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Dehn filling of the “magic” 3-manifold
Bruno Martelli and Carlo Petronio

We classify all the non-hyperbolic Dehn fillings of the complement
of the chain link with three components, conjectured to be the
smallest hyperbolic 3-manifold with three cusps. We deduce the
classification of all non-hyperbolic Dehn fillings of infinitely many
one-cusped and two-cusped hyperbolic manifolds, including most
of those with smallest known volume.

Among other consequences of this classification, we mention the
following:
• for every integer n, we can prove that there are infinitely many

hyperbolic knots in S3 having exceptional surgeries {n, n + 1,
n + 2, n + 3}, with n + 1, n + 2 giving small Seifert manifolds
and n, n + 3 giving toroidal manifolds.

• we exhibit a two-cusped hyperbolic manifold that contains a
pair of inequivalent knots having homeomorphic complements.

• we exhibit a chiral 3-manifold containing a pair of inequivalent
hyperbolic knots with orientation-preservingly homeomorphic
complements.

• we give explicit lower bounds for the maximal distance between
small Seifert fillings and any other kind of exceptional filling.

0. Introduction

We study in this paper the Dehn fillings of the complement N of the chain
link with three components in S3, shown in figure 1.

The hyperbolic structure of N was first constructed by Thurston in his
notes [28], and it was also noted there that the volume of N is particularly
small. The relevance of N to three-dimensional topology comes from the fact
that by filling N , one gets most of the hyperbolic manifolds known and most
of the interesting non-hyperbolic fillings of cusped hyperbolic manifolds. For
these reasons N was called the “magic manifold” by Gordon and Wu [14, 17].
It appears as M63

1 in [6] and it is the hyperbolic manifold with three cusps
of smallest known volume and of smallest complexity [1]. (We refer here
to the complexity defined by Matveev in [23], and we mean that N has an
ideal triangulation with six tetrahedra, while all other hyperbolic manifolds
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Figure 1: The chain link.

with three cusps need more than six tetrahedra). The chain link appears as
63
1 in [25].

The main results of this paper, stated in Section 1, provide a complete
classification (with prime and JSJ decomposition) of all non-hyperbolic Dehn
fillings of N , including partial ones. Quite some energy has been devoted in
the literature to the understanding of exceptional slopes on hyperbolic man-
ifolds, i.e., slopes giving non-hyperbolic fillings, but a complete description
of the actual filled manifolds is seldom available. Our tables provide a com-
plete description of the exceptional fillings for many hyperbolic manifolds
with one and two cusps: for this reason we hope that our results will prove
useful. We now list some consequences of this classification.

Surgery along knots in S3. If the complement of a knot arises by filling
two cusps of N , its exceptional surgeries can be recovered from our tables.
Every such knot has at least four exceptional surgeries. In particular, we
prove the following.

Theorem 0.1. For every integer n, there are infinitely many hyperbolic
knots in S3 whose exceptional surgeries are {n, n + 1, n + 2, n + 3}, with n
and n + 3 giving toroidal manifolds and n + 1, n + 2 giving small Seifert
manifolds.

Motegi and Song recently proved that for every n there is a hyperbolic
knot whose n-surgery is small Seifert [24], and Teragaito [27] proved the same
result for toroidal surgeries. Theorem 0.1 exhibits infinitely many examples
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for each n. Other knots in S3 with Seifert surgeries are also described
in [7, 8, 22].

Seifert fillings. Following Gordon [14], let us say that a manifold is of
type D, A, S or T if it contains, respectively, an essential disc, annulus,
sphere or torus, and of type SH or TH if it contains a Heegaard sphere or
torus. An exceptional filling of a hyperbolic 3-manifold is either of one of
these types, or a small closed Seifert manifold, or a counterexample to the
geometrization conjecture (which seems ruled out by Perelman). Detecting
small Seifert fillings is the most difficult task, since these manifolds do not
contain any small essential embedded surface (they only contain immersed
essential tori).

Denoting by Δ the minimal geometric intersection between slopes on
a torus, for X0, X1 ∈ {D, A, S, T, SH , TH}, we define as in [14] the number
Δ(X0, X1) as the maximum of Δ(α0, α1) over M, α0, α1, where M is cusped
hyperbolic, α0, α1 are slopes on the same cusp of M and M(αi) is of type Xi.
All values of Δ(X0, X1) are known, except Δ(S, SH) and Δ(T, TH), which
are conjectured to be, respectively, −∞ (this is the Cabling Conjecture) and
3. Our tables support both these conjectures.

