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Admissible wavelets and inverse radon transform
associated with the affine homogeneous Siegel

domains of type II
Jianxun He and Heping Liu

Let D(Ω, Φ) be the affine homogeneous Siegel domain of type II,
whose S̆ilov boundary N is a nilpotent Lie group of step two. In
this article, we develop the theory of wavelet analysis on N . By
selecting a set of mutual orthogonal wavelets we give a direct sum
decomposition of L2(D(Ω, Φ)), the first component A0

0,0 of which
is the Bergman space. Moreover, we study the Radon transform
on N , and obtain an inversion formula R−1 = (π)−2dLRL which is
an extension of that by Strichartz [R. S. Strichartz, Lp harmonic
analysis and Radon transforms on the Heisenberg group, J. Funct.
Anal. 96 (1991), 350–406.]. We devise a subspace of L2(N) on
which the Radon transform is a bijection. Using wavelet inverse
transform, we establish an inversion formula of the Radon trans-
form in the weak sense.

1. Introduction

The wavelet transform is a very useful analysis tool in pure and applied
mathematics. The research of this subject on Euclidean space has made
considerable progress [2, 4] and the references therein. It is well known that
one-dimensional wavelet analysis can be explained in terms of square inte-
grable representations associated with the affine automorphism group of
the upper half plane [1, 5, 10, 14]. More precisely, the continuous (admis-
sible) wavelets are closely related to square integrable representation of a
non-unimodular group. For this we refer the reader to see [6, 8]. In this
viewpoint, various authors extended the theory of wavelet analysis on real
line R to the tube domain [17, 20] and unbounded realization of the unit ball
in C

n [11, 21]. The Radon transform has also received considerable attention
in mathematical literature due to its wide applications to partial differential
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equations, X-ray technology, radio astronomy and so on. For the basic the-
ory and further results of the Radona transform, we refer the reader to the
book [15] by Helgason and the references therein. A combined use of the
Radon transform and the wavelet transform can be called “wavelet Radon
transform” [31] which has proved to be very useful both in pure mathematics
and its applications. Recently, some authors deal with the inversion formula
of Radon transforms by using inverse wavelet transforms. Holschneider [16]
considered the classical Radon transform on the two-dimensional plane. His
results were extended by Rubin [26, 27] to the k-dimensional Radon trans-
form on R

n and totally geodesic Radon transform on the sphere and hyper-
bolic space. Strichartz [29] defined the Radon transform on the Heisenberg
group Hn and gave an inversion formula. Nessibi and Trimèche [23] obtained
an inversion formula of the Radon transform on the Laguerre hypergroup
K = [0,∞) × R by use of the generalized wavelet transform.

The function theory on Siegel domain D(Ω, Φ) of type II has always
exerted a strong attraction due to its important geometric background.
Many classical results have been extended to this case. It is a well-known
fact that the distinguished boundary or S̆ilov boundary N of D(Ω, Φ) is a
nilpotent Lie group of step two. The theory of harmonic analysis and other
problems on N were considered in [3, 24, 30]. In this paper, we develop
a theory of wavelet transform and Radon transform for the affine homoge-
neous Siegel domains of type II. As applications for these wavelets, we give a
direct sum orthogonal decomposition for L2(D(Ω, Φ)). Moreover, we obtain
an inversion of the Radon transform by using the inverse wavelet transform.
The harmonic analysis on a nilpotent Lie group developed by Ogden and
Vági [24] plays an important role in this paper.

This article is organized as follows: in Section 2, we recall some basic
facts relating to the group N , specifically including the Iwasawa subgroup P
of the automorphism group of affine homogeneous Siegel domain D(Ω, Φ).
In the third section, we define the unitary representations of P on L2(N),
and make a survey of harmonic analysis on N . We also give an irreducible
decomposition of L2(N). Section 4 develops a theory of continuous wavelet
analysis. In Section 5, we present the orthogonal sum decomposition for
the function spaces L2(P ) and L2(D(Ω, Φ)) by using wavelet transforms. In
the decomposition for L2(D(Ω, Φ)), the first component is just the Bergman
space. In Section 6, we investigate the Radon transform on N . Two function
spaces SR(N) and L2

R(N) are introduced on which the Radon transform
R is a bijection. The inversion formula for the Radon transform R−1 =
(π)−2nLRL holds on SR(N). In Section 7, we make use of suitable wavelets
to derive an inversion formula of the Radon transform on L2

R(N) in the weak
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sense. Finally, in Section 8 we state our results in a more explicit form in
terms of Jordan algebra for the symmetric Siegel domain of type II, which
is the most interested case.

2. The affine homogeneous Siegel domains of type II

We start with some notations and facts on Siegel domains of type II, espe-
cially the Iwasawa subgroup of the affine automorphism group of an affine
homogeneous Siegel domain of type II. Further details can be found in [18,
22, 25, 30].

Let U be the m-dimensional Euclidean space. A regular cone Ω in U is
a non-empty convex open cone which contains no entire straight line. Let V
be the n-dimensional complex vector space. W denotes the complexification
of U . A map Φ of V × V into W is called an Ω-positive Hermitian map if
the following conditions are satisfied:

(i) Φ(ζ, η) is C-linear in ζ.

(ii) Φ(ζ, η) = Φ(η, ζ).

(iii) Φ(ζ, ζ) ∈ Ω.

(iv) Φ(ζ, ζ) = 0 only if ζ = 0.

Then, the Siegel domain of type II D = D(Ω, Φ) determined by a regular
cone Ω and an Ω-positive Hermitian map Φ is defined by

(2.1) D = {(z, ζ) ∈ W × V : Im z − Φ(ζ, ζ) ∈ Ω}.

The Šilov boundary S of Ω is given by

(2.2) S = {(z, ζ) ∈ W × V : Im z − Φ(ζ, ζ) = 0}.

Let Ga(D) be the affine automorphism group of D. Ga(D) can be decom-
posed into the semi-direct product Ga(D) = NH of the subgroups N and
H. Here N is a simply connected nilpotent Lie group of step two with the
underlying manifold U × V and the multiplication

(2.3) (a, α)(b, β) = (a + b + 2 Im Φ(α, β), α + β), (a, α), (b, β) ∈ U × V

and H = GL(W × V )
⋂

Ga(D). H consists of all pairs (A, B) where A is in
the automorphism group Aut(Ω) of Ω, the subgroup of GL(U) which leaves
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Ω invariant and B ∈ GL(V ) such that

(2.4) AΦ(ζ, η) = Φ(Bζ, Bη), ζ, η ∈ V.

