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A Monge—-Ampere-type equation motivated
by string theory

JI-X1IANG FU AND SHING-TUNG YAU

In this paper, we solve a Monge-Ampere-type equation by the
continuity method. This equation is motivated by the superstring
theory.

1. Introduction

There is a rich class of non-Kéhler complex manifolds for dimension greater
than two. It is therefore important to construct canonical geometry on such
manifolds. Since non-Ké&hler geometry is not as intuitive as Riemannian
geometry, it has been difficult to find a reasonable class of Hermitian metrics
that exhibit rich geometry. We believe that metrics motivated by theoretic
physics should have good properties. This is especially true for those met-
rics that are supersymmetric. The work of Strominger did provide such a
candidate. In this paper, we provided a smooth solution for Strominger’s
system. While it is not hard to generalize such system to elliptic fibration
over general Calabi—Yau manifolds based on the methods developed here,
we shall restrict ourselves to complex three-dimensional examples. We shall
discuss the higher dimensional examples in other paper. In the following,
we motivate the point of view from string theory.

In the original proposal for compactification of superstring, Candelas
et al. [1] constructed the metric product of a maximal symmetric four-
dimensional spacetime M with a six-dimensional Calabi—-Yau vacuum X as
the ten-dimensional space—time; they identified the Yang—Mills connection
with the SU(3) connection of the Calabi—Yau metric and set the dilaton to
be a constant. Adapting the second author’s suggestion of using Uhlenbeck—
Yau’s theorem on constructing Hermitian-Yang-Mills connections over sta-
ble bundles [9], Witten [11] and later Horava-Witten [4] proposed to use
higher rank bundles for strong coupled heterotic string theory so that the
gauge groups can be SU(4) or SU(5).

At around the same time, Strominger [7] analyzed heterotic superstring
background with spacetime supersymmetry and non-zero torsion by allowing
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a scalar “warp factor” for the spacetime metric. He considered a ten-
dimensional spacetime that is a warped product of a maximal symmet-
ric four-dimensional spacetime M and an internal space X; the metric on
M x X takes the form

g0 = *PW) (ng)(x) gijo(w), reM, yeX;
the connection on an auxiliary bundle is Hermitian-Yang—Mills connection
over X:
FAw?=0, F*=F%—=y,
V-1

Here w is the Hermitian form w = T_l 9ij dz' A dz’ defined on the internal
space X. In this system, the physical relevant quantities are
h=—vV-1(0 — d)w,
1
¢ = —510g €[] + o

and
g5 = €120 gy,
for a constant ¢q.

In order for the ansatz to provide a supersymmetric configuration, one
introduces a Majorana—Weyl spinor € so that

1
by =V me — ghMNP’YNPE =0,
1
SA =M on e — EhMNP’YMNPG =0,
ox = 7" Fyne = 0,
where 9, is the gravitino, A the dilatino, x the gluino, ¢ the dilaton and h
the Kalb—Ramond field strength obeying

Oé/

dh = E(trF/\F—trR/\R).

Strominger [7] showed that in order to achieve spacetime supersymmetry, the
internal six manifold X must be a complex manifold with a non-vanishing
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holomorphic 3-form €2; and the anomaly cancellation demands that the Her-
mitian form w obey!

/
V—100w = %(trR/\R—trF/\F)

and supersymmetry requires?

d*w = v/—1(8 — 9) log | Q...

Accordingly, he proposed the system

(1'1) FH/\WQZO;

(1.2) F2O = F)? =0,
/

(1.3) \/—1050):az(trR/\R—trFH/\FH);

(1.4) d*w=+v~1(0 - 9)In Q..

This system gives a solution of a superstring theory with flux that allows
non-trivial dilaton field and Yang-Mills field. (It turns out D(y) = ¢ and
is the dilaton field.) Here w is the Hermitian form and R is the curvature
tensor of the Hermitian metric w; H is the Hermitian metric and F is its
curvature of a vector bundle F; tr is the trace of the endomorphism bundle
of either F or T'X.

In [5], Li and Yau gave the first irreducible non-singular solution of the
supersymmetric system of Strominger for U(4) and U(5) principle bundle.
They obtained their solutions by perturbing around the Calabi—Yau vacuum
coupled with the sum of tangent bundle and trivial line bundles. In our
previous paper [2], we gave, first, examples of solutions to Strominger’s
system on a non-Kéahler manifold, which is a torus bundle over a K3 surface.
In this paper, we consider the case o/ < 0. This provides an interesting
system of nonlinear partial differential equations.

As in our previous paper, we construct a solution on a torus bundle over
the K3 surface constructed by Goldstein and Prokushkin [3]. Let (S, wg, 2s)
be a K3 surface or complex torus with Kéhler form wg and a non-vanishing

!The curvature F of the vector bundle E in ref. [7] is real, i.e., ¢;(E) = % But,
we are used to taking the curvature F' such that ¢q(E) = %F . So this equation
has modified Equation (2.18) of ref. [7] by a minus sign.

2See Equation (56) of ref. [8], which corrects Equation (2.30) of ref. [7] by a minus
sign.
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holomorphic (2,0)-form Qg. Let w; and ws be anti-self-dual (1,1)-forms
such that 1 and 52 represent integral cohomology classes. Using these two
forms, Goldstein and Prokushkin constructed the non-K&hler manifold X
such that 7 : X — S is a holomorphic T?-fibration over S with hermitian
form wo = m*wg + @0 A 6 and holomorphic 3-form Q = Qg A6 (for the
definition of €, see Section 2). Our solution to Strominger’s system for
o’ < 0 can be constructed as follows.

Let L; and Ly be holomorphic line bundle over S such that their
curvature forms are given by /—1lw; and /—1lws, respectively. Corre-
sponding to these curvature forms, there exist Hermitian metrics h; and
ho on Ly and Lg. Let E= L1 & La®T'S and Hy = (hy, ha,ws). Then
Fy, = diag(v/—1wy, vV —1ws, Ry ). Let u be any smooth function on S and

v

1
(1.5) wy = (e wg) + TQ NG.

Then (V =7*E, 7" Fp,, X,w,) satisfies Strominger’s Equations (1.1),(1.2)
and (1.4) and we only need to consider Equation (1.3). Because w; and ws
are harmonic, we can write w; and wy locally as

wy = 0¢ = 0(&1dz + o dza)

and
wo = 0C = O(C1dz1 + (o dz),

where (21, z2) are local coordinate on S. Let

B = <51 + ﬁCl)
S+ vV-1¢) "

Using matrix B, we can compute curvature R,, of the metric w, and R, A Ry,
as in our previous paper [2]. Let g = (g;;) if ws = %gi; dz; N\ dz;.

Theorem 1.1. (V =7*"E, 7" Fp,, X,wy) is a solution of Strominger’s sys-
tem for o/ = —2 if and only if the function u of S satisfies the following
Monge—Ampeére-type equation:

2

(1.6) Ne - % + 09(e " tr(0B A OB* - g1)) + 00u A d0u = 0.

For the special case, wa =nwyi, n € Z, (V,7m*Fy,, X,wy,) is a solution to
Strominger’s system if and only if the smooth function u on S satisfies the
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equation:

u (1 + n2) 2 _—u det(uﬁ) —
(1.7) A <e + 1 llwillose 8det(gi3) =0

In [2], we proved that
tr (OB AOB* - g~ 1)

is a globally well-defined (1,1)-form on S and when we = nwy, n € Z,

_ . 1+ n?
tr (OB AOB*-g~') = v/—1 1 o 12 ,ws-

Let f = %leHQ and ggj = (e" — fe™")g;; — 4u;;, then we can rewrite
Equation (1.7) as

det gz’j

= ("~ fe )2 4 2{(e" + fe ) |vulP +e " A f -2 v u- v f}

We solve Equation (1.6) by continuity argument [12]. Our main theorem is

Theorem 1.2. There is a smooth solution of Equation (1.6) such that
ctwg ++v—le tr(éB ANOB* . g_l) — 2v/—=100u

defines a Hermitian metric on S.