Let us now say that a small Seifert manifold is of type Z. As opposed
to most values of Δ(X0, X1) for X0, X1 ∈ {D, S, A, T, SH , TH}, no value
Δ(X, Z) seems to be known for X ∈ {S, T, SH , TH , Z}. Our tables imply
the following lower bounds:

S T SH TH Z

Z 2 7 1 2 6

Infinitely many hyperbolic manifolds realize the following values:

S T SH TH Z

Z 2 5 1 2 4

We have not found in the literature examples realizing greater values
than those given by these tables.

Inequivalent knots with homeomorphic complements. The cele-
brated result of Gordon and Luecke [15] states that inequivalent knots in S3

have non-homeomorphic complements. Here, two knots are equivalent when
there is a self-homeomorphism of the ambient 3-manifold sending one to the
other. Bleiler et al. [4] found two inequivalent hyperbolic knots in L(49, 18)
with homeomorphic complements (but the homeomorphism reverses the ori-
entation). This example can be seen in our tables and is still the only one
known inside a closed manifold.
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More examples arise in manifolds with boundary. There are infinitely
many pairs of inequivalent hyperbolic knots with homeomorphic comple-
ments in the solid torus (their construction, due to Berge [2] and Gabai [12,
13], led to the example in L(49, 18) mentioned above) and in handlebodies of
arbitrary genus [11, 12]. We find in this paper some examples inside other
manifolds:

Theorem 0.2. The Whitehead sister link complement contains a pair of
inequivalent hyperbolic knots with homeomorphic complements.

Theorem 0.3. There exists a chiral Seifert manifold fibred over the disc
with two exceptional fibres that contain a pair of inequivalent hyperbolic knots
with orientation-preservingly homeomorphic complements.

The example provided by Theorem 0.2 is probably the first one discov-
ered in a hyperbolic manifold. We note that the two inequivalent knots
are geodesics of distinct length, both having N as a complement (but the
homeomorphism between the complements reverses the orientation). The
example provided by Theorem 0.3 is probably the first one of knots with
orientation-preservingly homeomorphic complements in a chiral manifold
(all other known examples are inside handlebodies).

Structure of the paper. The list of all non-hyperbolic Dehn fillings of N
is presented and discussed in Section 1, where we state several theorems and
deduce from them some of the results announced in the present Introduction,
and a few more. Section 2 contains the proofs of the classification theorems.
The Appendix contains more tables (deduced from the lists in Section 1)
showing the non-hyperbolic fillings of some notable classes of manifolds with
one or two cusps. These further tables are used to prove the rest of the results
stated above.

We warmly thank Jeff Weeks for very helpful suggestions on how to use
SnapPea [29] for the last step of the proof of Theorem 1.3.

1. Non-hyperbolic fillings of the chain-link complement

We state here the main results of the paper, namely Theorems 1.1–1.3, which
classify all non-hyperbolic fillings of the chain-link complement N . We then
use these results to prove the theorems stated in the Introduction.
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1.1. Main results

To give our statements, we first make some conventions.

Homology bases. We fix the standard (meridian, longitude) homology
basis on each component of ∂N . Using it, we identify a slope α with a
number in Q ∪ {∞}, and we denote by N(α) the Dehn filling of N along
α. Any two components of ∂N can be interchanged by an automorphism
which preserves the bases, and so N(α) depends on α only. On each partial
filling N(α) or N(α, β), we take the induced homology bases, and we note
that the two components of N(α) are still symmetric.

Lens spaces. For simplicity, we employ a more flexible notation for lens
spaces than the usual one. We write L(2, q) for RP3, L(1, q) for S3, L(0, q)
for S2 × S1 and L(p, q) for L(|p|, q′) with q ≡ q′ (mod p) and 0 < q′ < |p|, for
any coprime p, q.

Torus bundles. We denote by TX the torus bundle with monodromy
X ∈ GL2(Z).

