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In this paper we study the moment map images of curves in toric
surfaces. We are particularly interested in the situations when we
can perturb the moment map so as to make the image of algebraic
curves to be a graph.
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1. Introduction

In this paper, we study the moment map image of algebraic curves in toric
surfaces. We are particularly interested in the situations that we are able to
perturb the moment map so that the moment map image of the algebraic
curve is a graph. To put our problem into proper context, let us start with
CP

2.
Consider the natural real n-torus (Tn) action on CP

n given by

eiθ(x) = (eiθ1x1, eiθ2x2, . . . , eiθnxn).

The Tn acts as symplectomorphisms with respect to the Fubini-Study
Kählerform

ωFS = ∂∂̄ log(1 + |x|2).

The corresponding moment map is

F (x) =
(

|x1|2
1 + |x|2 ,

|x2|2
1 + |x|2 , . . . ,

|xn|2
1 + |x|2

)
,

which is easy to see if we write ωFS in polar coordinates.

ωFS = ∂∂̄ log(1 + |x|2) = i

n∑
k=1

dθk ∧ d

(
|xk|2

1 + |x|2

)
.

Notice that the moment map F is a Lagrangian torus fibration and the
image of the moment map Δ = Image(F ) is an n-simplex.

In the case of CP
2, Δ = Image(F ) is a two-simplex, i.e., a triangle. Let

p(z) be a homogeneous polynomial. p defines an algebraic curve Cp in CP
2.

We want to understand the image of Cp in Δ under the moment map F .
In quantum mechanics, particle interactions are characterized by Feyn-

man diagrams (one-dimensional graphs with some external legs). In string
theory, point particles are replaced by circles (string!) and Feynman dia-
grams are replaced by string diagrams (Riemann surfaces with some marked
points). Feynman diagrams in string theory are considered as some low
energy limit of string diagrams. Fattening the Feynman diagrams by replac-
ing points with small circles, we get the corresponding string diagrams. On
the other hand, string diagrams can get “thin” in many ways to degenerate
to different Feynman diagrams.

Our situation is a very good analog of this picture. The complex curve
Cp in CP

2 can be seen as a string diagram with the intersection points with
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the three distinguished coordinate CP
1’s (that are mapped to ∂Δ) as marked

points. The image of Cp under F can be thought of as some “fattening” of
a Feynman diagram Γ in Δ with external points in ∂Δ.

When p is of degree d, the genus of Cp is

g =
(d − 1)(d − 2)

2
.

Generically, Cp will intersect with CP
1 at d points. Ideally, the image of

Cp under the moment map will have g holes in Δ and d external points in
each edge of Δ. In general F (Cp) can have smaller number of holes. In fact,
F (Cp) has at most g holes. (For more detail, please see the “Note on the
literature” in the end of the introduction.)

In this paper, we will be interested in constructing examples of Cp such
that F (Cp) will have exactly g holes in Δ and d external points in each edge
of Δ. Namely, the case when F (Cp) resembles classical Feynman diagrams
the most. (Sort of the most classical string diagram.) These examples will
be constructed for any degree in Section 2.

Our interest on this problem comes from our work on Lagrangian torus
fibration of Calabi–Yau manifolds and symplectic version of SYZ conjecture
([10]) on mirror symmetry. In [5–7], we mainly concern the case of quintic
curves in CP

2. The generalization to curves in toric surfaces will be useful
in [8,9]. The algebraic curves and their images under the moment map arise
as the singular set and singular locus of our Lagrangian torus fibrations.

As we mentioned, F (Cp) can be rather chaotic for general curve Cp.
The condition for F (Cp) to resemble a classical Feynman diagram is related
to the concept of “near the large complex limit,” which is explained in
Section 3. (Through discussion with Qin Jing, it is apparent that near
the large complex limit is equivalent to near the Zero-dimensional strata
in Mg, the moduli space of stable curves of genus g. These points in Mg

are represented by stable curves, whose irreducible components are all CP
1

with three marked points.) It turns out that our construction of “graph-like”
string diagrams for curves in CP

2 can be generalized to curves in general
two-dimensional toric varieties using localization technique. More precisely,
in the moduli space of curves in a general two-dimensional toric variety, when
the curve Cp is close enough to the so-called “large complex limit”(analogous
to classical limit in physics) in suitable sense, F (Cp) will resemble a fattening
of a classical Feynman diagram. This result will be made precise and proved
in theorems 3.10 and 3.14 of Section 3. Examples constructed in Section 2
are special cases of this general construction.



80 Wei-Dong Ruan

One advantage of string theory over classical quantum mechanic is that
the string diagrams (marked Riemann surfaces) are more natural than
Feynman diagrams (graphs). For instance, one particular topological type
of string diagram under different classical limit can degenerate into very
different Feynman diagrams, therefore unifying them. In our construction,
there is a natural partition of the moduli space of curves such that in dif-
ferent part the limiting Feynman diagrams are different. We will discuss
this natural partition of the moduli space and different limiting Feynman
diagrams also in Section 3.

Of course, ideally, it will be interesting if F (Cp) is actually a one-
dimensional Feynman diagram Γ in Δ. This will not be true for the moment
map F . A natural question is: “Can one perturb the moment map F to
F̂ so that F̂ (Cp) = Γ?” (Notice that the moment map of a torus action
is equivalent to a Lagrangian torus fibration. We will use the two con-
cepts interchangeably in this paper.) Such perturbation is not possible in
the smooth category. But when F (Cp) resembles a classical Feynman dia-
gram Γ close enough, we can perturb F suitably as a moment map, so that
the perturbed moment map F̂ is piecewise smooth and satisfies F̂ (Cp) = Γ.
This perturbation construction is explicitly done for the case of line in CP

2

in Section 4 (Theorems 4.3 and 4.8). The general case is dealt with in
Section 5 (Theorems 5.11 and 5.14) combining the localization technique
in Section 3 and the perturbation technique in Section 4. (In particular,
optimal smoothness for F̂ is achieved in Theorems 4.8 and 5.14.)

Note on the literature: Our work on Newton polygon and string diagram
was motivated by and was an important ingredient of our construction of
Lagrangian torus fibrations of Calabi-Yau manifolds [5–9]. After reading
my preprint, Prof. Y.-G. Oh pointed out to me the work of Mikhalkin [4],
through which I was able to find the literature of our problem. The image
of curves under the moment map was first investigated in [3], where it was
called “amoeba”. Legs of amoeba are already understood in [3]. The prob-
lem of determining holes in amoeba was posed in [3, Remark 1.10, p. 198]
as a difficult and interesting problem. Work of Mikhalkin [4] that was pub-
lished in 2000 and works [2, 11] mentioned in its reference point out some
previous progress on this problem of determining holes in amoeba aimed at
very different applications, which nevertheless is very closely related to our
work. Most of the ideas in Sections 2 and 3 are not new and appeared in
one form or the other in these previous works mentioned. For example, our
localization technique used in Section 3 closely resemble the curve patching
idea of Viro (which apparently appeared much earlier) in different context as
described in [4]. Due to different purposes, our approach and results are of
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somewhat distinctive flavor. To our knowledge, our discussion in Sections 4
and 5 on symplectic deformation to Lagrangian fibrations with the image
of curve being graph, which is important for our applications, was not dis-
cussed before and is essentially new. I also want to mention that according
to the description in [4] of a result of Forsberg et al. [2], one can derive that
there are at most g = (d−1)(d−2)

2 holes in F (Cp) for degree d curve Cp, which
I initially conjectured to be true.

Note on the figures: The figures of moment map images of curves as
fattening of graphs in this paper are somewhat idealized topological illus-
tration. Some part of the edges of the image that are straight or convex
could be curved or concave in more accurate picture. Of course, such inac-
curacy will not affect our mathematical argument and the fact that moment
map images of curves are fattening of graphs.

Notion of convexity: A function y = f(x) will be called convex if the set
{(x, y) : y ≥ f(x)} is convex. We are aware such functions have been called
concave by some authors.

2. The construction for curves in CP
2

To understand our problem better, let us look at the example of Fermat
type polynomial

p = zd
1 + zd

2 + zd
3 .

It is not hard to see that for any d, F (Cp) will look like a curved triangle
with only one external point in each edge of Δ and no hole at all (figure 1).
(This example is in a sense a string diagram with the most quantum effect.)

From this example, it is not hard to imagine that for most polynomials,
chances are the number of holes will be much less than g. Any attempt to
construct examples with the maximal number of holes will need special care,
especially if one wants the construction for general degree d.

Figure 1: F (Cp) of p(z) = zd
1 + zd

2 + zd
3 .
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Let [z] = [z1, z2, z3] be the homogeneous coordinate of CP
2. Then a

general homogeneous polynomial of degree d in z can be expressed as

p(z) =
∑

I∈Nd

aIz
I ,

where

Nd = {I = (i1, i2, i3) ∈ Z
3||I| = i1 + i2 + i3 = d, I ≥ 0}

is the Newton polygon of degree d homogeneous polynomials. In our case,
Nd is a triangle with d + 1 lattice points on each side. Denote E = (1, 1, 1).

To describe our construction, let us first notice that Nd can be naturally
decomposed as a union of “hollow” triangles as follows:

Nd =
[d/3]⋃
k=0

Nd
k ,

where
Nd

k = {I ∈ Nd|I ≥ kE, I �≥ (k + 1)E}.

On the other hand, the map I → I + E naturally defines an embedding
i : Nd → Nd+3. From this point of view, Nd

0 = Nd\Nd−3 and Nd
k = i(Nd−3

k−1 )
for k ≥ 1.

When d = 1, g = 0 and a generic degree 1 polynomial can be reduced to

p = z1 + z2 + z3.

F (Cp) is a triangle with vertices as middle points of edges of Δ. This clearly
satisfies our requirement, namely, with g = 0 holes.

For d ≥ 2, the first problem is to make sure that the external points are
distinct and as far apart as possible. For this purpose, we want to consider
homogeneous polynomials with two variables. A nice design is to consider

qd(z1, z2) =
d∏

i=1

(z1 + tiz2) =
d∑

i=0

biz
d−i
1 zi

2

such that td−i+1 = 1
ti

≥ 1. Then b0 = bd = 1 and bd−i = bi ≥ 1 for i ≥ 1.
We can adjust ti for 1 ≤ i ≤ [d/2] suitably to make them far apart. (For
example, one may assume F (ti) = 2i−1

2d , where F (t) = t2

1+t2 is the moment
map for n = 1.) Now we can define a degree d homogeneous polynomial
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in three variables such that coefficients along each edge of Nd is assigned
according to q and coefficients in the interior of Nd vanish. We will still
denote this polynomial by qd. Then we have

Theorem 2.1. For

pd(z) =
[d/3]∑
k=0

ckqd−3k(z)zkE ,

where c0 = 1 and ck > 0, if ck is big enough compared to ck−1, then F (Cpd
)

has exactly g holes and d external points in each edge of Δ.