Fix a solution u to Equation (1.6). According to Theorem 1.1, (V, Fr- 1,
X,w,) defines a reducible solution to Strominger’s system. It can be
extended to a family of irreducible solution by method of perturbation as
was done by Li-Yau [5]:

Theorem 1.3. Let (E, Hy, S,wg) be as above. Fix the holomorphic struc-
ture D of E. Then there is a smooth deformation D? of the holomorphic
structure D{j on E so that there are Hermitian-Yang—Mills metrics Hy on
(E, Ds) and smooth functions ¢s on S such that

J—_1
<V = W*E,ﬂ'* ;/’ W*HS,W*(eu+¢SWS) + TQ A 9)

are irreducible solutions to Strominger’s system for o/ = —2 on X. Further-
more, limg_g ¢s = 0 and lims_g Hy is a reqular reducible Hermitian-Yang—
Mills connection on E = L1 ® Lo ®TS.
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2. Geometric model

In this section, we recall the geometric model of Goldstein and Prokushkin
[3] for complex non-Kéhler manifolds with SU(3) structure. Their results
can be stated as follows:

Theorem 2.1 [3]. Let (S,ws,Qs) be a Calabi-Yau surface with a non-
vanishing holomorphic (2,0)—form Qg. Let wy and wy be anti-self-dual
(1,1)-forms on S such that %,%2 € H*(S,Z). Then there is a

270 271
three-dimensional complexr manifold X such that m: X — S is a holomor-
phic T?-fibration over S with the following properties:

1. For any real 1-forms a1 and as defined on an open subset of S satis-
fying day = w1 and dag = we, there are local coordinates x and y on
X such that dx +idy defines a holomorphic 1-form on T?-fibers and
the metric on X has the following form:

(2.1) go = g + (dz + 7 a1)? + (dy + 7 ay)?,

where g is the Ricci-flat metric on S.

2. X admits a nowhere vanishing holomorphic (3,0)-form with unit
length:

Q= ((de+7"aq) +i(dy + 7" az)) A 7" Qs.

3. If either w1 or wa represents a non-trivial cohomological class, then X
admits no Kdhler metric.

4. X is a balanced manifold (see [6]), i.e., the Hermitian form
(2.2) wo = mwg + (dx 4+ 7% aq) A (dy + T )

satisfies the condition that dwg =0.

5. For any smooth function u on S, the Hermitian metric
wy = (e"wg) + (dx + 7 a1) A (dy + T an)

is conformal balanced and (w,, Q) satisfies Equation (1.4).



A Monge—Ampere-type equation 35

0 = (dz + a1) + V—1(dy + a2),
(2.3) V-1

] _
wo = ws + TQ AB
and
) _
(2.4) wy = €'wg + TG N.

Let R and R, be the curvature forms of the Hermitian connections on the
holomorphic tangent bundle corresponding to Hermitian metrics wg and wy,,
respectively. Then, we have

Proposition 2.2 [2].
(2.5) trRAR=7" (trRS/\RS—f—Qtrag(gB/\é?B*-g_l)).
Proposition 2.3 [2].

tr Ry ARy = m* (tr Rs A Rg + 200 (e*“ tr (éB N OB* -gil))

2.6 _ _
(26) + 200u A DOu) .

Proposition 2.4 [2]. When wy = nwi, n € Z,

_ v—1
(2.7) w(@BAOB" - g) = Y (1 )l 3, 0,
The Laplace operator A on S is defined by A = 0* 0 9, where 0% is

defined by the metric wg. For any smooth function ¥ on S, we have

2
(2.8) V=100 A wg = Db - ";7,5

Lemma 2.5 [2].

3 u w?@' 1 2 2 wg

(2.9) vV —=100w, = Ne* - 21 + §(||w1||w5 + ||w2||w5)§.

3. Construction of solution to Strominger’s system
with reducible bundle

In this section, we demonstrate the existence of smooth solutions to Stro-
minger’s system. As ¢ % ¢ LS R)N H?(S,Z), there are holomor-

270 2m
phic line bundles L; and Ly over S such that the curvature forms of their
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Hermitian connections are /—1lw; and v/—1lws, respectively (see [10]). Asso-
ciated to these curvature forms, there exist Hermitian metrics hq and ho on
Ly and Ls. Let

and
Ho = (hq, ha,ws).
The curvature form Fpg, of E is given by
vV —1w1

(32) Fl*{0 = V _1W2 3
Rgs

where Rg is the curvature of T"S associate to the Hermitian metric wg. Let
V =n"E and Fp = 7" Fp,.

Lemma 3.1. For any smooth function u on S, (V, Fg. X, wy) satisfies
Equations (1.1), (1.2) and (1.4).

Proof. By Theorem 2.1, Equation (1.4) is satisfied. As Fz is the (1,1)-form
20 _ 1202 _

on X, FH0 = FH0 = 0. We also have
Fy A w2 = 7*(Fg, Ae'ws) A (1% (e"ws) + V=10 A0) = 0

as follows from the equation wq A wg =ws Awg =0 and Rg Awg=0. O

It remains to consider Equation (1.3). We normalize o/ = —2, then
(V,F i, X w,) satisfies the equation

= 1
(3.3) V—=100w,, = i(tr Fg NFg —tr Ry A Ry)

and

trFHO /\FIZIO = —wWi ANwi — w2 Awo +tI‘RS /\RS
(3.4) 2 o
= (lwrl* + llwa[*) 5f + tr Bs A Rs.

Inserting (2.6), (2.9) and (3.4) into (3.3), we can rewrite Equation (3.3) as

2
(3.5) Aet - ‘;—,S + 98(e~r (BB AOB* - g~ 1)) + 89u A 9du = 0.

In conclusion, we have
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Theorem 3.2. (V, Frep,, X,wy) is a solution of Strominger’s system for
o/ = =2 if and only if the function u of S satisfies FEquation (3.5). In partic-
ular, when we = nwi, n € Z, (V, Frep,, X,wy) is a solution to Strominger’s
system if and only if the smooth function u on S satisfies the equation:

1 2 2 B _
(3.6) A (e“ + (—Zn)leHise_“) % 4+ 00u A d0u = 0
or
2 det (ug;
(3.7) A <eu + (l""n)leHise—u> _ 8M —0.

Proof. For the second part of theorem, we note that when wo = nwy, it
follows from Proposition 2.4 and (2.8) that

a8/ —u a * —1 (]‘ +n2) ) 2 —u
00(e “tr(0BANOB*-g™ ")) = \/—1788(“011”“}56 ) A wg
_ (1 + n2) 2 —u w%’

So, Equation (3.6) follows from (3.5). Equation (3.7) is derived from

AOu N 00u = 2 det(uij)dzl ANdzZi Adzo N dzy
B det(uij) w%
T det(g;;) 2!

Theorem 3.3. There is a smooth solution of Equation (3.5) such that
e'wg +vV—1le “tr(dB AOB* - g~ 1) — 2/=100u
defines a Hermitian metric on S.

Proof. We solve Equation (3.5) by the continuity method. More precisely,
we introduce a parameter ¢ € [0, 1] and consider the following equation

(3.8)  V—100e" Awg + tdd(e " “tr(OB AN OB* - g~ 1)) + d0u A d0u = 0.
We shall impose the following:

Elliptic condition : w’ = e%wg + v/ —1te “tr(0B A OB* - g )

3.9 _
(39) —2v—100u >0
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and
w? w?
(3.10) Normalization condition : / e = A, / 15 =1.
g 2! g 2!

Let C*<(S) be the space of functions whose kth derivatives are Holder con-
tinuous with exponent 0 < o < 1. We consider the solution in the following
space

(3.11) Ba = {u € C%%(9)|u satisfies the normalization (3.10)}
and

(3.12) Ba+ = {u € By|u also satisfies the elliptic condition (3.9)}.

Let
(3.13) T = {t € [0, 1]| Equation (3.5) admits a solution in B ;}.
Obviously 0 € T with a solution u = —In A. Hence, we only need to show

that T is both closed and open in [0, 1]. This will imply that 1 € T and that
our original equation has a solution in C%®. By the Schauder theory, this
solution is smooth. The proof of openness is the same as the proof of our
Theorem 18 in [2].