The actions of N and H on D (and S) are separately given by

(2.5) (z, ζ) �→ (a, α)(z, ζ) = (a + z + 2iΦ(ζ, α) + iΦ(α, α), ζ + α)

and

(2.6) (z, ζ) �→ (A, B)(z, ζ) = (Az, Bζ).

We assume that D is affine homogeneous, that is, Ga(D) acts on D tran-
sitively. We define a homomorphism μ of H into Aut(Ω) by μ(A, B) = A.
The affine homogeneity of D is characterized by the transitivity of μ(H),
i.e., Ga(D) acts on D transitively if and only if μ(H) acts on Ω transitively.
Specifically, all symmetric Siegel domains are affine homogeneous, which will
be treated more explicitly in Section 8. An example of affine homogeneous
Siegel domain which is non-symmetric can be found in [22]. Let Ga(D)0 be
the identity component of Ga(D). Then Ga(D)0 also acts on D transitively.
Fix a point e ∈ Ω. Let K be the isotropy subgroup of Ga(D) at the point
(ie, 0) ∈ D. H0 and K0 are the identity components of H and K, respec-
tively. Then K0 ⊂ H0 and K0 is a maximal compact subgroup of Ga(D)0

(and H0). Therefore H0 = T1K
0 (semi-direct product) where T1 is a maxi-

mal R-triangular subgroup of H. The kernel of μ is in K. μ(H) acts on Ω
transitively and μ(K) is the isotropy subgroup of μ(H) at the point e ∈ Ω.
Therefore T = μ(T1) is a maximal R-triangular subgroup of Aut(Ω) and μ
gives an isomorphism of T1 and T . The elements of T1 can be written in the
form (t, B(t)) where t ∈ T and B(t) ∈ GL(V ) are uniquely determined by t
such that

(2.7) tΦ(ζ, η) = Φ(B(t)ζ, B(t)η), ζ, η ∈ V.

Let P = NT1. P is called the Iwasawa subgroup of Ga(D). The action
of P on D is given by
(2.8)

(z, ζ) �→ (a, α, t)(z, ζ) = (a + tz + 2iΦ(B(t)ζ, α) + iΦ(α, α), B(t)ζ + α).

The multiplication of P is given by

(2.9) (a, α, t)(b, β, s) = (a + tb + 2 Im Φ(α, B(t)β), α + B(t)β, ts).
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Let Det denote the determinant of a linear transformation (or a matrix).
From (2.7) it is not difficult to get

(2.10) Det(t)n = |Det B(t)|2m.

Then, the left Haar measure of P turns out to be Det(t)− m+n

m da dα dml(t)
where da dα denotes the Haar measure of N which coincides with the
Lebesgue measure of U × V and dml(t) is the left Haar measure of T . Obvi-
ously P acts on D simply transitively. We can identify P with D by identifi-
cation of (a, α, t) and

(
a + i(te + Φ(α, α)), α

)
. We can also identify N with

S by identification of (a, α) and (a + iΦ(α, α), α).

3. The decomposition of L2(N)

P has a natural unitary representation π on L2(N) (or L2(S) instead) which
is defined by

(π(a,α,t)f)(x, ζ) = Det(t)−((m+n)/2m)f((a, α, t)−1(x, ζ))

= Det(t)−((m+n)/2m)f(t−1(x − a

− 2 Im Φ(α, ζ), B(t)−1(ζ − α)).

(3.1)

This section is devoted to decompose L2(N) into the direct sum of the
irreducible invariant closed subspaces under π. We shall make use of the
harmonic analysis on the nilpotent Lie group N which is due to Ogden and
Vági [24].

Let U ′ denote the (real) dual of U . The adjoint action of T on U ′ is
given by

λ �→ t∗−1λ, t ∈ T, λ ∈ U ′,

where t∗ is the adjoint of t. Suppose Λε is a T -orbit of U ′ under the
adjoint action. Because T is a connected R-triangular group, Λε has positive
Lebesgue measure if and only if the adjoint action of T on Λε is simple. Let
{Λε : ε ∈ E} is the set of all simple T -orbits of U ′ under the adjoint action.
Then Λ = ∪ε∈EΛε has total Lebesgue measure in U ′. The parametric repre-
sentation of E for symmetric case is given in Section 8. It is usually obvious
for every concrete case.

For λ ∈ U ′, we set

(3.2) Hλ(ζ, η) = 4〈λ, Φ(ζ, η)〉
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and

(3.3) Bλ(ζ, η) = Im(Hλ(ζ, η)).

The Hermitian form Hλ is non-degenerate for λ ∈ U ′ almost everywhere.
Note that

(3.4) Ht∗λ(ζ, η) = Hλ(B(t)ζ, B(t)η).

It is easy to see that Hλ is non-degenerate if λ ∈ Λ. Fix a complex basis
β1, . . . , βn for V which is compatible with the chosen Lebesgue measure dζ
of V . Let Mλ(β) be the matrix defined by 〈λ, Φ(βi, βj)〉. For λ ∈ Λ, we
define

(3.5) ρ(λ) = 4n|Det Mλ(β)|.

Then ρ(λ) is a positive continuous function on Λ independent of the com-
patible basis chosen. ρ(λ) dλ is essentially the Plancherel measure for N .
Fix a point λε ∈ Λε for each simple T -orbit Λε. Select a complex basis
β1(λε), . . . , βn(λε) for V such that

Hλε
(βi(λε), βj(λε)) = σiδij ,

where σi = ±1 and δij is the Kronecker symbol. Suppose λ = t∗λε ∈ Λε. Set
βj(λ) = B(t)−1βj(λε), j = 1, . . . , n. Then β(λ) is a complex basis of V such
that

Hλ(βi(λ), βj(λ)) = σiδij .

Let V R be the underlying real space of V and J be the original complex
structure of V . Then β1(λ), . . . , βn(λ), Jβ1(λ), . . . , Jβn(λ) is a basis of V R.
Let Jλ : V R �→ V R be defined in the β(λ)-basis by the 2n × 2n matrix

Jλ =
(

0 −σ
σ 0

)

with σ = diag(σ1, σ2, . . . , σn). Then Jλ is a complex structure which com-
mutes with J . We denote V R equipped with the complex structure Jλ by Vλ.
Let Eλ be the real span of β1(λ), . . . , βn(λ), then Vλ = Eλ ⊕ JλEλ. Suppose
ζ = ξ + Jλθ, where ξ =

∑n
j=1 ξjβj(λ) ∈ Eλ, θ =

∑n
j=1 θjβj(λ) ∈ Eλ. Set ζ =
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ξ − Jλθ, ζj = ξj + iθj . We define

ζ · η = Bλ(Jλζ, η) + iBλ(ζ, η)

and

|ζ|2 = ζ · ζ.

