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Newton polygon and string diagram
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In this paper we study the moment map images of curves in toric
surfaces. We are particularly interested in the situations when we
can perturb the moment map so as to make the image of algebraic
curves to be a graph.
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78 Wei-Dong Ruan

1. Introduction

In this paper, we study the moment map image of algebraic curves in toric
surfaces. We are particularly interested in the situations that we are able to
perturb the moment map so that the moment map image of the algebraic

curve is a graph. To put our problem into proper context, let us start with
CP2.
Consider the natural real n-torus (7T™) action on CP" given by

e?(z) = (€1, ey, ... ery,).

The T" acts as symplectomorphisms with respect to the Fubini-Study
Kahlerform

wrg = 00log(1 + |z|?).
The corresponding moment map is

r) = (f20 ),

1+ |22 1+ |x[?

which is easy to see if we write wrg in polar coordinates.

n 2
— 09l0g(1 + |22) = i S dby nd [ Y.
wrs = 001og(1 + |[*) z; kA <1+|:c|2

Notice that the moment map F' is a Lagrangian torus fibration and the
image of the moment map A = Image(F’) is an n-simplex.

In the case of CP?, A = Image(F) is a two-simplex, i.e., a triangle. Let
p(z) be a homogeneous polynomial. p defines an algebraic curve C), in CP2.
We want to understand the image of C), in A under the moment map F.

In quantum mechanics, particle interactions are characterized by Feyn-
man diagrams (one-dimensional graphs with some external legs). In string
theory, point particles are replaced by circles (string!) and Feynman dia-
grams are replaced by string diagrams (Riemann surfaces with some marked
points). Feynman diagrams in string theory are considered as some low
energy limit of string diagrams. Fattening the Feynman diagrams by replac-
ing points with small circles, we get the corresponding string diagrams. On
the other hand, string diagrams can get “thin” in many ways to degenerate
to different Feynman diagrams.

Our situation is a very good analog of this picture. The complex curve
Cp in CP? can be seen as a string diagram with the intersection points with
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the three distinguished coordinate CP"’s (that are mapped to A) as marked
points. The image of C}, under F' can be thought of as some “fattening” of
a Feynman diagram I' in A with external points in 0A.

When p is of degree d, the genus of C, is

(d—1)(d—2)

g="—"7%

Generically, C,, will intersect with CP! at d points. Ideally, the image of
C)p under the moment map will have g holes in A and d external points in
each edge of A. In general F'(Cp) can have smaller number of holes. In fact,
F(Cp) has at most g holes. (For more detail, please see the “Note on the
literature” in the end of the introduction.)

In this paper, we will be interested in constructing examples of C), such
that F'(Cp) will have exactly g holes in A and d external points in each edge
of A. Namely, the case when F'(C)p) resembles classical Feynman diagrams
the most. (Sort of the most classical string diagram.) These examples will
be constructed for any degree in Section 2.

Our interest on this problem comes from our work on Lagrangian torus
fibration of Calabi—Yau manifolds and symplectic version of SYZ conjecture
([10]) on mirror symmetry. In [5-7], we mainly concern the case of quintic
curves in CP2. The generalization to curves in toric surfaces will be useful
in [8,9]. The algebraic curves and their images under the moment map arise
as the singular set and singular locus of our Lagrangian torus fibrations.

As we mentioned, F(C,) can be rather chaotic for general curve C,,.
The condition for F'(C,) to resemble a classical Feynman diagram is related
to the concept of “near the large complex limit,” which is explained in
Section 3. (Through discussion with Qin Jing, it is apparent that near
the large complex limit is equivalent to near the Zero-dimensional strata
in M, the moduli space of stable curves of genus g. These points in M,
are represented by stable curves, whose irreducible components are all CP!
with three marked points.) It turns out that our construction of “graph-like”
string diagrams for curves in CP? can be generalized to curves in general
two-dimensional toric varieties using localization technique. More precisely,
in the moduli space of curves in a general two-dimensional toric variety, when
the curve C), is close enough to the so-called “large complex limit” (analogous
to classical limit in physics) in suitable sense, F'(C),) will resemble a fattening
of a classical Feynman diagram. This result will be made precise and proved
in theorems 3.10 and 3.14 of Section 3. Examples constructed in Section 2
are special cases of this general construction.
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One advantage of string theory over classical quantum mechanic is that
the string diagrams (marked Riemann surfaces) are more natural than
Feynman diagrams (graphs). For instance, one particular topological type
of string diagram under different classical limit can degenerate into very
different Feynman diagrams, therefore unifying them. In our construction,
there is a natural partition of the moduli space of curves such that in dif-
ferent part the limiting Feynman diagrams are different. We will discuss
this natural partition of the moduli space and different limiting Feynman
diagrams also in Section 3.

Of course, ideally, it will be interesting if F'(C),) is actually a one-
dimensional Feynman diagram I" in A. This will not be true for the moment
map F. A natural question is: “Can one perturb the moment map F to
F so that F(C,) =T?" (Notice that the moment map of a torus action
is equivalent to a Lagrangian torus fibration. We will use the two con-
cepts interchangeably in this paper.) Such perturbation is not possible in
the smooth category. But when F(C)) resembles a classical Feynman dia-
gram ' close enough, we can perturb F suitably as a moment map, so that
the perturbed moment map Fis piecewise smooth and satisfies a (Cp) =T.
This perturbation construction is explicitly done for the case of line in CP?
in Section 4 (Theorems 4.3 and 4.8). The general case is dealt with in
Section 5 (Theorems 5.11 and 5.14) combining the localization technique
in Section 3 and the perturbation technique in Section 4. (In particular,
optimal smoothness for F is achieved in Theorems 4.8 and 5.14.)

Note on the literature: Our work on Newton polygon and string diagram
was motivated by and was an important ingredient of our construction of
Lagrangian torus fibrations of Calabi-Yau manifolds [5-9]. After reading
my preprint, Prof. Y.-G. Oh pointed out to me the work of Mikhalkin [4],
through which I was able to find the literature of our problem. The image
of curves under the moment map was first investigated in [3], where it was
called “amoeba”. Legs of amoeba are already understood in [3]. The prob-
lem of determining holes in amoeba was posed in [3, Remark 1.10, p. 198]
as a difficult and interesting problem. Work of Mikhalkin [4] that was pub-
lished in 2000 and works [2,11] mentioned in its reference point out some
previous progress on this problem of determining holes in amoeba aimed at
very different applications, which nevertheless is very closely related to our
work. Most of the ideas in Sections 2 and 3 are not new and appeared in
one form or the other in these previous works mentioned. For example, our
localization technique used in Section 3 closely resemble the curve patching
idea of Viro (which apparently appeared much earlier) in different context as
described in [4]. Due to different purposes, our approach and results are of
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somewhat distinctive flavor. To our knowledge, our discussion in Sections 4
and 5 on symplectic deformation to Lagrangian fibrations with the image
of curve being graph, which is important for our applications, was not dis-
cussed before and is essentially new. I also want to mention that according
to the description in [49 of a result of Forsberg et al. [2], one can derive that
there are at most g = w holes in F(C)) for degree d curve Cp,, which
I initially conjectured to be true.

Note on the figures: The figures of moment map images of curves as
fattening of graphs in this paper are somewhat idealized topological illus-
tration. Some part of the edges of the image that are straight or convex
could be curved or concave in more accurate picture. Of course, such inac-
curacy will not affect our mathematical argument and the fact that moment
map images of curves are fattening of graphs.

Notion of convexity: A function y = f(z) will be called convex if the set
{(z,y) :y > f(x)} is convex. We are aware such functions have been called
concave by some authors.

2. The construction for curves in CP?

To understand our problem better, let us look at the example of Fermat
type polynomial

p:z{l—i—zg—l—zg.

It is not hard to see that for any d, F'(C),) will look like a curved triangle
with only one external point in each edge of A and no hole at all (figure 1).
(This example is in a sense a string diagram with the most quantum effect.)

From this example, it is not hard to imagine that for most polynomials,
chances are the number of holes will be much less than g. Any attempt to
construct examples with the maximal number of holes will need special care,
especially if one wants the construction for general degree d.

Figure 1: F(Cp) of p(2) = 28 + 24 + 24.



82 Wei-Dong Ruan

Let [2] = [21, 22, 23] be the homogeneous coordinate of CP2. Then a
general homogeneous polynomial of degree d in z can be expressed as

p(z) = Z arz’,

where
= {I = (i1,19,i3) € Z*||I| = iy +ig + i3 =d,I >0}

is the Newton polygon of degree d homogeneous polynomials. In our case,
N?is a triangle with d + 1 lattice points on each side. Denote E = (1,1, 1).

To describe our construction, let us first notice that N¢ can be naturally
decomposed as a union of “hollow” triangles as follows:

[d/3]

U Nk7

where
N ={Ie NI >kE,T%# (k+1)E}.

On the other hand, the map I — I + E naturally defines an embedding
i: N — N9+3. From this point of view, N¢ = NN\N%=3 and N{ = i(N{~?)
for k£ > 1.