So, we need only to prove that T is closed. We need to estimate up to
third order. The third-order estimate is the same as in our previous paper
[2]. Hence we shall provide estimates up to second order. These will be done
in Section 4, 5 and 6. In Section 7, we shall explain why the estimates to
Equation (3.7) can be generalized to Equation (3.5). O

4. Zero-order estimate

Let f = #leHQ, where w; is the anti-self dual (1,1)-form on S. Then
Equation (3.7) can be written as

(41) Al fe) - 8det(gz‘3) ="

The elliptic condition says

(4.2) W= (e —tfe "wg — 2¢/—190u > 0
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and the normalization is

2 2
(4.3) /e—“wf = A, / 125 = 1.
T T

In the following, the volume form will be g—% unless it is clear from the

context. Multiplying the elliptic condition e* — fe™ > Au by pe™P% we
obtain

ple ) (e = fe™) Zp(e ™) Au=— A () + 4| ()PP

and by integrating, we obtain

(14) Liv @ <2 [ @y

Applying the Sobolev inequality, we can find a constant C' depending only
on S such that

</S(€_“)2p>1/2 < C/S(e—u)pJFC/SW(e_u)p/z|2

< C/S(e—“)uic/s Ca L

In the following, we use the constant in the generic sense. So C' may mean
different constants in different equations. But it shall be independent of w.
By (4.5) and the Holder inequality, we find

/s(e_u)zp % ( /S (e‘“)p>2 +C%p? ( /S (e—u>p—1)2
= < /S (6"“)1”>2 + 0% ( /S (e—u)p>2(”‘”/p_

(4.5)

We assume that

(4.7) /Se_“ A<l
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There are two cases:
Case (1). For any peZ, [qe P <1. Then, (fs((f”“‘)p)2 < ([s
(e=)P)2 P~ D/P and from (4.6),

2(p—1)/p
/(eu)Zp < 02p2 (/ (eu>p> )
s s
Let 2p = 2P, then

2(1—2-(F-1)
/(e—u)Qﬁ < 02(25—1>2 </ (e—u)251>
S S
o1 51 » 211 21 1-1/25)
< (H C2b> (H (2(/3—17)) ) </(e—u)2>
b=1 b=1 S
)2ﬁ1' 121 (1-1/2%)

< 22 g2 </(€—u)2
s

where the last inequality follows from

i

-1

(4.8) I1 (2‘“’) Yo

b=1
which can be derived from the following calculation:

—1 -1 B-1

- H ey

1 1/2

_ 5202 B—(b+1) Qb“)
()

1/2

Hence, we obtain

A2 s 1/2- I (1-1/2%)
(/(e—u)Q ) < C1—2 . 22 </ (e—u)2> .
S
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Let 8 — oo, we see that

(4.9) exp(—inf u) = f[e™"loc < C (/S(e“)2> H/Z,

where

(4.10) HZﬁlO_I (1—215> > 0.

To finish our estimate of inf u, it suffices to estimate ||[e™"|l2. When p = 2,
inequality (4.4) yields

(4.11) [Iv@Enp<g [

Now from the normalization condition (4.3), we have [¢(e™* — A)=0.
Poincare inequality and (4.11) then imply

/|(€_"—A)|2§C/|V(e‘“—A)|2§CA
S S

and
(4.12) /(e—“)2 <A’ + CA<CA.
S

Combining (4.9) and (4.12), we get

(4.13) exp(—infu) = [le 7|0 < C1A%/?
and
(4.14) infu>—-InC — gln A.

Case (2). There is an integer p such that [¢e " > 1. Let pg be the first
such integer. Then, for any p > pg, the Holder inequality implies that

p/Po
/ep“ > (/ ep““> > 1.
s s
2
/(6_”)2” < C*p? (/ (6‘“)”) for p > po
s s

From (4.5),
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2(p-1)/p
/(6_“)2” < C*p? </(€_“)p> for p < po.
S S

From these two inequalities, as was discussed in case (1), we obtain the
estimate of infwu. Furthermore, we have bound (4.14) with the same
satisfying (4.10).

Next, we estimate supg u. Let ¢’ = r ! dzZ A dzj, where

and

g9i; = (e" = fe™")gi; — dau;.

We note that
w?  detg i ws
20 T det g5 2!

The matrix (g”; ) satisfies the equation
> 9"95=13.
So,

/
ni_ 92 g% = 921 g% = 913 g = 911
- /0 - /0 - /0 22 7 /ot
det 95 det 93 det 95 det 95

We define the operator

12

P(cp)u;—' = V=109 A W'
so that P(p) = Qg’ﬁgaij. By computation,
/ P(ek“)idet g
g detg 2!

_/2 ,2582( w) det g’ w?
g 02;0z; detg 21

(4.15)

:2k2/ lz]eku Ou 8“ w 2k‘/ lzg ku 82” detgl(f‘-}i2
g 0z; 0z 2' 02;0z; det g 2!

0%u detg
> k ku ) 1ij
- /56 < g 07;0%; detg> 2
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Applying the equation, we find

i 0%u  det g’ , 0%u . 0%
i = g 270 a— + 9117_
02;0%; det g 2202107 02907
—2 ) _Ou o O ) 1
(4.16) N292007 10207 ) detg
- 0%u det u,>
— 9% — fe %) g _ ij
(e feg 02;0%; det g

=(e"—fe ") Au—2A (" + fe ).

Inserting (4.16) into (4.15), we get

r 2 2
/P(ek“)thgw > k:/ eFu(et — femv) Au
S detg 2! S 2!
(4.17) )
—2k | eF A (et + fe_“)w—.

s 2!

On the other hand, from the definition of the operator P, we have

/2 12
/P(eku)detg w- :/P(eku)w :/ /_185(ekU)/\w/
s s 2! s

detg 2!
= / V=109(e")
S
A ((e* = fem")w — 2¢/—100u)
u —u ku w2
w1 = [ e aeng

+ 2/ dD(e*™) A DOu
S

w2
=k [ (e — fe ) Au—
S 2!

W2

e / (" — fe )k uP
. 21

43
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where |ul? = 292'58iu83u. Combining (4.17) and (4.18), we see that

w2
# [ (e ge gy
g 2!
ku u —uy W
> 2k | "™ A (e 4 fe )=
(4.19) 5
= —2/~c/ M — fe ) A u— — Qk/ Pt + fe )| vul?
S S
— Qk/ eb=Du Ay 4k/ et Gy f.
S S
Integration by part, we find

2

- 21{:/ eku(er — fe_“)(Au)w—

S 2!

(4.20) = 2k(k + 1) / e 2 — 2k (k — 1) / fet 0 7 uf?
S S

_Qk/e(k—1>uAf_4k/e(k—l)uvu.vf,

Inserting (4.20) into (4.19) and applying Schwarz’ inequality, we get

k?/(eu _fe—u)eku| 2(“‘)2
vl
< 2!

22k2/9€(k+1)u|vu|2

- 2k2/ e £ u|? — 2k (1 + 1) / eb=Du A f
S k—1)Js

and

2k (1 + 1) / eb=Du A f
k—1) Js
(4.21)
> ]432/ e(k+1)u’vU|2 _ kZQ/ e(k—l)uf|vU|2‘
S S

If we take A > 0 small enough such that

(4.22) CTYA™ /2 > 1 4 sup f,
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then from (4.13) we see that infe" > 1+ sup f and

kQ/S (k+1) U‘VU‘Q / (k—1) uf‘vu’2

(4.23)

Equations (4.21) and (4.23) imply that for all £ > 1,

(4.24) / |7 (e")FHD/2)2 < Ok + 1) / elk=Du
S

S

Now applying the Sobolev inequality and inf u > 0, we get

(4.25) </(eu)%> " = C/(e“)’“ +C/ |7 (e)F/2]2

<c / (") 4+ Ok / ()52 < C /S (c")E.

Take 2k = 2°. Equation (4.25) implies

[ <oy ([er)
B-1 b 261
< 02"—2171;[1 (2’ ( /S (e“)2>

20-1

<o ( / (e“)z) 7
S

where the last inequality follows from (4.8). Hence,

()" se ()"

Let 8 — oo, then we get

(4.26) supt = [[uflso = C </S(e“)2>1/2 |

Now we estimate |e"||2. When k = 1, inequality (4.24) yields

(4.27) [Iv@r=<c

2
20k2/6(k+1)u|v 2_ 4Ck /| k+1 /2|2‘
S

45
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Let M, = [ge*, then [q(e* — M,) =0. Applying the Poincare inequality
and (4.27), we get

fer=(] <e“>)2 = [ -y
< C/S'V (e — M)

—C’/|ve“\2§C.
S

Hence, there is a constant Cy depending on S, f and A (recall (4.22)) such
that

(4.28) ( ) s

Let Uy = {x € S|exp(— ) > A} and Uz = {z € S|exp(—u(z)) < g}
Then, from (4.13), we have

/ —u_/ —u / —u</ —1nfu+ é
Ul U2 U1 U2 2

= e~ vol(U) + (1 — Vol(Us))
< (ClA”/Q — 2‘) Vol(Uh) + 5

AsO0 <k <1land 0< A <1, we can choose A small enough such that

(4.29) A < (20092,
Then,
A2 1
Vol(Uy) > = >0
ol(U) = C1AR/2 — AJ2 201 AR/2-1 — 1 ’
and hence
1

(430)  Vol(T) = (1= Vol(Uh)) < 1= sy < 1
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Now we want to use (4.28) and (4.30) to estimate ||e“|2. Applying Young’s
inequality and the Holder inequality, we find

(L) =

(

. §<1+
(

(

<j>2+(1+6 Vol(Us) </Uze )
(i)Q + (1+ €)Vol(Us) (/562“>
Inserting (4.28) and (4.30) into (4.31),
</Seu>2 < <1 + i) (Z)Q + Cy(1+¢) (1 — QC’lA;ll — 1)
2
#0040 (1= g ()

Taking € small enough such that

1
l+e)(l-———) <1,
201 AR/2-1 — 1

then we get

D (L41/6) (2/A)° + Co(l+€) (1 = 1/(2C1 A% — 1))
</se ) - 1—(1+e) (1-1/(20,A%/2-1 —1)) '

Now estimate of f )2 follows from (4.28) and the estimate of sup u follows
from (4.26).