Then we have ζ · η =
∑n

j=1 ζjηj and |ζ|2 =
∑n

j=1 |ζj |2.
If τ ∈ Eλ, then τ =

∑n
j=1 τjβj(λ). We also write τ = (τ1, τ2, . . . , τn) to

denote the coordinates of τ under the basis β1(λ), β2(λ), . . . , βn(λ). Now let
ζ = ξ + Jλθ, then ξ =

∑n
j=1 ξjβj(λ) and θ =

∑n
j=1 θjβj(λ). Letting g(ζ) ∈

L1(V ), we have

(3.6)
∫

V
g(ζ)ρ(λ)dζ =

∫

Eλ×Eλ

g(ξ + Jλθ)ϑλ(dξ)ϑλ(dθ),

where ϑλ(dξ) = dξ1 dξ2 · · · dξn. Let ψm(t) be the normalized Hermite func-
tion defined by

ψm(t) = (21/42−m/2(m!)−1/2)hm((2π)(1/2)t) exp(−πt2),

where hm denotes the classical Hermite polynomial. Let ν = (ν1, ν2, . . . , νn)
be a multi-index, the higher dimensional Hermite functions Φν,λ is defined
by tensor products, i.e.,

(3.7) Φν,λ(τ) =
n∏

j=1

ψνj
(τj).

Obviously, {Φν,λ(τ) : ν ∈ Z
n
+} forms an orthonormal basis for Hilbert space

Hλ = L2(Eλ, ϑλ(dτ)). The Schrödinger representation of N on Hλ is defined
by
(3.8)

(πλ(x, ζ)φ)(τ) = exp(−2πi〈λ, x〉) exp(πiξ · η) exp(−2πiη · τ)φ(τ − ξ),

where ζ = ξ + Jλη, τ ∈ Eλ, φ ∈ Hλ. Thus πλ(x, ζ) is an irreducible unitary
representation of the group N on Hλ. The Fourier transform of a function
f ∈ L1(N) is an operator valued function defined by

(3.9) f̂(λ) =
∫

N
f(x, ζ)πλ(x, ζ) dx dζ.



8 Jianxun He and Heping Liu

We have the Plancherel formula

(3.10) ‖f‖L2(N) =
(∫

Λ
‖f̂(λ)‖2

HSρ(λ) dλ

)(1/2)

, f ∈ L1(N) ∩ L2(N),

where ‖ · ‖HS denotes the Hilbert–Schmidt norm of an operator. The Plan-
cherel formula is equivalent to

(3.11) 〈f, g〉L2(N) =
∫

Λ
tr(ĝ(λ)∗f̂(λ))ρ(λ) dλ, f, g ∈ L1(N) ∩ L2(N),

which allows us to extend the Fourier transform to the tempered distribu-
tions on N by duality.

Let f ∗ g be the convolution of f and g defined by

f ∗ g(x, ζ) =
∫

N
f(y, η)g((y, η)−1(x, ζ)) dy dη.

Set

f̃(x, ζ) = f((x, ζ)−1) = f(−x,−ζ).

It is easy to see that

(3.12) f̂ ∗ g(λ) = f̂(λ)ĝ(λ)

and

(3.13) ̂̃
f(λ) = f̂(λ)∗.

Suppose t ∈ T , we have the following identities:

Jt∗λ = B(t)−1JλB(t),
Bt∗λ(ζ, η) = Bλ(B(t)ζ, B(t)η),

ρ(t∗λ) = |Det B(t)|2ρ(λ).

The map

F (ζ) �→ G(ζ) = F (B(t)ζ)

gives the isometrically isomorphism from Hλ onto Ht∗λ. We can identify
Hλ with Ht∗λ. This means that we identify Φν,λ with Φν,t∗λ. Then we have

(3.14) πt∗λ(x, ζ) = πλ(tx, B(t)ζ).



Admissible wavelets and inverse radon transform 9

Let

ft(x, ζ) = Det(t)−((m+n)/m)f(t−1x, B(t)−1ζ).

Then

(3.15) f̂t(λ) = f̂(t∗λ).

We define the operator P ε
ν on L2(N) in terms of the Fourier transform by

(3.16) P̂ ε
νf(λ) =

{
f̂(λ)Pν , if λ ∈ Λε,

0, if λ /∈ Λε,

where Pν denotes the orthogonal projection from Hλ to the one dimen-
sional subspace Hλ,ν spanned by Φν,λ. It is clear that P ε

ν is an orthogonal
projection. Let Hε

ν denote the range of P ε
ν , i.e.,

(3.17) Hε
ν = {f ∈ L2(N) : f̂(λ) = f̂(λ)Pν and f̂(λ) = 0 if λ /∈ Λε}.

Then we have the following theorem.

Theorem 3.1. Each Hε
ν is an irreducible invariant closed subspace of

L2(N) under the unitary representation π of P defined by (3.1), and we
have the direct sum decomposition

(3.18) L2(N) =
⊕

ε∈E,ν∈Z
n
+

Hε
ν .

Proof. It is clear that the Hε
ν ’s are mutually orthogonal closed subspaces of

L2(N), and L2(N) is the direct sum of Hε
ν ’s. We prove that Hε

ν is invariant
and irreducible. By (3.15), we have

(π(x, ζ, t)f̂)(λ) = Det(t)
m+n

2m πλ(x, ζ)f̂(t∗λ).

Therefore Hε
ν is invariant under the unitary representation π. Let A be a

non-zero invariant closed subspace of Hε
ν under π and A⊥ the orthogonal

complement of A in Hε
ν . Take a function g ∈ A, not identically zero. Suppose
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f ∈ A⊥, then
〈f, π(x, ζ, t)g〉L2(N) = 0.

Since
〈f, π(x, ζ, t)g〉L2(N) = Det(t)((m+n)/2m)f ∗ g̃t(x, ζ),

by (3.12), (3.13) and (3.15),

(3.19)
∫

N
〈f, π(x, ζ, t)g〉L2(N)π

λ(x, ζ) dx dζ = Det(t)((m+n)/2m)f̂(λ)ĝ(t∗λ)∗.

Thus for any t ∈ T , we have

(3.20) f̂(λ)ĝ(t∗λ)∗ = 0, a.e. λ ∈ Λε.