Before proving the theorem, let us analyse some examples that give
us better understanding of the theorem. Figures 2–5 are some examples
of Feynman diagrams corresponding to 1 ≤ d ≤ 5. (The case d = 5 is the
case we are interested in mirror symmetry.) The image of the corresponding
string diagrams under the moment map F are some fattened version of these
Feynman diagram. For example one can see genus of the corresponding
Riemann surfaces from these diagrams. When d = 1, 2 there are no holes in
the diagram and genus equal to zero. When d = 5 there are six holes and
the corresponding Riemann surface are genus six curves. These diagrams
give a very nice interpretation of genus formula for planar curve. (In my
opinion, also a good way to remember it!)

To justify our claim, we first analyse it case by case. When d = 1, g = 0
and a generic polynomial can be reduced to

p1(z) = z1 + z2 + z3.

F (Cp) is a triangle with vertices as middle points of edges of Δ. This clearly
is a fattened version of the first diagram in the next picture.

Figure 2: Degree d = 1, 2.
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Figure 3: Degree d = 3.

Figure 4: Degree d = 4.

Figure 5: Degree d = 5.
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When d = 2, g = 0 and we may take polynomial

p2(z) = (z2
1 + z2

2 + z2
3) +

5
2
(z1z2 + z2z3 + z3z1).

When z3 = 0

q2(z1, z2) = z2
1 + z2

2 +
5
2
z1z2 =

(
z1 +

1
2
z2

)
(z1 + 2z2).

Image of {q2(z1, z2) = 0} under F are two lines coming out of the edge r3 = 0
starting from the two points r1

r2
= 2, 1

2 . When z3 is small, p2(z) is a small per-
turbation of q2(z1, z2). By this argument, it is clear that F (C2) is a fattening
of the second diagram figure 2 near the boundary of the triangle. Since in
our case g = 0. It is not hard to conceive or (if you are more strict) to find
a way to prove that F (C2) is a fattening of the second diagram in figure 2.

When d = 3, g = 1. We can consider

p3(z) = (z3
1 + z3

2 + z3
3) +

7
2
(z2

1z2 + z2
2z3 + z2

3z1

+ z1z
2
2 + z2z

2
3 + z3z

2
1) + bz1z2z3.

We can use similar idea as in the previous case to explain the behavior of
F (C3) near the edges. The main point for this case is to explain how the hole
in the center arises. For this purpose, we introduce the following function:

ρp(r) = inf
F (z)=r

|p(z)|.

This function takes non-negative value, and

F (Cp) = {[r]|ρp(r) = 0}.

ρ also satisfies

ρp1p2 = ρp1ρp2 ,

ρp1+p2 ≤ ρp1 + ρp2 .

An important thing to notice is that ρz1z2z3(r) = r1r2r3 is a function that
vanishes at the edges of the triangle and not vanishing anywhere in the
interior of the triangle, sort of a bump function. When b is large, ρp3 will be
dominated by br1r2r3 away from the edges, which will be positive around
center. Therefore F (C3) will have a hole in the center, which becomes large
when b gets large.
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When d = 4, g = 3. We can consider

p4(z) = q4(z) + bz1z2z3p1(z).

The key point is to understand how the three holes appear. For this purpose,
we need to go back to the case when d = 1. Notice that ρz1z2z3p1 = r1r2r3ρp1

is positive in the three regions as indicated in the diagram for d = 1, and
it is zero at the boundary of the three regions. When b is large, this term
dominates ρp4 in the interior of the triangle and produces the three holes.
Similar discussion as before implies that q4 will take care of edges.

When d = 5, g = 6. We need to go back to the case d = 2. The discussion
is very similar to the previous case, we will omit.

Proof of Theorem 2.1. We prove by induction. For this purpose, notice that
we can define pd(z) alternatively by induction

pd(z) = qd(z) + bdz
Epd−3(z).

We need to show that when bd are large enough for any d, F (Cpd
) will have

g = (d−1)(d−2)
2 holes and d external legs in each edge.

Assume above statement is true for pd−3(z), then F (Cpd−3) will have
g = (d−4)(d−5)

2 holes and d − 3 external legs in each edge. It is easy to see
that F (CzEpd−3) will have g = (d−4)(d−5)

2 interior holes and 3(d − 3) side holes
that are partly bounded by edges. We are expecting that by adding qd term,
side holes will become interior hole and there will be d external legs on each
edge.

Discussion in previous special examples will more or less do this. Here
we can do better. We can actually write down explicitly the behavior of
F (Cp) near edges. For example, near the edge z3 = 0, pd(z) = 0 can be
rewritten as

z3 = − qd(z)
bdz1z2pd−3(z)

.

This is a graph over the coordinate line z3 = 0 within say |z3| ≤ ε min(|z1|,
|z2|) and away from z1 = 0, z2 = 0 and d − 3 leg points of pd−3(z). It will
be clearer to discuss under local coordinate say x1 = z1

z2
, x3 = z3

z2
. We will

use the same symbol for homogeneous polynomials and the corresponding
inhomogeneous polynomials. Then under this inhomogeneous coordinate

x3 = − qd(x1, x3)
bdx1pd−3(x1, x3)

.
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Asymptotically, near x3 = 0

x3 = − qd(x1)
bdx1qd−3(x1)

.

From previous notation qd(x1) = qd(x1, 0) = pd(x1, 0), and

qd(x1) =
d∏

i=1

(x1 − td,i).

Recall that we require |td,i| to be as far apart as possible for different d, i.
From this explicit expression, it is easy to see that near z3 = 0 (say |x3| ≤ ε)
and away from z2 = 0, Cpd

is a graph over the CP
1 (z3 = 0) away from disks

|x1 − td−3,i| ≤ qd(td−3,i)
td−3,iq

′
d−3(td−3,i)

1
εbd

for 1 ≤ i ≤ d − 3,

and

|x1| ≤ qd(0)
qd−3(0)

1
εbd

.

Recall bd is supposed to be large. Here we further require the choice of ε
to satisfy ε is small and εbd is large. Therefore, all these holes are very
small. It is easy to see that the d − 3 small circles centered around the roots
of qd−3 will connect with d − 3 legs of Cpd−3 . In this way, the side holes
of F (CzEpd−3) will become interior holes of F (Cp). Together with original
interior holes they add up to

(d − 4)(d − 5)
2

+ 3(d − 3) =
(d − 1)(d − 2)

2
= gd

interior holes for F (Cpd
). d zeros of qd along each edge will produce for us

the d exterior legs on each edge. Namely F (Cd) is fattening of the Feynman
diagrams as described in previous pictures. �

3. Newton polygon and string diagram

The result in the previous section is actually special cases of a more general
result on curves in toric surfaces. When the coefficients of the defining equa-
tion of a curve in a general toric surface satisfy certain convexity conditions
(in physical term: near the large complex limit), the moment map image
(amoeba) of the curve in the toric surface will also resemble the fattening
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of a graph. The key idea that enables such generalization is the so-called
“localization technique” that reduces the amoeba of our curve near the large
complex limit locally to the amoeba of a line, which is well understood.

We start with toric terminologies. Let M be a rank 2 lattice and N =
M∨ denotes the dual lattice. For any Z-module A, let NA = N ⊗Z A. Given
an integral polygon Δ ⊂ M , we can naturally associate a fan Σ by the
construction of normal cones. For a face α of the polygon Δ, define the
normal cone of α

σα := {n ∈ N |〈m′, n〉 ≤ 〈m, n〉 for all m′ ∈ α, m ∈ Δ}.

Let Σ denote the fan that consists of all these normal cones. We are inter-
ested in the corresponding toric variety PΣ. Let Σ(1) denote the collection
of one-dimensional cones in the fan Σ, then any σ ∈ Σ(1) determines a NC∗-
invariant Weil divisor Dσ.

For m ∈ M , sm = e〈m,n〉 defines a monomial function on NC∗ that ext-
ends to a meromorphic function on PΣ. Let eσ denote the unique primitive
element in σ ∈ Σ(1). The Cartier divisor

(sm) =
∑

σ∈Σ(1)

〈m, eσ〉Dσ.

Consider the divisor

DΔ =
∑

σ∈Σ(1)

lσDσ, wherelσ = − inf
m∈Δ

〈m, eσ〉.

The corresponding line bundle LΔ = O(DΔ) can be characterized by the
piecewise linear function pΔ on N that satisfies pΔ(eσ) = lσ for any σ ∈
Σ(1). It is easy to see that pΔ is strongly convex with respect to the fan
Σ, hence LΔ is ample on PΣ. Since (sm) + DΔ is effective if and only if
m ∈ Δ, {sm}m∈Δ can be identified with the set of NC∗-invariant holomorphic
sections of LΔ. In this sense, the polygon Δ is usually called the Newton
polygon of the line bundle LΔ on PΣ. A general section of LΔ can be
expressed as

s =
∑
m∈Δ

amsm.

Cs = s−1(0) is a curve in PΣ. We can consider the image of the curve Cs

under some moment map of PΣ. The problem we are interested in is when
this image will form a fattening of a graph. The case discussed in the last
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section is a special case of this problem, corresponding to the situation of
PΣ ∼= CP

2 and LΔ ∼= O(k).
With w = {wm}m∈Δ ∈ Ñ0 ∼= Z

Δ, we can define an action of δ ∈ R+ on
sections of LΔ.

sδw

= δ(s) =
∑
m∈Δ

(δwmam)sm.

A = {{l + 〈m, n〉}m∈Δ ∈ Ñ0 : (l, n) ∈ N+ = Z ⊕ N} ⊂ Ñ0

is the sublattice of affine functions on Δ. An element [w] ∈ Ñ = Ñ0/A can
be viewed as an equivalent class of Z-valued functions w = (wm)m∈Δ on Δ
modulo the restriction of affine function on M .

When w = {wm}m∈Δ ∈ Ñ0 is a strictly convex function on Δ, w deter-
mines a simplicial decomposition Z of Δ. Clearly every representative of
[w] ∈ Ñ determines the same simplicial decomposition Z of Δ. Let S̃ (resp.
S̃top) be the set of S ⊂ Δ that forms a simplex (resp. top dimensional sim-
plex) containing no other integral points. Then Z can be regarded as a
subset of S̃. Let Ztop = Z ∩ S̃top.

From now on, assume |am| = 1 for all m ∈ Δ. |sm| = |e〈m,n〉| is a function
on NC∗ ⊂ PΣ. Let

hδw = log |sδw |2Δ, where|sδw |2Δ =
∑
m∈Δ

|sδw |2m, |sδw |m = |sδw

m | = |δwmsm|.

ωδw = ∂∂̄hδw naturally defines a NS-invariant Kählerform on PΣ, where S

denotes the unit circle in C
∗ as Z-submodule.

Choose a basis n1, n2 of N , then n ∈ NC can be expressed as

n =
2∑

k=1

(log xk)nk =
2∑

k=1

(log rk + iθk)nk.

Under this local coordinate, the Kählerform ωδw can be expressed as

ωδw = ∂∂̄hδw = i

2∑
k=1

dθk ∧ dhk, where hk = |xk|2
∂hδw

∂|xk|2
.