5. Gradient estimate

Suppose the function In |7u|? + Inv(u) achieves its maximum at the point
q1 € S, where v is a positive function of u to be determined. Then, at ¢,
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we have
v'(u)
1 %) =~ 2 :
6.1 v(uP) =~ (1) v u
We may choose the normal coordinate at g; such that L £ 0 and ‘9“ = 0.

As u is real, we can assume that g:zi > (0 and 8;‘1 =0. Thus we can assume
that at qq,

(5.2) O1udiu = O1udiu = Ojudiu = %] v ul?.

From (5.1), we get

10 (u
(5-3) O101u + 0101u = 010u + 1 0ru = —5 v((u)) |V uf?
and
(5.4) 0102u + O207u = 0705u + 01051 = 0.

By direct calculation, using (5.2), we see that at ¢,

detg
P(l 2
(] 7 )| et
— 941 9?7 ul? B o| v ul? 9|y ul? _ 1 det ¢’
- 02;0%; 0z; 0z;  |wvul? ) detyg
det
49" (0,0:0,udpu + 0;0;05udpu) - g
det g
(5.5)
T (D30uds O + 0,0 udh Do) LT
49 (ilulju+ i1u1ju)detg
7 det g det ¢’
"3 (9.9~ o g P11 2
+ 4g (8182u828]u)d +2 R |v | dot g
detg

+ 49,1](6 82’[1,826 U) de tg
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The last term 4g’i3(8¢82u6§&ju) ‘éitt*‘; > 0. So, we only need to estimate

the first four terms. By equation and (5.1), the first term in (5.5) is

i det ¢’
_ ot u A 16 det (0
=2(e"—fe ") vLu-yu—16 (v dotg; -V

=2(e" = fe "WV Du-vut —2{v A (e" + fe ") vu}
= —2(e" + fe™*) Aulul? —2(e" — fe )| v ul*
—de " (vu- )| vulf +2e7 A flvul?
—2(e" + fe ) (VIvul* - vu) + 27" Au(vu- v f)
=2 (Vu- VA f)+de(V(Vu - f) - vu)
= —2(e" + fe~") Aulvul? = 2(e" — fe )| v ul*
—de " (vu- v f)|[vul +2e7 A flvul?
v'(u)
v(u)
=2 (Vu- v A f)+dem (v (Vu- v f) - vu).
But from (5.2), (5.3) and (5.4),

+ 2 (eu+fe_“)\vu\4+26_“Au(vu-vf)

(vu-vf) - vu= {—ff}’fjj)’ [ul(@rf -+ 01f)

(5.7) 1 2
+ (0100f +2010:f + 8181f)} |Vl

> —(Cs|vul + C3)|vul,

where in the last inequality C3 depends only on supu, infu and f. In the
following, C3 may mean different constants in the different equations that
depend only on sup u, inf u, f and S. Inserting (5.7) into (5.6) and applying
the Schwarz inequality, the first term in (5.5) can be estimated to be

49/1] (81‘858;9“8]3“ + 8iajaﬁuapu)deeitgg
Y v (u u —u
> _a(e%— fo )|V“|4+2v((u))(e + fe ) vul*

(5.8) +2(e" + fe ) (e" — fe " — Au)]VuP
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— (" — fe " = Au)(Cs|wvu| + Cs)
— Cs|vul® — Cs|vul* — Cs|vu| — Cs.

Next we compute the second term in (5.5):

37 det g/
= —4(e" — fe™")(0;01udO;u + 0;01ud, O;u)

5 % 8 detu
X
+ det

(5.9) Jij
= —4(e" — fe™")(8;0ud;Ou + 0;0,udy O5u)

fe
+2(e" — fe ") (Au)(0;07u + 01 01u)
+2{(e" + fe ) |vull +e A f
—2e " 7 u- 7 fHO101u + 0101 u).

Zi (8101u + 0101u)
)
)

—Uu

The first two terms in (5.9) are equal to

—4(e" — fe ") (0;07ud;05u + 0;01ud1 O;u)
+2(e" — fe ") (Au)(0101u + 0101u)
=4(e" — fe ") (0101u + 0101u)205u

—4(e" — fe ") (0207ud105u + 201 ud105u).

(5.10)

From (5.3) we find

/
(5.11) v+ 0000 = — | Gul? — 20,000,
v(u)

Inserting (5.11) and (5.4) into (5.10), and using equation and the Schwarz
inequality, we get

—4(e" — fe ") (0;07ud;05u + 0;01ud1 O;u)

+2(e" — fe ) (Au)(0107u + 0101u)

v'(w)

= A" — e Sl ul? — (e — feP(b)

— (e = feT){(e" + fe™) | vul?
(5.12) +e " Af-2e"7u-Vf}
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u —u U/(u) _ 2
> 74(6 - f€ ) U(’LL) U22|VU|

+ (€% — fem")2(e" — fe " — Au)
— Cs|vul® = C3|vul - Cs

> _ u —u U,(u) _ 2 2 o
> —4(e" — fe )U(u)qulvM Cs|vul® — C3|vu| — Cs.

Applying (5.11) and the Schwarz inequality, the third term in (5.9) can be
estimated:

2(e + fe )| Tull + e U A f — 27" 7 u- v fH0ydu + 01du)
!
(5.13) > —2(ev + fe“)q;((:j))|vu\4 — Cs|vul® — Cs|vul?
—4{(e" + fe )| vuP +e A f -2 Y u- VT f g

Inserting (5.12) and (5.13) into (5.9), we get the following estimate of the
second term in (5.5)

,L'_' det g,
[ —u U/(u) 4 u —u U/(u) 2
> ZA\7) _ _ _
(514) - 2(6 =+ f@ ) ’U(U) ‘VU‘ 4(6 f@ ) v(u) U22|VU|

—4{(e" + fe ) vul +e A f =207 T u- Vg
— Cg\Vu\?’ — C3‘Vu’2 — C3’VU| — 03.

The third term in (5.5) is

det g/
4g" (9;05udad50) - d‘;“;

= —4(e" — fe™")det(u;;) + 2(e" — fe ") (Au)ugs
—2A (e"+ fe ") - ugs

= —4(e" — fe ") det(uij)

(5.15) —2{(e“ + fe ) |vul? +e " A f -2 7 u- v fHugs

1

> (" = fe (" — fe = Au) — Cs|vul - Cs|ul?
—2{(e" + fe )| vulP + e " A f —2e7 " u- 7 ffug

> —2{(e" + fe )| vulP + e A f =27 7 u- v f ug
— Cg|vu‘ — C3’Vu’2.
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Combining the following two terms in (5.14) and (5.15),

—4{(e" + fe ) vulP +e A f=2e7" T u- Vg

—2{(e" + fe ) [vul* +e " A f—2e7" 7 u- Vg
(e Fe ) Tu e A f =267 7w P FHE" — e — duyg)

(e"+ fe ) (e" — fe™" — Au) — (e" — fe™" — Au)(Cs|vu| + Cs)
— Cslvul’ — Cs|vul? — Cs|v7ul — Cs

> (" + fe ") (" — fe™ — Au) — (¢ — fe= — Au)(Ca|vul + C)
— Csvul® — Cs|vul* — Csv7u| — Cs,

where in the last inequality we have assumed that
(" + fe )| vull+e A f -2 gu-vf >0.

Otherwise, we could have obtained the estimate of |7u|? at point ¢;. Then,
combining (5.14) and (5.15), we get

T /
. 4g/ij (aiaiuai[—)ju + 3@8111(913571, — 3162113285U)ie;gg

> e+ fe ) T gult - (et - fe ) gl

— Cs|vul® — Cs|vul® — Cs|vu| — Cs.