Suppose f̂(λ) �= 0 for λ ∈ Γ1, where Γ1 ⊂ Λε is a set of positive measure.
Since g is not identically zero, there is a positive measure set Γ2 ⊂ Λε such
that ĝ(λ) �= 0 for λ ∈ Γ2. Let Γ0

1 and Γ0
2 consist of points of density of Γ1

and Γ2, respectively. Because the adjoint action of T on Λε is transitive,
there is t0 ∈ T such that Γ = Γ0

1 ∩ (t∗−1
0 Γ0

2) has positive measure. Note that
f̂(λ) = f̂(λ)Pν , ĝ(t∗λ)∗ = Pν ĝ(t∗λ)∗. This implies that f̂(λ)ĝ(t∗0λ)∗ �= 0 for
λ ∈ Γ, which contradicts (3.20). So we have f̂(λ) = 0, a.e.λ ∈ Λε. Therefore
f is identically zero. This proves that Hε

ν is irreducible. �
At the end of this section, we point out the following facts: the dual

cone Ω∗ of Ω is a simple T -orbit of U ′ under the adjoint action. P0 is
the orthogonal projection to the vacuum state. If Λ0 = Ω∗, then H0

0 is
exactly the Hardy space H2(N). All subspaces Hε

ν can be explained in
terms of the tangential Cauchy–Riemann operators (creation/annihilation
operators) [24].

4. Admissible wavelets and wavelet transforms

Given ν ∈ Z
n
+, ε ∈ E. The restriction of π on Hε

ν is square integrable in the
sense that there exists a function φ(�= 0) in Hε

ν such that
(4.1)

Cφ =
1

‖φ‖2
L2(N)

∫

P
|〈φ, π(x, ζ, t)φ〉L2(N)|2Det(t)−((m+n)/m) dx dζ dml(t) < ∞.

(4.1) is called the admissibility condition, and φ is called an admissible
wavelet if φ satisfies (4.1). Now we are going to give the characterization of
the admissibility condition in terms of the Fourier transform.
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We denote by AW ε
ν the set of all admissible wavelets in Hε

ν , i.e.,

(4.2) AW ε
ν = {φ ∈ Hε

ν : φsatisfies(4.1)}.

Then we have the following theorem.

Theorem 4.1. Suppose φ(�= 0) in Hε
ν . Then φ ∈ AW ε

ν if and only if

(4.3) Cφ =
∫

T
‖φ̂(t∗λε)‖2

HS dml(t) < ∞.

Proof. Suppose φ ∈ Hε
ν . Using (3.19) and the Plancherel formula, we get

∫

P
|〈φ, π(x, ζ, t)φ〉L2(N)|2Det(t)−((m+n)/m) dx dζ dml(t)

=
∫

T

(∫

Λ
‖φ̂(λ)φ̂(t∗λ)∗‖2

HSρ(λ) dλ

)

dml(t)

=
∫

T

(∫

Λ
tr(φ̂(λ)∗φ̂(λ)φ̂(t∗λ)∗φ̂(t∗λ))ρ(λ) dλ

)

dml(t).

Note that φ̂(λ)∗φ̂(λ) = h(λ)Pν , where h(λ) = ‖φ̂(λ)‖2
HS, and h(λ) = 0 if λ /∈

λε. Hence
∫

P
|〈φ, π(x, ζ, t)φ〉L2(N)|2Det(t)−((m+n)/m) dx dζ dml(t)

=
∫

T

(∫

Λ
h(λ)h(t∗λ)ρ(λ) dλ

)

dml(t)

=
∫

Λ

(∫

T
h(t∗λ) dml(t)

)

h(λ)ρ(λ) dλ

=
(∫

T
‖φ̂(t∗λε)‖2

HS dml(t)
)(∫

Λ
‖φ̂(λ)‖2

HSρ(λ) dλ

)

=
(∫

T
‖φ̂(t∗λε)‖2

HS dml(t)
)

‖φ‖2
L2(N),

where in the third equality we have used the left invariance of dml(t). �

Let φ ∈ AW ε
ν , f ∈ Hε

ν . We define the wavelet transform of f with respect
to φ by

(4.4) Wφf(x, ζ, t) = 〈f, π(x, ζ, t)φ〉L2(N).
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Let φ, ψ ∈ AW ε
ν . We define the “inner product” of φ and ψ on AW ε

ν by

(4.5) 〈φ, ψ〉AW =
∫

T
tr(ψ̂(t∗λε)∗φ(t∗λε)) dml(t).

From the theory of square-integrable representation of non-unimodular
groups, which is due to Duflo and Moore [6], we have the following conse-
quences of Theorem 4.1, which can also be proved directly.

Theorem 4.2. Let φ, ψ ∈ AW ε
ν , f, g ∈ Hε

ν . Then we have

(4.6) 〈Wφf, Wψg〉L2(P ) = 〈ψ, φ〉AW 〈f, g〉L2(N).

In particular,

(4.7) ‖Wφf‖L2(P ) = C
(1/2)
φ ‖f‖L2(N).

Let S (N) denote the Schwartz space on N , then we have the following
reproducing formula.

Theorem 4.3. Let φ ∈ AW ε
ν , f ∈ Hε

ν . Then we have the following repro-
ducing formula in the weak sense:

f(x, ζ) = C−1
φ

∫

P
Wφf(a, α, t)(π(a, α, t)φ)(x, ζ)

Det(t)−((m+n)/m) da dα dml(t).(4.8)

Specially, if φ ∈ AW ε
ν ∩ S (N), f ∈ Hε

ν ∩ S (N), then the above
formula (4.8) holds for all (x, ζ) ∈ N.

5. The orthogonal decomposition of L2(D(Ω, Φ))

Let {ψδ : δ ∈ Δ} be an orthonormal basis of L2(T, dml(t)). We define the
functions φε

μ,ν,δ in terms of the Fourier transform by

(5.1) φ̂ε
μ,ν,δ(λ) =

{
ψδ(t)Pμ,ν , if λ = t∗λε ∈ Λε,

0, if λ /∈ Λε,

where Pμ,ν is the partial isometric operator on Hλ defined by

Pμ,νM = 〈M, Φμ,λ〉Hλ
Φν,λ, M ∈ Hλ.
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It is easy to see that φε
μ,ν,δ ∈ AW ε

μ and {φε
μ,ν,δ : ε ∈ E, μ, ν ∈ Z

n
+, δ ∈ Δ} is

an orthonormal and complete set with respect to 〈, 〉AW . Set

(5.2) Aε
μ,ν,δ = {Wφε

μ,ν,δ
f : f ∈ Hε

μ}.