When d =1, g = 0 and a generic degree 1 polynomial can be reduced to

p =21+ 22+ 23.

F(C,) is a triangle with vertices as middle points of edges of A. This clearly
satisfies our requirement, namely, with g = 0 holes.

For d > 2, the first problem is to make sure that the external points are
distinct and as far apart as possible. For this purpose, we want to consider
homogeneous polynomials with two variables. A nice design is to consider

d
qa(z1, 22) = H 21 + tiz2) Zb 237
=1

such that t4_;41 = + 21 Then by =bg =1 and by_; =b; > 1 for ¢ > 1.
We can adjust t; for 1 <i < [d/2] suitably to make them far apart. (For
example, one may assume F(t;) = 221 where F(t) = ; +2t2 is the moment

2d
map for n =1.) Now we can define a degree d homogeneous polynomial
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in three variables such that coefficients along each edge of Ny is assigned
according to g and coefficients in the interior of Ny vanish. We will still
denote this polynomial by g;. Then we have

Theorem 2.1. For

[d/3]
pa(z) = crqa-su(2)2"",
k=0

where co =1 and ¢, > 0, if ¢ is big enough compared to ci_y, then F(Cy,)
has exactly g holes and d external points in each edge of A.

Before proving the theorem, let us analyse some examples that give
us better understanding of the theorem. Figures 2-5 are some examples
of Feynman diagrams corresponding to 1 < d < 5. (The case d =5 is the
case we are interested in mirror symmetry.) The image of the corresponding
string diagrams under the moment map F' are some fattened version of these
Feynman diagram. For example one can see genus of the corresponding
Riemann surfaces from these diagrams. When d = 1, 2 there are no holes in
the diagram and genus equal to zero. When d = 5 there are six holes and
the corresponding Riemann surface are genus six curves. These diagrams
give a very nice interpretation of genus formula for planar curve. (In my
opinion, also a good way to remember it!)

To justify our claim, we first analyse it case by case. Whend =1, g =0
and a generic polynomial can be reduced to

p1(z) = z1 + 22 + 23.

F(Cp) is a triangle with vertices as middle points of edges of A. This clearly
is a fattened version of the first diagram in the next picture.

Figure 2: Degree d =1, 2.
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When d =2, g = 0 and we may take polynomial
2, .2, .2y, 0
pa(z) = (21 + 25 + 23) + 5(73122 + 2223 + 2321).

When z3 =0

5 1
q2(z1,22) = Z% + z% + §Z1Z2 = <Z1 + 2Z2> (21 + 222).

Image of {ga2(z1, 22) = 0} under F' are two lines coming out of the edge 3 = 0
starting from the two points L = 2, % When z3 is small, pa(z) is a small per-
turbation of g2(z1, 22). By this argument, it is clear that F'(Cy) is a fattening
of the second diagram figure 2 near the boundary of the triangle. Since in
our case g = 0. It is not hard to conceive or (if you are more strict) to find
a way to prove that F'(Cy) is a fattening of the second diagram in figure 2.
When d =3, g = 1. We can consider
p3(2) = (B + 28+ 23)+ (2l + 2323+ 23

2
2 2 2
+ 2125 + 2025 + 2327) + bz12223.

We can use similar idea as in the previous case to explain the behavior of
F(C3) near the edges. The main point for this case is to explain how the hole
in the center arises. For this purpose, we introduce the following function:

pp(r) = F(igf:T Ip(2)].

This function takes non-negative value, and

F(Cp) = {[rllpp(r) = 0}

p also satisfies

Ppip2 = Pp1Pp2>
Pp1+p2 S Pp. + Pp, -

An important thing to notice is that p,, .,.,(r) = rirers is a function that
vanishes at the edges of the triangle and not vanishing anywhere in the
interior of the triangle, sort of a bump function. When b is large, p,, will be
dominated by brirsors away from the edges, which will be positive around
center. Therefore F'(C3) will have a hole in the center, which becomes large
when b gets large.
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When d = 4, g = 3. We can consider

P4(2) = qu(2z) + bz12223p1(2).

The key point is to understand how the three holes appear. For this purpose,
we need to go back to the case when d = 1. Notice that p,, ., ..p, = r172730p,
is positive in the three regions as indicated in the diagram for d = 1, and
it is zero at the boundary of the three regions. When b is large, this term
dominates p,, in the interior of the triangle and produces the three holes.
Similar discussion as before implies that ¢4 will take care of edges.

When d = 5, g = 6. We need to go back to the case d = 2. The discussion
is very similar to the previous case, we will omit.

Proof of Theorem 2.1. We prove by induction. For this purpose, notice that
we can define pg(z) alternatively by induction

pa(2) = qa(2) + baz"pa—3(2).

We need to show that when by are large enough for any d, F'(C,,) will have
= w holes and d external legs in each edge.
Assume above statement is true for pg_s(z), then F(Cp, ,) will have

= % holes and d — 3 external legs in each edge. It is easy to see

that F(C,sp, ,) will have g = %ﬂ interior holes and 3(d — 3) side holes
that are partly bounded by edges. We are expecting that by adding ¢4 term,
side holes will become interior hole and there will be d external legs on each
edge.

Discussion in previous special examples will more or less do this. Here
we can do better. We can actually write down explicitly the behavior of
F(Cp) near edges. For example, near the edge 23 =0, py(z) =0 can be
rewritten as

qd(2)

3= ———.
baz122pd—3(2)

This is a graph over the coordinate line z3 = 0 within say |z3| < emin(|z],
|z2|) and away from z; =0, zo = 0 and d — 3 leg points of pg_3(z). It will
be clearer to discuss under local coordinate say x; = %7 T3 = j—j We will
use the same symbol for homogeneous polynomials and the corresponding
inhomogeneous polynomials. Then under this inhomogeneous coordinate

_ qa(z1,x3)
bar1pi—3(z1,x3)

r3 —
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Asymptotically, near z3 =0

qa(71)

r3g=————"—.
baxr1q4—3(x1)

From previous notation gg(z1) = q4(z1,0) = pg(x1,0), and

d

qa(x1) = H(»”Cl —tq;)-

i=1

Recall that we require |t;;| to be as far apart as possible for different d, 1.
From this explicit expression, it is easy to see that near z3 = 0 (say |z3| < €)
and away from zo = 0, C,, is a graph over the CP! (23 = 0) away from disks

td—3.i 1
< Qd(ld 3,i) — for1<i<d-3,
tq—3,iq,_5(ta—s,) €bq

|T1 — tqg—3;

and

qa(0) 1
qa—3(0) €bg”
Recall b, is supposed to be large. Here we further require the choice of €
to satisfy € is small and eb; is large. Therefore, all these holes are very
small. It is easy to see that the d — 3 small circles centered around the roots
of q4—3 will connect with d — 3 legs of C), ,. In this way, the side holes
of F(C,rp, ,) will become interior holes of F'(Cp,). Together with original
interior holes they add up to

|z1] <

+3(d—3)—(d_1)2(d_2) = ga

(d—4)(d—-5)
2

interior holes for F'(Cy,). d zeros of ¢4 along each edge will produce for us
the d exterior legs on each edge. Namely F/(Cy) is fattening of the Feynman
diagrams as described in previous pictures. ]

3. Newton polygon and string diagram

The result in the previous section is actually special cases of a more general
result on curves in toric surfaces. When the coefficients of the defining equa-
tion of a curve in a general toric surface satisfy certain convexity conditions
(in physical term: near the large complex limit), the moment map image
(amoeba) of the curve in the toric surface will also resemble the fattening
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of a graph. The key idea that enables such generalization is the so-called
“localization technique” that reduces the amoeba of our curve near the large
complex limit locally to the amoeba of a line, which is well understood.

We start with toric terminologies. Let M be a rank 2 lattice and N =
MY denotes the dual lattice. For any Z-module A, let Ny = N ®7 A. Given
an integral polygon A C M, we can naturally associate a fan ¥ by the
construction of normal cones. For a face a of the polygon A, define the
normal cone of «

0o :={n € N|(m',n) < (m,n) forallm' € a,me A}.

Let 3 denote the fan that consists of all these normal cones. We are inter-
ested in the corresponding toric variety Ps. Let (1) denote the collection
of one-dimensional cones in the fan ¥, then any o € 3(1) determines a Ng«-
invariant Weil divisor D, .

For m € M, s,, = e{™™ defines a monomial function on Ng¢- that ext-
ends to a meromorphic function on Ps. Let e, denote the unique primitive
element in o € 3(1). The Cartier divisor

(sm) = Z (m,eq)Dy.

oeX(1)

Consider the divisor

Da = Z loDo,  wherely = — inf (m, eq).
sex(1) me

The corresponding line bundle La = O(Da) can be characterized by the
piecewise linear function pa on N that satisfies pa(e,) =, for any o €
(1). It is easy to see that pa is strongly convex with respect to the fan
Y, hence La is ample on Ps. Since (s,,) + Da is effective if and only if
m € A, {Sm }men can be identified with the set of N¢--invariant holomorphic
sections of La. In this sense, the polygon A is usually called the Newton
polygon of the line bundle La on Ps. A general section of La can be

expressed as
s = Z QS -
meA
Cs = 3*1(0) is a curve in Py;. We can consider the image of the curve C
under some moment map of Ps.. The problem we are interested in is when
this image will form a fattening of a graph. The case discussed in the last
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section is a special case of this problem, corresponding to the situation of
Py =2 CP? and La = O(k).