It is straightforward to compute that

hk =
∑
m∈Δ

〈m, nk〉ρm, where ρm =
|sδw |2m
|sδw |2Δ

.
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Consequently,

ωδw = i
∑
m∈Δ

d〈m, θ〉 ∧ dρm, where θ =
2∑

k=1

θknk.

Lemma 3.1. The moment map is

Fδw(x) =
∑
m∈Δ

ρm(x)m,

which maps PΣ to Δ.

By this map, NS-invariant functions h, hk, ρm on PΣ can all be viewed
as functions on Δ. We have

Lemma 3.2. ρm as a function on Δ achieves its maximum exactly at
m ∈ Δ.

Proof. By xk
∂|sδw |2m

∂xk
= 〈m, nk〉|sδw |2m, ρm achieves maximal implies

2∑
k=1

xk
∂ρm

∂xk
mk = ρm

∑
m′∈Δ

2∑
k=1

(〈m, nk〉 − 〈m′, nk〉)ρm′mk

= ρm

∑
m′∈Δ

(m − m′)ρm′ = ρm(m − Fδw(x)) = 0.

Therefore Fδw(x) = m when ρm achieves maximal. �

Lemma 3.3. For any subset S ⊂ Δ, ρS =
∑

m∈S ρm as a function on Δ
achieves maximum in the convex hull of S. At the maximal point of ρS

Fδw(x) =
∑
m∈S

ρS
mm =

∑
m�∈S

ρSc

m m, where ρS
m =

ρm

ρS
, Sc = Δ \ S.

Proof. By xk
∂|sδw |2m

∂xk
= 〈m, nk〉|sδw |2m, ρS =

∑
m∈S ρm achieves maximal

implies

∑
m∈S

2∑
k=1

xk
∂ρm

∂xk
mk =

∑
m∈S

ρm

∑
m′∈Δ

2∑
k=1

(〈m, nk〉 − 〈m′, nk〉)ρm′mk

=
∑
m∈S

ρm

∑
m′∈Δ

(m − m′)ρm′ =
∑
m∈S

ρm(m − Fδw(x)) = 0.
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Therefore

Fδw(x) =
∑
m∈S

ρS
mm =

∑
m∈S

|sδw |2m
|sδw |2S

m, where |sδw |2S =
∑
m∈S

|sδw |2m,

when ρS =
∑

m∈S ρm achieves maximal. It is easy to derive

Fδw(x) =
∑
m∈S

ρS
mm =

∑
m�∈S

ρSc

m m.

�

Lemma 3.4. There exists a constant a > 0 (independent of δ) such that
for any x ∈ PΣ the set

Sx = {m ∈ Δ|ρm(x) > δa}

is a simplex in Z.

Proof. Take a maximal subset S̃x ⊂ Sx that forms a simplex, which is allowed
to contain no integral points in Sx \ S̃x. Clearly, Sx is in the affine span of
S̃x in M . (Without loss of generality, we will assume that S̃x forms a top
dimensional simplex in M . Otherwise, we need to restrict our argument to
the affine span of S̃x in M .) For any m ∈ Δ, there exists a unique expression

sm = δwm

∏
m̃∈S̃x

slm̃
m̃ .

Correspondingly
ρm = δ2wm

∏
m̃∈S̃x

ρlm̃
m̃ .

For m ∈ Δ satisfying wm < 0,

ρm(x) ≥ δ2wm+a
∑

m̃∈S̃x
max(0,lm̃) > 1

for a > 0 small. Therefore we may assume wm ≥ 0 for all m ∈ Δ. Since
{wm}m∈Δ is convex and generic, we have S̃x ∈ Z. For m not in the simplex
spanned by S̃x, wm > 0, we have

ρm ≤ δ2wm+a
∑

m̃∈S̃x
min(0,lm̃) ≤ δa.

for a > 0 small. Therefore Sx = S̃x ∈ Z. �
The following proposition is a direct corollary of Lemma 3.4.
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Proposition 3.5. For S ∈ Z and x ∈ PΣ, assume that ρm(x) > ε for all
m ∈ S. Then ρm(x) = O(δ+) for all m �∈ S such that S ∪ {m} �∈ Z.

Remark 3.6. In this paper, O(δ+) denotes a quantity bounded by Aδa for
some universal positive constants A, a that only depend on w and Δ. In
this paper, the relation between ε and δ is that we will take ε as small as we
want and then take δ as small as we want depending on ε. Geometrically,
the metric ωδw develop necks that have scale δa′

for some a′ > a. ε is the
gluing scale in Section 5 that satisfies ε ≥ δa. For this section, it is sufficient
to take ε = δa, which we will assume. In particular, O(δ+) = O(ε) in this
section.

For S ∈ Z, we have two NS-invariant Kählerforms

ωS
δw = ∂∂̄hS

δw , ωS = ∂∂̄hS , where hS
δw = log |sδw |2S hS = log |s|2S .

The corresponding moment maps are

FS
δw =

∑
m∈S

ρS
mm and FS =

∑
m∈S

|s|2m
|s|2S

m.

The two NS-invariant Kählerforms and their moment maps coincide if
only if wm = 0 for m ∈ S.

Apply Lemma 3.4, we have

Proposition 3.7. For any x ∈ PΣ, |ωSx

δw (x) − ωδw(x)| = O(δ+) and |FSx

δw (x)
− Fδw(x)| = O(δ+).

For each simplex S ∈ Z, let

US
ε = {x ∈ PΣ|ρS(x) > 1 − |Δ|ε, ρm(x) > ε, for m ∈ S},

where |Δ| denotes the number of integral points in Δ. The definition
clearly implies the following.

Proposition 3.8. For any x ∈ US
ε , |ωS

δw(x) − ωδw(x)| = O(ε) and |FS
δw(x)

− Fδw(x)| = O(ε).

Proposition 3.9.
PΣ =

⋃
S∈Z

US
ε .

Namely, {US
ε }S∈Z is an open covering of PΣ.
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Proof. For any x ∈ PΣ, let S contain those m ∈ Δ such that ρm(x) > ε,
then

∑
m�∈S ρm(x) ≤ |Δ|ε. Lemma 3.4 implies that S ⊂ Sx ∈ Z is a simplex.

Consequently, S ∈ Z, x ∈ US
ε . �

Recall Csδw = (sδw

)−1(0). We have

Proposition 3.10. The image Fδw(Csδw ) is independent of the choice of
w = (wm)m∈Δ as a representative of an element [w] ∈ Ñ = Ñ0/A.

Proof. Assume that w̃ = (w̃m)m∈Δ is another representative of w ∈ Ñ =
Ñ0/A. Then there exists (l, n) ∈ Z ⊕ N such that w̃m = wm − 〈m, n〉 + l.
For x ∈ NC∗ , let x̃ = x + n log δ, then sm(x̃) = δ〈m,n〉sm(x) and sδw̃

m (x̃) =
δw̃msm(x̃) = δlδwmsm(x) = δlsδw

m (x). Hence

sδw̃

(x̃) =
∑
m∈Δ

amsδw̃

m (x̃) = δl
∑
m∈Δ

amsδw

m (x) = δlsδw

(x),

and the transformation x → x̃ maps Csδw to Csδw̃ . On the other hand,

|sδw̃

m (x̃)|2 = δ2l|sδw

m (x)|2, |sδw̃

(x̃)|2Δ = δ2l|sδw

(x)|2Δ,

Fδw̃(x̃) =
∑
m∈Δ

|sδw̃

m (x̃)|2
|sδw̃(x̃)|2Δ

m =
∑
m∈Δ

|sδw

m (x)|2
|sδw(x)|2Δ

m = Fδw(x).

Therefore Fδw(Csδw ) = Fδw̃(Csδw̃ ). �
For each simplex S ∈ Z, let CS = s−1

S (0), where sS =
∑

m∈S amsm, and
let ΓS denote the union of all the simplices in the baricenter subdivision of
S not containing the vertex of S. Then

(3.1) ΓZ =
⋃

S∈Z

ΓS

is a graph in Δ. We have

Theorem 3.11.

lim
δ→0

Fδw(Csδw ) =
⋃

S∈Z

FS(CS)

is a fattening of ΓZ . Consequently, for δ ∈ R+ small, Fδw(Csδw ) is a fatten-
ing of ΓZ .

Proof. For x ∈ PΣ, according to Proposition 3.9, there exists S ∈ Z such that
x ∈ US

ε . Since S is a simplex, w can be adjusted by elements in A so that
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wm = 0 for m ∈ S and wm < 0 for m �∈ S. According to Proposition 3.10,
Fδw(Csδw ) is unchanged under such adjustment of w. Such adjustment
enables us to isolate the discussion to one simplex at a time. For this
adjusted weight w, ωS

δw = ωS and FS
δw = FS . Proposition 3.8 implies that for

x ∈ US
ε , Fδw(x) can be approximated (up to ε-terms) by FS(x) = FS

δw(x).
Since wm < 0 for m �∈ S, we have |sδw − sS | = O(δ+) on US

ε . Csδw ∩
US

ε can be approximated (up to O(δ+)-terms) by CS ∩ US
ε . Consequently,

Fδw(Csδw ∩ US
ε ) is an O(ε)-approximation of Fδw(CS ∩ US

ε ). Patch such local
results together, we get

lim
δ→0

Fδw(Csδw ) =
⋃

S∈Z

FS(CS).

In fact, limδ→0 Csδw =
⋃

S∈Ztop CS , where on the right-hand side, when S1 ∩
S2 is a one-simplex, the marked points of CS1 and CS2 corresponding to
S1 ∩ S2 are identified. This limit can be understood in the moduli space
Mg of stable curves.

When S ∈ Z is a one-simplex, FS(CS) = ΓS is the baricenter of S.
When S ∈ Z is a two-simplex, let m0, m1, m2 be the vertices of the simplex
S. Under the coordinate xk = (amksmk)/(am0sm0) for k = 1, 2, CS = {x1 +
x2 + 1} and FS(x) =

∑2
k=0

|xk|2
|x|2 mk, where x0 = 1 and |x|2 = 1 + |x1|2 +

|x2|2. FS(CS) is just the curved triangle in the simplex S ⊂ Δ as illus-
trated in the first picture in figure 1, which is clearly a fattening of the
Y shaped graph ΓS . Consequently,

⋃
S∈Z FS(CS) is a fattening of ΓZ =⋃

S∈Z ΓS . �

Remark 3.12. The result in this theorem is essentially known to Viro in
a somewhat different but equivalent form as described in [4].

Remark 3.13. To achieve the pictures of images of curves in figures 3, 4
and 5 in the last section, it is necessary to use the moment map introduced
in this section. If the moment map of the standard Fubini-Study metric is
used, the pictures will look more like hyperbolic metric, more precisely, the
holes around center of the polygon will be larger and near the boundary of
the polygon will be smaller.

Example 3.14. The Newton polygon corresponding to an ample line bun-
dle L over PΣ as P

2 with three points blown up. Let E1, E2, E3 be the three
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Figure 6: The standard simplicial decomposition.