Seifert manifolds. If F is a surface, k ∈ N, b ∈ Z and {(pi, qi)}k
i=1 are

coprime pairs with |pi| � 2, we define a Seifert manifold
(
F, (p1, q1), . . . ,

(pk, qk), b
)

as follows (see also [26]). Let Σ be F minus k + 1 open discs
and let W be the orientable S1-bundle over Σ. Give W any orientation,
pick a section σ of W and choose positive homology bases {(μi, λi)}k

i=0 on
the components of ∂W arising from the punctures of F , with μi ⊂ ∂σ and
a fibre as λi. Then,

(
F, (p1, q1), . . . , (pk, qk), b

)
is the Dehn filling of W along

p1μ1 + q1λ1, . . . , pkμk + qkλk, μ0 + bλ0.
We say that the parameters are normalized if pi > qi > 0. In our state-

ments, we will allow parameters to be non-normalized only when they depend
on some variable. Note that b can be dismissed when F has boundary and
that our “filling parameters” (pi, qi) are not the usual Seifert orbital parame-
ters (ai, bi), which are computed as ai = |pi| and bi ≡ q−1

i · pi/|pi| (mod |pi|).
We denote by D, A, B, Y , K, and T , respectively, the disc, the annulus,

the Möbius band, the pair of pants, the Klein bottle and the torus.

Graph manifolds. If F is an orientable surface with h � 1 boundary com-
ponents and Σ is F minus k discs, we proceed as above to construct homol-
ogy bases {(μi, λi)}h+k

i=1 on ∂(Σ × S1), with the extra requirement that the
μi’s should be oriented as components of ∂Σ. For coprime pairs {(pi, qi)}k

i=1
with |pi| � 2, we then get a Seifert manifold

(
F, (p1, q1), . . . , (pk, qk)

)
with
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fixed homology bases on its h boundary components. If M, M ′ are Seifert
manifolds with boundary and orientable base surfaces, and X ∈ GL2(Z),
we can then define without ambiguity M ∪X M ′ to mean M ∪f M ′ with
f : T → T ′, where T and T ′ are arbitrary boundary tori of M and M ′,
respectively, and f acts on homology as X with respect to the fixed bases.
Similarly we can define M

/
X

when M has at least two components.
We are now ready to give our statements, which correspond to the filling

of one, two or all three components of ∂N , respectively. Throughout this
paper, “hyperbolic” means “finite-volume complete hyperbolic,” and the
symbol N is only used to denote the complement of the three-components
chain link in S3, shown in figure 1.

Theorem 1.1. N(α) is hyperbolic unless α ∈ {∞,−3,−2,−1, 0}, and

• N(∞) = T × I;

• N(−3) =
(
A, (2, 1)

) ⋃
(

0 1
1 0

)
(
A, (2, 1)

)
;

• N(−2) =
(
A, (3, 1)

)
;

• N(−1) =
(
A, (2, 1)

)
;

• N(0) =
(
D, (2, 1), (3, 1)

) ⋃
(

1 1
−1 0

)
(
Y × S1

)
.

Theorem 1.2. M = N(p/q, r/s) is hyperbolic except if one of the following
occurs up to permutation:

• p/q ∈ {∞,−3,−2,−1, 0};

• (p/q, r/s) ∈ {(1, 1), (−4,−1/2), (−3/2,−5/2)}.

In all cases, M is as shown in table 1, where n stands for a generic integer
and r/s �= ∞ unless p/q = ∞.

Theorem 1.3. M = N(p/q, r/s, t/u) is hyperbolic except if one the follow-
ing occurs up to permutation:

• p/q = ∞, in which case M = L(tr−us, tr′−us′), where r′, s′ ∈ Z are such
that rs′ − sr′ = ±1;

• p/q ∈ {−3,−2,−1, 0}, in which case M is as described in table 2 (with
n and m standing for generic integers);
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Table 1: Classification of non-hyperbolic fillings of N with one boundary
component.

p/q r/s M

∞ Any D × S1

−3 −1 RP3#(D × S1)
−2 D × S1

−3
(
B, (2, 1)

)

−1 + 1/n, �= −2
(
D, (2, 1), (2n+1, 2)

)

�= −1, �= −1 + 1/n
(
D, (2, 1), (r+s, s)

) ⋃
(

0 1
1 0

)
(
A, (2, 1)

)

−2 −2 L(3, 1)#(D × S1)
−2 + 1/n D × S1

�= −2, �= −2 + 1/n
(
D, (3, 1), (r+2s, s)

)

−1 −3 RP3#(D × S1)
−3 + 1/n D × S1

�= −3, �= −3 + 1/n
(
D, (2, 1), (r+3s, s)

)

0 ∈ Z
(
D, (2, 1), (3, 1)

)

�∈ Z
(
D, (2, 1), (3, 1)