By Theorem 4.2, Aε
μ,ν,δ ⊂ L2(P ). We note that

(5.3) Aε
μ,ν,δ = Aε

0,ν,δ, μ ∈ Z
n
+,

because the restrictions of π on Hε
μ are equivalent for different μ. We write

Aε
ν,δ instead of Aε

μ,ν,δ.

Theorem 5.1.

(5.4) L2(P ) =
⊕

ε∈E,ν∈Z
n
+,δ∈Δ

Aε
ν,δ.

Proof. It is easy to see that all subspaces Aε
ν,δ’s are mutually orthogonal. Let

F (x, ζ, t) ∈ L2(P ). Set Ft(x, ζ) = F (x, ζ, t). For almost everywhere t ∈ T ,
Ft(x, ζ) ∈ L2(N). By the Plancherel formula, we obtain

‖F‖2
L2(P ) =

∫

T

(∫

N
|Ft(x, ζ)|2 dx dζ

)

Det(t)−((m+n)/m) dml(t)

=
∫

T

(∫

Λ
‖F̂t(λ)‖2

HSρ(λ) dλ

)

Det(t)−((m+n)/m) dml(t)

=
∫

T

⎛

⎝
∫

Λ

∑

ν,μ∈Z
n
+

|〈F̂t(λ)Φν,λ, Φμ,λ〉Hλ
|2ρ(λ) dλ

⎞

⎠

Det(t)−((m+n)/m) dml(t) < ∞.

Therefore Det(t)−((m+n)/2m)〈F̂t(λ)Φν,λ, Φμ,λ〉Hλ
∈ L2(T, dml(t)) as the func-

tion of the variable t for ν, μ ∈ Z
n
+, λ ∈ Λ almost everywhere. Suppose

λ = t∗λλε ∈ Λε, tλ ∈ T . Set

ψλ
δ (t) = ψδ(tλt).

Obviously {ψλ
δ : δ ∈ Δ} is also an orthonormal basis of L2(T, dml(t)). There-

fore we have

Det(t)−((m+n)/2m)〈F̂t(λ)Φν,λ, Φμ,λ〉Hλ
=
∑

δ∈Δ

bδ(λ, ν, μ)ψλ
δ (t),
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i.e.,

Det(t)−((m+n)/2m)F̂t(λ) =
∑

ν,μ∈Z
n
+,δ∈Δ

bδ(λ, ν, μ)ψλ
δ (t)Pν,μ.

We define the functions f ε
ν,δ in terms of the Fourier transform by

f̂ ε
ν,δ(λ) =

{∑
μ∈Z

n
+

bδ(λ, ν, μ)P0,μ, if λ ∈ Λε,

0, if λ /∈ Λε.

It is clear that f ε
ν,δ ∈ Hε

0, ε ∈ E. And we have

∫

N

∑

ε∈E,ν∈Z
n
+,δ∈Δ

(Wφε
0,ν,δ

f ε
ν,δ(x, ζ, t))πλ(x, ζ) dx dζ

= Det(t)((m+n)/2m)
∑

ε∈E,ν∈Z
n
+,δ∈Δ

f̂ ε
ν,δ(λ)φ̂ε

0,ν,δ(t
∗λ)∗

= Det(t)((m+n)/2m)
∑

ε∈E,ν∈Z
n
+,δ∈Δ

bδ(λ, ν, μ)ψλ
δ (t)Pν,μ

= F̂t(λ).

Therefore we obtain

F (x, ζ, t) =
∑

ε∈E,ν∈Z
n
+,δ∈Δ

Wφε
0,ν,δ

f ε
ν,δ(x, ζ, t).

The proof of Theorem 5.1 is completed. �

Let M be the characteristic function of Ω defined by

(5.5) M(x) =
∫

Ω∗
e−2π〈λ,x〉 dλ.

Similarly, the characteristic function M∗ of Ω∗ is defined by

(5.6) M∗(λ) =
∫

Ω
e−2π〈λ,x〉 dx.

Then we have

M(gx) = Det(g)−1M(x),

M∗(g∗λ) = Det(g)−1M∗(λ),
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for g ∈ Aut(Ω). Suppose y = te, t ∈ T . Because M(x) dx is an Aut(Ω)-
invariant measure, there exists a constant C such that dml(t) = CM(y) dy.
Without loss of generality, we may assume that C = M(e)(m+n)/m.

We have identified P with D according to the bijection

(x, ζ, t) �→ (x + i(y + Φ(ζ, ζ)), ζ),

where y = te. Then we have

(5.7) Det(t)−((m+n)/m) dx dζ dml(t) = M(y)((2m+n)/m) dx dy dζ,

which turns out to be the Ga(D)-invariant measure on D. We can regard
L2(P ) as L2(D, M(y)((2m+n)/m) dx dy dζ), the space of square integrable
functions on D with respect to Ga(D)-invariant measure M(y)((2m+n)/m)

dx dy dζ. Then Theorem 5.1 gives the direct sum decomposition of L2(D, M
(y)((2m+n)/m)dx dy dζ).

Suppose (z, ζ) ∈ D. Set x = Re z, y = Im z − Φ(ζ, ζ). Then dz dζ =
dx dy dζ. Let

(5.8) L2(D) =

{

F (z, ζ) : ‖F‖L2(D) =
(∫

D
|F (z, ζ)|2 dz dζ

)(1/2)

< ∞
}

.

The Bergman space A(D) is the subspace of all holomorphic functions in
L2(D).

Let φ ∈ AW ε
0 , f ∈ Hε

0. We define the revised wavelet transform W̃φ of f
with respect to φ by

W̃φf(x + i(te + Φ(ζ, ζ)), ζ) = C
−(1/2)
φ M(e)((2m+n)/2m)Det(t)−((2m+n)/2m)

Wφf(x, ζ, t).

Set

(5.9) Ãε
ν,δ = {W̃φε

0,ν,δ
f : f ∈ Hε

0}.

The direct consequence of Theorem 5.1 is

Theorem 5.2.

(5.10) L2(D) =
⊕

ε∈E,ν∈Z
n
+,δ∈Δ

Ãε
ν,δ.
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It is easy to see that the reproducing kernel of Ãε
ν,δ is given by

Kε
ν,δ((x + i(te + Φ(ζ, ζ)), ζ), (x1 + i(t1e + Φ(ζ1, ζ1)), ζ1))

= M(e)((2m+n)/m)Det(tt1)−((2m+n)/2m)
∫

N
π(x1, ζ1, t1)φε

0,ν,δ(a, α)π(x, ζ, t)φε
0,ν,δ(a, α) da dα

= M(e)((2m+n)/m)Det(tt1)−(1/2)
∫

Λε

tr(φ̂ε
0,ν,δ(t

∗λ)∗

πλ(x, ζ)∗πλ(x1, ζ1)φ̂ε
0,ν,δ(t

∗
1λ))ρ(λ) dλ.