With w = {wm, }mea € Ny = ZA, we can define an action of § € Ry on
sections of La.

" =6(s) = Z (0™ @) S -

meA
A={{l+(m,n)}mea € No: (I,n) E NT =Z® N} C Ny

is the sublattice of affine functions on A. An element [w] € N = Ny/A can
be viewed as an equivalent class of Z-valued functions w = (wy,)mea on A
modulo the restriction of affine function on M.

When w = {wm }mena € Ny is a strictly convex function on A, w deter-
mines a simplicial decomposition Z of A. Clearly every representative of
[w] € N determines the same simplicial decomposition Z of A. Let S (resp.
StP) be the set of S C A that forms a simplex (resp. top dimensional sim-
plex) containing no other integral points. Then Z can be regarded as a
subset of S. Let ZtP = Z n Stop,

From now on, assume |a,,| = 1 for allm € A. |s,,| = [e{™™] is a function
on Ng- C Ps,. Let

v 2

%, where|s?” 50"

m = ’Sfr; el

2
m»

hse =log|s

57“
A=l

meA

wsw = O0hgsw naturally defines a Ns-invariant Kéahlerform on Py, where S
denotes the unit circle in C* as Z-submodule.
Choose a basis ni,no of N, then n € N¢ can be expressed as

2 2
n = Z(log xk)nk = Z(log Tk + Z@k)nk
k=1 k=1

Under this local coordinate, the Kahlerform ws. can be expressed as

2
wee = 00hye =1y dOy, Adhy, where hy, = |z
k=1

Ohge
Olzy)?

It is straightforward to compute that

157 |2
hy, = Z (m,ng)pm, where p,, = | 5w|g”.
meA 5 1A
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Consequently,

2

Wew =1 Z d{(m,8) A dpy,, where = Zﬁknk.
meA k=1

Lemma 3.1. The moment map is
Fyo(z) = ) pm(x)m,
meA

which maps P, to A.

By this map, Ns-invariant functions h, hg, p, on Py can all be viewed
as functions on A. We have

Lemma 3.2. p,, as a function on A achieves its mazimum ezactly at

m € A.

a‘sé‘u)’gn
8:ck

612

Proof. By xy, = (m,ng)|s’ |5,, pm achieves maximal implies

2 2
3 Opm 3

xkaikamk = Pm E ((m, i) = (m', n)) prwrmig
k=1

m/€A k=1
= Pm Z (m —m)pmr = pim(m — Fyu(2)) = 0.
m/eA
Therefore Fsw(z) = m when p,, achieves maximal. O

Lemma 3.3. For any subset S C A, ps =3, cqpPm as a function on A
achieves maximum in the convex hull of S. At the mazximal point of pg

Fsu(x) = S m = S*m,  where i:p—m, Se=A\S.
pel@) =) p > p pm="" \

mes megS
™ I _ s : ~
Proof. By xy, 5 = (m,ng)[s° |5, Ps = D ,meg Pm achieves maximal
Tk
implies
2y 2
DY ILELNED S o SRR
meS k=1 mes m/'€A k=1
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Therefore
S EiN 512 5|2
Fsuo(x) = Z oo m = Z FIERLY where [s° |5 = Z [ =
mes mes S mes
when ps = o pm achieves maximal. It is easy to derive
Fsuw(z) = Z pSm = Z pim.
mes megs U

Lemma 3.4. There exists a constant a > 0 (independent of §) such that
for any x € Ps, the set

Sy ={m € Alpm(x) > 6}
is a simplex in Z.

Proof. Take a maximal subset S, C S, that forms a simplex, which is allowed
to contain no integral points in S, \ S,. Clearly, S, is in the affine span of
S, in M. (Without loss of generality, we will assume that S, forms a top
dimensional simplex in M. Otherwise, we need to restrict our argument to
the affine span of S, in M .) For any m € A, there exists a unique expression

Sm =0"" H st
MmeS,

Correspondingly
— m lr’h
Pm = 5% I | Pr, -

For m € A satisfying w,, < 0,

pm () > §2wmtadscs, max(0ln) 5

for a > 0 small. Therefore we may assume wy, > 0 for all m € A. Since
{wm tmea is convex and generic, we have S; € Z. For m not in the simplex
spanned by S, wy,, > 0, we have

Pm < 52wm+a2ﬁze§m min(0,ls) < 5%

for a > 0 small. Therefore S, = S, € Z. O

The following proposition is a direct corollary of Lemma 3.4.
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Proposition 3.5. For S € Z and x € Ps, assume that pp,(x) > € for all
m € S. Then py(z) = O(6") for allm &€ S such that SU{m} & Z.

Remark 3.6. In this paper, O(d1) denotes a quantity bounded by Ad® for
some universal positive constants A, a that only depend on w and A. In
this paper, the relation between € and ¢ is that we will take € as small as we
want and then take § as small as we want depending on e. Geometrically,
the metric wsw develop necks that have scale 6% for some a’ > a. € is the
gluing scale in Section 5 that satisfies € > §%. For this section, it is sufficient
to take € = 6%, which we will assume. In particular, O(67) = O(e) in this
section.
For S € Z, we have two Ng-invariant Kahlerforms

w5, = 00hs., ws = 0dhg, where h5, =log|s’"|% hg=log|s|%.
The corresponding moment maps are

2
FS, = Z pdm and Fg= Z %m
mes mes Isls

The two Ng-invariant Kéahlerforms and their moment maps coincide if
only if w,, =0 form € §.

Apply Lemma 3.4, we have
Proposition 3.7. Foranyz € Py, \w?ﬁ; () — wsw ()| = O(6") and \F(SS; ()
For each simplex S € Z, let

US = {z € Ps|ps(z) > 1 —|Ale, pm(x) > €,for m € S},

where |A| denotes the number of integral points in A. The definition
clearly implies the following.

Proposition 3.8. For any x € U?, |w5. () — wsw (x)| = O(€) and |F{. ()
- F(Sw(xﬂ - O(E)

Proposition 3.9.
py=|JUS
Sez
Namely, {U%}sez is an open covering of Ps.
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Proof. For any x € Py, let S contain those m € A such that p,(z) > e,
then > g pm(2) < |Ale. Lemma 3.4 implies that S C S; € Z is a simplex.
Consequently, S € Z, x € U?. S O

Recall Cysw = (s°°)71(0). We have

Proposition 3.10. The image Fs.(Cgw) is independent of the choice of
w = (Wm)meA as a representative of an element [w] € N = Ny/A.

Proof. Assume that W = (W0,)mea is another representative of w € N =
No/A. Then there exists (I,n) € Z & N such that @y, = w, — (m, n) + 1.
For x € Ng-, let & =2 4 nlogd, then s,,(%) = 6™ s, (x) and s° (%) =
§Um s (2) = 616U 5, () = 0's9, (). Hence

~:Zams5 —(5lZams —615()

meA meA

and the transformation x —  maps Cgsw to Cso. On the other hand,

s (&) —521\85w( )!27 |87 (@)[A —521185w( A
i
Z j Z —m 2 m = Fsu(x).
mGA mEA
Therefore Fyuw(Cgow) = Fsu(Cysw). O

For each simplex S € Z, let Cg = 851(0), where sg =) g @mSm, and
let I's denote the union of all the simplices in the baricenter subdivision of
S not containing the vertex of S. Then

(3.1) ry;=|Jrs

Sez

is a graph in A. We have

Theorem 3.11.
lim Fi. (Cyon) = U Fs(Cs)
Sez
is a fattening of T'z. Consequently, for 6 € Ry small, F5u(Cgsv) is a fatten-
ing of 'z.

Proof. For x € Py, according to Proposition 3.9, there exists S € Z such that
x € US. Since S is a simplex, w can be adjusted by elements in A so that
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Wy, = 0 for m € § and w,, <0 for m € S. According to Proposition 3.10,
Fsu(Cgv) is unchanged under such adjustment of w. Such adjustment
enables us to isolate the discussion to one simplex at a time. For this
adjusted weight w, wfw = wg and F 5?» = Fg. Proposition 3.8 implies that for
x € U, Fyu(x) can be approximated (up to e-terms) by Fs(z) = Fg, ().

Since wy,, <0 for m ¢ S, we have |s%" — 55| = O(6T) on US. Cgw N
UZ can be approximated (up to O(6%)-terms) by Cs N US. Consequently,
F5u(Cgw NUT) is an O(e)-approximation of Fs. (Cs N US). Patch such local
results together, we get

lim Fyu (Coor) = sLer Fs(Cs).

In fact, limg_,g Cgsv = USeZmp Cs, where on the right-hand side, when 57 N
Sy is a one-simplex, the marked points of Cs, and Cg, corresponding to
S1 M Sy are identified. This limit can be understood in the moduli space
ﬂg of stable curves.