(5.16)

Let R = Supp |R5| The fourth term is

2g”'5R%,I \VAT p = —SuﬁRilji\vuP

> —8R Y |ullvul’
(5.17) ij=1

> —8R ((Au)? — 8detu,)? |[vul®
> —16R(e" — fe " — Au)|vul? — C3|vul?.
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Inserting (5.8), (5.16) and (5.17) into (5.5), we see that

det g
> {(3(e" + fe ") — 16R)|vul?
= Cs|vu| — Cs}(e" — fe™ — Au)
v'(u)
v(u)
= 2(e" — fe™)|vul* - Cs|7ul’
— C3|vul? — Csyu| — Cs.

det ¢/
P(n |vul?)|vul?

(5.18)

(e" — fem)(e" — fe™" — dug)|vul®

Next, we compute

det ¢’

det g

_ 9 v 0%u v — U’Q@% det ¢
v 02;0%; v? 02 0%Z; ) detg

P(Inw)

,U/

det(u;3) }

{(e — fe ") Au—16 det g

(Y

(5.19) v’ — 2

93
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From (5.18) and (5.19), we get

det ¢
det g

P(In| <7 ul? + Inv)|ul?

_ eV e ®€u_ e~
~{ e+ g+ T e e
< (e = fe = D)7l
(e fe ~16R) guft - Gyl - C)

(5.20) X (" — fe‘“ — Au)
2 ﬂeu_ e U
{2 g+ T e - e}
x (e" — fe 4“22)‘VU’
o el — feU M el e U u4
2{(er = gey+ 28+ g f v
— Cs|vul® — Cs|vul* — Cs|vul —

Take

v(u) — e4supu—2u + €2u—4supu > 0.

Then,

UI(U) _ _264supu—2u + 2€2u—4supu < 0,

v”(u) — 4e4supu72u + 462u74supu _ 4U(U) > 0.

So the factor of the first term in (5.20) is

) ()
5.21 2(e* v v v >0
(5:21) (€4 Fe) 4 e = fe)
The factor of the third term in (5.20) is

v — 0’2 2 o' 3 16 5 6u€48upu 2u
02 ’ u’ (6 - fe u = U*Q’VM edsup u—2u
16 .

(5.22) > e4supu—2infu+3|vu|2 _ Supu

Choose A such that

(5.23) orta=r/2 > 71/3,
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then ™% > 1In7 and the coefficient of the fourth term in (5.20) is

u —Uu v u —Uu
2{ler - fen 4 e e

/ - e4supu7u _ 3€3u7usupu
— 64 sup u—2u + 62u74 sup u

2e4supu7u -6

Choose A such that
(5.25) CT1A™™? > 16R + 1,

then e™* > 16 R + 1. Applying all above inequalities, we can see that at ¢

odet ¢’
det g
> (|vul* - Cs|vu| = C3)(e" — fe™" — Au)

16 _
+ {64supu—21nfu +1 ’vu|2 B esupu} (eu - fe Y- 4u2§)lvu’2

+ |vul* = Cs|yul* — Cs|7ul* = Cs| v u| — Cs.

0> P(In|vul* + Inv)|vul

(5.26)

From above inequality, we can easily see that there is a constant Cy depend-
ing only on f, S, supu and inf u such that |7ul?(q1) < Cy.

We have proved that if the function In |\yu|? + In(e#swPu=2u 4 g2u—supu)
achieves its maximum at qi, we get the bound of |/ ul|?:

e4supu72u(q) + e2u(q)f4supu
|vul® < 04( )

5 o (€4supu—2u + eQu—4supu)
( . ) (e4supu—2infu+e2infu—4supu)

< Cy

2supu —2supu
(e +e )

6. Second-order estimate

We now give the second-order a priori estimate of u. We rewrite the
equation as

det g;j

(6.1)

i

det g5 N
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where

F=(e"— fe™)? +2{(c" + fe™")*|vul?

(6.2) +e A f -2y u-vf})
Then we can see that if we suppose A is small, F' has a positive lower
bound. Hence, e — fe~* — Au > F/2 also has a positive lower bound. So,
to get a second-order estimate of u, it sufficient to have an upper estimate
of e — fe™ — Au. We fix a point g2 and choose normal coordinate at that
point for g,;.

Differentiating (6.1), we have

(6.3) R Al o

By differentiating (6.3) again, we obtain

/ /_ 2 1
. g/iq g/pj 9pq agij g/ij 0 gij
0z 0z 02,07

B z‘quﬁgm% 5 0% 1 9°F 1 OF OF

0z 0z 02,07 f 02,07 F2 0z, 07
or
A 'u _ g/z‘qg/pj 891106 aggi _ g/ij 0?((e" — fe_“)gl-j)
8zi62j8zk82l 0z, Oz 02,07
- 2
(6.4) _ giagpi %90 99 | 5 070

0z, 0z g 02,07
1 9*F 1 9F 9F
F 02,0z F20z,0%

Contracting (6.4) with ¢* and using the fact that the metric g;7 1s Ricci-flat,
we find

dg. 89 = 2
Pl— A _ Kkl rijg tpg - 2iq _ = A _ —U rii
(- L) = gHgWgrT s = S (et — e )> g
(6.5) =1

+ o OF — o omon Y aziazj 02107
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Multiplying the above equation by det and using (6.3) and (6.1), we see

P(- A )% i 992995 09599, det g

det 955 9 0z, (921 0z, agl det gij

66 A F—— A — /7/L z]

( ) + 6 fe Z g dot gw
a7 09 O

02i0%j 02,07

Now we compute at g

/ / /- ’ /-
gkfg/ijg/pq agz’q agpj _ agij agpq det 9
Oz, 0%z Oz, 0z | detg;
/
= g" <g”59’1”¢? - g/iqgmj) dgj; 09,5 det g
azk (921 det g;7
/ / , , , ,
—_—y 9951 9915 + 9915 9941 a911 a922 agzi 9911

B 162 Py 9Pu 9Pu
82187:] 0z, 02j07;0%, aziaéﬁzk 02;0Z;0%;
P a(e* — fe™™) 3 o(e* — fe ™)
T4 Zl: 02;0%;02 0z +4 Zz: 02;0%;0% 0z
d(e" — fe") d(e" — fe")
aik 0z

(6.7)

-2

Bu Bu Bu Pu
=1 —1
6 Z 8z18zj 0z, 02;0%;0Z), 6 ; 02;07;0z, 02j0%;0%;

+27 (Au) - (e — fe) = |V (e — fe™™)?
> 22|y Aul? + 27 (Au) - (e — fe ™) — Cs,

where Cs depends on f, S and w up to first-order derivation. In the following,
we will use C5 to denote a constant with similar dependence and estimate
an upper bound for e* — fe™™ — Au. Assume that ¢* — fe™™ — Aw achieves
a maximum at point g2. By taking normal coordinate at gz for g;;, we find

(6.8) VAu=rx/(e"— fe ).
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Inserting (6.8) into (6.7) and then into (6.6), we obtain

det ¢/~ 1 = 9248 92y
P(- A > ANF44g7 29
( u) det 95 2 tag 02;0%; 02,07
(69) 2 d t /!
_EA(eu—feiu)Z i S0 9ij —_C

We shall first deal with the second term in the above inequality. Using
the equation, the Schwarz inequality, and the fact that the metric g;; is
Ricci-flat, we have

i 82gkl_ 82u
8zi82j 02,07
16{ anlcf 92u N 829kf 92u } 92u

02107z1 Ous0Zz2 029079 Ou10z1 | 02,07
2 Kkl 2 2 Kkl 2 2
_16{89 Pu_, 0% 8u}8u

(6 10) 021079 Oun0z1 029071 Ou10%2 | 02,07
> —64(max R;5;7) Z \Uz‘j’z
ij
= —16(max R;5;) (Au)” — 16(max R;z;7) ¥ 8det P
— —16(max Ry {(Bu)? — A + fe)},
> —16(max Rijkl—)(Au)Q —Cs Au—Cs,
since
2. _detg-
6.11 W = 9(et — fem% — Au).
(6.11) I ik G

We can insert (6.10) and (6.11) into (6.9) and obtain

det gé;

P(— Aw) ot g
ij

> % AF —A(e* — fe ™) (e" — fe " — Au)
(6.12) — 16(max R;57) (Au)® — Cs Au—Cs
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1
> 5 AF+{(e"+ fe™*)
— 16(max ng[)} (A’LL)Q — 05 Au— 05.