We select the orthonormal basis {ψδ : δ ∈ Δ} of L2(T, dml(t)) such that
ψ0 ∈ {ψδ : δ ∈ Δ}, where ψ0 is defined by

ψ0(t) = M(e)−((2m+n)/2m)e−2π〈λ0,te〉M∗(2t∗λ0)−(1/2),

then

φ̂0
0,0,0(λ) =

{
M(e)−((2m+n)/2m)e−2π〈λ,e〉M∗(2λ)−(1/2)P0,0, if λ ∈ Ω∗,

0, if λ /∈ Ω∗.

The reproducing kernel of Ã0
0,0 is given by

K0
0,0((x + i(te + Φ(ζ, ζ)), ζ), (x1 + i(t1e + Φ(ζ1, ζ1)), ζ1))

= M(e)((2m+n)/m)Det(tt1)−(1/2)
∫

Ω∗
tr(φ̂0

0,0,0(t
∗λ)∗

πλ(x, ζ)∗πλ(x1, ζ1)φ̂0
0,0,0(t

∗
1λ))ρ(λ) dλ

=
∫

Ω∗
e−2π〈λ,te+t1e〉M∗(2λ)−1

〈πλ(x1, ζ1)Φ0,λ, πλ(x, ζ)Φ0,λ〉Hλ
ρ(λ) dλ.(5.11)

It is easy to compute that

〈πλ(x1, ζ1)Φ0,λ, πλ(x, ζ)Φ0,λ〉Hλ
= e−2π〈λ,i(x1−x)+Φ(ζ1,ζ1)+Φ(ζ,ζ)−2Φ(ζ,ζ1)〉.

Therefore

(5.12) K0
0,0((z, ζ), (z1, ζ1)) =

∫

Ω∗
e−2π〈λ,i(z1−z)−2Φ(ζ,ζ1)〉M∗(2λ)−1ρ(λ) dλ,

which is exactly the Bergman kernel [19]. So A0
0,0 is nothing but the Bergman

space A(D(Φ, Ω)).
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6. Radon transform on N

The Radon transform on the Heisenberg group Hn was defined by Stri-
chartz [29]. In the same way, we define the Radon transform R on N by

R(f)(x, ζ) =
∫

V
f((x, ζ)(0, w)) dw

=
∫

V
f(x + 2 Im Φ(ζ, w), ζ + w) dw.

(6.1)

We introduce the partial Fourier transforms Fλ and F . For λ in Λ, Fλ is
used to represent the Fourier transform on Hλ defined by

(6.2) Fλ(φ)(ξ) =
∫

Eλ

φ(σ) exp(−2πiσ · ξ)ϑλ (dσ), φ ∈ Hλ.

And F (f) is the Fourier transform of f with respect to x ∈ U alone, i.e.,

(6.3) F (f)(λ, ζ) =
∫

U
f(x, ζ) exp(−2πi〈λ, x〉) dx.

By (3.9) we have

(R̂(f)(λ)Φν,λ)(τ) =
∫

U×V
R(f)(x, ζ) × exp(−2πi〈λ, x〉)

exp(πiξ · η) exp(−2πiη · τ)Φν,λ(τ − ξ)dxdζ,

where ζ = ξ + Jλη, ξ, η ∈ Eλ. Let w = μ + Jλγ, μ, γ ∈ Eλ. It follows from
(3.2) and (3.3) that

2πi〈λ, 2 Im Φ(ζ, w)〉 = πi Im Hλ(ζ, w)
= πiBλ(ζ, w)
= −πi(γ · ξ − η · μ).

Notice that the recursion formula for Hermite polynomials [28]

(6.4) Φν,λ(−η) = (−1)|ν|Φν,λ(η)
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where |ν| =
∑n

j νj , by (3.6), we get

(R̂(f)(λ)Φν,λ)(τ) =
∫

UV

(∫

V
f(x + 2 Im Φ(ζ, w), ζ + w) dw

)

exp(−2πi〈λ, x〉) exp(πiξ · η)
exp(−2πiη · τ)Φν,λ(τ − ξ) dx dζ

= 4−n|Det Mλ(β)|−1
∫

V
F (f)(λ, w)

(∫

EλEλ

exp(−πi(γ · ξ − η · μ)) exp(πiξ · η)

exp(−2πiη · τ)Φν,λ(τ − ξ)ϑλ (dξ)ϑλ (dη)
)

dw

= 4−n|DetMλ(β)|−1
∫

V
F (f)(λ, w) exp(πiμ · γ)

exp(−2πiγ · τ)
(∫

Eλ

Fλ(Φν,λ)
(

η − γ

2

)

exp(πi(μ − τ)(η − γ))ϑλ (dη)) dw

= 2−n|DetMλ(β)|−1
∫

V
F (f)(λ, w) exp(πiμ · γ)

exp(−2πiγ · τ)Φν,λ(μ − τ) dw

= (−1)|ν|2−n|DetMλ(β)|−1(f̂(λ)Φν,λ)(τ).

Thus we have

Theorem 6.1. Let f ∈ L2(N). Then

(6.5) R̂(f)(λ) = 2−n|Det Mλ(β)−1|f̂(λ)S,

where S =
∑

ν∈Z
n
+
(−1)|ν|Pν is a unitary operator on Hλ.

It is known that DetMλ(β) is a real homogeneous polynomial of degree
n on U ′ ∼= Rm [24, p. 35]. We put P (λ) = DetMλ(β).

Let x = (x1, x2, . . . , xm), f ∈ S (N), it is obvious that

(6.6)
∫

U

∂f

∂xj
(x, ζ) exp(−2πi〈λ, x〉) dx = (2πiλj)F (f)(λ, ζ).
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Write D = (1
i

∂
∂x1

, 1
i

∂
∂x2

, . . . , 1
i

∂
∂xm

), L = P (D). Such type operators has been
considered by Gindikin [9]. It is not difficult to see that the partial differ-
ential operator L satisfies

(6.7)
∫

U
L(f)(x, ζ) exp(−2πi〈λ, x〉) dx = (2π)n Det Mλ(β)F (f)(λ, ζ).