) ⋃
(

1 1
−1 0

)
(
A, (s, r)

)

1 1
(
Y × S1

)/
(

0 1
1 0

)

−3/2 −5/2
(
D, (2, 1), (3, 1)

) ⋃
(

1 1
−1 0

)
(
A, (2, 1)

)

−4 −1/2
(
D, (2, 1), (3, 1)

) ⋃
(

1 1
−1 0

)
(
A, (2, 1)

)

• (p/q, r/s) ∈ {(1, 1), (−4,−1/2), (−3/2,−5/2)}, in which case M is as
described in table 3;

• (p/q, r/s, t/u) is one of the 14 triples listed in table 4, together with a
description of the corresponding M .
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Table 2: Classification of closed non-hyperbolic fillings of N (Part 1).

p/q r/s t/u M

−3 1 or −5/3 r/s (K, 1)

−1 Any RP3#L(t+3u, u)

−2 Any L(5t+7u, 2t+3u)

−1 + 1/n −1 + 1/m L((2n+1)(2m+1)−4, (2n+1)m−2)

�= −2 �= −1, �= −1 + 1/m
(
S2, (2, 1), (2n+1, −2), (t+u, u)

)

−3 �= −1, �= −1 + 1/m
(
RP2, (2, 1), (t+u, u)

)

�= −1, �= −3
�= −1 + 1/n

�= −1, �= −3
�= −1 + 1/m
�= r/s if r/s

∈ {1,−5/3}

(
D, (2, 1), (r+s, s)

) ⋃(
0 1
1 0

)
(
D, (2, 1), (t+u, u)

)

−2 −2 Any L(3, 1)#L(t+2u, u)

−2 + 1/n Any L(3n(t+2u)−2t−u, n(t+2u)−t−u)

�= −2
�= −2 + 1/n

�= −2
�= −2 + 1/m

(
S2, (3, 2), (r+2s, −s), (t+2u, −u)

)

−1 −3 Any RP3#L(t+3u, u)

−3 + 1/n Any L(2n(t+3u)−t−u, n(t+3u)+u)

�= −3
�= −3 + 1/n

�= −3
�= −3 + 1/m

(
S2, (2, 1), (r+3s, −s), (t+3u, −u)

)

0 n −4 − n RP3#L(3, 1)

−4 − n + 1/m L(6m−1, 2m−1)

�= −4 − n

�= −4 − n + 1/m

(
S2, (2, −1), (3, 1), (t+(n+4)u, u)

)

1/2 + n −9/2 − n
(
RP2, (2, 1), (3, 1),−1

)

�∈ Z
�∈ Z

�= −r/s − 4 if |s| = 2

(
D, (s, r+2s), (u, t+2u)

) ⋃(
0 1

−1 −1

)
(
D, (2, 1), (3, 1)

)
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Table 3: Classification of closed non-hyperbolic fillings of N (Part 2).

p/q r/s t/u M

1 1 n T(
n + 1 1
−1 0

)

�∈ Z
(
A, (u, t+u)

)/
(

0 1
1 0

)

−3/2 −5/2 −2 RP3

−1 L(13, 5)

0
(
RP2, (2, 1), (3, 1),−1

)

−2 + 1/n

�= −1

(
S2, (2, 1), (3, −1), (2n−1, 2)

)

�= 0
�= −2

�= −2 + 1/n

(
D, (2, 1), (3, 1)

) ⋃(
1 1
0 −1

)
(
D, (2, 1), (t+2u, u)

)

−4 −1/2 −1 L(11, 3)

−1/2
(
RP2, (2, 1), (3, 1),−1

)

0 L(13, 5)
n

�= −1
�= 0

(
S2, (2, 1), (3, −1), (2n+1, 2)

)

�∈ Z ∪ {−1/2}

(
D, (2, 1), (3, 1)

) ⋃(
1 1
1 0

)
(
D, (2, 1), (u, t)

)

The next remark is important to understand the statement of Theo-
rem 1.3.