By computation,

AF = A(e" — fe™)2 + 2 A (e + fe )| vul?

+2(e + fer ) A (| ul?)
+27 (" + fe ) - w(|vul?)
+2Ae VA f+2 A f427e VT A S

(6.13) —4Ne " gu-vvf
—de " A(vu-vf)—4ve ™ -v(vu- - vf)

> +2(e" + fe ) A (Ivul?) + 27 (e + fe) - v(Ivul?)

—4de " A(Vu-Vf)
—4dvyet-vy(vu-vf)—Cs Au—Cs.

u

Let I' = gij gkl_ujku,ﬁ, where u ; indicates the covariant differentiation with
respect to the given metric. As we take the normal coordinate at g2, we
have I = g% gkluikuﬁ. Using (6.8) and the equation, we have

2

A 2 — 4 kl U
|V ul g 8zk821{g”u uj}

kg O ou P ou
=9 19202207, 07 | 0702107 0

R 2u  9%u N 0*u  0%u
(6.14) 99 09202, 0707, | 0207 07,021
det ug;

= v Au-yu+ (Au)? -8 + 4gﬁgkl_uikuﬂ-

= (" — fe) g+ (Aw)? — A + o) + dgTgHusgary
> (Au)2+4F—C5Au—C5.

Using (6.8) and the Schwarz inequality, we also have

(6.15) e A (vu-vf) = ~Cs ) Jug| = CsI'V2 = Cs
ij
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and

2v (" + fe ) - v(vuf’) —4ve ™ v(vu- V)
(6.16) > —Ch Z |u13| — C5F% — Cs.
ij

Then inserting (6.14), (6.15) and (6.16) into (6.13), we see

AF >2(e" + fe ) (Au)> +8(e" + fe ) - Cs Au

— 05 |ul-] — C5F% — 05
(6.17) Zj: ’

> 2(e" + fe ") (Au)? — C5 Au—C5 Y Jug| — Cs.

ij

Inserting (6.17) into (6.12), we obtain

det g/~
P(— Aw) 9 > {2(e" + fe™) — 16(max R;5,7) } (Au)?

det g.=
(6.18) 9ij
—C5 Au—Cs Y |u| — Cs.
ij
Next, we compute

det g’.j
P u —Uu 2
(e fe >det 9i5

_ g = fe) det gj;
02,07 det g;;
=A(e" — fe ") — SZ{aﬁgu@j@j(e“ — fe ")
i#]
(6.19) — 0;0;u0;0;(e" — fe™™)}

=A(e"— fe ") =2(e" + fe ) A (e" — fe )

—8(e™" = fe™") > _{9i0;ud;judju — 0;05ud;ud;u}

i#]
— 8™y {0i07u(0;ud; f + O5ud;f)
i#]
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— 0,0;u(9jud; f + B;ud; f)}
+8e™ ) {0i0;u0;0; f — 0:05u0;0;f}
i#]
Z —05 Au— 052 |’LL13| - 05.
ij
Combining (6.18) and (6.19), we obtain
y N det gz’j
P(e* — fe " — Au) dot g,
> {2(e" + fe ") — 16(max Rijkf)} (Au)?
—C5Au—C’5Z\ui3| —Cs
ij

> (Au)? = Cs A u— Cs,

(6.20)

where we have chosen A such that A satisfies (5.25), from which we find
e > 16R + 1. Since we assume e* — fe~* — Au achieves the maximum
at ¢z, (6.20) implies

(6.21) (Au)? —Cs Au—C <0,
from which we obtain an upper bound estimate of e* — fe™* — Au.

7. Estimates for general case

Multiplying the elliptic condition e%wg ++v/—le™ tr(0B A OB* - ggl)
—2y/—100u > 0 by pe P* and integrating, we get (4.4):

2 2
—p/2up2¥s _ D —(p—1)u¥s
[Ivermpy <8 [eos

+2 /6_(p+1)“_tr (OBAOB* - g~ Awsg

yo

4

2
< p/e(Pl)UwS'
4 2!

Note that we use —/—1tr(0B AJB*-g~') Awg > 0. We can then follow
the discussion in Section 3 to give the estimate infu > —InCy — §In A. If
A is small, we can make infu > 0 large. So the term e“ always controls
the term such as e “[tr (0B A OB* - g1)| and all the other estimates can be
derived as in the special case.
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8. Solution for irreducible bundles

In the last section, we have constructed a solution: (V,7*Hy, X, w,) for
reducible bundles, where u € C*°(S,R) solves the equation

(8.1)  V—109e" Awg + dd(e “tr(OB AIB* - g~ 1)) + 00u A 00u = 0
and satisfies the elliptic condition
(8.2) e'ws +vV—1le “tr(OB AOB* - g 1) — 2v/—=109u > 0

and the normalization condition

/e_“ = A.
s

In this section, we shall obtain a solution for irreducible bundles by perturb-
ing around the above solution (V,7*Hj, X,w,). We follow the method of
Li-Yau [5].

Let D” be a family of holomorphic structures on E over S, H be a
Hermitian metric on F over S and ¢ be a smooth function on S. We
want to look for conditions on (DY, H, ¢) such that under these conditions
(V,m*DY, m*H, X,wy+¢) is the solution to Strominger’s system, where

=

-1
Wytrg = T (e"HPw) + ?0 NG.

Fix the metric Hy as the reference metric on E over S. Then for any
Hermitian metric H on E, we can define a smooth endomorphism h on E by

(vi,v2) g =< v1 - h,v2 >q,.

Under this isomorphism, we define H(E); be the space of all Hermitian
metric on E where the associated endomorphism h has determinant one.
Let C(wg) = {e®ws} be the space of all Hermitian metrics on S, which are
conformal to wg. Let End’ E be the vector bundle of traceless Hermitian
anti-symmetric endomorphisms of (E, Hp). Let

u}2 (4)2
Ho(s) = {wygl [ v =0}

We define the operator

L=0L;®Ly: Hi(E) x Clws) = Qi (End® E) @ Ho(S)
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(8.3) Li(h, e¢w5) = e®hVPFRY? A wg,
La(h, e®wg) = V=190(e"Pwg) + 00(e " ?tr (0A N OA* - g3 1))

(8.4) +00(u + ¢) A O(u + ¢) — %(tr Fy A Fy, —tr Fy, A Fg,).
As Fy, = Fy, + DJ(Dyh - h=') and Fg, Aws =0,
ehV2E Y2 N wg = e?DI(Dhh - ) A wg
and using the notation of paper [9], we get
tr(e®h V2 FuhY? Awg) = e? DI (D) trlog h) Aws = 0

as det h = 1. So the image of Ly lies in Q4 (End’ E). As to La, according to
00-lemma on K3 surface, the image of Ly lies in R(dd,). For any v/—100a €
R(v/—180), we can write /=190« = 1% for some function ¢ such that
s %f = 0. So the image of Ly lies in H((.S). Therefore, the operator L is
well defined.

Proposition 8.1. If (h,e®wg) € kerL, then (V,m* D, m*h,wyt¢) is a
solution to Strominger’s system.

Proof. According to [5], (V,7*Dy,n*h, X, wy+e) is the solution to Stro-
minger’s system if and only if (7*h,w,¢) lies in the kernel of the operator:

L=Li®La®Ls:H(V)1 x H(X) — Q% (End’ V) ® R(dd.) ® R(d},,)

defined by

Li(h,0) = A Y2FRY2 A 02,

~ = 1
Lz(h,@) =+/—1900w — §(t1"FE A F}*Z —tr Ry A R@),
i3(il,(:)> = *wod(HQHJJ (’:)2)
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We want to reduce the above operator L to vector bundle F over S. When
(ha (D) = (Tr*hku—‘rd))a

fll(ﬂ-*hku-i-¢) = ﬂ.*(h—l/2th1/2) A (wu+¢)2
= (W YV2E,RY2 A (€' 0wg)) A (m* (e"FPwg) + V=10 A )
= 1% 1Ly (h, e®ws) A (7% (" Pws) + V=10 A §),

then (h,e?ws) € ker Ly if and only if (7*h, wu4¢) € ker Li.
Next, we consider La. When (h,©) = (7*h,wy14), by Proposition 2.3,
we have

tr R

Wy +¢

AR

*
=T (1 Returorpg A Returorgg

+200(e7 P tr (DA N DA™ - g3 1))).

ws

Wu+¢

Since tr R, = 0 and
Rowiorg, = 00(u+ ¢) - I + Ry,
we have
tr Rowiorgg A Rewrory, = 200(u+ ¢) A OO(u + ¢) + tr Ryy A Ry,
Thus,

tr R, AR,

Wyt

= 7*{200(u + ¢) A OO(u + @) + tr (Rug A Ryy)
+200(e " tr(DA N OA* - g, 1))}

Wt ¢

Using the above equality, we obtain

Lo(m*h,w) = 7 {v/~100(e" P wg) + 0d(e " %tr (DA A DA* - g, 1))
+ 00(u+ ) A OF(u+ §) — %(tr Fiy A Fy — tr F, A Fia,)}
= 7*(La(h, e®wg)).
So La(n*h, ew) = 0 if and only if Ly (h,w) = 0.

