k (D(η)), provided k0 is large enough.

Now fix k ≥ k0. Let γ̃ = Ψ−1
k ◦ Gk ◦ · · · ◦ G1 ◦ σ. Then γ̃ ⊂ D(ρ

8) by
(4.5) and it is a lift of γ by Φk by (4.4). Moreover, if γ̃(0) = w1, and
γ̃(1) = w2, then w1 	= w2 because Gi and Ψk are injective. Since Φk(w1) =
Φk(w2) = q ∈ Bk(p, ρ1), by Lemma 3.2, for any s, there is a lift ˜βs(τ) of
α(s, τ) by Φk such that ˜βs(0) = w1 and ˜βs ⊂ D(ρ

2).
We claim that ˜βs(1) = w2. Let ε > 0 be such that Φk is a biholomor-

phism onto its image when restricted on Be(w2, ε). For such ε > 0, let δ > 0
be as in Lemma 3.3. On the other hand, let ξ > 0 be such that

(4.6) dk(α(s1, τ), α(s2, τ)) < δ

for all τ , if |s1 − s2| ≤ ξ.
Hence by Lemma 3.3, if 0 ≤ s ≤ ξ then ˜βs(1) ∈ Be(w2, ε). But Φk(˜βs(1))

= α(s, 1) = q, and Φk is injective on Be(w2, ε). Thus we have ˜βs(1) = w2 for
0 ≤ s ≤ ξ. In particular, ˜βξ(1) = w2. By (4.6) and Lemma 3.3, we can argue
as before and conclude that ˜β2ξ(1) = w2. Continue in this way, we have that
˜β1(1) = w2. On the other hand, ˜β1 is a lift of α(1, ·). Hence Φk(˜β1(τ)) = q
for all τ . Since w1 	= w2, there is τ with β̃1(τ) 	= w2 and β̃1(τ) − w2| ≤ ε

2 .
This is impossible because Φk is a injective on Be(w2, ε). �
Theorem 1.5 now follows from Lemmas 4.2, 4.4 and 4.5.

Corollary 4.6. Let (M, g(t)) be as in Theorem 1.5 and assume that g(0)
has positive Ricci curvature at some point p ∈ M . Then M is biholomorphic
to C

n. In particular, if (M, g) is as in Theorem 1.2 and the Ricci curvature
of g is positive at some point, then M is biholomorphic to C

n.
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Proof. Let (M, g(t)) as in Theorem 1.5. We begin by proving that M has
finite fundamental group. Suppose M has infinite fundamental group and let
˜M be the universal cover of M . Then ˜M contains infinitely many preimages
p0, p1, . . . of p ∈ M , and for simplicity we will denote p0 simply by p. We
may also pull g(t) back to obtain a solution to (1.6) on ˜M , and we denote
this solution again by g(t). Note that by [6], (˜M, g(t)) must have positive
Ricci curvature on all of ˜M and for all −∞ < t < ∞ since ˜M is simply
connected and Ric(p, 0) > 0 by assumption. Now for (˜M, g(t), p) consider
Φt : D(r) → ˜M be as in Proposition 2.1. Then by choosing r smaller, if
necessary, we may have the following for all t ≥ 0:

(a1) Rict ≥ c > 0 in D(r) with respect to Φ∗
t (g(t)) for some constant c.

(a2) There exists 0 < δ < 1 such that any point in D(δr) can be joined by
a geodesic from p in D(2

3r) with respect to Φ∗
t (g(t)).

(a3) There exists C > 1 such that Bt(p, 1
C ρ) ⊂ Φt(D(ρ)) ⊂ Bt(p, Cρ) for all

ρ < r.

(a1) follows from Propositions 2.1 and 2.3 and the fact that the covariant
derivatives of the curvature tensor is bounded. (a2) follows from Proposi-
tion 2.1 and the construction of Φt through the exponential map so that the
injectivity radius of Φ∗

t (g(t)) at the origin is uniformly bounded below by a
positive constant. (a3) follows from the proof of Lemma 3.1.

Note that we must have limk→∞ dg(0)(pk, p) = ∞. Also, by the proof of
Lemma 4.3, we know that the sets Bt(p, εr), where ε = δ

C , exhaust M as
t → ∞. Thus, we can find a subsequence of pk, also denoted by pk, and a
sequence tk → ∞ such that pk ∈ ∂Btk

(p, εr).
Now consider the sequence of pull-backs Φ∗

tk
(g(tk + t) on D(r). Then

by Theorem 2.4 we may assume the sequence converges on D(r) to some
h(t) satisfying Rij̄ + κhij̄ = fij̄ at t = 0, where f is smooth, fij = 0 and
∇f(0) = 0. Now for each k, let zk be an inverse image of pk under Φtk

(which exists by our construction of pk). Then C−2δ ≤ |zk| ≤ δr for all k by
(a3), and hence we may also assume that zk → w, where C−2δr ≤ |w| ≤ δr.

Moreover, if σ is the covering map that maps pk to p, then g(t) =
σ∗(g(t)).

For any pk, let F : ˜M → ˜M be a deck transformation taking pk to p.
Then for every t, F is an isometry with respect to g(tk + t). Hence, for
every k, Φ∗

tk
(g(tk + t)) is the ‘same’ at the origin o and zk, and in particular

R(0, t) = R(zk, t) for all t. Thus, by letting k → ∞, we have that R(w, t) is
constant in time since R(o, t) is constant in time. Furthermore, by the proof
of Theorem 2.4, we may have that ∇f(w) = 0.
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Now by (a2), we can join o to w by a geodesic w.r.t. h(0) parametrized
by arc-length. As in [18: Proof of Theorem 20.1], we may compute in real
coordinates xα as follows:

d2f

ds2 = DαDβf · dxα

ds
dxβ > 0

since Rij̄ > 0, Rij̄ + κhij̄ = fij̄ and fij = 0. But this is impossible as

df

ds
= 0

at the end points o and w. We have thus proved, by contradiction, that the
fundamental group of M must be finite.

It now follows by a well-known result (see [2, p. 35 and p. 40]) that M
must be simply connected, and thus biholomorphic to C

n by the conclusion
of Theorem 1.5. This completes the proof of the corollary. �
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