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Error estimates for discrete harmonic 1-forms over
Riemann surfaces

Wei Luo

We derive L2 error estimates of computing harmonic or holomor-
phic 1-forms over a Riemann surface via finite element methods.
Locally constant finite elements and first order approximations of
the Riemann surface by triangulated meshes are considered. We
use in the proof a Bochner type formula and a refined Poincaré
inequality over a triangle of arbitrary shape.

1. Introduction

Surface matching and parametrization is a fundamental problem in 3-D com-
puter graphics. In a series of papers [2], Gu and Yau applied the theory of
Riemann surfaces to this problem. Given a Riemann surface S, they first
compute harmonic 1-forms by minimizing the discretized energy functional
of 1-forms in the same cohomology class. Then the space of holomorphic
1-forms on S is constructed from harmonic 1-forms and the complex multi-
plication map J . From a holomorphic 1-forms, one can construct a conformal
coordinate over S, which could be used to match and compare similar
surfaces. In their paper, the convergence of discrete holomorphic 1-forms
to smooth ones is not addressed. Hence this paper provides a quantitative
justification to this convergence (Theorem 3.6).

The proof goes as follows: we first use the Bochner formula on S to
estimate ‖∇ω‖ in terms of ‖ω‖ for a harmonic 1-form ω. Then we prove a
Poincaré inequality to estimate the error of projection onto finite element
space in terms of norm of the gradient. Next we prove the main estimate
of the error of projection of a smooth harmonic 1-form onto the space of
discrete harmonic 1-forms. We finally give the error estimate of discrete
holomorphic 1-forms and period matrix computation as a corollary.

2. Notations

Let S be a closed smooth surface with metric g. Jg, ∇g, ‖ · ‖g respect-
ively denote the almost complex structure, covariant derivative and L2 norm
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associated to g. N is a two-dimensional simplicial complex homeomorphic
to S. If the lengths of edges of N are given, N naturally comes with a
Euclidean metric on each face. Let J , ∇ and ‖ · ‖ be the same notations
as those with subscript g but associated to the piecewise Euclidean metric.
We assume that there exists a piecewise smooth homeomorphism φ : N → S
such that on each face f ,
(2.1)

|φ∗(g)ij − δij | � M(f)l(f)2, |∇φ∗(g)ij | � M(f)l(f), M(f)l(f)2 � 1,

where M(f) is some constant associated to the face f , l(f) is the maximal
length of edges of f . Here and throughout the paper, we use � to denote that
the left-hand side is less than or equal to the right-hand side multiplied by
some universal constant, independent of N or S. Pulling back by φ, we can
regard a differential form or metric on S as one on N . Without possibility
of confusion, we omit the φ∗ notation and identify forms or metric on S
and N and denote them by the same notation. The following lemma is
straightforward.

Lemma 2.1. With the assumption (2.1), let α be any tensor field; then on
any face f , we have

| |α|g − |α| | � M(f)l(f)2|α|,(2.2)

|Jg − J | � M(f)l(f)2,(2.3)
|∇gα − ∇α| � M(f)l(f)|α|.(2.4)

Example 2.2. When S is a surface smoothly embedded in R
3, N is a

polyhedral surface normally converging to S (see [3]) and φ is the shortest
distance map, a candidate of M(f) is the maximum of principal curvature
of S on φ(f).

Definition 2.3. A discrete 1-form on N is a piecewise continuous 1-form
whose restriction onto each face is a constant 1-form. A discrete 1-form
is closed if the evaluation of the 1-form on each edge is well- defined, i.e.,
evaluation by first restricting to either face adjacent to this edge will give the
same value. A discrete 1-form is exact if it is the differential of a piecewise
linear function on N . Closed discrete 1-forms differed by exact forms belong
to the same cohomology class. A closed discrete 1-form is harmonic if it
is the minimizer in its cohomology class of the energy functional E(ω) =
‖ω‖2 =

∫
N |ω|2. Denote by PH the projection onto the space of discrete

harmonic 1-forms under inner product associated to E.
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Let ω be a piecewise continuous 1-form, one can project ω onto the space
of discrete 1-forms under the inner product associated to E. Denote this
projection by P1. In a Euclidean coordinate associated to a face f , we have

(2.5) P1(ω)|f :=
1
|f |

∫

f
ω|f

(
∂

∂x

)

dx +
1
|f |

∫

f
ω|f

(
∂

∂y

)

dy.