E1

E3E2

Figure 7: Fs(Cs).

exceptional divisors, then

L ∼= π∗(O(5)) ⊗ O(−2E1 − E2 − E3),

where π : PΣ → P
2 is the natural blow up. Choose a section s of this line

bundle near the large complex limit corresponding to the above standard
simplicial decomposition of the Newton polygon (figure 6). Then the curve
Cs = s−1(0) cut out by the section s will be mapped to figure 7 under
corresponding moment map Fs.

3.1. Secondary fan

Theorem 3.11 can be better understood in the context of the secondary
fan. To begin with, we consider the space MΔ of curves Cs modulo the
equivalent relations of toric actions. With a little abuse of notation, we will
call MΔ the toric moduli space of curves Cs with the Newton polygon Δ.
Let M̃0 ∼= Z

Δ be the dual lattice of Ñ0 = {w = (wm)m∈Δ ∈ Z
Δ} ∼= Z

Δ.
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Recall that Ñ = Ñ0/A. The dual lattice M̃ = A⊥. We have the natural
identification

MΔ ∼= ÑC∗ = Spec(C[M̃ ]) ∼= (C∗)Δ/N+
C∗ .

To make sense of the large complex limit, we need the compactification MΔ
of MΔ determined by the so-called secondary fan.

For general [w] ∈ Ñ , w = (wm)m∈Δ is not convex on Δ. Let ŵ =
(ŵm)m∈Δ be the convex hull of w. When w is generic, ŵ determines a
simplicial decomposition Zw of Δ. (It is easy to observe that Zw is inde-
pendent of the choice of representative w in the equivalent class [w].) Let
Ŝ be the set of S ⊂ Δ that forms an r-dimensional simplex. Then Zw can
be regarded as a subset of Ŝ. Let Ẑ denote the set of all Zw for [w] ∈ Ñ .
For Z ∈ Ẑ, let τZ ⊂ Ñ be the closure of the set of all [w] ∈ Ñ such that
Zw = Z. Each τZ is a convex integral top dimension cone in Ñ . The union
of all τZ is exactly Ñ . Let Σ̂ be the fan whose cones are subcones of the top
dimensional cones {τZ}Z∈Ẑ . Σ̂ is a complete fan.

Let Z̃ be the set of simplicial decompositions Zw ⊂ S̃ of Δ that is deter-
mined by some strictly convex function w = (wm)m∈Δ on Δ. For Z ∈ Z̃,
let τZ ⊂ Ñ be the set of [w] ∈ Ñ , where w = (wm)m∈Δ is a piecewise linear
convex function on Δ with respect to the simplicial decomposition Z. Each
τZ is a integral top dimension cone in Ñ . The union of all τZ

τ =
⋃

Z∈Z̃

τZ

is exactly the convex cone of all [w] ∈ Ñ , where w = (wm)m∈Δ is a piecewise
linear convex function on Δ. Let Σ̃ be the fan whose cones are subcones of
the top dimensional cones {τZ}Z∈Z̃ . Σ̃ is a subfan of the complete fan Σ̂.

The fan Σ̂ is the so-called secondary fan. (For more detail about the
secondary fan, please refer to the book [3]. [1] contains some application of
secondary fan to mirror symmetry.) Σ̂ naturally determines the compacti-
fication MΔ = PΣ̂. We will call Σ̃ the partial secondary fan. Σ̃ determines
the partial compactification M̃Δ = PΣ̃. For each Z ∈ Ẑ, the top dimen-
sional cone τZ determines a single fixed point sZ

∞ ∈ MΔ\MΔ of the ÑC∗

action. We will call such sZ
∞ a large complex limit point. The set of different

large complex limit points is parameterized by the set of simplicial decom-
position Ẑ. Each large complex limit point sZ

∞ possesses a cell neighborhood
τC

Z ⊂ MΔ, where τC

Z = τZ ⊗Z≥0 C+ ⊂ ÑC∗ , Z≥0 acts trivially on C+ = {z ∈
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C
∗ : |z| ≥ 1}. We have the following natural cell decomposition of MΔ

MΔ =
⋃

Z∈Z̃

τC

Z .

Given a simplicial decomposition Z ∈ Ẑ of Δ, let τ0
Z denote the interior of

τZ . Any [w] ∈ τ0
Z can be represented by a strongly convex piecewise linear

function w = (wm)m∈Δ on Δ with respect to Z. It is easy to see that when
δ approaches 0, Csδw will approach the large complex limit point sZ

∞ in MΔ.
In such situation, we will say that Csδw or sδ is near the large complex limit
point (determined by Z), when δ is small.

Theorem 3.11 applies to each of such large complex limit point sZ
∞ in

M̃Δ for Z ∈ Z̃, and can be rephrased as: when the string diagrams Csδw

approach the large complex limit point sZ
∞ in M̃Δ as δ → 0, the amoebas

Fδw(Csδw ) of the string diagrams Csδw converge to the Feynman diagram ΓZ .
Theorem 3.11 can be generalized to the full compactification MΔ with-

out additional difficulty.

Theorem 3.15. For Z ∈ Ẑ, when the string diagrams Csδw approach the
large complex limit point sZ

∞ in MΔ as δ → 0, the amoebas Fδw(Csδw ) of the
string diagrams Csδw converge to the Feynman diagram ΓZ .

Proof. It is straightforward to generalize Lemma 3.4, Propositions 3.7, 3.8,
3.9, 3.10 and in particular, Theorem 3.11 to the case when Z ∈ Ẑ. The
arguments are literally the same with the understanding that S considered
as a subset in M contains only the integral vertex points of the simplex S,
not any other integral points in the simplex S. �

Remark 3.16. Theorem 3.11 is used in [7] to construct Lagrangian torus
fibration for quintic Calabi-Yau manifolds near large complex limit in the
partial secondary fan compactification. Theorem 3.15 can be used to con-
struct similar Lagrangian torus fibration for quintic Calabi-Yau manifolds
near large complex limit that is not necessarily in the partial secondary
fan compactification. According to [1], a large complex limit in the partial
secondary fan compactification, under the mirror symmetry, corresponds to
large radius limit of a Kählercone of the mirror Calabi-Yau manifold, while a
large complex limit not in the partial secondary fan compactification, under
the mirror symmetry, may correspond to large radius limit of some other
physical model like Landau–Ginzberg model, etc.
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4. The pair of pants and the three-valent vertex of a graph

In Feynman diagram, a three-valent vertex represents the most basic particle
interaction. In string theory, the corresponding string diagram is the pair of
pants, which can be represented by a general line in CP

2 with the three punc-
tured points being the intersection points of this line with the three coor-
dinate lines. In this section, we will describe an analogue of this picture in
our situation. More precisely, the standard moment map maps a general
line to a fattening of the three-valent vertex neighborhood of a graph. In
this section, we will explicitly perturb the moment map, so that the per-
turbed moment map will map the general line to the three-valent vertex
neighborhood, i.e., a Y shaped graph.

4.1. The piecewise smooth case

Consider CP
2 with the Fubini-Study metric and the curve C0: z0 + z1 + z2 =

0 in CP
2. We have the torus fibration F : CP

2 → R
+

P
2 defined as

F ([z1, z2, z3]) = [|z1|, |z2|, |z3|].

Under the inhomogeneous coordinate xi = zi/z0, locally we have

F : C
2 → (R+)2, F (x1, x2) = (r1, r2),

where xk = rkeiθk . The image of C0 : x1 + x2 + 1 = 0 under F is

Γ̃ = {(r1, r2)|r1 + r2 ≥ 1, r1 ≤ r2 + 1, r2 ≤ r1 + 1}.

C0 is a symplectic submanifold. We want to deform C0 symplectically to C1
whose image under F is expected to be

Γ = {(r1, r2)|0 ≤ r2 ≤ r1 = 1 or 0 ≤ r1 ≤ r2 = 1 or r1 = r2 ≥ 1}.

A moment of thought suggests taking Ct = Ft(C0), where

Ft(x1, x2) =

((
max(1, r2)
max(r1, r2)

)t

x1,

(
max(1, r1)
max(r1, r2)

)t

x2

)
.

The Kählerform of the Fubini-Study metric can be written as

ωFS =
dx1 ∧ dx̄1 + dx2 ∧ dx̄2 + (x2 dx1 − x1 dx2) ∧ (x̄2 dx̄1 − x̄1 dx̄2)

(1 + |x|2)2 .
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Lemma 4.1. ωFS restricts to a symplectic form on Ct \ Sing(Ct), where
Sing(Ct) := {x ∈ Ct : (r1 − 1)(r2 − 1)(r1 − r2) = 0}. More precisely, there
exists c > 1 such that 1

cωFS ≤ F∗
t ωFS ≤ cωFS on C0 for all t ∈ [0, 1].

Proof. Due to the symmetries of permuting [z0, z1, z2], to verify that Ct

is symplectic, we only need to verify for one region out of six. Consider
1 ≥ |x2| ≥ |x1|, where

Ct =

{((
1
r2

)t

x1,

(
1
r2

)t

x2

)
: x1 + x2 + 1 = 0

}
.

x1 + x2 + 1 = 0 implies that

dx1 = −dx2.

Recall that

drk

rk
= Re

(
dxk

xk

)
, dθk = Im

(
dxk

xk

)
.

Consequently

dr1

r1
= Re

(
dx1

x1

)
= −Re

((
x2

x1

)
dx2

x2

)
,

dr2

r2
= Re

(
dx2

x2

)
= −Re

((
x1

x2

)
dx1

x1

)
.

We have

d

((
1
r2

)t

x1

)
=

(
1
r2

)t (
dx1 − tx1

dr2

r2

)
, d

((
1
r2

)t

x1

)
∧ d

((
1
r2

)t

x̄1

)

=
(

1
r2

)2t (
dx1 ∧ dx̄1 + t(x1 dx̄1 − x̄1 dx1) ∧ dr2

r2

)

=
(

1
r2

)2t (
1 + t Re

(
x1

x2

))
dx1 ∧ dx̄1,

d

((
1
r2

)t

x2

)
=

(
1
r2

)t (
dx2 − tx2

dr2

r2

)
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d

((
1
r2

)t

x2

)
∧ d

((
1
r2

)t

x̄2

)

=
(

1
r2

)2t (
dx2 ∧ dx̄2 + t(x2 dx̄2 − x̄2 dx2) ∧ dr2

r2

)

=
(

1
r2

)2t

(1 − t) dx2 ∧ dx̄2,

((
1
r2

)t

x2

)
d

((
1
r2

)t

x1

)

−
((

1
r2

)t

x1

)
d

((
1
r2

)t

x2

)

=
(

1
r2

)2t

(x2 dx1 − x1 dx2) =
(

1
r2

)2t

x2

(
1 +

(
x1

x2

))
dx1

= −
(

1
r2

)2t

dx1.

By restriction to Ct and use the fact that 1 + Re(x1
x2

) ≥ 1
2 on C0, we get

(F∗
t ωFS)|C0

dx1 ∧ dx̄1
=

(1 − t)(1/r2)2t + (1/r2)2t(1 + t Re(x1/x2)) + (1/r2)4t(
1 + (1/r2)2t(r2

1 + r2
2)

)2 ≥ 1
6
.