Remark 1.4. We have compiled tables 2–4 trying to keep them concise
but easily usable. In particular,

• we have always excluded the case where one of the filling coefficients
is ∞ because the first point of Theorem 1.3 is already sufficient in this
case to determine which lens space the result is;

• whenever a certain value p/q ∈ {−3,−2,−1, 0} is chosen, the corre-
sponding set of lines in table 2 contains a complete classification of
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Table 4: Classification of closed non-hyperbolic fillings of N (Part 3).

p/q r/s t/u M

−5 −5 −1/2
(
A, (2, 1)

)/
(

0 1
1 0

)

−4 −4 −2/3
(
A, (2, 1)

)/
(

1 1
1 0

)

−4 −3/2 −3/2 T(
−3 1
−1 0

)

−4 −1/3 1
(
D, (2, 1), (2, 1)

) ⋃
(

0 1
−1 −1

)
(
D, (2, 1), (3, 1)

)

−8/3 −3/2 −3/2
(
D, (2, 1), (2, 1)

) ⋃
(

0 1
−1 −1

)
(
D, (2, 1), (3, 1)

)

−5/2 −5/2 −4/3
(
A, (2, 1)

)/
(

2 1
1 0

)

−5/2 −5/3 −5/3
(
D, (2, 1), (2, 1)

) ⋃
(

−1 1
0 −1

)
(
D, (2, 1), (3, 1)

)

−7/3 −7/3 −3/2
(
A, (2, 1)

)/
(

1 1
1 0

)

1 2 2
(
S2, (2, 1), (3, 1), (7, 1),−1

)

1 2 3
(
S2, (2, 1), (4, 1), (5, 1),−1

)

1 2 4
(
S2, (3, 1), (3, 1), (4, 1),−1

)

1 2 5
(
D, (2, 1), (2, 1)

) ⋃
(

0 1
1 0

)
(
D, (2, 1), (3, 1)

)

1 3 3
(
D, (2, 1), (2, 1)

) ⋃
(

1 2
0 −1

)
(
D, (2, 1), (3, 1)

)

2 2 2
(
D, (2, 1), (2, 1)

) ⋃
(

2 3
−1 −2

)
(
D, (2, 1), (3, 1)

)

the resulting M , but one may have to permute r/s and t/u to get the
result;

• the tables always provide the decomposition of M into prime con-
nected summands and the JSJ decomposition of these summands,
except when a connected sum involves a lens space and the param-
eters are such that the lens space is S3;

• the triples listed in table 4 do not appear in tables 2 and 3;



Dehn filling 979

• there is some overlapping between the cases covered in tables 2 and 3.
The recognition of M is of course coherent (note for instance that
N(1, 1, n) = T(

n + 1 1
−1 0

) is also a Seifert manifold for n ∈ {−3,−2,−1, 0},

see Lemma 2.1);

• in table 3, the elements of each triple are arranged in increasing order,
and the triples themselves are arranged in a lexicographically increas-
ing order.

Sketch of the proofs. The proof of Theorems 1.1–1.3 goes as follows:
we first prove Theorem 1.1 using spines. Actually, we prove a more refined
version of it, in which we determine the image in N(α) of the bases of the
non-filled boundary tori. Using spines, we also recognize N(1, 1), N(2, 2, 2)
and N(1, 3, 3). We then use Proposition 1.5 (discussed in Section 2) to
recognize all the other fillings listed in tables 1–4. Next, we use the Gromov–
Thurston 2π-theorem to show that if M is a filling of N , but not one of those
already recognized to be non-hyperbolic, then M admits a complete metric
with negative sectional curvature. An application of the orbifold theorem [5]
then implies that M is actually hyperbolic. This is because our chain-link
complement N admits an orientation-preserving order-2 involution, given by
a rotation of angle π around a horizontal circle in figure 1. Its effect on the
homology of each cusp is given by multiplication by −1, and therefore, the
involution extends to every Dehn filling of N . The orbifold theorem then
guarantees that each filling of N satisfies the geometrization conjecture.

Proposition 1.5. N(−3/2) = N(−4) and the following holds for all
α, β ∈ Q ∪ {∞}:

N

(
−3

2
, α, β

)
= N

(
−4,−α + 1

α + 2
,−β − 3

)
(1.1)

N

(
−5

2
, α, β

)
= N

(
−5

2
,−α + 3

α + 2
,−2β + 3

β + 1

)
(1.2)

N

(
−3

2
, α, β

)
= N

(
−3

2
,−2α + 5

α + 2
,−2β + 5

β + 2

)
(1.3)

N

(
−1

2
, α, β

)
= N

(
−1

2
,−α − 4,−β − 4

)
(1.4)

N (1, 2, α) = N (1, 2,−α + 2)(1.5)

N (1,−4, α) = N

(
1,−4,

1
α

)
.(1.6)
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Relations (1.2)–(1.6) are induced by automorphisms of N(−5/2), N(−3/2),
N(−1/2), N(1, 2) and N(1,−4), respectively. Moreover (1.2) has order 3,
while (1.3)–(1.6) have order 2.