When S € Z is a one-simplex, Fg(Cg) =Tg is the baricenter of S.
When S € Z is a two-simplex, let m®, m', m? be the vertices of the simplex
S. Under the coordinate x; = (ayrSmr)/(amosmo) for k =1,2, Cs = {z1 +
x9 +1} and Fs(z) = Y7, ﬁfmk, where zo =1 and |z|?> =1+ |21|? +
|z2|?. Fs(Cg) is just the curved triangle in the simplex S C A as illus-
trated in the first picture in figure 1, which is clearly a fattening of the
Y shaped graph I's. Consequently, |Jgc,; F5(Cs) is a fattening of I'z =

Remark 3.12. The result in this theorem is essentially known to Viro in
a somewhat different but equivalent form as described in [4].

Remark 3.13. To achieve the pictures of images of curves in figures 3, 4
and 5 in the last section, it is necessary to use the moment map introduced
in this section. If the moment map of the standard Fubini-Study metric is
used, the pictures will look more like hyperbolic metric, more precisely, the
holes around center of the polygon will be larger and near the boundary of
the polygon will be smaller.

Example 3.14. The Newton polygon corresponding to an ample line bun-
dle L over Py, as P? with three points blown up. Let Ey, Eo, E3 be the three
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Figure 6: The standard simplicial decomposition.

Figure 7: F,(Cs).

exceptional divisors, then
L= 7['*(0(5)) ® O(—2E1 - E2 — Eg),

where 7 : Ps, — P? is the natural blow up. Choose a section s of this line
bundle near the large complex limit corresponding to the above standard
simplicial decomposition of the Newton polygon (figure 6). Then the curve
Cs = 5710) cut out by the section s will be mapped to figure 7 under
corresponding moment map Fi.

3.1. Secondary fan

Theorem 3.11 can be better understood in the context of the secondary
fan. To begin with, we consider the space Ma of curves Cs modulo the
equivalent relations of toric actions. With a little abuse of notation, we will
call Ma the toric moduli space of curves Cs with the Newton polygon A.
Let My = Z* be the dual lattice of Ngp = {w = (wy)men € Z2} = ZA.
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Recall that N = Ny/A. The dual lattice M = AL. We have the natural
identification

Ma = Ne- = Spec(C[M]) = (C*)2/N..

To make sense of the large complex limit, we need the compactification Ma
of M determined by the so-called secondary fan.

For general [w] € N, w = (wm)mea is not convex on A. Let w =
(W )men be the convex hull of w. When w is generic, @ determines a
simplicial decomposition Z,, of A. (It is easy to observe that Z,, is inde-
pendent of the choice of representative w in the equivalent class [w].) Let
S be the set of S C A that forms an r-dimensional simplex. Then Z,, can
be regarded as a subset of S. Let Z denote the set of all Z, for [w] € N.
For Z € Z, let 7z C N be the closure of the set of all [w] € N such that
Zw = Z. Bach 74 is a convex integral top dimension cone in N. The union
of all 7 is exactly N. Let 3 be the fan whose cones are subcones of the top
dimensional cones {7z}, . 3 is a complete fan. )

Let Z be the set of simplicial decompositions Z,, C S of A that is deter-
mined by some strictly convex function w = (wy,)mea on A. For Z € Z,
let 77 C N be the set of [w] € N, where w = (W, )mea is a piecewise linear
convex function on A with respect to the simplicial decomposition Z. Each
77 is a integral top dimension cone in N. The union of all 75

=

is exactly the convex cone of all [w] € N, where w = (W )mea is a piecewise
linear convex function on A. Let ¥ be the fan whose cones are subcones of
the top dimensional cones {77} ,_5. % is a subfan of the complete fan 3.
The fan ¥ is the so-called secondary fan. (For more detail about the
secondary fan, please refer to the book [3]. [1] contains some application of
secondary fan to mirror symmetry.) )y naturally determines the compacti-
fication Ma = Pg,. We will call Y the partial secondary fan. ¥ determines
the partial compactification .//\/IVA = P5. For each Z € Z, the top dimen-
sional cone 77 determines a single fixed point SOZO € W\MA of the N@*
action. We will call such sgo a large complex limit point. The set of different
large complex limit points is parameterized by the set of simplicial decom-
position Z. Each large complex limit point sgo possesses a cell neighborhood

Tg C Ma, where Tg =Tz ®z., C4 C Ng-, Zxg acts trivially on C; = {z €



Newton polygon 97

C* : |z| > 1}. We have the following natural cell decomposition of Ma

Given a simplicial decomposition Z € Z of A, let Tg denote the interior of
Tz. Any [w] € Tg can be represented by a strongly convex piecewise linear
function w = (W, )mea on A with respect to Z. It is easy to see that when
& approaches 0, Cs» will approach the large complex limit point sZ, in M.
In such situation, we will say that Cisw or sg is near the large complex limit
point (determined by Z), when ¢ is small.
~__Theorem 3.11 applies to each of such large complex limit point sZ in
Mqp for Z e Z , and can be rephrased as: when the string diagrams Cs»
approach the large complex limit point sOZO in Ma as § — 0, the amoebas
F5.(Cysv) of the string diagrams Cgs» converge to the Feynman diagram T'z.
Theorem 3.11 can be generalized to the full compactification Ma with-
out additional difficulty.

Theorem 3.15. For Z € Z, when the string diagrams Cgv approach the
large complex limit point sZ, in Ma as 6 — 0, the amoebas Fsu(Cgsw) of the
string diagrams Cgw converge to the Feynman diagram I'z.

Proof. 1t is straightforward to generalize Lemma 3.4, Propositions 3.7, 3.8,
3.9, 3.10 and in particular, Theorem 3.11 to the case when Z € Z. The
arguments are literally the same with the understanding that S considered
as a subset in M contains only the integral vertex points of the simplex .S,
not any other integral points in the simplex S. ([l

Remark 3.16. Theorem 3.11 is used in [7] to construct Lagrangian torus
fibration for quintic Calabi-Yau manifolds near large complex limit in the
partial secondary fan compactification. Theorem 3.15 can be used to con-
struct similar Lagrangian torus fibration for quintic Calabi-Yau manifolds
near large complex limit that is not necessarily in the partial secondary
fan compactification. According to [1], a large complex limit in the partial
secondary fan compactification, under the mirror symmetry, corresponds to
large radius limit of a Kahlercone of the mirror Calabi-Yau manifold, while a
large complex limit not in the partial secondary fan compactification, under
the mirror symmetry, may correspond to large radius limit of some other
physical model like Landau—Ginzberg model, etc.
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4. The pair of pants and the three-valent vertex of a graph

In Feynman diagram, a three-valent vertex represents the most basic particle
interaction. In string theory, the corresponding string diagram is the pair of
pants, which can be represented by a general line in CP? with the three punc-
tured points being the intersection points of this line with the three coor-
dinate lines. In this section, we will describe an analogue of this picture in
our situation. More precisely, the standard moment map maps a general
line to a fattening of the three-valent vertex neighborhood of a graph. In
this section, we will explicitly perturb the moment map, so that the per-
turbed moment map will map the general line to the three-valent vertex
neighborhood, i.e., a Y shaped graph.

4.1. The piecewise smooth case

Consider CP? with the Fubini-Study metric and the curve Cy: zo + 21 + 22 =
0 in CP?. We have the torus fibration F : CP? — RTP? defined as

F([z1, 22, 23]) = [|21], |22], [ 23]].
Under the inhomogeneous coordinate x; = z;/zp, locally we have
F:C? = (RM)?,  F(xy,z2) = (r1,79),
where 1, = rie'®*. The image of Cy : 1 + 2 + 1 = 0 under F is
L={(r,r)|ri+mr>1r <rp+1r <r +1}.

Cy is a symplectic submanifold. We want to deform Cj symplectically to C
whose image under F' is expected to be

F={(r,r)|0<re<ri=1 or0<r;<rg=1 orr;=ry>1}.

A moment of thought suggests taking C; = F;(Cp), where

The Kéahlerform of the Fubini-Study metric can be written as

dx1 AN dx1 + dxo A dZs + ($2 dri — o1 deg) VAN (i’g dz1 — T1 di’g)
(1+ |z[?)? '

WFS =
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Lemma 4.1. wgg restricts to a symplectic form on Cy \ Sing(Cy), where
Sing(Cy) :={z € Cy: (r1 —1)(r2 — 1)(r1 —r2) = 0}. More precisely, there
exists ¢ > 1 such that %wpg < Ffwrs < cwpg on Cy for all t € [0,1].

Proof. Due to the symmetries of permuting [zo, 21, 22|, to verify that Cy
is symplectic, we only need to verify for one region out of six. Consider
1 > |z2| > |z1], where

C - {((1) (;2)22) o}

x1 + x2 + 1 =0 implies that
dxl = —dxg.