(F∗
t ωFS)|C0

ωFS|C0

=
(1 − t)(1/r2)2t + (1/r2)2t(1 + t Re(x1/x2)) + (1/r2)4t

3(1/(1 + r2
1 + r2

2)) + (1/r2)2t(r2
1 + r2

2)/(1 + r2
1 + r2

2))2
≥ 1

2
.

These computations show that Ct is symplectic in the region r1 < r2 < 1.
By symmetry, we can see that Ct is symplectic in the other five regions. �

Proposition 4.2. F∗
t ωFS is a piecewise smooth continuous symplectic form

on C0 for any t ∈ [0, 1].

Proof. In light of Lemma 4.1, only continuity need comment. This is an easy
consequence of the invariance of F∗

t ωFS under the symmetries of mutating
the coordinate [z0, z1, z2]. �

Theorem 4.3. There exists a family of piecewise smooth Lipschitz Hamil-
tonian diffeomorphism Ht: CP

2 → CP
2 such that Ht is smooth away from

Sing(C0), Ht(C0) = Ct, Ht(Sing(C0)) = Sing(Ct) and Ht is identity away
from an arbitrary small neighborhood of C[0,1] :=

⋃
t∈[0,1] Ct. In particular

Ht leaves ∂CP
2 (the union of the three coordinate CP

1’s) invariant. The per-
turbed moment map (Lagrangian fibration) F̂ = F ◦ H1 satisfies F̂ (C0) = Γ
(the Y shaped graph with a three-valent vertex v0).
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Proof. Lemma 4.1 implies that Ct’s are piecewise smooth symplectic
submanifolds in CP

2. Each Ct is a union of six pieces of smooth symplectic
submanifolds with boundaries and corners. The six pieces have equal area
(equal to one-sixth of the total area of Ct), which is independent of t. C0 is
symplectic isotopic to C1 via the family {Ct}. By extension theorem (corol-
lary 6.3) in [6], we may construct a piecewise smooth Lipschitz Hamiltonian
diffeomorphism Ht : CP

2 → CP
2 such that Ht(C0) = Ct. Corollary 6.3 in [6]

can further ensure that Ht leaves ∂CP
2 invariant as desired.

More precisely, the proof of Corollary 6.3 in [6] is separated into two
steps. In the first step, one modify the symplectic isotopy (see Section 6
of [6] for definition) Ft : C0 → Ct into a symplectic flow while keeping the
restriction of Ft to the boundaries of the six pieces unchanged. (One in
fact first modify Ft in one of the six pieces, then extend the modification
symmetrically to the other pieces.) In particular, Ct ∩ ∂CP

2 is fixed by the
symplectic flow. In the second step, Theorem 6.9 in [6] is applied to extend
the symplectic flow to CP

2 while keeping ∂CP
2 fixed. The construction

in effect ensures that Ht|Sing(C0) = Ft|Sing(C0) and Ht is smooth away from
Sing(C0). �

Similar construction can be carried out for degree d Fermat type curves.
(The case of d = 5 is carried out in [6].)

Let μr := C0 ∩ F̂−1(r) for r ∈ Γ. When d = 1, for r being one of the
three boundary points of Γ, μr is a point. For r in smooth part of Γ, μr

is a circle. For r being the unique singular point of Γ, which in quantum
mechanics usually indicate the particle interaction point, μr is of “Θ” shape.
Figure 8 indicates the simplest string interaction.

When d = 5, for r being one of the three boundary points of Γ, μr is
five points. For r in smooth part of Γ, μr is five circles. For r being the
unique singular point of Γ, which in quantum mechanics usually indicate the
particle interaction point, μr is a graph in two-torus as indicated in figure 9,
which is much more complicated than d = 1 case. This picture indicates
sort of degenerate multi-particle string interaction with multiplicity.

Figure 8: F (Cp) of p = zd
1 + zd

2 + zd
3 perturbed to F̂ (Cp) = Γ.
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Figure 9: F̂−1(Sing(Γ)) for d = 5 and d = 1.

4.2. The smooth case

Notice that Ct in Section 4.1 is not smooth on Sing(Ct). In this section,
we will make Ct smooth. The trade-off is that F (C1) = Γ except in a small
neighborhood of the vertex of the graph Γ, where F (C1) is a fattening of
Γ. To modify the definition of Ct to make it smooth, consider real function
h(a) ≥ 0 such that h(a) + h(−a) = 1 for all a and h(a) = 0 for a ≤ −ε. Then
consequently, h(a) = 1 for a ≥ ε and h(a) ≤ 1.

We may modify the definition of Ct to consider Ct = F̃t(C0), where

F̃t(x1, x2) =

((
η1

η0

)t

x1,

(
η2

η0

)t

x2

)
,

η2 = r
h(log r1)
1 , η1 = r

h(log r2)
2 , η0 = r1

(
r2

r1

)h(log(r2/r1))

.

Ct is now smooth and is only modified in a ε-neighborhood of Sing(Ct).
Assume λ(a) = h(a) + h′(a)a, λ0 = λ(log r2 − log r1), λ1 = λ(log r1), λ2

= λ(log r2). Then

dη2

η2
= λ1

dr1

r1
,

dη1

η1
= λ2

dr2

r2
,

dη0

η0
=

dr1

r1
+ λ0

(
dr2

r2
− dr1

r1

)
;

d

((
η1

η0

)t

x1

)
=

(
η1

η0

)t (
dx1 + tx1

(
dη1

η1
− dη0

η0

))
;

dη1

η1
− dη0

η0
= −(1 − λ0)

dr1

r1
− (λ0 − λ2)

dr2

r2
;
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d

((
η1

η0

)t

x1

)
∧ d

((
η1

η0

)t

x̄1

)

=
(

η1

η0

)2t (
dx1 ∧ dx̄1 − t(x1 dx̄1 − x̄1 dx1)

∧
(

dη1

η1
− dη0

η0

))

=
(

η1

η0

)2t (
1 − (1 − λ0)t + (λ0 − λ2)t Re

(
x1

x2

))
dx1 ∧ dx̄1;

d

((
η2

η0

)t

x2

)
=

(
η2

η0

)t (
dx2 + tx2

(
dη2

η2
− dη0

η0

))
;

dη2

η2
− dη0

η0
= −(1 − λ0 − λ1)

dr1

r1
− λ0

dr2

r2
;

d

((
η2

η0

)t

x2

)
∧ d

((
η2

η0

)t

x̄2

)

=
(

η2

η0

)2t (
dx2 ∧ dx̄2 + t(x2 dx̄2 − x̄2 dx2)

∧
(

dη2

η2
− dη0

η0

))

=
(

η2

η0

)2t (
1 + (1 − λ0 − λ1)t Re

(
x2

x1

)
− λ0t

)
dx2 ∧ dx̄2;

α =

((
η2

η0

)t

x2

)
d

((
η1

η0

)t

x1

)

−
((

η1

η0

)t

x1

)
d

((
η2

η0

)t

x2

)

=
(

η2η1

η2
0

)t (
x2 dx1 − x1 dx2 + tx1x2

(
dη1

η1
− dη2

η2

))

=
(

η2η1

η2
0

)t (
−dx1 + tx1x2

(
λ2

dr2

r2
− λ1

dr1

r1

))
;

α ∧ ᾱ =
(

η2η1

η2
0

)2t (
dx1 dx̄1 − t (x̄1x̄2 dx1 − x1x2 dx̄1)(

λ2
dr2

r2
− λ1

dr1

r1

))

=
(

η2η1

η2
0

)2t

(1 + t (λ2 Re(x1) + λ1 Re(x2))) dx1 dx̄1.
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By restriction to Ct we get

(F̃∗
t ωFS)|C0

dx1 ∧ dx̄1
=

[(
η2

η0

)2t (
1 + (1 − λ0 − λ1)t Re

(
x2

x1

)
− λ0t

)

+
(

η1

η0

)2t (
1 − (1 − λ0)t + (λ0 − λ2)t Re

(
x1

x2

))

+
(

η2η1

η2
0

)2t

(1 + t(λ2 Re(x1) + λ1 Re(x2)))

]/

(
1 +

(
η2

η0

)2t

r2
2 +

(
η1

η0

)2t

r2
1

)2

=
ω̃t

dx1 ∧ dx̄1
+ tRt, where Rt = (1 − λ0)

Rt,0 + λ1Rt,1 + λ2Rt,2,

Rt,0 =
(η2/η0)2t (1 + Re (x2/x1)) − (η1/η0)2t(1 + Re(x1/x2))

(1 + (η2/η0)2t r2
2 + (η1/η0)2t r2

1)2
,

Rt,1 =
(η2/η0)2t(η2t

1 Re(x2) − Re(x2/x1))(
1 + (η2/η0)2t r2

2 + (η1/η0)2t r2
1
)2 ,

Rt,2 =
(η1/η0)2t(η2t

2 Re(x1) − Re(x1/x2))
(1 + (η2/η0)2t r2

2 + (η1/η0)2t r2
1)2

,

ω̃t =

(η2/η0)2t(1 + t Re(x1/x2))
+(η1/η0)2t(1 − t) + (η2η1/η2

0)
2t

(1 + (η2/η0)2tr2
2 + (η1/η0)2tr2

1)2
dx1 ∧ dx̄1.

Proposition 4.4. Ct is symplectic for t ∈ [0, 1]. Namely, C0 is symplectic
isotropic to C1 via the family {Ct}t∈[0,1] of smooth symplectic curves. More
precisely, (F̃∗

t ωFS)|C0 is smooth and is an O(ε)-perturbation of (F∗
t ωFS)|C0.

Proof. According to Lemma 4.1 and proposition 4.2, it is sufficient to show
that (F̃∗

t ωFS)|C0 is an O(ε)-perturbation of (F∗
t ωFS)|C0 .

Since (F̃∗
t ωFS)|C0 and (F∗

t ωFS)|C0 coincide away from an ε-neighborhood
of Sing(C0), with the help of symmetry, the cases that remain to be veri-
fied are ε-neighborhoods of {r1 = r2 ≤ 1 − ε}, {r2 = 1, 0 ≤ r1 ≤ 1 − ε} and
{r1 = r2 = 1}. On this neighborhoods, it is easy to observe that η1 =
1 + O(ε), η2 = 1 + O(ε), η1 = r2 + O(ε). Compare the expressions of ω̃t and
(F∗

t ωFS)|C0 , we have that ω̃t is an O(ε)-perturbation of (F∗
t ωFS)|C0 . Only

thing remains to be shown is Rt = O(ε).
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In an ε-neighborhood of {r1 = r2 ≤ 1 − ε}, ηk = 1 + O(ε) for k = 1, 2,
λ1 = λ2 = 0 and Re(x2

x1
) − Re(x1

x2
) = O(ε). Consequently, Rt = t(1 − λ0)

Rt,0 = O(ε).
In an ε-neighborhood of {r2 = 1, 0 ≤ r1 ≤ 1 − ε}, ηk = 1 + O(ε) for 0 ≤

k ≤ 2, λ1 = 0, 1 − λ0 = 0 and Re(x1) − Re(x1
x2

) = O(ε). Consequently, Rt =
tλ2Rt,2 = O(ε).