Therefore we have

(6.8) L̂(f)(λ) = (2π)n Det Mλ(β)f̂(λ).

It follows that

(6.9) L̂R(f)(λ) = R̂L(f)(λ) = πn sgn(Det Mλ(β))f̂(λ)S,

where sgn(·) denotes the symbol function. Then we obtain the following
inversion formula of the Radon transform on N .

(6.10) R−1 = π−2nLRL.

This is an extension of that on the Heisenberg group [29].
For a function f ∈ L2(N), R(f) may not belong to L2(N) [29]. We

should find a dense subspace of L2(N), on which the formula (6.10) holds.

Theorem 6.2. Let

SR(N) =
{

f ∈ S (N) :
∫

Λ
‖f̂(λ)‖2

HS|Det Mλ(β)|(2j+1) dλ <

+∞, for all j ∈ Z

}

.

Then SR(N) is a dense subspace of L2(N) and

(6.11) R−1(f) = π−2nLRL(f)

for all f ∈ SR(N).

Proof. Consider the subspace L2
R(N) of L2(N) defined by

L2
R(N) =

{

f ∈ L2(N) :
∫

Λ
‖f̂(λ)‖2

HS|Det Mλ(β)|(2j+1) dλ <

+∞, for allj ∈ Z

}

.(6.12)
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It is clear that L2
R(N) is a dense subspace of L2(N). By Theorem 6.1 and

the Plancherel formula (3.10), we have

‖Rj(f)‖2
L2(N) = 4(−j+1)n

∫

Λ
‖f̂(λ)‖2

HS|Det Mλ(β)|(−2j+1) dλ.

Thus R is a bijection from L2
R(N) onto itself. Because SR(N) = L2

R(N)
⋂

S (N), LRL is well defined on SR(N). Theorem 6.2 is proved. �

7. An inversion formula by using wavelets

In this section, we establish an inversion formula of the Radon transform
by use of the continuous wavelet, transform on N . By choosing suitable
wavelets, the inversion formula of the Radon transform holds in the weak
sense without the assumption of differentiability for f .

For simplicity, write gt(x, ζ) = g(t−1x, B(t)−1ζ) which deviates slightly
from (3.15), we have

(7.1) ĝt(λ) = Det(t)((n+m)/m)ĝ(t∗λ).

We define the operator W̃g by

W̃gf = f ∗ g̃.

Then

(7.2)
(
̂̃
Wgf

)

(λ) = f̂(λ)ĝ(λ)∗.

Note that

(7.3) Det Mt∗λ(β) = |Det(B(t))|2Det Mλ(β) = Det(t)n/mDet Mλ(β).

Applying (7.1), (7.2) together with (6.8), we have

̂(W̃L(g)t
f)(λ) = f̂(λ)L̂(g)t(λ)∗

= Det(t)((n+m)/m)f̂(λ)L̂(g)(t∗λ)∗

= (2π)n Det(t)((2n+m)/m) Det Mλ(β)f̂(λ)ĝ(t∗λ)∗.

(7.4)
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On the other hand, by (7.2), (6.8) and (7.1) we get

̂(W̃gt
L(f))(λ) = L̂(f)(λ)ĝt(λ)∗

= (2π)nDetMλ(β)Det(t)((n+m)/m)f̂(λ)ĝ(t∗λ)∗.
(7.5)

Consequently,

(7.6) (W̃L(g)
t
f)(x, ζ) = Det(t)n/m(W̃gt

L(f))(x, ζ).

Theorem 7.1. Let g ∈ SR(N) ∩ AW ε
ν , f ∈ SR(N) ∩ Hε

ν . Then

(7.7) (W̃LRL(g)t
R(f))(x, ζ) = π2nDet(t)((m+3n)/2m)(Wgf)(x, ζ, t).

Proof. By (7.6), we have

(7.8) (W̃LRL(g)t
R(f))(x, ζ) = Det(t)n/m(W̃RL(g)t

LR(f))(x, ζ).

Note that sgn(Det Mt∗λ(β)) = sgn(Det Mλ(β)). By taking the Fourier trans-
form on both sides of (7.8), it follows that

( ̂
W̃LRL(g)t

R(f))(λ) = Det(t)n/m(W̃RL(g)t
LR(f̂))(λ)

= Det(t)n/mL̂R(f)(λ)R̂L(g)t(λ)∗

= Det(t)((m+2n)/m)L̂R(f)(λ)R̂L(g)(t∗λ)∗

= π2nDet(t)((m+2n)/m)f̂(λ)ĝ(t∗λ)∗.

(7.9)

But by the wavelet transform

Ŵgf(λ) = Det(t)((m+n)/2m)f̂(λ)ĝ(t∗λ)∗,

this completes the proof of (7.7). �
In Theorem 7.1, we make the assumption of differentiability for f , which

is needed in (7.8). This assumption can be removed. In fact, we can
deduce (7.7) from the following computation. According to (6.10) and (7.3),
we have

( ̂
W̃LRL(g)t

R(f))(λ) = R̂(f)(λ) ̂LRL(g)t(λ)∗

= Det(t)((m+n)/m)R̂(f)(λ)L̂RL(g)(t∗λ)∗

= π2nDet(t)((m+2n)/m)f̂(λ)ĝ(t∗λ)∗.

We therefore have the following inverse Radon transform in the weak sense.
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Theorem 7.2. Let φε
ν ∈ SR(N) ∩ AW ε

ν , f ∈ L2
R(N) ∩ Hε

ν . Then

f(x, ζ) =
1

π2nCφε
ν

∫

N×T
W̃LRL(φε

ν)t
R(f)(a, α)

U(a, α, t)φε
ν(x, ζ)

da dα dml(t)
Det(t)((3m+5n)/2m)(7.10)

and

R−1(f)(x, ζ) =
1

π2nCφε
ν

∫

N×T
W̃LRL(φε

ν)t
f(a, α)

U(a, α, t)φε
ν(x, ζ)

da dα dml(t)
Det(t)((3m+5n)/2m) .(7.11)

in the weak sense. Specifically, if f ∈ SR(N) ∩ Hε
ν , then the formula (7.10),

(7.11) hold for all (x, ζ) ∈ N.