Another way to produce a discrete 1-form from closed ω, denoted by P2(ω),
is by the condition:

(2.6)
∫

e
(P2(ω)|f − ω|f ) = 0,

for any face f and an edge e on the boundary of f . Notice that P2(ω) is
also closed and is in the same cohomology class as ω.

3. Proof of the main results

The following theorem estimates the error of the projections P1, P2:

Theorem 3.1. Let Δ be a triangle with longest edge of length l, ω is a
smooth closed 1-form on Δ. P1, P2 is defined as in (2.5) and (2.6), then

(3.1)
∫

Δ
|ω − P1(ω)|2 ≤ 2l2

3

∫

Δ
|∇ω|2,

∫

Δ
|ω − P2(ω)|2 ≤ 3l2

2

∫

Δ
|∇ω|2.

We need three lemmas first. The following is a refined Poincaré inequal-
ity for triangles (see also (7.45) in [1, p. 164]).

Lemma 3.2 (Poincaré inequality). If u is a smooth function on a
triangle Δ, then

(3.2)
∫

Δ
|u − ū|2 dx dy ≤ 2l2

3

∫

Δ
|∇u|2 dx dy,

where ū is the average of u over Δ, l is the length of the longest edge of Δ
and ∇u denotes the gradient of u.
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Proof.
∫

Δ
|u − ū|2 =

∫

Δ
u2 − 2uū + ū2 =

∫

Δ
u2 − ū2

=
∫

Δ
u2 − 1

|Δ|

(∫

Δ
u

)2

2

(∫

Δ
1

∫

Δ
u2 −

(∫
u

)2
)

=
∫

Δ

∫

Δ
(u(x1, y1) − u(x2, y2))2 dx1 dy1 dx2 dy2

=
∫

Δ

∫

Δ

(∫ 1

0

∂

∂λ
u(x1 + λ(x2 − x1), y1

+λ(y2 − y1))dλ

)2

dx1 dy1 dx2 dy2

≤
∫

Δ

∫

Δ

∫ 1

0
((x2 − x1)2 + (y2 − y1)2)

· |∇u((1 − λ)(x1, y1) + λ(x2, y2))|2 dλ dx1 dy1 dx2 dy2.

Make the change of variables (λ, x1, y1, x2, y2) → (x0, y0, s, t, θ):

(x1, y1) = (x0, y0) + s(cos θ, sin θ),

(x2, y2) = (x0, y0) − t(cos θ, sin θ), λ =
s

s + t
.

Direct computation shows that the Jacobian of this change of variables is 1.
Write

M = max
(x0,y0)∈Δ

∫ 2π

0

∫ r1

0

∫ r2

0
(s + t)2 ds dt dθ,

where r1, r2 are the distance to (x0, y0) from the intersection points of line
(x0, y0) + s(cos θ, sin θ), s ∈ R with ∂Δ. We then have

(3.3) |Δ|
∫

Δ
u2 −

(∫

Δ
u

)2

≤ M

2

∫

Δ
|∇u|2.

On the other hand

(3.4)
∫ r1

0

∫ r2

0
(s + t)2ds dt =

r3
2r1

3
+

r2
1r

2
2

2
+

r2r
3
1

3
≤ 7

96
(r1 + r2)4.

Suppose the longest edge of Δ is l, the height on this edge is h, take coordi-
nate (x, y) such that the longest edge is on x-axis. Then for θ ≤ arctan(h/l),
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r1 + r2 < l. For π/2 ≥ θ ≥ arctan(h/l), r1 + r2 ≤ h
sin θ .