Recall that

Consequently

We have

t t t
1 1
) (a2, a((5) ) na((2) )
T2 r2 T2
) (dl‘l A dTq + t(.%'l dT1 — 1 d.%'l) A\ 7’2>
2
2t x
) (1 +tRe <1>> dry A d7y,
Z2
t
> <dac2 — t$2m>
T2
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d
, <d$2 N dTo + t(.ﬂ:‘g dTo — To dxg) A T2>
2

>
s (2 ) ()
(

By restriction to C; and use the fact that 1 4+ Re(3* ) > % on Cp, we get

(Fiwrs)lo, _ (L=)(1/ra)* + (1/ra)* (1 + tRe(w1/x2)) + (1/r2)" _ 1
dxy N\ dxy (1 + (1/ro)2(r2 + r%))Q 6
(Frwrs)lo, _ (L =t)(1/r2)* + (1/r2)* (1 +t Re(z1 /7)) + (1/7"2) S 1

wrs|c, B1/(L+rf+rd)) + (A/r)? (i +73)/(L+ i +15))> — 2

These computations show that C} is symplectic in the region r; < ro < 1.
By symmetry, we can see that C; is symplectic in the other five regions. [J

Proposition 4.2. Fjwrg is a piecewise smooth continuous symplectic form
on Cy for any t € [0,1].

Proof. In light of Lemma 4.1, only continuity need comment. This is an easy
consequence of the invariance of Fjwrg under the symmetries of mutating
the coordinate [zg, 21, 22]. O

Theorem 4.3. There exists a family of piecewise smooth Lipschitz Hamil-
tonian diffeomorphism Hy: CP? — CP? such that Hy is smooth away from
Sing(Cy), H(Co) = Cy, H(Sing(Cyp)) = Sing(Cy) and H, is identity away
from an arbitrary small neighborhood of Cig 1) := Ute[o,l} C,. In particular
H; leaves OCP? (the union of the three coordinate CP'’s) invariant. The per-
turbed moment map (Lagrangian fibration) F = F o H; satisfies F(Co) =T
(the Y shaped graph with a three-valent vertex vy ).
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Proof. Lemma 4.1 implies that C}’s are piecewise smooth symplectic
submanifolds in CP?. Each C} is a union of six pieces of smooth symplectic
submanifolds with boundaries and corners. The six pieces have equal area
(equal to one-sixth of the total area of Ct), which is independent of t. Cj is
symplectic isotopic to C via the family {C;}. By extension theorem (corol-
lary 6.3) in [6], we may construct a piecewise smooth Lipschitz Hamiltonian
diffeomorphism Hy : CP? — CP? such that H;(Cy) = C;. Corollary 6.3 in [6]
can further ensure that H; leaves OCP? invariant as desired.

More precisely, the proof of Corollary 6.3 in [6] is separated into two
steps. In the first step, one modify the symplectic isotopy (see Section 6
of [6] for definition) F; : Cp — Cy into a symplectic flow while keeping the
restriction of F; to the boundaries of the six pieces unchanged. (One in
fact first modify F; in one of the six pieces, then extend the modification
symmetrically to the other pieces.) In particular, C; N OCP? is fixed by the
symplectic flow. In the second step, Theorem 6.9 in [6] is applied to extend
the symplectic flow to CP? while keeping JCP? fixed. The construction
in effect ensures that Hi|ging(c,) = Ftlsing(c,) and Hy is smooth away from
Sing(Cg). ]

Similar construction can be carried out for degree d Fermat type curves.
(The case of d =5 is carried out in [6].)

Let g, := CoN EF~Y(r) for r € T. When d = 1, for r being one of the
three boundary points of I, u, is a point. For r in smooth part of T", p,
is a circle. For r being the unique singular point of I', which in quantum
mechanics usually indicate the particle interaction point, u, is of “©” shape.
Figure 8 indicates the simplest string interaction.

When d =5, for r being one of the three boundary points of I'; u, is
five points. For r in smooth part of I', p, is five circles. For r being the
unique singular point of I'; which in quantum mechanics usually indicate the
particle interaction point, p, is a graph in two-torus as indicated in figure 9,
which is much more complicated than d =1 case. This picture indicates
sort of degenerate multi-particle string interaction with multiplicity.

Figure 8: F(C,) of p = 2¢ + 2§ + 24 perturbed to F(Cp) =T.
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Figure 9: F~'(Sing(I")) for d = 5 and d = 1.

4.2. The smooth case

Notice that C; in Section 4.1 is not smooth on Sing(C;). In this section,
we will make C; smooth. The trade-off is that F'(C;) =I' except in a small
neighborhood of the vertex of the graph I', where F/(C}) is a fattening of
I'. To modify the definition of C; to make it smooth, consider real function
h(a) > 0 such that h(a) + h(—a) = 1 for all a and h(a) = 0 for a < —e. Then
consequently, h(a) =1 for a > € and h(a) < 1.

We may modify the definition of C; to consider C; = ]:"t(Co), where

t t
ﬁt(ﬂfl,m) = <<771> x1, (772) 902),
7o 1o
h(log(rz2/71))
ogry og Ty T
=y = T gy =y <2> :

C} is now smooth and is only modified in a e-neighborhood of Sing(C}).
Assume A(a) = h(a) + h'(a)a, Ao = Mlogra —logr1), A1 = A(logr1), A2
= A(logrz). Then

d d d d d d d d
dp _y dnedm_y dry ?7027"1“0(7“2_7"1);
2 1 m T2 1o 1 T2 1

m\' m\' dm  dno

d — | 1] = — dri+tey | — — — ;

o o m 10

d d d d

ST (1 20)5 - (0 - M)

m Mo (] T2
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t t
d ((nl> 131) Ad <771> 111)
7o
> <d.1‘1 ANdx1 — t(.%’l dT1 — T1 dl’l)

(
()
(77
-

3 &3‘3

1> (1— 1—)\0)t—|—(/\0—)\2)tRe< >> dri A\ dzq;
Mo T2

d d
772) (d@ 4tz (’7 _ ”>>
72 7o

d d
— Ao — )\1)% Byt

(@)

() =) 2 () =)
()= o))

t
d d
W) < dwy — w1 dey + a1 (ﬂ - 77))
m 2

nom \" dra dr1
2) <—d:):1 + tl’ll'Q <)\2 — )\1))
Un) i) 1
27]

2
aNa= <1) (dzl dzy —t (T1Z2 dxy — 122 dT1)

2

0

d d

N2 Alﬁ))
T2 ™

2t
) (14t (A2Re(z1) + A1 Re(2))) dry dzy.
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By restriction to C; we get

> < (1= 20— A1)t Re <x1> _A°t>

(G
() (-2
+ (” 2 > (1+t(A2Re(z1) + A1 Re(xz)))]/

(Frors)lc, _
dzi A dTy

+

g

2t 2
m

Pl et <no> ﬁ)

dxl /\ i + tR;, where Ry = (1 — \g)
Rio+ MRi1 + MRy,

Rio— (n2/m0)* (1 + Re (w2/21)) — (m/10)* (1 + Re(z1/%2))
" (1 + (n2/m0)% 13 + (1 /m0)? 13)? ’
_ (m2/m0)* (ni' Re(z2) — Re(xz/ﬂ?l))
(1+ (2/m0)2 13 + (m /mo)* r3)”
(Ul/ﬁo)Qt(ﬁtRe(%) Re(z1/72))

)
I

Rt,? — (1 T (772/770)2t 2 (nl/no)Qt 2)2 3
(m2/m0)% (1 +tRe(x1/w2))
@y = +(m1/m0)* (1 = t) + (m2m/n5)* dzy A dy.

(1 + (n2/m0)%73 4 (m/no)*r3)?

Proposition 4.4. Cy is symplectic for t € [0,1]. Namely, Cy is symplectic
isotropic to C1 via the family {Ct}te 0,1] of smooth symplectic curves. More
precisely, (Ffwrs)|c, is smooth and is an O(e)-perturbation of (Fwrs)|c, -

Proof. According to Lemma 4.1 and proposition 4.2, it is sufficient to show
that (F;wrs)|c, is an O(e)-perturbation of (F}wrs)|c, .

Since (F;wrs)|c, and (Ffwrs)|c, coincide away from an e-neighborhood
of Sing(Cp), with the help of symmetry, the cases that remain to be veri-
fied are e-neighborhoods of {rq =7y <1 —¢€}, {ro=1,0<7r; <1—¢€} and
{ri =re =1}. On this neighborhoods, it is easy to observe that n; =
14+ 0(e), ne =14 O(e), m1 = ro + O(e). Compare the expressions of w; and
(Ffwrs)|c,, we have that &, is an O(e)-perturbation of (Ffwrs)|c,. Only
thing remains to be shown is Ry = O(e).
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In an e-neighborhood of {r1 =79 <1—¢€}, gy =1+ O(e) for k=1,2,
A1=X2=0 and Re($?) —Re($:) = O(e). Consequently, R =t(1 — o)
Rt70 = O(E)

In an e-neighborhood of {ro = 1,0 <71 <1—¢€}, nxy =1+ O(e) for 0 <
k<2, A =0,1- X =0and Re(z1) — Re($}) = O(¢). Consequently, R =
t)\QRtg == O(G)

In an e-neighborhood of {ry =72 =1}, m =1+ O(e) for 0 <k <2, Re
(32) —Re(32) = O(e), Re(x1) —Re(3t) = O(¢), Re(z2) — Re(32) = O(e).
Consequently, R, = O(e) for 0 < k <2 and R; = O(e). O

Theorem 4.5. There exists a family of Hamiltonian diffeomorphism Hy :
CP? — CP? such that Hi(Cy) = C; and Hy is identity away from an arbi-
trary small neighborhood of Cig 1). The perturbed moment map (Lagrangian
fibration) F = F o Hy is smooth and satisfies F(C’o) =T (the Y shaped graph
with a three-valent vertez vg) away from a small neighborhood of vg. (Ht

can be made to be identity on OCP? with the expense of smoothness ofF at
dCy := OCP*N Cy.)