In an ε-neighborhood of {r1 = r2 = 1}, ηk = 1 + O(ε) for 0 ≤ k ≤ 2, Re
(x2

x1
) − Re(x1

x2
) = O(ε), Re(x1) − Re(x1

x2
) = O(ε), Re(x2) − Re(x2

x1
) = O(ε).

Consequently, Rt,k = O(ε) for 0 ≤ k ≤ 2 and Rt = O(ε). �

Theorem 4.5. There exists a family of Hamiltonian diffeomorphism Ht :
CP

2 → CP
2 such that Ht(C0) = Ct and Ht is identity away from an arbi-

trary small neighborhood of C[0,1]. The perturbed moment map (Lagrangian
fibration) F̂ = F ◦ H1 is smooth and satisfies F̂ (C0) = Γ (the Y shaped graph
with a three-valent vertex v0) away from a small neighborhood of v0. (Ht

can be made to be identity on ∂CP
2 with the expense of smoothness of F̂ at

∂C0 := ∂CP
2 ∩ C0.)

Proof. Proposition 4.4 implies that C0 is smoothly symplectic isotropic to C1
via the family {Ct}t∈[0,1]. By the extension theorem (Theorem 6.1) in [6],
we can get a family of C∞ Hamiltonian diffeomorphism Ht : CP

2 → CP
2

such that Ht(C0) = Ct and Ht is identity away from an arbitrary small
neighborhood of C[0,1]. To ensure that Ht leaves ∂CP

2 invariant, we need to
use the extension theorem (Theorem 6.6) in [6]. Then Ht can only be made
C∞ away from the three intersection points of Ct and ∂CP

2. �

4.3. The optimal smoothness

F̂ constructed in Section 4.2 is smooth. (F̂ is not smooth at ∂C0 = ∂CP
2 ∩

C0 if F̂ is required to be equal to F on ∂CP
2. This non-smoothness is due

to the fact that C0 is not symplectically normal crossing to ∂CP
2 under ωFS

and can be cured by modifying ωFS near ∂C0 so that C0 is symplectically
normal crossing to ∂CP

2.) The trade off is that F̂ (C0) = Γ (the Y shaped
graph with a three-valent vertex v0) away from a small neighborhood of v0.

F̂ constructed in Section 4.1 satisfies F̂ (C0) = Γ, but is only piecewise
smooth and is not smooth at Sing(C0). A natural question is: What is the
optimal smoothness that F̂ can achieve if we insist F̂ (C0) = Γ? Clearly,
F̂ cannot be smooth over v0. In this section, we will show that F̂ can
be made smooth over Γ away from v0. More precisely, let Sing0(C0) =
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F̂−1(v0) ∩ Sing(C0), we will show that F̂ can be made smooth away from
Sing0(C0). (F̂ is not smooth at ∂C0, if ∂CP

2 is required to be fixed under F̂ .)
Let b(a) be a smooth non-decreasing function satisfying b(a) = 0 for

a ≤ 0, b(a) > 0 for a > 0, b(a) = 1 for a ≥
√

ε and b′(a) ≤ C/
√

ε. We may
modify the definition of Ct to consider Ct = F̃t(C0), where

F̃t(x1, x2) =

((
η1

η0

)t

x1,

(
η2

η0

)t

x2

)
,

log η2 = log r1h

(
log r1

b1

)
, b1 = b

(
log

(
r1

r2
2

))
,

log η1 = log r2h

(
log r2

b2

)
, b2 = b

(
log

(
r2

r2
1

))
,

log η0 = log r1h

(
log(r1/r2)

b0

)
+ log r2h

(
log(r2/r1)

b0

)
,

b0 = b(log(r1r2)).

Notice that F̃t here coincides with F̃t in Section 4.2 away from a
√

ε-neigh-
borhood of Sing0(C0), coincides with Ft in Section 4.1 near Sing0(C0) away
from a

√
ε-neighborhood of v0. Therefore, the only new construction of F̃t

is over a
√

ε-neighborhood of v0.
Assume λ0 = λ

(
log r2−log r1

b0

)
, λ1 = λ

(
log r1

b1

)
, λ2 = λ

(
log r2

b2

)
. Then

dη2

η2
= λ1

dr1

r1
− β1,

dη1

η1
= λ2

dr2

r2
− β2,

dη0

η0
=

dr1

r1
+ λ0

(
dr2

r2
− dr1

r1

)
− β0.

Lemma 4.6. βi = O(
√

ε) for i = 1, 2, 3.

Proof.

β1 =
[
log r1

b1
h′

(
log r1

b1

)] [
log r1

b1
b′

(
log

r1

r2
2

)] (
dr1

r1
− 2

dr2

r2

)
.

Notice that h′
(

log r1

b1

)
�= 0 only when log r1

b1
≤ ε. Hence

[
log r1

b1
h′

(
log r1

b1

)]
= O(1),

[
log r1

b1
b′

(
log

r1

r2
2

)]
= O(

√
ε).

Consequently, β1 = O(
√

ε). The verifications for β2 and β3 are similar. �
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By similar computation as in Section 4.2, we get

(F̃∗
t ωFS)|C0

dx1 ∧ dx̄1
=

ω̃t

dx1 ∧ dx̄1
+ tRt + tBt ≥ 1

6
+ O(

√
ε),

where Bt is linear on {βi}3
i=1 and Bt = O(

√
ε).

Proposition 4.7. Ct is symplectic for t ∈ [0, 1]. Namely, C0 is symplec-
tic isotropic to C1 via the family {Ct}t∈[0,1] of smooth symplectic curves.
More precisely, (F̃∗

t ωFS)|C0 is smooth away from Sing0(C0) and is an O(
√

ε)-
perturbation of (F∗

t ωFS)|C0.

Proof. This proposition is a direct consequence of the above computation,
Lemma 4.1, Propositions 4.2 and 4.4 together with the additional estimate
Bt = O(

√
ε) implied by Lemma 4.6. �

Theorem 4.8. There exists a family of Hamiltonian diffeomorphism Ht:
CP

2 → CP
2 such that Ht(C0) = Ct and Ht is identity away from an arbitrary

small neighborhood of C[0,1]. F̂ = F ◦ H1 satisfies F̂ (C0) = Γ (the Y shaped
graph with a three-valent vertex) and is smooth away from Sing0(C0). (Ht

can be made to be identity on ∂CP
2 with the expense of smoothness of F̂ at

∂CP
2 ∩ C0.)

Proof. The proof is essentially the same as the proofs of Theorems 4.3 except
here Ct is decomposed into three (instead of six) smooth symmetric pieces,
Lemma 4.1 and Proposition 4.2 is replaced by Proposition 4.7 and Sing(C0)
is replaced by Sing0(C0). �

5. String diagram and Feynman diagram

In this section, we will naturally combine the localization technique of Sec-
tion 3, which reduces the curves (string diagram) locally to individual pair
of pants, with the explicit perturbation technique of Section 4 to perturb the
moment map Fδw , so that the perturbed moment map will map Csδw to a
graph. This is a very interesting analogue of the relation of string diagrams
in string theory and Feynman diagrams in quantum mechanics.

In general, given a simplicial decomposition Z ∈ Z̃ of Δ, take a weight
w ∈ τ0

Z , according to Proposition 3.9, we have

PΣ =
⋃

S∈Z

US
ε .
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According to results in [6], the perturbation of the moment map can be
reduced to the perturbation of the pair (Csδw , ωδw) of symplectic curve and
symplectic form. For each S ∈ Ztop, locally in US

ε , (Csδw ∩ US
ε , ωδw |US

ε
) is a

close approximation of the line and the Fubini-Study Kählerform discussed
in Section 4. Namely, the construction in Section 4 can be viewed as local
model for construction here. In the following, we will start with some modi-
fication of the local model in Section 4, then we will apply the modified local
model to perturb Csδw . For such purpose, ωδw also need to be perturbed
suitably.

5.1. Modified local models

Consider a smooth non-negative non-decreasing function γε(u), such that
γε(u) = 0 for

√
u ≤ A1ε and γε(u) = 1 for

√
u ≥ A2ε. A1, A2 are positive

constants satisfying 1 < A1 < A2 < |Δ|. Let γε,t(u) = tγε(u) + (1 − t) and

η1 = max(1, r2), η2 = max(1, r1), η0 = max(r1, r2).

Proposition 5.1. Ct = p−1
t (0) is symplectic curve under the Fubini-Study

Kählerform for t ∈ [0, 1], where

pt(x) = γε,t

(
r2
1

η2
1

)
x1 + γε,t

(
r2
2

η2
2

)
x2 + γε,t

(
1
η2
0

)
= 0.

Namely, the family {Ct}t∈[0,1] is a symplectic isotopy from C0 = {(x1, x2) :
x1 + x2 + 1 = 0} to

C1 =
{

(x1, x2) : γε

(
r2
1

η2
1

)
x1 + γε

(
r2
2

η2
2

)
x2 + γε

(
1
η2
0

)
= 0

}
.

Proof. By symmetry, we only need to verify that Ct is symplectic in the
region 1 ≥ |x2| ≥ |x1|, where

pt(x) = γε,t(|x1|2)x1 + x2 + 1 = 0.

Since Ct is a complex curve away from the region {A1ε ≤ |x1| ≤ A2ε}, we
only need to verify that Ct ∩ {A1ε ≤ |x1| ≤ A2ε} is symplectic.



Newton polygon 109

Recall the Kählerform of the Fubini-Study metric is

ωFS =
dx1 ∧ dx̄1 + dx2 ∧ dx̄2 + (x2 dx1 − x1 dx2) ∧ (x̄2 dx̄1 − x̄1 dx̄2)

(1 + |x|2)2 .