The manifolds in Proposition 1.5 are not oriented. In fact, as shown
below in table 5, N(−4) = N(−3/2) via an orientation-reversing homeo-
morphism.

We note that N and the manifolds involved in Proposition 1.5 are well-
known hyperbolic ones. The manifold N is called the “magic” one in [17]
and listed as M63

1 in [6].
Some important fillings of N are link complements in the 3-sphere:

N(−4) = N(−3/2) of the Whitehead sister link, N(−5/2) of the Berge link,
N(−1/2) of the 3/10-bridge link and N(1) of the Whitehead link. In addi-
tion, N(1, 2) is the figure-8 knot complement and N(1,−4) is the figure-8
knot sister; see the Appendix for more details on these manifolds and their
fillings. We show the slopes involved in these fillings in figure 2, where we
arrange them on ∂H2 = Q ∪ {∞} using the disc model of H2, and we con-
nect by lines slopes having distance 1, thus showing a partial picture of the
so-called Farey tessellation.

Each of the equalities (1.1)–(1.6) is realized by an isometry of some of
these manifolds. The isometry is orientation-preserving in (1.2) and (1.3),
and reversing in all other cases.

1.2. Some consequences

We illustrate here some facts that can be deduced from our main statements.

Seifert fillings. We begin by proving Theorem 0.1 as a consequence of
the following:

Figure 2: Important fillings of N .
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Proposition 1.6. For every integer k �= 0, among the manifolds of the
form N (1 + (1/h), (kh + 1)/(k(h + 1) + 1)), with h ∈ Z, there are infinitely
many distinct hyperbolic ones whose exceptional slopes are precisely ∞,−3,
−2,−1, 0. Moreover,

• the ∞-filling is S3;

• the (−3)-filling and the 0-filling are toroidal;

• the (−2)-filling and the (−1)-filling are small Seifert manifolds with
first homology, respectively, Z/(k+3)Z and Z/(k+2)Z.

Proof. A manifold M as described is hyperbolic by Theorem 1.2, except for
finitely many values of h. Moreover as h goes to ∞, the volume of M tends
to the volume of N from below, so there are infinitely many different M ’s.
For the other assertions, setting r/s = (h + 1)/h and t/u = (kh + 1)/(k(h +
1) + 1), we have

tr − us = det
(

r u
s t

)
= det

(
h + 1 1 + k(h + 1)

h 1 + kh

)
= det

(
h + 1 1

h 1

)
= 1,

which implies (by the first assertion of Theorem 1.3) that M(∞) = S3. As
h tends to ∞ (while k stays fixed), both r/s and t/u tend to 1, and it easily
follows from table 2 that only finitely many values of h can yield manifolds of
non-generic type for M(−3), M(−2), M(−1) and M(0). Then, for infinitely
many h’s, the topology of the fillings is as required. We are left to prove the
assertion concerning homology.

It is easy to see that the number ν = |q1p2p3 + q2p3p1 + q3p1p2| equals
the cardinality of H1

(
S2, (p1, q1), (p2, q2), (p3, q3)

)
except when ν = 0, in

which case the group is infinite. When the Seifert manifold is obtained from
surgery on a knot in S3, its first homology group must be Z/νZ. Therefore,

H1
(
M(−2)

)
= H1

(
S2, (3, 2), (r + 2s,−s), (t + 2u, −u)

)

= Z/(2(r+2s)(t+2u)−3s(t+2u)−3u(r+2s))Z

= Z/(2rt+ru+st−4su)Z = Z/((r−s)(u−t)+3(rt−su))Z = Z/(k+3)Z

and similarly H1
(
M(−1)

)
= Z/(k+2)Z. �

Proof of Theorem 0.1. Fix n, assume first n �= −4 and apply Proposition 1.6
with k = −n − 4. Each of the manifolds given by the proposition is the
complement of a knot having four consecutive integer exceptional slopes,
say a, a + 1, a + 2, a + 3. Since the first homology of a b-surgery on a knot
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is Z/bZ, we deduce that

Z/(a+1)Z = Z/(k+3)Z, Z/(a+2)Z = Z/(k+2)Z.