As for Ls, by Theorem 2.1, we always have Eg(ﬂ*h,wu+¢) = xod
(”Qku,-M)wzJ,-(j)) = 0. O



A Monge—Ampere-type equation 65

Since (V,n* Dy, 7" Hp,wy,) is a solution, (/,wg) € ker L. Now we follow
[5]. Let RT2 = {T = (T, T») € R?|T; > 0} and let Iy, I and I3 be the iden-
tity endomorphisms of L1, Lo and T"S, respectively. Then the assignment

T=(T\,Ty) e R2— hy = T1 [ @ Tl & T, 21512 14

assigns each T' € R*? to a Hermitian endomorphism of E. Obviously, F},, =
Fp, and we still have (hy,wg) € ker L.
Pick an integer k and a large p. We endow the domain and the target

of L & Lo with Banach space structures as follows:
Hi(E)r x Clws)pr = Qp(End’E) & Ho(S) 1z,

Then, L & Ls becomes a smooth operator, and its linearized operator
0L1 @ 0Lz at a solution (hr,ws) becomes a linear map
Q(Her"E) p @ {dws}trr — Qp(End’E)r , & Ho(S)1r -

Here, we use Her?F to denote the R-subvector bundle of End F consisting
of traceless pointwise <, >-Hermitian symmetric endomorphisms of £ and
the canonical isomorphisms T}, H1(E)pr = Q°(HerE) rr. Clearly, we have
TosC(ws)rr = {ows}trr.

To study the kernel and the cokernel of Ly @ dLo at a trivial solution
(hr,ws) we need to look at the linear map

F(5h) = DyDy ,, (6h) Aws : Q°(Her"E) 1p — Qg (End E)pp .

Here, according to our convention, Dy, = Dé),hT @® Dy is the Hermitian con-
nection of (E, DJ, hr) for a T = (T1,T2) € R™2. Since (E,D}) = L1 ® Ly ®
TS and deg L; = 0, the above is a linear elliptic operator of index 0 whose
kernel is

M M.
Vo= {Ml'I1EBM2'Iz®— (214-22) 1'3}
and whose cokernel is
(8.5) Vi =wg- Vo C Q(End’E)

Let P be the obvious projection

Q4 (End"E) L,

P: Qf(End’E)»  —
k—2 Vl
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Proposition 8.2. Let (S,ws), Qg, Hy and T = (T1,T3) € R*™2 be as before.
Then, the linear operator

P o 6Lq(hy,ws) @ 6La(hp,ws) :
QL (End’ E)pp

QY (Her®E);» @ {ow p —>
( Jor ® {¢ws}rr 6 Ho(S)L:

18 surjective.
Proof. As F},, = Fp, and dw = ¢wg for some smooth function ¢,
hT_1/2FhTh;/2 Adw = 0.

Hence,
6Ly (hr,ws)(0h, éw) = Dy D), 6h A wg
and
Qf (End’E) p
Vi

P o 6Ly (hr,ws) : Q" (HerE) 1p & {pws}rr —
is surjective, where
(8.6) ker P o 6Ly (hr,ws) = Vo ® {¢ws}rr.
On the other hand, when dw = ¢wg,

SLa(h7,ws)(0h, pws) = V—190(e"pws) — 00(e “ptr(OA N IA* - ggl))
+200u A 00¢ — tr §Fy, (Sh) A Fy,.

Because of tr §F},.(0h) A F},,. € Ho(S) and (8.6), we only need to prove that
0La(hr,ws) : 0@ {¢ws}rr — Ho(S)rr_, is surjective. So, we should solve
the following equation:

V—100(e"pwg) — 00(e “ptr(DA N DA™ - gg1))
(8.7) ~ - 2
+200u £ 09 = Y2
for any ¢ € L} _, such that [+ = 0. If we define the linear operator L from
Lﬁ to Li_Q by

L(¢) = V—199(e" pws) — 00(e “ptr(DA N DA™ - gg')) + 200u A 0D,
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then L is the linearized operator of Equation (8.2). We shall prove ker L* =
R and dimker L =1 so that Ho(S) L ker L*. From the elliptic condition,
the operator L is elliptic and Equation (8.7) has a solution ¢ € L£ for any
¢ € LV, such that [¢ =0. Thus we have proven that PodL; & dLy is
surjective and it’s kernel is Vy @ ker L. O

Now we deform the holomorphic structure Djj. The following proposition
is due to Jun Li.

Proposition 8.3. There is a family D” of deformations of holomorphic
structures of E so that its k-th order for k < m Kodaira—Spencer class k
all vanish while its m-th order Kodaira—Spencer class has non-vanishing
summands in H*(LY @ TS) and HY(TS" ® L;).

Proof. Since deg L; = 0 and T'S' is slope stable with respect to the Hodge
class wg, LY ® T'S has no global sections. Using the Serre duality, H?(L; ®
TS) =0 as well. Thus, to compute H'(LY ® T'S), we use Riemann-Roch
for K3 surfaces

1
(LY @ TS) = 5cl(LiV ®TS)2 +2x(0g) — c2(LY @ TS).

Because c1(LY ® T'S) = —2¢1(L;) and ca(LY @ T'S) = c2o(TS) + c1(L;)? =
20 + ¢1(L;)?, we have

RY LY @ TS) =16 — ¢ (L;)? > 16.

Here, the last inequality follows from ¢;(L;) - ws = 0 and the Hodge index
theorem.
For the same reason, we have

WY TSY ® L;) > 16.
Now consider the vector bundle
E=L1 oLy dTS.
The extension group Ext!(E, F) has summands
(8.8) Ext!(L;, TS) and Ext!(TS,L;),

which are HY(LY ® T'S) and HY(T'SY ® L;), respectively; hence they have
positive dimension. Thus, we can find a direction n € Ext!(E, E) that has
non-trivial components in the desired factors (8.8).
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It remains to show that 7 can be realized as the tangent of an actual
deformation. But this may not be true since the obstruction to deformation
of FE is the traceless part of Ext2(E, E), which is isomorphic to two copies
of H?(Og) = C. What is true is that there is a family of deformations of
holomorphic structures of E, denoted by Os, so that

d* -
ﬁﬁsb:ozo, k<m

and
am -
dsimas‘szo 7£ 0
has non-trivial exponents in (8.8). O

Actually, we can define the Kuranish map K : U — ExtQ(E7 E), where
U is some open neighborhood of origin in Extl(E, E). K is the holomorphic
map and the complex analytic variety X = K~1(0) is the parametric space
of all holomorphic structures on E near D{. Considering the dimensions of
Ext!(E, E) and Ext?(E, E), we can choose an element

0 0 Ci3
n= 0 0 Cos | € Eth(S,g)
C31 O3 Cs3

such that Cj3 # 0 and C3; # 0 for 1 <4, j < 2 and 1 belongs to the tangent
cone of X at the point Dfj. So, there is a curve D/ of degree m of smooth
deformation of the holomorphic structure Dyj. If we write

D} =Df+A,, A€ Q" (End°E),

then A(()k) =0 for k < mand A(()m) =1. We assume that Cj; are D{j-harmonic.
Because Pic S is discrete, we can assume further that tr A; = 0 for all s.

With the connection forms Ag, the metric Hy and the Kéhler form wg
so chosen, we can now define operators

Ls1 ®Lsa: HI(E)Li X C(‘”S)Li — Q%(Endo E)Lz_2 @ Ho(S)L2_2,

with Lg; defined as in (8.3) and (8.4) of which the curvature form Fj, is
replaced by the Hermitian curvature of (E, DY, h):

Fs,h = Ds,h o Ds,h-
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From [5], we have
Fysp = Fs+ DY(Dih- h)
and
Fy = Fo+ (D + Dp)(As — A7) — (As — A7) A (As — A).
Because tr A; =0, deth =1 and Fy Awg =0,

tr Lg 1 (R, e®ws) = e tr A V2 F, ,h2 Awg = 0.