∫ arctan h/l

0
l4 dθ < l4 · h

l
= l3h,

∫ π/2

arctan h/l

(
h

sin θ

)4

dθ =
∫ ∞

h/l
h4

(

1 +
1
k2

)2

d arctan k

=
∫ ∞

h/l
h4(k−4 + k−2)dk =

l3h

3
+ lh3 ≤ 13

12
l3h,

where the last step is because when l is the longest edge, h <
√

3
2 l. Collec-

tively, we have

M ≤ 7
96

· 4 ·
(

1 +
13
12

)

l3h <
2
3
l3h

plug this into Equation (3.3), the lemma is then proved. �

Lemma 3.3. Let u be a C1 function on a triangle ΔABC with maximal
length of edges l. Then, we have

(3.5)
∣
∣
∣
∣

1
|Δ|

∫

Δ
u − 1

|BC|

∫

BC
u

∣
∣
∣
∣

2

≤ l2

8|Δ|

∫

Δ
|du|2.

Proof. Take coordinate such that A = (xA, yA), B = (0, 0), C = (xc, 0), and
then the change of variable

(x, y) → ((1 − t)sxC + txA, tyA).

Direct computations show that

det
(

∂(x, y)
∂(s, t)

)

= (1 − t)xCyA, |Δ| =
xCyA

2
,

∂

∂t
= (xA − sxC)

∂

∂x
+ yA

∂

∂y
.

The LHS of (3.5) is

=
(∫ 1

0

∫ 1

0
u(s, t)2(1 − t) ds dt −

∫ 1

0
u(s, 0) ds

)2

=
(∫ 1

0

∫ 1

0
(u(s, t) − u(s, 0))2(1 − t) dt ds

)2

=
(∫ 1

0

∫ 1

0

∫ t

0
uτ (s, τ)2(1 − t) dτ dt ds

)2
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=
(∫ 1

0

∫ 1

0
uτ (s, τ)(1 − τ)2 dτ ds

)2

≤
(∫ 1

0

∫ 1

0
| du|2(1 − τ)xCyA dτ ds

)

·
∫ 1

0

∫ 1

0
((xA − sxC)2 + y2

A)(1 − τ)3(xCyA)−1 dτ ds

≤ RHS.
�

The proof of the following lemma is a straightforward computation.

Lemma 3.4. Given unit vectors eA, eB, eC , denote the angle between eB, eC

by A, similar notations for B, C. Let e be any vector, then

(3.6) |e|2 =
∑

A

− cos A

sin B sin C
(eA · e)2.

Proof of Theorem 3.1. Let v be a parallel tangent vector field on Δ, then
Pi(ω)(v) are constants for i = 1, 2. P1(ω)(v) = 1

|Δ|
∫
Δ ω(v), while for v par-

allel to one of the edges of Δ say e, P2(ω)(v) = 1
|e|

∫
e ω(v). Let vA, vB, vC be

the parallel unit tangent vector field parallel to three edges of Δ respectively,
then by Equation (3.6),

∫

Δ
|ω − P1(ω)|2 =

∑

A

cos A

sin B sin C

∫

Δ
|ω(vA) − P1(ω)(vA)|2

≤
∑

A

cos A

sin B sin C
· 2l2

3
·
∫

Δ
|∇ω(vA)|2 =

2l2

3
·
∫

Δ
|∇ω|2.(3.7)

On the other hand, by (3.5),
∫

Δ
|P1(ω)(vA) − P2(ω)(vA)|2 ≤ l2

8

∫

Δ
|∇ω(vA)|2.

Take the weighted sum and use (3.6), we get

(3.8)
∫

Δ
|P1(ω) − P2(ω)|2 ≤ l2

8

∫

Δ
|∇ω|2.

Apply the inequality (a + b)2 ≤ (1 + ε)a2 + (1 + ε−1)b2 to (3.7) and (3.8)
with ε =

√
3/4 we get the second inequality of (3.1). �
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Lemma 3.5. Let ω be a harmonic 1-form on S and −K be a lower bound
of Gauss curvature of S, then

(3.9) ‖∇gω‖2
g � K‖ω‖2

g.