Now k + 3 = −(n + 1) and k + 2 = −(n + 2), whence a + 1 = ±(n + 1) and
a + 2 = ±(n + 2), whose only solution is a = n. This implies that we have
infinitely many knots with exceptional slopes n, n + 1, n + 2, n + 3 as
required. For n = −4, it is sufficient to take the knots for n = 1 and consider
their mirror images. �

Knots with homeomorphic complements. We discuss here Theorems
0.2 and 0.3. As usual, we translate them into a statement about Dehn fill-
ings: two inequivalent knots in M having the same M ′ as their complement
correspond to inequivalent slopes in ∂M ′ both giving M via Dehn filling.
Two slopes are equivalent if there is an automorphism of M ′ sending one to
the other.

We also recall some other definitions from [4]. Two slopes α and β such
that M ′(α) is homeomorphic to M ′(β) are called cosmetic. Taking on M ′(α)
and M ′(β) an orientation that extends one and the same orientation of M ′,
we say that α and β are truly cosmetic if there is an orientation-preserving
homeomorphism from M ′(α) to M ′(β) and reflectively cosmetic if there is
an orientation-reversing one (both possibilities can hold).

The only known one-cusped hyperbolic M with a pair of inequivalent
cosmetic slopes was found in [4], and it is M = N(−5/2,−2/5) which admits
the cosmetic pair of slopes −2,−1 giving L(49, 18), as one sees from table 2
or A.7 in the Appendix. The two slopes are not truly cosmetic. In fact, it
is conjectured [4, 19] that inequivalent slopes on a one-cusped M are never
truly cosmetic.

Cosmetic phenomena seem to be more frequent on manifolds with more
cusps. All the two-cusped M ’s with distinct slopes α, β on a torus T ⊂ ∂M
such that M(α) = M(β) is a solid torus are described by Berge and Gabai
in [2, 13]. Infinitely, many such pairs of slopes are inequivalent. This also
follows from the next result, proved in Section A.1 of the Appendix, which
implies Theorems 0.2 and 0.3 too.
Theorem 1.7. Let M be N or a hyperbolic N(γ), and let α, β be a cosmetic
pair of inequivalent slopes on M . Then M, α, β are as in table 5.

Using SnapPea, one sees that the two cosmetic knots in the Whitehead
sister link complement corresponding to the first line of table 5 are the two
shortest geodesics, with lengths 0.96242 . . . and 1.06128 . . ..
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Table 5: Cosmetic slopes on N and N(γ).

M α β M(α) Truly Reflectively

N −4 −3/2 Whitehead sister No Yes
N(−3 + 1/n)
n ∈ Z \ {0,±1, 2} ∞ −1 D × S1 Yes Yes

N(−2 + 1/n)
n ∈ Z \ {0,±1,±2} ∞ −2 D × S1 Yes Yes

N(−12/5) −2 −1
(
D, (2, 1), (3, 1)

)
Yes No

N(−6) −1 0
(
D, (2, 1), (3, 1)

)
No Yes

N(−4/3) −3 −1
(
D, (2, 1), (5, 2)

)
No Yes

Non-hyperbolic closed fillings. The following result is easily proved as
a consequence of Theorem 1.3 and Lemma 2.1.

Corollary 1.8. The set of all non-hyperbolic closed manifolds obtained by
Dehn surgery on the chain link consists of:

• S3, S2 × S1, L(p, q),

• RP3#L(p, q), L(3, 1)#L(p, q), RP3#(S2 × S1), L(3, 1)#(S2 × S1),

•
(
S2, (2, 1), (p, q), (r, s), b

)
,
(
S2, (3, 1), (p, q), (r, s), b

)
,
(
RP2, (2, 1), (p, q), b

)
,

•
(
D, (2, 1), (p, q)

) ⋃
X

(
D, (2, 1), (r, s)

)
,

•
(
D, (2, 1), (3, 1)

) ⋃(
1 1
n n ± 1

) (
D, (p, q), (r, s)

)
,

• T(
n 1

−1 0

),

•
(
A, (p, q)

)
/X′,

•
(
D, (2, 1), (2, 1)

) ⋃(
1 2
0 −1

) (
D, (2, 1), (3, 1)

)
,

•
(
D, (2, 1), (2, 1)

) ⋃(
2 3

−1 −2

) (
D, (2, 1), (3, 1)

)
,

where (p, q) and (r, s) are any coprime pairs with p > q > 0 and r > s > 0,
b, n are any integers and X, X ′ ∈ GL2(Z) are any matrices whose top-right
entry equals ±1, with det(X ′) = −1.