So, Lg1 still lies in Q%(EndOE)Lgﬂ. Let P be the projection from
Qﬁ%(EndOE)LL2 ©® 7‘[0(5)in2 to Q%R(EndOE)LZ&/Vl ©® 7‘[0(5)[,272. Because
we have proven that the linearized operator of P o Lg 1 ® Lo 2 is surjective
at (hz,,ws), the implicity theorem implies that for sufficiently small s, there
are smooth solutions (hs 7, ws 1) to P oLgq @ Lg2 = 0 near (hy,,ws). We

can assume that the solutions (hs 7, ws 1) can be parameterized by
(S,T) € [0,@) X BE(TO,I) X BE(T072),

where Ty = (Tp,1,To,2). For simplicity, we denote by Fy 7 the curvature of
the Hermitian vector bundle (E, D, hs ). By our construction, it satisfies

Ls,l(Hs,Tyws,T) =0 mod Vi, Ls,2(Hs,Taws,T) =0.

Hence, to find solutions to Lg 1 @ Ls 2 = 0, it suffices to investigate the van-
ishing loci of the functional ri(s,-) from B(Tp;) to the Lie algebra u(L;)
defined by

(8.9) ri(s, T) = /X Loz (Hor,wer)], Aws,

where []; is the projection from Q8 (End® E) to Q% (u(L;)) and u(L;) is the
bundle of <, >-Hermitian anti-symmetric endomorphisms of L;.

We shall compute rz(k)(O, T) for all T and for all £ < 2m. Because ws 1 €
C(ws), we can write ws = ¢ 7ws for some positive functions ¢, on S
such that ¢or = 1. Then, we have

dk k
(8.10) T lsowsr = &) ws.

S b
On the other hand, since (hs7,ws7r) are solutions to Lgi @ Lg2 =0
mod Vj, there is a function c¢(s,T) taking values in V; with ¢(0,7) =0
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so that

(8.11) Fyr Awsr = hy o e(s, T)h}/}.

We can write

c(s,T) = diag (Ml(s,T),Mg(s,T), - (Ml(;’T) + M2(§’T>)13) Wi,

where M;(s,T) is the function only depending on s and 7.
At first, we compute rgk) (0,T) for any T" and k <m —1. When k <
m— 1, A(()k) = 0. Then,

k
(8.12) F =" LDy Dyhy - (hg k) *).
=0

Because Dyhr = 0, Fy.r = D}j[Dhhor - hy'] and
d _
%‘szo (hs,ilr/Q s Thl/Q) hq 1/2F0 Thl/2

We also have Fyy 7 A wg = 0. Combining these equalities with (8.10),

(0, T) = / T P [By )i T2 A ws + / T2 Fy 7] TV A dog = 0.
S S

On the other hand, taking derivative of s at s =0 to (8.11) and couple
c(0,T) = 0, we have

F()’T Nwg = 1/2 (0 T)h_1/2

and then
[Fo,rli Aws = [€(0,T)]; = M;(0, T)w

/ MZ(O,T)wg = /[FO,T]i A wg = 0,
S S
we get M;(0,T) = 0. So, we get
¢(0,7)=0 and FO,T Nwg = (D8D6507T) . ha; ANwg = 0.

Thus,
iL07T € Vy and D()ho’T = 0.
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In this way, we can prove that

rz(»k)(() T)=0, <®(0,T)=0, F( )/\wS—O

(8.13) )
DOhOT =0 for any kK <m — 1.

When k = m, because of (8.13) and (8.10), we obtain

jm‘s o(h 12 1 sThl/z/\WsT)—haéﬂ/Q m )h1/2/\ s
and

Foiy) = (DF + Dy)(Ag™ = 45™) + DYDY - ho
Then, we get

™ (0,T) = /S [Fy]i Aws =0,
Because FO(kT) Awg =0, ¢ (0,7) =0 for kK <m — 1, from (8.11), we get
Fyp) Aws = hiyl?e™ (0, T)hy 2.
So, using the same method of case k = 1, we still have
c™ (0,T7) = Fézlp) Awg = 0.

When k& < m, A(k) = 0 and we have proven Doh( ) = 0. By direct com-
putation, we see

Fy = (Df + D) (af™) — a3t H)
" dm-i—k / -1
+ D | g ls=0(Dshsr - hp) |-
Then, we still can get
r"0,1) =0, <™P0,1)=0, F7™ Aws=0fork<m.
At last we compute r(zm)(O7 T'). Directly computing, we get

2m 2m *(2m m m *(m m *(m
Fo = (D + D) (AS™ — 453%™ — o, (A5 — 43 A (A5 — A5
— O3 [AS" ™ [ds™|o—o (Dharr - hy k)]
D,Ol(de/dgm’s:O(Dlshs,T : hs_,%F)



72 Ji-Xiang Fu and Shing-Tung Yau
and

m) dm _
[Aé ) ﬁ’s:O(Dghs,T : hs,;“):|

= A5, (A5, hoplhg &)+ [AS™ DGRSY - ho k.

Then from  d?™/ds*™|s—o (hs_;/st,Thi’/; ANwg) = h&;/2Fé2Tm)h(1)/% N wg,
we see

0.7 = =g [ (AT = 4 A (AT - A1)
- g [ 114145, ho i)

_cp, /S 145", Dy - b L]

The last term is zero because D(’)’*Aém) = 0 and Lemma 2.3 of [5]. Using
0 0 Ci3 7 0 0
A(()m) = 0 0 023 and HO,T = 0 T2 0 s
C31 O3 Css 0 o T VT
one computes

A5, 146, ho,rlhg 1]l
= (-1 P1 O A Ol + (1= TYPTy )0 1 Oy

and
—[(AS™ = A5T) A (AF™ = AZTYL = Cas A Cly + Ty A Can
Therefore,
r@m (0, 7) = g /S (T2 200 A Oy + T2TY2C3 A Co) A ws.
With the same reason, we have

™ (0,T) = g /S(Tl” 21y 2oy A Cy + 12152055 1 Co) A ws.
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Let B;s =+/—1 fS’ Ciz A Cfg Awg and Bs; = —/—1 fS C?fz A C3; ANwg for i =
1,2. By our assumption, we have B;3 > 0 and Bs; > 0. Then,

r2™ (0, T) = V=ICP (BT Y21y V2 - By T2 7T,
2™ (0,T) = V1O {BosTy 2Ty %% — BTV *TH?).

(2m)

Clearly, r;”"7(0,Tp) = 0 if

(8.14)
o= ( (22" (22) " (22 (22"
’ B3 B3z "\ B31 Bs; '
Then, we define the map G : B.(Tp) — S*(1) by

(r$™(0,7),x3™(0,T))

G(T) = T (r%m(o’ T), r%m(og 7))l

or

(B13Ty ' — B3y TETy, BosTy ' — B3 T1T2)

(8.15) G((T1,T)) = = - .
|(B13Ty " — Bs1TETY, BosTy ' — BayT1 13|

Then it is easily proven that for e small enough (here ¢ < 1), G is homo-
topic to

G (T) = (BuisTy!, BasTy ") (BusTy, BusTh)
H(B13T1_17B23T2_1)H H(B13T2,323T1)||

Thus, deg G = deg G1 = —1. Then, as a discussion of the proof of Theo-
rem 4.3 in paper [5], we see that the map for € small enough,

(r1,12)(s,.) : Be(Ty) — R?,  s€(0,d")

attains value 0 € R? for all s € (0,a’) in B¢(Tp). So for sufficiently small s,
there are solutions (hs, e?wg) to Ls = 0 near (hr,,ws). From our definition
of Lg 1, we know that h, 7 is the Hermitian—Yang-Mills solution on (£, D).
From Proposition 8.1 for Lg, we have obtained an irreducible solution of
Strominger’s system on non-Kéahler manifold X. Hence, we have proven the
following:

Theorem 8.4. Let (E, Hy, S,wg) be as before. Fix the holomorphic struc-
ture D{ of E. Then there is a smooth deformation D” of (E, D) so that
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there are Hermitian—Yang—Mills metrics Hs on (E, Dg) and smooth function
¢s on S such that

=1 _
<V = "B, D" 7" H,, & = 7r*(eu+¢sws) + T@ A 0>

are the irreducible solutions to Strominger’s system on X. Moreover, lims_,q
¢s = 0 and limg_,o Hy is a reqular reducible Hermitian—Yang—Mills connec-
tion on E =119 Ly &TS.
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