When restricted to Ct ∩ {A1ε ≤ |x1| ≤ A2ε},

ωFS =
1
2
dx1 ∧ dx̄1 +

1
4
dx2 ∧ dx̄2 + O(ε)

=
(

1
2

+
1
4
[γε,t(|x1|2)2 + γε,t(|x1|2)tγ#

ε (|x1|2)]
)

dx1 ∧ dx̄1 + O(ε)

≥ 2 + (1 − t)2

4
dx1 ∧ dx̄1 + O(ε),

where γ#
ε (|x1|2) = 2|x1|2γ′

ε(|x1|2). Therefore Ct is symplectic. �

Proposition 5.2. Ct = Ft(C0) is symplectic for t ∈ [0, 1], where

Ft(x1, x2) =

((
η1

η0

)t

x1,

(
η2

η0

)t

x2

)
,

C0 =
{

(x1, x2) : γε

(
r2
1

η2
1

)
x1 + γε

(
r2
2

η2
2

)
x2 + γε

(
1
η2
0

)
= 0

}
.(5.2)

Proof. By symmetry, we only need to verify that Ct is symplectic in the
region 1 ≥ |x2| ≥ |x1|, which is one of the six symmetric regions that together
form CP

2. In the region 1 ≥ |x2| ≥ |x1|,

Ct =

{((
1
r2

)t

x1,

(
1
r2

)t

x2

)
: γε(|x1|2)x1 + x2 + 1 = 0

}

γε(|x1|2)x1 + x2 + 1 = 0 implies that

dx2 = −γε dx1 − x1 dγε.
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Hence

dr2

r2
= Re

(
dx2

x2

)
= −γε Re

((
x1

x2

)
dx1

x1

)
− Re

(
x1

x2

)
dγε.

d

((
1
r2

)t

x1

)
∧ d

((
1
r2

)t

x̄1

)
=

(
1
r2

)2t

(
dx1 ∧ dx̄1 + t(x1dx̄1 − x̄1dx1) ∧ dr2

r2

)

=
(

1
r2

)2t (
1 + t(γε + γ#

ε )Re
(

x1

x2

))
dx1 ∧ dx̄1,

d

((
1
r2

)t

x2

)
∧ d

((
1
r2

)t

x̄2

)
=

(
1
r2

)2t

(
dx2 ∧ dx̄2 + t(x2dx̄2 − x̄2dx2) ∧ dr2

r2

)

=
(

1
r2

)2t

(1 − t)dx2 ∧ dx̄2

=
(

1
r2

)2t

(1 − t)(γ2
ε + γεγ

#
ε )dx1 ∧ dx̄1 ≥ 0,

((
1
r2

)t

x2

)
d

((
1
r2

)t

x1

)

−
((

1
r2

)t

x1

)
d

((
1
r2

)t

x2

)

=
(

1
r2

)2t

(x2dx1 − x1dx2) = −
(

1
r2

)2t

(dx1 + x2
1dγε).

By restriction to Ct we get

ωFS|Ct

dx1 ∧ dx̄1
≥

(1/r2)2t(1 + t(γε + γ#
ε )Re(x1/x2))

+(1/r2)4t(1 − Re(x1)γ
#
ε )

(1 + r2−2t
2 + (r1/r2)2tr2−2t

1 )2
≥ 1

6
+ O(ε).

The reason is that 0 ≤ γε ≤ 1, γ#
ε Re

(
x1
x2

)
= O(ε) and Re(x1)γ

#
ε = O(ε).

Therefore Ct is symplectic. �

Remark 5.3. Let UCP
2

ε = {r1 ≤ εη1, r2 ≤ εη2, 1 ≤ εη0} ⊂ CP
2. It is easy to

observe that outside of UCP
2

ε , Ct in Proposition 5.2 is equal to {x2 + 1 = 0}
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when |x1| is small, equal to {x1 + 1 = 0} when |x2| is small, equal to {x1 +
x2 = 0} when |x1|, |x2| are large. Namely, Ct outside of UCP

2

ε is toric, F (Ct ∩
(CP

2 \ UCP
2

ε )) is 1-dimensional, independent of t and is the union of the
three end segments of the Y shaped graph. Also the image of C1 under any
moment map is a one-dimensional graph of Y shape.

The following is the analogue of Theorem 4.3 for our modified local
model.

Theorem 5.4. There exists a family of piecewise smooth Lipschitz Hamil-
tonian diffeomorphism Ht: CP

2 → CP
2 such that Ht(C0) = Ct and Ht is

identity away from an arbitrary small neighborhood of C[0,1] or away from
UCP

2

ε . The perturbed moment map (Lagrangian fibration) F̂ = F ◦ H1 sat-
isfies F̂ (C0) = Γ (the Y shaped graph with a three-valent vertex).

Proof. The proof is essentially the same as the proof of Theorem 4.3 except
for the proof of Ht being the identity map when restricted to CP

2 \ UCP
2

ε ,
which is based on the fact that Ft restricts to identity map on C0 \ UCP

2

ε . �

To deal with the cases of smooth and optimal smoothness discussed in
Sections 4.2 and 4.3, we may take Ct = F̃t(C0), where we take C0 in (5.2)
and F̃t in either Section 4.2 or Section 4.3. (Notice that in the region where
C0 is modified, F̃t in Sections 4.2and 4.3 coincide.)

Proposition 5.5. Ct = F̃t(C0) is symplectic for t ∈ [0, 1], where C0 is
defined in (5.1).

Proof. By symmetry, we only need to verify that Ct is symplectic in the
region, where |x1| ≤ |x2| ≤ 1 and γε(|x1|2) < 1. In this region, we have |x1| =
O(ε) and x2 = −1 + O(ε). Consequently, λ0 − 1 = λ1 = 0, η2 = 1, η1 = 1 +
O(ε) and η0 = r2 = 1 + O(ε).

dη2

η2
= 0,

dη1

η1
= λ2

dr2

r2
,

dη0

η0
=

dr2

r2
.

γε(|x1|2)x1 + x2 + 1 = 0 implies that

dx2 = −γε dx1 − x1 dγε.
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Hence

dr2

r2
= Re

(
dx2

x2

)
= −γεRe

((
x1

x2

)
dx1

x1

)
− Re

(
x1

x2

)
dγε.

dx2 ∧ dx̄2 = γε(γε + γ#
ε )dx1 ∧ dx̄1;

d

((
η1

η0

)t

x1

)
=

(
η1

η0

)t (
dx1 + tx1

(
dη1

η1
− dη0

η0

))
;

dη1

η1
− dη0

η0
= −(1 − λ2)

dr2

r2
.

d

((
η1

η0

)t

x1

)
∧ d

((
η1

η0

)t

x̄1

)

=
(

η1

η0

)2t (
dx1 ∧ dx̄1 − t(x1dx̄1 − x̄1dx1) ∧

(
dη1

η1
− dη0

η0

))

=
(

η1

η0

)2t (
1 + (γε + γ#

ε )(1 − λ2)t Re
(

x1

x2

))
dx1 ∧ dx̄1.

d

((
η2

η0

)t

x2

)
=

(
η2

η0

)t (
dx2 + tx2

(
dη2

η2
− dη0

η0

))
;

dη2

η2
− dη0

η0
= −dr2

r2
;

d

((
η2

η0

)t

x2

)
∧ d

((
η2

η0

)t

x̄2

)

=
(

η2

η0

)2t (
dx2 ∧ dx̄2 + t(x2 dx̄2 − x̄2 dx2) ∧

(
dη2

η2
− dη0

η0

))

=
(

η2

η0

)2t

γε(γε + γ#
ε )(1 − t) dx1 ∧ dx̄1 ≥ 0;

α =

((
η2

η0

)t

x2

)
d

((
η1

η0

)t

x1

)

−
((

η1

η0

)t

x1

)
d

((
η2

η0

)t

x2

)

=
(

η2η1

η2
0

)t (
x2 dx1 − x1 dx2 + tx1x2

(
dη1

η1
− dη2

η2

))

=
(

η2η1

η2
0

)t (
−dx1 + x2

1 dγε + tx1x2λ2
dr2

r2

)
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= −
(

η2η1

η2
0

)t

dx1 + O(|x1|).

α ∧ ᾱ =
(

η2η1

η2
0

)2t

dx1dx̄1 + O(|x1|).

By restriction to Ct we get

(F̃∗
t ωFS)|C0

dx1 ∧ dx̄1
≥ (η1/η0)2t + (η2η1/η2

0)
2t + O(|x1|)

(1 + (η2/η0)2tr2
2 + (η1/η0)2tr2

1)2
≥ 1

2
+ O(ε).

�

For Ct = F̃(C0), where F̃ is taken from Section 4.3, we have

Theorem 5.6. F̂ in Theorem 5.4 can be made smooth away from Sing0
(C0).

Proof. The proof is essentially the same as the proof of Theorem 4.3 except
that C0 is decomposed into three pieces with boundaries in Sing0(C0). The
proof of Ht being the identity map when restricted to CP

2 \ UCP
2

ε is based
on the fact that F̃t restricts to identity map on C0 \ UCP

2

ε . �

Remark 5.7. There is also a version of Theorem 5.6 as analogue of Theo-
rem 4.6 when F̃ is taken from Section 4.2.

5.2. Perturbation of symplectic curve and form

For m ∈ Δ, let

Δm = {m′ ∈ Δ|{m, m′} ∈ Z}.

Choose ε̌ such that δa ≤ ε̌ ≤ ε. Define

ŝm = γε(ρm)sm, šm = [1 − γε̌( max
m′ �∈Δm

(ρm′))]sm,

ŝδw

=
∑
m∈Δ

δwmamŝm, šδw

=
∑
m∈Δ

δwmamšm.

ω̌δw = ∂∂̄ȟδw , where ȟδw = log |šδw |2Δ, |šδw |2Δ =
∑
m∈Δ

|δwm šm|2Δ.

Proposition 5.8. ω̌δw is a Kählerform on PΣ near Ct = s−1
t (0) for t ∈

[0, 1], where st = tŝδw + (1 − t)sδw .
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Proof. For x ∈ PΣ, let ρmi
(x) for a mi ∈ Δ be the ith largest among

{ρm(x)}m∈Δ. Since Sx is non-empty, we have m1 ∈ Sx and ρm1(x) ≥ 1/|Δ| −
ε. If x ∈ Ct, it is easy to derive from the equation of Ct that ρm2(x) ≥
1/|Δ|2 − ε/|Δ| and m2 ∈ Sx when ε is small.

If {m1, m2} �⊂ Δm, then maxm′ �∈Δm
(ρm′(x)) ≥ ρm2(x) > |Δ|ε̌ when ε̌ is

small. Hence šm(x) = 0.
If {m1, m2} ⊂ Δm and šm �= sm, then there exists m′ �∈ Δm such that

ρm′ > ε̌. Hence Šx = {m1, m2, m
′}, šm′ = sm′ and m3 = m′, where Šx is

defined as Sx with ε replaced by ε̌. Consequently, ρm(x) = O(δa) and
ω̌δw(x) is an O(δa/ε̌)-perturbation of ω̌Šx

δw (x). When δa/ε̌ is small, ω̌δw is
a Kählerform at x.

The remaining case is when šm = sm for m ∈ S′ = {m1, m2, m
′, m′′} and

šm = 0 for m �∈ S′, where {m′, m′′} is uniquely determined by the relation
{m1, m2} ⊂ Δm′ ∩ Δm′′ . Then ω̌δw(x) = ωS′

δw(x) is clearly Kähler. Therefore
ω̌δw is a Kählerform on PΣ near Ct. �

Proposition 5.9. Ct is symplectic curve under the Kählerform ωt for
t ∈ [0, 1], where ωt = tω̌δw + (1 − t)ωδw . Namely, the family {Ct}t∈[0,1] is a
symplectic isotopy from C0 = Csδw to C1 = Cŝδw . Furthermore, there exists
smooth symplectomorphisms H1: (PΣ, ωδw) → (PΣ, ω̌δw) such that H1(Csδw )
= Cŝδw . (H1 can be made to be identity on ∂PΣ with the expense of smooth-
ness of H1 at C0 ∩ ∂PΣ.)

Proof. Proposition 5.8 implies that ωt are Kählerforms on PΣ near Ct. It is
easy to see that st is holomorphic outside of the union of US

ε for S ∈ Ztop,
where Ct is automatically symplectic.