Proof. From the well-known Bochner–Weitzenbock formula for 1-forms
[4, p. 28]:

(d∗d + dd∗)ω = ∇∗
g∇gω + Ric ω.

For Riemann surfaces, the Ricci operator is the multiplication by Gauss
curvature. When ω is a harmonic 1-form, the left-hand side of above formula
vanish; taking inner product with ω and integrating over S, the lemma is
then proved. �

Combining (2.4), (3.1) and (3.9), we get for g-harmonic ω,

(3.10) ‖ω − Piω‖ � (
√

KL + M)‖ω‖, i = 1, 2,

where M is an upper bound of M(f)l(f)2 for all f , and L is an upper bound
of l(f) for all f .

Theorem 3.6. Let ω be a harmonic 1-form on S under metric g, and N
is a polygonal surface close to S in the sense of (2.1). Then we have

(3.11) ‖ω − PH(P2(ω))‖g � (
√

M +
√

KL)‖ω‖.

Proof. Since ‖ · ‖g and ‖ · ‖ are equivalent metrics by (2.1) and (2.2), it is
enough to prove for ‖ · ‖g on LHS. PHP2ω are in the same cohomology class
as ω, since ω is g-harmonic,

‖ω − PHP2ω‖2
g = ‖PHP2ω‖2

g − ‖ω‖2
g

(3.12)

= (‖PHP2ω‖2
g − ‖PHP2ω‖2) + (‖PHP2ω‖2 − ‖P2ω‖2)

+ (‖P2ω‖2 − ‖P2ω‖2
g) + (‖P2ω‖2

g − ‖ω‖2
g).(3.13)

In Equation (3.13), the first term and the third term can be bounded by
M‖ω‖2, applying inequality (2.2). The second term is negative since PHP2ω
is minimal in L2 norm among discrete 1-form in the same cohomology class.
The last term is bounded by (

√
KL + M)2‖ω‖2 as in (3.10). The theorem

now follows. �
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Corollary 3.7. With the same notations, for harmonic 1-form ω, we have

(3.14) ‖ω − PHP1ω‖ � (
√

M +
√

KL)‖ω‖.

A smooth holomorphic 1-form is defined to be ω +
√

−1Jgω. A natural
discrete approximation of this is by PHP2ω +

√
−1PHJPHP2ω. The follow-

ing corollary estimates error of discrete holomorphic 1-forms.

Corollary 3.8. With the same notation as in Theorem 3.6, for harmonic
1-form ω, we have

(3.15) ‖Jgω − PHJPHP2ω‖ � (
√

M +
√

KL)‖ω‖.

Proof. Notice that PH = PHP1, then

‖Jgω − PHJPHP2ω‖ ≤ ‖(Jg − PHP1Jg)ω‖ + ‖PHJgω − PHJω‖(3.16)

+ ‖PHJω − PHJPHP2ω‖.

Jgω is harmonic, so the first term of RHS of (3.16) is bounded by RHS of
(3.15) from Theorem 3.6, the second term is bounded by M‖ω‖ from (2.3),
the last term is bounded by RHS of (3.15) also from Theorem 3.6. �

The period matrix of Riemann surface S is computed by integrating a
basis of holomorphic 1-forms over a set of homology basis. Equivalently
by Poincaré duality, it equals the matrix of pairing a basis of holomorphic
1-forms with a basis of harmonic 1-forms or even closed 1-forms in the same
cohomology class. From the L2 estimate of error of holomorphic 1-forms,
one easily obtains the following corollary.

Corollary 3.9. The period matrix computed by integrating discrete holo-
morphic 1-forms over homological basis differs from smooth period matrix by
an error bounded by C(

√
M +

√
KL), where C is some constant independent

of the polygonal approximation surface N , but surely depends on geometric
property of S.

In practice, constant C in the above corollary equals the maximal L2

norm of closed discrete 1-forms dual to a set of homological basis of S.
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4. Conclusion

This paper describes quantitatively the error in computing discrete harmonic
or holomorphic 1-forms, the measurement

√
M +

√
KL indicates how one

should refine a triangulation to compute efficiently.
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