Proof. Proposition 4.4 implies that Cj is smoothly symplectic isotropic to Cy
via the family {Ci},c(0,1)- By the extension theorem (Theorem 6.1) in [6],
we can get a family of C*° Hamiltonian diffeomorphism H; : CP? — CP?
such that Hy(Cy) = C; and H; is identity away from an arbitrary small
neighborhood of Cjg ;j. To ensure that H; leaves OCP? invariant, we need to
use the extension theorem (Theorem 6.6) in [6]. Then H; can only be made
C™ away from the three intersection points of C; and OCP2. O

4.3. The optimal smoothness

F' constructed in Section 4.2 is smooth. (F' is not smooth at dCy = dCP? N
Cy if F is required to be equal to F on OCP?. This non-smoothness is due
to the fact that Cj is not symplectically normal crossing to 9CP? under wpg
and can be cured by modifying wpg near 9Cy so that Cy is symplectically
normal crossing to dCP2.) The trade off is that F(Cy) =T (the Y shaped
graph with a three-valent vertex vg) away from a small neighborhood of vy.

F' constructed in Section 4.1 satisfies F' (Co) =T, but is only piecewise
smooth and is not smooth at Sing(Cp). A natural question is: What is the
optimal smoothness that E can achieve if we insist F (Cp) =T'7 Clearly,
F cannot be smooth over vg. In this section, we will show that F can
be made smooth over I' away from vy. More precisely, let Sing,(Cp) =



106 Wei-Dong Ruan

F~(vg) N Sing(Cp), we will show that F' can be made smooth away from
Sing,(Cp). (F' is not smooth at dCy, if SCP? is required to be fixed under F.)

Let b(a) be a smooth non-decreasing function satisfying b(a) =0 for
a <0, b(a) >0 for a >0, b(a) =1 for a > /e and ¥'(a) < C/\/e. We may
modify the definition of C} to consider Cy = .7:}(00), where

t t
jz_t(xl7$2) = <<m> X1, <n2> $2> )
To 70
1
10g’r’2:10g’l"1h(o§rl>, b1:b<log< >),
1
1
logm:logmh(ofrz), b2:b<log( )),
2

logno = logrih (W) +lograh ((22/7“1)) 7
0 0

bo = b(lOg(TlT‘Q)).

»—Tgw‘ S wm‘ =

Notice that F; here coincides with F; in Section 4.2 away from a V/é-neigh-
borhood of Sing,(Cy), coincides with F; in Section 4.1 near Sing,(Cp) away
from a y/e-neighborhood of vg. Therefore, the only new construction of Fi
is over a y/e-neighborhood of vy.

Assume \g = \ (log”bﬂ) A=A <1°gr1) A2 =\ (10gr2> Then

0

dna dry dm dro

— =A\— -0, 7_)\27_527
72 (] m 2
dﬂo:dﬁﬂo@rz_dﬁ) B,

Mo 1 T2 1

Lemma 4.6. (3; = O(y/e) fori=1,2,3.

o lowrs s o8] [logrsy (o Y] (4 i
by by by T5 1 T2

Notice that A’ <l°g Tl) # 0 only when log“ < e. Hence

{lolim % (loarlﬂ =0(1), [loirlb’ <log %)} = 0(v/e).

Consequently, 51 = O(y/€). The verifications for G2 and 33 are similar. [

Proof.




Newton polygon 107

By similar computation as in Section 4.2, we get

(Frwrs)la, _ @
dry N dxq dri N dxq

1
+tR; +tBy > 6 + O(Ve),

where By is linear on {3;}3_; and B; = O(V/e).

Proposition 4.7. C; is symplectic for t € [0,1]. Namely, Cy is symplec-
tic isotropic to C1 wia the family {Ci}iecpo,1) of smooth symplectic curves.
More precisely, (Fiwrs)|c, is smooth away from Singy(Co) and is an O(y/€)-
perturbation of (F;wrs)|c, -

Proof. This proposition is a direct consequence of the above computation,
Lemma 4.1, Propositions 4.2 and 4.4 together with the additional estimate
B; = O(y/€) implied by Lemma 4.6. O

Theorem 4.8. There exists a family of Hamiltonian diffeomorphism Hy:
CP? — CP? such that H;(Cy) = Cy and Hy is identity away from an arbitrary
small neighborhood of Cyg 1) F = F o Hy satisfies F(C’o) =T (the Y shaped
graph with a three-valent vertex) and is smooth away from Singy(Cp). (H;
can be made to be identity on OCP? with the expense of smoothness ofﬁ’ at
OCP? N Cy.)

Proof. The proof is essentially the same as the proofs of Theorems 4.3 except
here Cy is decomposed into three (instead of six) smooth symmetric pieces,
Lemma 4.1 and Proposition 4.2 is replaced by Proposition 4.7 and Sing(Cp)
is replaced by Sing,(Cp). O

5. String diagram and Feynman diagram

In this section, we will naturally combine the localization technique of Sec-
tion 3, which reduces the curves (string diagram) locally to individual pair
of pants, with the explicit perturbation technique of Section 4 to perturb the
moment map Fg«, so that the perturbed moment map will map Cs v to a
graph. This is a very interesting analogue of the relation of string diagrams
in string theory and Feynman diagrams in quantum mechanics.

In general, given a simplicial decomposition Z € Z of A, take a weight
w E Tg, according to Proposition 3.9, we have

py=JUS
Sez
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According to results in [6], the perturbation of the moment map can be
reduced to the perturbation of the pair (Cgsw,wsw) of symplectic curve and
symplectic form. For each S € Z%P locally in US, (Cyw NUS, wsw lus) is a
close approximation of the line and the Fubini-Study K&ahlerform discussed
in Section 4. Namely, the construction in Section 4 can be viewed as local
model for construction here. In the following, we will start with some modi-
fication of the local model in Section 4, then we will apply the modified local
model to perturb Cgw. For such purpose, ws. also need to be perturbed
suitably.

5.1. Modified local models
Consider a smooth non-negative non-decreasing function v.(u), such that

Ye(u) =0 for \/u < Aje and ~.(u) =1 for \/u > Aze. Ay, Ay are positive
constants satisfying 1 < Ay < Ay < |A|. Let vei(u) = tye(u) + (1 —t) and

m = max(1l,ry), n2=max(1l,r), no=max(ry,rs).

Proposition 5.1. Cy = p; *(0) is symplectic curve under the Fubini-Study
Kabhlerform for t € [0, 1], where

e r3 1
Pe(x) =ver ( 5 )21+ Yt | 5 )12+ | = | =0
™ ) o

Namely, the family {Ct}iej0) is a symplectic isotopy from Co = {(z1,72) :
331—1—1‘24-1:0} to

7‘% 7‘% 1
C1 = ¢ (71,72) : 7e S Jrit+v (5 |r2t7| =5 ) =0,
m 5 UR

Proof. By symmetry, we only need to verify that C} is symplectic in the
region 1 > |zo| > |z1|, where

pe(x) = Yeu(|z1[*)z1 + 22 +1=0.

Since C} is a complex curve away from the region {Aje < |z1| < Age}, we
only need to verify that C; N {A1e < |x1| < Age} is symplectic.
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Recall the Kéhlerform of the Fubini-Study metric is

dx1 AN dT1 + dxg N\ dZo + (.TQ dri — o1 d.’Eg) A (fg dT1 — T diz)
(1 + |z[?)?

WFS =

When restricted to C; N {A1e < |x1| < Age},

1 1
WFS = §dl‘1 A dT1 + deQ A dZg + O(E)
1 1
= (2 + g Dealln ) + ’ye,t(lxl\Q)t’Yf(lxl\Q)O dxy A dzy + O(e)
24 (1—1t)?
> +(4) dxy N dx1 + 0(6),
where 77 (|21]2) = 2|21 27/ (|z1]2). Therefore Cy is symplectic. O

Proposition 5.2. C; = F(Cy) is symplectic for t € [0, 1], where

t t
Fi(z1,22) = ((771) 1, <772> 562),
1o 1o
2 2 1
(52) CO = {(331,%2) * Ve (g) T1 + Ve <Tg> T2 + Ve <2> = O}
g ) 0

Proof. By symmetry, we only need to verify that C} is symplectic in the
region 1 > |z2| > |z1|, which is one of the six symmetric regions that together
form CP%. In the region 1 > |zo| > |21],

Cy= {((é)tm, (é)tm) S|z )z + w4+ 1 = 0}

75(\561|2)$1 4+ 29 + 1 = 0 implies that

dxos = —Yedx1 — x1 dye.
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d
<da;1 A dTq + t(]:ldl’l — .731d$1) A\ 7’2>

T2

| 1)% <t1+t(ve+ve itRe( 2))*“”“
(2 =) () )= G)

(dxg A dZo + t(l‘zdl‘g - .’L‘dez) VAN d’l°2>
T2

I
A~
3 |

1
) 1—t d:l)g/\d.l:g
r

)

(
(1) (1= )(v2 +1erZ)dar A dzy > 0,
(G)=)(C) )

—<<m> (&)
— <1>2t (vodry — m1d2o) = — <:>2t (dzy 4 z3dve).