It is easy to construct some wavelets which satisfy the condition in The-
orem 7.2. Let ψ ∈ C∞

0 (T ) satisfying Det(t) ≥ η > 0 for t ∈ suppψ. φε
ν,μ,δ is

defined by

(7.12) φ̂ε
ν,μ,δ(λ) =

{
ψ(t)Pν,μ, if λ = t∗λε ∈ Λε,

0, if λ /∈ Λε,

then we have φε
ν,μ,δ ∈ SR(N) ∩ AW ε

ν .
If f ∈ SR(N) (or f ∈ L2

R(N)), then f can be decomposed as f =
∑

ε,ν f ε
ν

where f ε
ν ∈ SR(N) ∩ Hε

ν (or f ε
ν ∈ L2

R(N) ∩ Hε
ν). Take φε

ν ∈ SR(N) ∩ AW ε
ν .

It follows from (7.11) that

R−1(f)(x, ζ) =
∑

ε,ν

1
π2nCφε

ν

∫

N×T
W̃LRL(φε

ν)
t
f ε

ν(a, α)

U(a, α, t)φε
ν(x, ζ)

da dα dml(t)
Det(t)((3m+5n)/2m)(7.13)

holds for all (x, ζ) ∈ N (or in the weak sense).

8. The symmetric case

Of course, the most interested case is the symmetric Siegel domains of type
II, which (together with the symmetric tube domains) are the unbounded
realizations of the bounded symmetric domains. In this case, our results can
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be expressed in a more explicit form in terms of Jordan algebra. We shall
only state the results without proof and refer the reader to [20] for some
detailed calculation about the symmetric cones. A good reference on the
Jordan algebras and the symmetric cones is the book [7] by J. Faraut and
Korányi.

Let U be a simple Euclidean Jordan algebra with the identity e. Ω
is the associated symmetric cone. Then D = D(Ω, Φ) determined by the
symmetric cone Ω and an Ω-positive Hermitian map Φ is a symmetric Siegel
domain of type II. Suppose that U has the dimension m, the rank r and the
degree d. x ◦ y denotes the Jordan product of x and y. tr(x) and det(x) are
defined as in [7]. We also write Δ(x) instead of det(x). The inner product
on U is given by 〈x, y〉 = tr(x ◦ y). We select K to be the isotropy subgroup
of Ga(D) at the point (ie, 0). Because two maximal R-triangular subgroups
of a linear Lie group G are conjugate with respect to an inner automorphism
of G, there exist a Jordan frame {c1, . . . , cr} and the corresponding Peirce
decomposition

U =
⊕

j≤k

Ujk

such that T has the parameterization as

T = {t(u) : u ∈ U+},

where

U+ =

⎧
⎨

⎩
u =

r∑

j=1

ujcj +
∑

j<k

ujk : uj > 0, ujk ∈ Ujk

⎫
⎬

⎭
.

The left Haar measure of T is given by

(8.1) dml(t(u)) = 2r
r∏

j=1

u
−d(j−1)−1
j du.

We identify U ′ with U by the use of the inner product. Then

(8.2) ρ(λ) = 4nΔ(λ)n/r.

Let
E = {ε = (ε1, ε2, . . . , εr) : εj = ±1}.

Set

λε =
r∑

j=1

εjcj .
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All simple T -orbits of U under the adjoint action are given by

Λε = {λ ∈ U : λ = t(u)∗λε, u ∈ U+}, ε ∈ E.

Specifically, Λe = Λ(1,1,...,1) = Ω.
We can identify Ω with T by identification of x = t(u)e and t(u). Then

we have

(8.3) Δ(x)− m

r dx = dμl(t(u))

and

(8.4) Det(t(u)) = Δ(x)(m/r).

The characteristic function M(x) of Ω is given by

(8.5) M(x) = ΓΩ

(m

r

)
(2π)−mΔ(x)−(m/r),

where ΓΩ is the gamma function of the symmetric cone Ω. Specifically,

(8.6) M(e) = ΓΩ

(m

r

)
(2π)−m.

Let Δj(x), j = 1, . . . , r, denote the principal minors. Δ∗
j (x) = Δj(kx) where

k is an automorphism of U such that

kcj = cr−j+1, j = 1, . . . , r.

Let s = (s1, . . . , sr). We set

Δ∗
s(x) = Δ∗

1(x)s1−s2 · · ·Δ∗
r−1(x)sr−1−srΔ∗

r(x)sr .

For the transformation λ = t(u)∗λε, we have

(8.7) dml(t(u)) = |Δ∗
s(λ)|−1dλ,

where

s = (1 + d(r − 1), 1 + d(r − 2), . . . , 1).

Because

Det Mλ(β) = Δ(λ)n/r,
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we have

(8.8) L = Δ(D)n/r.

Now all results in previous sections can be expressed in a more explicit
form for the symmetric case. For example, Theorem 4.1 can be restated as
follows.

Suppose φ(�= 0) in Hε
ν . Then φ ∈ AW ε

ν if and only if

(8.9) Cφ =
∫

Λε

∥
∥φ̂(λ)

∥
∥2

HS|Δ
∗
s(λ)|−1 dλ < ∞.

A concrete example of the symmetric Siegel domains of type II is the
unbounded realization of the classical domain of type one. Let V = Ms,r be
the set of all s × r complex matrices, U = Hr denotes all Hermitian matrices,
and write W = Mr = Mr,r. Hr is a simple Euclidean Jordan algebra with
the Jordan product

x ◦ y =
1
2
(xy + yx).

Hr has the dimension m = r2, the rank r and the degree d = 2. The asso-
ciated symmetric cone Ω consists of all complex Hermitian positive definite
matrices in Hr. The trace function tr(x) and the determinant function
det(x) are the usual ones. Set

Φ : Ms,r × Ms,r → Mr,

(ζ, η) �→ Φ(ζ, η) = η∗ζ.

Φ is an Ω-positive Hermitian map, and

D(Ω, Φ) =
{

(z, ζ) ∈ Mr × Ms,r :
z − z∗

2i
− ζ∗ζ > 0

}

is a symmetric Siegel domain of type II. This is the unbounded realization
of the classical domain of type one. We select the Jordan frame {c1, . . . , cr}
such that cj is a diagonal matrix with 1 in the jth place and 0 in other
positions. Then T consists of all r × r upper triangular matrices with pos-
itive diagonal elements. The action of T on Hr is given by t(x) = txt∗ and
Det(t) = det(t)2r. All results for this case are expressed in a more explicit
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form [12, 13]. For example, we have L = (−i)sr(det( ∂
∂xjk

))s and

R−1(f)(x, ζ) =
1

π2sCφε
ν

∫

N×T
W̃LRL(φε

ν)t
f(a, α, t)

U(a, α, t)φε
ν(x, ζ)

da dα dml(t)
det(t)3r+5s

.(8.10)
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