For each S = {m0, m1, m2} ∈ Ztop, {zi = δwmi ami
smi

}2
i=0 defines an

open embedding US
ε ↪→ CP

2, where [z0, z1, z2] is the homogeneous coordi-
nate of CP

2. Using the inhomogeneous coordinates (x1, x2) of CP
2 on US

ε ,
ŝδw reduces to p1 in Proposition 5.1 and sδw reduces to p0 = x1 + x2 + 1 in
Proposition 5.1 up to O(δ+) terms (Lemma 3.4). Hence Ct here coincides
with Ct in Proposition 5.1 inside US

ε ⊂ CP
2. When δ is small, by Proposi-

tion 5.1, Ct is symplectic in US
ε with respect to ωFS. Since ω̌δw = ωFS when

restricted to US
ε , Ct is symplectic in US

ε with respect to ω̌δw .
For the second part of the proposition, apply Theorems 6.1 and 6.2

from [6] (which though are conveniently formulated for our application
here, are essentially well known along the line of Moser’s theorem) to the
symplectic isotopic family {(Ct, ωt)}t∈[0,1], we can construct a smooth sym-
plectomorphism H1 : (PΣ, ωδw) → (PΣ, ω̌δw) such that H1(Csδw ) = Cŝδw . To
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satisfy H1|∂PΣ = Id∂PΣ , it is necessary to apply Theorems 6.3 and 6.4 from [6]
and H1 is piecewise smooth, C0,1 and is smooth away from C0 ∩ ∂PΣ. �

When S ∈ Z is a one-simplex, ΓS is just the baricenter of S. Let s(ΓZ)
(resp. e(ΓZ)) denote the union of ΓS for those one-simplex S ∈ Z that is
not in ∂Δ (resp. is in ∂Δ).

Proposition 5.10. For each S ∈ Ztop, we may modify Cŝδw in US
ε accord-

ing to Proposition 5.2, and keep Cŝδw unchanged outside of the union of such
US

ε . In such way, we can construct a family of symplectic curves {Ct}t∈[0,1]
under the symplectic form ω̌δw , such that C0 = Cŝδw and Fδw(C1) = Γ is a
graph that coincides with ΓZ away from an ε-neighborhood of s(ΓZ) and is
an O(ε)-perturbation of ΓZ .

Proof. It is straightforward to verify that the deformation defined in the
proposition match on overlapping regions. Through similar discussion as
in the remark after Proposition 5.2, it is easy to observe that Ct is toric
outside of the union of US

ε for S ∈ Ztop, hence the moment map image of
Ct in this region is one-dimensional, independent of t and is inside a small
neighborhood of s(ΓZ) ∩ e(ΓZ). For each S ∈ Ztop, in US

ε , as in the proof
of Proposition 5.9, we have coordinates (x1, x2), which reduces Ct here to
Ct ⊂ CP

2 in Proposition 5.2. Hence the image of C1 ∩ US
ε under the moment

map coincides with part of ΓS ⊂ ΓZ according to Proposition 5.2. �

Theorem 5.11. There exists a piecewise smooth Lagrangian fibration F̂
as perturbation of the moment map Fδw such that F̂ |∂PΣ = Fδw |∂PΣ and
F̂ (Csδw ) = Γ is a graph that coincides with ΓZ away from an ε-neighborhood
of s(ΓZ) and is an O(ε)-perturbation of ΓZ .

Proof. According to Proposition 5.9, we can construct a smooth symplecto-
morphism H1: (PΣ, ωδw) → (PΣ, ω̌δw) such that H1(Csδw ) = Cŝδw . One can
make H1|∂PΣ = Id∂PΣ with the expense of smoothness of Ht at C0 ∩ ∂PΣ.

For the symplectic isotopic family {Ct}t∈[0,1] under the symplectic form
ω̌δw in Proposition 5.10, we may define H2 in US

ε for S ∈ Ztop to be the
H1 in Theorem 5.4 and extend by identity map outside the union of US

ε for
S ∈ Ztop. Then H2 : (PΣ, ω̌δw) → (PΣ, ω̌δw) is piecewise smooth and C0,1

symplectomorphism satisfying H2|∂PΣ = Id∂PΣ , H2(Cŝδw ) = C1 such that
F̌δw(C1) = Γ is a graph that is an ε-perturbation of the graph ΓZ .

Let H = H2 ◦ H1. Then H|∂PΣ = Id∂PΣ and F̂ = Fδw ◦ H is the desired
perturbation of Fδw . �
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Remark 5.12. Theorems 5.11 and 3.11 of this paper are needed for the
proofs in [7].

Proposition 5.13. For each S ∈ Ztop, we may modify Cŝδw in US
ε accord-

ing to Proposition 5.5, and keep Cŝδw unchanged outside of the union of such
US

ε . In such way, we can construct a family of symplectic curves {Ct}t∈[0,1]
under the symplectic form ω̌δw , such that C0 = Cŝδw and Fδw(C1) = Γ is a
graph that coincides with ΓZ away from an ε-neighborhood of s(ΓZ) and is
an O(ε)-perturbation of ΓZ .

Proof. The proof is the same as the proof of Proposition 5.10 except that
Proposition 5.2 is replaced with Proposition 5.5. �

Theorem 5.14. F̂ in Theorem 5.11 can be made smooth away from C0 ∩
F̂−1(v(ΓZ)) and C0 ∩ ∂PΣ, where v(ΓZ) is the set of 3-valent vertices of ΓZ .

Proof. The proof is the same as the proof of Theorem 5.11 except that
Proposition 5.10 (resp. Theorem 5.4) is replaced with Proposition 5.13 (resp.
Theorem 5.6). �

Remark 5.15. In this theorem, F̂ achieved optimal smoothness possible.
This result is a significant improvement over Theorem 5.11, and should play
an important role in improving the Lagrangian torus fibration of quintic
Calabi-Yau constructed in [7] to optimal smoothness. We hope to come
back to such improvement of [7] in a future paper.

Theorems 5.11 and 5.14 concern the partial secondary fan, where Z ∈ Z̃.
They have natural generalization to the case of secondary fan, where Z ∈ Ẑ.
Such generalization turns out to be extremely straightforward. The only
difference in the argument when Z ∈ Ẑ is that for each S = {m0, m1, m2} ∈
Ztop, {zi = δwmi ami

smi
}2

i=0 defines an open covering (instead of embedding)
US

ε ↪→ CP
2, where [z0, z1, z2] is the homogeneous coordinate of CP

2. Local
models in Section 5.1 can be pull back using the open covering maps in the
same way as using the open embeddings in the case of Z ∈ Z̃. With this
understanding, it is easy to check that all arguments in the case of Z ∈ Z̃
can easily be adopted to the case of Z ∈ Ẑ. We have

Theorem 5.16. Theorems 5.11 and 5.14 are also true when Z ∈ Ẑ.

As we did at the end of Section 4.1, we may classify the fibers μr :=
C0 ∩ F̂−1(r) of the map F̂ : C0 → Γ for r ∈ Γ in the general case. In general,
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Figure 10: F (Cp) of degree d = 5 curve in CP
2 perturbed to F̂ (Cp) = Γ.

when Z ∈ Ẑ, μr can be several points when r is an end point of Γ. μr can be
several circles when r is a smooth point of Γ. μr can be an abelian multiple
cover of the Θ shaped graph in the torus at the right of figure 9 when r is
a three-valent vertex of Γ. (The graph illustrated at the left of figure 9 can
be viewed as an example of such, which is a (Z5)2-cover of the Θ shaped
graph.) In the special case when Z ∈ Z̃, μr is a point when r is an end point

Figure 11: Alternative Γ for degree d = 5 curve in CP
2.
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E1

E3E2

Figure 12: Fs(Cs) in figure 3 perturbed to graph Γ.

of Γ. μr is a circle when r is a smooth point of Γ. μr is the Θ shaped graph
when r is a 3-valent vertex of Γ.

Examples 5.17. Using these theorems, the images of degree d = 5 curves
in CP

2 under the moment maps as illustrated in figure 2 can be perturbed
to figure 10.

This example correspond to the large complex limit with respect to the
standard simplicial decomposition of Δ. When approaching different large
complex limit in Mg the toric moduli space of stable curves of genus g, the
graph Γ will be different and determined by the corresponding simplicial
decomposition Z of Δ. Figure 11 is an example for degree d = 5 curve in
CP

2.
Applying these theorems to the case of curves in the toric surface (CP

2

with three points blown up) as illustrated in figure 3, we will be able to
perturb the image of the moment map to figure 12.

Acknowledgment

I would like to thank Prof. S.T. Yau for constant encouragement, Prof.
Yong-Geun Oh for pointing out the work of [4] to me. This work was
initially done while I was in Columbia University. I am very grateful to
Columbia University for excellent research environment. Thanks also go to
Qin Jing for stimulating discussions and suggestions. W.-D.R was partially
supported by NSF Grant DMS-9703870 and DMS-0104150.

References

[1] P. S. Aspinwall, B. R. Greene and D. R. Morrison, The monomial-
divisor mirror map, Int. Math. Res. Notices 12 (1993), 319–337.



Newton polygon 119

[2] M. Forsberg, M. Passare and A. Tslkh, Laurent determinants and
arrangement of hyperplane amoebras. Preprint, 1998.

[3] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discrimi-
nants, Resultants and Multidimensional Determinants, Birkhauser Inc.,
Boston, MA, 1994.

[4] G. Mikhalkin, Real algebraic curves, the moment map and amoebas,
Ann. Math. 151 (2000), 309–326.

[5] W.-D. Ruan, Lagrangian torus fibration of quintic Calabi-Yau hyper-
surfaces I: Fermat type quintic case, in ‘Winter School on Mirror Sym-
metry, Vector Bundles and Lagrangian Submanifolds’, eds. S.-T. Yau
and C. Vafa, AMS and International Press.

[6] W.-D. Ruan, Lagrangian torus fibration of quintic Calabi-Yau hypersur-
faces II: Technical results on gradient flow construction, J. Symplectic
Geom. 1 (2002), no. 3, 435–521.

[7] W.-D. Ruan, Lagrangian torus fibration of quintic Calabi-Yau hyper-
surfaces III: Symplectic topological SYZ mirror construction for general
quintics, J. Differ. Geom. 63 (2003), 171–229.

[8] W.-D. Ruan, Lagrangian torus fibration and mirror symmetry of Calabi-
Yau hypersurfaces in toric variety, math.DG/0007028.

[9] W.-D. Ruan, Lagrangian torus fibration and mirror symmetry of Calabi-
Yau complete intersections in toric variety (preliminary version).

[10] A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T-duality,
Nucl. Phys. B 479 (1996), 243–259.

[11] O. Y. Viro, Real plane algebraic curves: constructions with controlled
topology, Leninggrad Math. J. 1 (1990), 1059–1134.

Department of Mathematics

KAIST

Daejeon 305–701

Republic of Korea

E-mail address: ruan@math.uic.edu

Received April 12, 2005