2 2

By restriction to C; we get

(1/r2)*(1 +§(% + ’Ye#)Re(ff;z/l‘z))
wrs|c, +(1/r2)"(1 = Re(21)7d") 1
dxi A dzy = (147372 4 (1 /rg)2tr24)2 2§ o

(=}

The reason is that 0 < v, < 1, 77 Re (%) = O(e) and Re(z1)7Z = O(e).
Therefore C} is symplectic. O

Remark 5.3. Let U = {r; < en,ro < emp,1 < eny} C CP?. It is easy to
observe that outside of UQCPQ, C} in Proposition 5.2 is equal to {xo + 1 = 0}
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when |z1] is small, equal to {z; + 1 = 0} when |z is small, equal to {z; +
29 = 0} when |21, |z2| are large. Namely, C; outside of UCF” is toric, F(Cy N

(CP?%\ UG(CP )) is 1-dimensional, independent of ¢ and is the union of the
three end segments of the Y shaped graph. Also the image of C; under any
moment map is a one-dimensional graph of Y shape.

The following is the analogue of Theorem 4.3 for our modified local
model.

Theorem 5.4. There exists a family of piecewise smooth Lipschitz Hamil-
tonian diffeomorphism Hy: CP? — CP? such that H(Cy) =C; and Hy is
identity away from an arbitrary small neighborhood of Cpo, 1) or away from
U@P . The perturbed moment map (Lagrangian fibration) F=FoH sat-
isfies F(Co) =T (the Y shaped graph with a three-valent verter).

Proof. The proof is essentially the same as the proof of Theorem 4.3 except
for the proof of Hy being the identity map when restricted to CP? \ Uécpz,
which is based on the fact that F; restricts to identity map on Cy \ U, éCPQ. U

To deal with the cases of smooth and optimal smoothness discussed in
Sections 4.2 and 4.3, we may take C; = F;(Cp), where we take Cp in (5.2)
and F; in either Section 4.2 or Section 4.3. (Notice that in the region where
Cy is modified, F; in Sections 4.2and 4.3 coincide.)

Proposition 5.5. C, = F,(Cy) is symplectic for t € [0,1], where Cy is
defined in (5.1).

Proof. By symmetry, we only need to verify that C} is symplectic in the
region, where |z1| < |z2| < 1 and v.(|z1]?) < 1. In this region, we have |x1| =
O(e) and 9 = —1 4+ O(€). Consequently, \g —1 =X =0, 72 =1, m1 =1+
O(e) and ng =19 = 1+ O(e).

dn _ d?h_)\dm dno _ dra
o om o’ Mo T2

Ye(|71]?)x1 + 22 + 1 = 0 implies that

dxos = —Yedxy — x1 dye.
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Hence

o (42) e (2) ) ()
79 T2 T2/ X1 T2

dxo N dZo = ve(Ve + wf)dasl A dZq;

t ¢ d d
((2)) -~ (2) (e (2-2))
Mo Mo m 70
dm _ dno _
T Mo T2 '

2t d d
= (771> (dxl ANdT1 — t(l‘ldl‘l — l'ldfl/‘l) A (771 - 770>>
7o m "o
2
- (?) (1 + (e +9#)(1 — Xo)tRe ( >) dz1 A dzy.
0
t t
o((2)')- () (onon (-2
Mo No 12 10
2 o e’

2t d d
= (2> (dxg A dTg + t(xg dTy — Todwa) A <772 - 770>>
o 2 Mo
2t
_ (22) Ye(ye +7#) (1~ t) day A dzy > 0;
0
t t
o= ( 772) xz) d((m> $1>
10 Mo

t t
1o Mo
t
d d
1727271> <x2 dl‘l — I d.%’z +t$1$2 (771 — 772))
Un m 2
n

t
dr

21) <—dx1 + 22 dye + t$1$2)\22)
0 "2
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t
— <’72;71> dz1 + O(|a1)).
Mo

2t
alNa= (7727271> dr1dTy + O(|$1|)
Mo

By restriction to C; we get

7% 2t 2\2t 1
(F WFS)|7CO > (11 /m0)"" + (72737721/770) +02t(!1271l) > L4 0.
dzi A dzy (14 (m2/m0)*r5 + (m/n0)*'r7) 2 0

For C; = F(Cy), where F is taken from Section 4.3, we have

Theorem 5.6. F in Theorem 5.4 can be made smooth away from Sing,

(Co).

Proof. The proof is essentially the same as the proof of Theorem 4.3 except
that Cy is decomposed into three pieces with boundaries in Singy(Cp). The
proof of H; being the identity map when restricted to CP? \ UéCIP2 is based
on the fact that F; restricts to identity map on Cp\ USF". O

Remark 5.7. There is also a version of Theorem 5.6 as analogue of Theo-
rem 4.6 when F is taken from Section 4.2.

5.2. Perturbation of symplectic curve and form

For m € A, let
Ap, ={m' € Al{m,m'} € Z}.

Choose € such that 6* < ¢ < e. Define

Sm = Ye(pm)sm,  Sm = [1 — e( rlrgag( (Pm?))]Sms

m m
£ = " ambm, = 6 amm.
meA meA
v = 00hgw, where hgw =log|3" |3, |83 = D 6" 5mlA-

meA

Proposition 5.8. wsw is a Kdhlerform on Ps near Cy = 5[1(0) for te
[0,1], where sy = t55w + (1 — t)S5w.



114 Wei-Dong Ruan

Proof. For = € Ps, let pp, (z) for a m; € A be the ith largest among
{pm(x) }mea. Since S, is non-empty, we have m; € S, and py,, (z) > 1/|A| —
e. If z €y, it is easy to derive from the equation of C; that p,,(z) >
1/]A]? — ¢/|A] and ma € S, when € is small.

If {m1,ma} & Ap,, then max,,ga, (Pm () > pm,(x) > |Al€ when € is
small. Hence §,,(z) = 0.

If {mq,m2} C Ay, and 3., # s, then there exists m’ & A,, such that
pm: > €. Hence S, = {m1,mg,m'}, 3,y = s and m3 = m/, where S, is
defined as S, with e replaced by é. Consequently, p,,(z) = O(d*) and
wgw(x) is an O(0%/¢)-perturbation of a;(?;s (). When §%/¢ is small, @sw is
a Kahlerform at z.

The remaining case is when §,, = s,, for m € 8" = {mq, ma,m’,m”} and
$m =0 for m &€ S’, where {m’, m"} is uniquely determined by the relation
{m1,ma} C Ay N Ay Then wso (7) = wil, (x) is clearly Kihler. Therefore
wgw is a Kahlerform on Ps; near C}. [l

Proposition 5.9. C; is symplectic curve under the Kdhlerform w; for
t €[0,1], where wy = tWsw + (1 — t)wsw. Namely, the family {Ci}icpoq) is a
symplectic isotopy from Co = Cs,., to Cy = Cs,., . Furthermore, there exists
smooth symplectomorphisms Hy: (Py,wsw) — (Ps,@sw) such that Hy(Cs;., )
= Cs;. - (H1 can be made to be identity on OPsx. with the expense of smooth-
ness of Hy at Co N OPs.)

Proof. Proposition 5.8 implies that w; are Kéhlerforms on Ps, near Cy. It is
easy to see that s; is holomorphic outside of the union of U? for S € Z%P,
where C; is automatically symplectic.

For each S = {mg,m1,ma} € ZP, {z; = §“"iam,, sm, }2, defines an
open embedding US — CP?, where [z, 21, z2] is the homogeneous coordi-
nate of CP?. Using the inhomogeneous coordinates (1, x2) of CP? on U?,
Ssw reduces to py in Proposition 5.1 and sg» reduces to pg =x1 + x2+ 1 in
Proposition 5.1 up to O(6") terms (Lemma 3.4). Hence C; here coincides
with C; in Proposition 5.1 inside U C CP?. When § is small, by Proposi-
tion 5.1, C} is symplectic in UES with respect to wps. Since Ws» = wps when
restricted to UES , C} is symplectic in Ues with respect to Wgw.

For the second part of the proposition, apply Theorems 6.1 and 6.2
from [6] (which though are conveniently formulated for our application
here, are essentially well known along the line of Moser’s theorem) to the
symplectic isotopic family {(Ct,wt)}efo,1), We can construct a smooth sym-
plectomorphism Hj : (Ps, wsw) — (Ps,@sw) such that Hy(Cs,. ) = Csy. . To

sw
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satisfy Hi|gp. = Idgp,, it is necessary to apply Theorems 6.3 and 6.4 from [6]
and H; is piecewise smooth, C”! and is smooth away from Co N OPs. O

When S € Z is a one-simplex, I'g is just the baricenter of S. Let s(I'z)
(resp. e(I'z)) denote the union of I'g for those one-simplex S € Z that is
not in A (resp. is in JA).

Proposition 5.10. For each S € Z*P, we may modify Cs,. in U accord-
ing to Proposition 5.2, and keep Cj,.. unchanged outside of the union of such
US. In such way, we can construct a family of symplectic curves {Ci}iefo
under the symplectic form @sw, such that Cy = Cs,,, and F5.(C1) =T is a
graph that coincides with Iz away from an e-neighborhood of s(I'z) and is
an O(e)-perturbation of I'z.

Proof. 1t is straightforward to verify that the deformation defined in the
proposition match on overlapping regions. Through similar discussion as
in the remark after Proposition 5.2, it is easy to observe that C; is toric
outside of the union of U® for S € Z'P hence the moment map image of
C; in this region is one-dimensional, independent of ¢ and is inside a small
neighborhood of s(I'z) Ne(I'z). For each S € Z'P in U?, as in the proof
of Proposition 5.9, we have coordinates (x1,x2), which reduces C; here to
Cy C CP? in Proposition 5.2. Hence the image of C; N US under the moment

map coincides with part of I'g¢ C I'z according to Proposition 5.2. g

Theorem 5.11. There exists a piecewise smooth Lagrangian fibration F
as perturbation of the moment map Fso such that F’apz = Fsulgp, and
F(Csaw) =T is a graph that coincides with 'z away from an e-neighborhood
of s(I'z) and is an O(e)-perturbation of I' 7.

Proof. According to Proposition 5.9, we can construct a smooth symplecto-
morphism H;: (Py,wsw) — (P, wsw) such that Hi(Cs,. ) = Csp. One can
make Hi|gp, = Idgp, with the expense of smoothness of H; at Cp N 9Ps.

For the symplectic isotopic family {C;};c[o,1] under the symplectic form
wWgw in Proposition 5.10, we may define Hy in UES for S € Z%*P to be the
H; in Theorem 5.4 and extend by identity map outside the union of U for
S € Z%P. Then Hj: (Ps,wsw) — (Ps,@s0) is piecewise smooth and C%!
symplectomorphism satisfying Ha|gp. = Idgp,, H2(Cs,.,) = C1 such that
F5.(Cy) =T is a graph that is an e-perturbation of the graph T'z.

Let H = Hy o Hy. Then H|yp, = Idgp, and F' = Fsu o H is the desired
perturbation of Fyu. O
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Remark 5.12. Theorems 5.11 and 3.11 of this paper are needed for the
proofs in [7].

Proposition 5.13. For each S € Z*P, we may modify Cs,., in U accord-
ing to Proposition 5.5, and keep Cs,.. unchanged outside of the union of such
US. In such way, we can construct a family of symplectic curves {Ci}eepo
under the symplectic form wsw, such that Cy = Cs,, and F5u(Cy) =T is a
graph that coincides with Iz away from an e-neighborhood of s(I'z) and is
an O(e)-perturbation of I' .

Proof. The proof is the same as the proof of Proposition 5.10 except that
Proposition 5.2 is replaced with Proposition 5.5. U

Theorem 5.14. F in Theorem 5.11 can be made smooth away from CyN
F~1(v(T'y)) and Cy N OPs, where v(T'z) is the set of 3-valent vertices of I'z.

Proof. The proof is the same as the proof of Theorem 5.11 except that
Proposition 5.10 (resp. Theorem 5.4) is replaced with Proposition 5.13 (resp.
Theorem 5.6). O

Remark 5.15. In this theorem, F achieved optimal smoothness possible.
This result is a significant improvement over Theorem 5.11, and should play
an important role in improving the Lagrangian torus fibration of quintic
Calabi-Yau constructed in [7] to optimal smoothness. We hope to come
back to such improvement of [7] in a future paper.

Theorems 5.11 and 5.14 concern the partial secondary fan, where Z € Z.
They have natural generalization to the case of secondary fan, where Z € Z.
Such generalization turns out to be extremely straightforward. The only
difference in the argument when Z € Z is that for each S = {mgy, m1,ma} €
Z%P {z; = §mi Ay, S, } 2 defines an open covering (instead of embedding)
US < CP?, where [20, 21, 22] is the homogeneous coordinate of CP2. Local
models in Section 5.1 can be pull back using the open covering maps in the
same way as using the open embeddings in the case of Z € Z. With this
understanding, it is easy to check that all arguments in the case of Z € Z
can easily be adopted to the case of Z € Z. We have

Theorem 5.16. Theorems 5.11 and 5.14 are also true when Z € Z.

As we did at the end of Section 4.1, we may classify the fibers i, :=
Co N F~1(r) of themap F : Cy — T for r € T in the general case. In general,
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Figure 10: F(C,) of degree d = 5 curve in CP? perturbed to F(C,) =T.

when Z € Z, Wy can be several points when r is an end point of I'. u, can be
several circles when r is a smooth point of I'. u, can be an abelian multiple
cover of the © shaped graph in the torus at the right of figure 9 when r is
a three-valent vertex of I'. (The graph illustrated at the left of figure 9 can
be viewed as an example of such, which is a (Zs)2-cover of the © shaped
graph.) In the special case when Z € Z, Wy is a point when 7 is an end point

Figure 11: Alternative I for degree d = 5 curve in CP2.
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Ey

Es Es

Figure 12: F,(Cs) in figure 3 perturbed to graph I'.

of I'. pu, is a circle when r is a smooth point of I'. ., is the © shaped graph
when 7 is a 3-valent vertex of T'.

Examples 5.17. Using these theorems, the images of degree d = 5 curves
in CP? under the moment maps as illustrated in figure 2 can be perturbed
to figure 10.

This example correspond to the large complex limit with respect to the
standard simplicial decomposition of A. When approaching different large
complex limit in Wg the toric moduli space of stable curves of genus g, the
graph I will be different and determined by the corresponding simplicial
decomposition Z of A. Figure 11 is an example for degree d =5 curve in
CP2.

Applying these theorems to the case of curves in the toric surface (CP?
with three points blown up) as illustrated in figure 3, we will be able to
perturb the image of the moment map to figure 12.

Acknowledgment

I would like to thank Prof. S.T. Yau for constant encouragement, Prof.
Yong-Geun Oh for pointing out the work of [4] to me. This work was
initially done while I was in Columbia University. I am very grateful to
Columbia University for excellent research environment. Thanks also go to
Qin Jing for stimulating discussions and suggestions. W.-D.R was partially
supported by NSF Grant DMS-9703870 and DMS-0104150.

References

[1] P. S. Aspinwall, B. R. Greene and D. R. Morrison, The monomial-
divisor mirror map, Int. Math. Res. Notices 12 (1993), 319-337.



Newton polygon 119

[2] M. Forsberg, M. Passare and A. Tslkh, Laurent determinants and
arrangement of hyperplane amoebras. Preprint, 1998.

3] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discrimi-
nants, Resultants and Multidimensional Determinants, Birkhauser Inc.,
Boston, MA, 1994.

[4] G. Mikhalkin, Real algebraic curves, the moment map and amoebas,
Ann. Math. 151 (2000), 309-326.

[5] W.-D. Ruan, Lagrangian torus fibration of quintic Calabi-Yau hyper-
surfaces I: Fermat type quintic case, in ‘“Winter School on Mirror Sym-
metry, Vector Bundles and Lagrangian Submanifolds’, eds. S.-T. Yau
and C. Vafa, AMS and International Press.

[6] W.-D. Ruan, Lagrangian torus fibration of quintic Calabi- Yau hypersur-
faces II: Technical results on gradient flow construction, J. Symplectic
Geom. 1 (2002), no. 3, 435-521.

[7] W.-D. Ruan, Lagrangian torus fibration of quintic Calabi-Yau hyper-
surfaces I11: Symplectic topological SYZ mirror construction for general
quintics, J. Differ. Geom. 63 (2003), 171-229.

[8] W.-D. Ruan, Lagrangian torus fibration and mirror symmetry of Calabi-
Yau hypersurfaces in toric variety, math.DG/0007028.

[9] W.-D. Ruan, Lagrangian torus fibration and mirror symmetry of Calabi-
Yau complete intersections in toric variety (preliminary version).

[10] A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T-duality,
Nucl. Phys. B 479 (1996), 243-259.

[11] O. Y. Viro, Real plane algebraic curves: constructions with controlled
topology, Leninggrad Math. J. 1 (1990), 1059-1134.

DEPARTMENT OF MATHEMATICS
KAIST

DAEJEON 305-701

REPUBLIC OF KOREA

FE-mail address: ruan@math.uic.edu

RECEIVED APRIL 12, 2005