Concerning this corollary, note that the top-right entry of a matrix X or
Y as in the statement is the geometric intersection number of the fibres of the



984 Bruno Martelli and Carlo Petronio

Seifert fibrations that are glued together. The only graph manifolds of the
list for which this intersection number is not ±1 are N(2, 2, 2) and N(1, 3, 3).
We also note that not all the manifolds listed can be obtained as fillings of a
hyperbolic one-cusped N(α, β). For instance, the only reducible manifolds
thus obtained are S2 × S1 (with α = 1/β and α, β ∈ Q \ {−3,−2,−1, 1})
and RP3#L(3, 1) (with α = n, β = −4 − n and n ∈ Z \ {−4,−3,−2,−1, 0}).

Chirality. The following result confirms the experimental fact [6] that
amphicheiral manifolds are quite sporadic, at least among those with small
volume.

Proposition 2.9. The only amphicheiral hyperbolic manifolds with bound-
ary obtained as fillings of N are N(−1/2), N(1, 2) and N(1,−4).

The three manifolds are the figure-8 knot complement, its sister and
the 3/10-bridge link complement, see figure 2. The proof is contained in
Section A.1 of the Appendix.

2. Proofs of the main results

We give here a unified proof of Theorems 1.1–1.3. As already mentioned,
the ingredients we use are Proposition 1.5, a certain refined version of
Theorem 1.1 (proved below as Proposition 2.2) and then an elaborate argu-
ment which uses the Gromov–Thurston 2π-theorem and SnapPea for a finite
enumeration.

Hyperbolic fillings with symmetries. One can see using SnapPea (and
check by hand) that the partial Dehn fillings

N

(
−3
2

)
N(−4) N

(
−5
2

)
N

(
−1
2

)
N(1, 2) N(1,−4)

are all hyperbolic, that the first two of them are isometric to each other and
that in all cases, the symmetry group contains a non-trivial cyclic subgroup
that leaves invariant each boundary component. Using the precise form
of these non-trivial isometries and their action on the homology bases on
the boundary, one can with some patience deduce the identities of Proposi-
tion 1.5.

Identities between graph manifolds. We slightly relax in this section
our notation

(
F, (p1, q1), . . . , (pk, qk), b

)
for Seifert manifolds, allowing also
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|pi| � 1, which can lead to lens spaces or to connected sums of lens spaces
and/or Seifert manifolds. We will always use the conventions of Section 1
on homology bases to encode gluings. The following lemma, which collects
well-known [10] or easy properties of graph manifolds, is repeatedly (and
often tacitly) used below.

Lemma 2.1. Suppose F is a surface, (i, j) and (in, jn) are coprime pairs,
k ∈ Z, X is any graph manifold and

(
a b
c d

)
∈ GL2(Z). Let (i′, j′) be such that

ij′ − ji′ = ±1 and, when ∂F �= ∅, denote by F ′ the surface obtained from F
by capping off one boundary circle. Then the following equalities hold:

Seifert manifolds

(F, (i1, j1), . . . , (in, jn)) = (F, (i1,−j1), . . . , (in,−jn))(2.1)
(
F, (i1, j1), (i1, j2), . . .

)
=

(
F, (i1, j1 + ki1), (i2, j2 − ki2), . . .

)
(2.2)

(
F, (i1, j1), (i2, j2), . . .

)
=

(
F, (i1, j1 + ki1), (i2, j2), . . .

)
if ∂F �= ∅(2.3)

(
S2, (i, j), (i1, j1)

)
= L(i1j + j1i, i1j′ + j1i′)(2.4)

(
F, (1, k), (i, j), . . .

)
=

(
F, (i, j + ki), . . .

)
(2.5)

Graph manifolds
(
F, (i, j), . . .

) ⋃
(

a b
c d

) X =
(
F, (i, j+ki), . . .

) ⋃
(

a + kb b
c + kd d

) X(2.6)

X
⋃

(
a b
c d

)
(
F, (i, j), . . .

)
= X

⋃
(

a b
c − ka d − kb

)
(
F, (i, j+ki), . . .

)
(2.7)

(
D, (i, j)

) ⋃
(

a b
c d

)
(
F, . . .

)
=

(
F ′, (ai−bj, ci−dj), . . .

)
(2.8)

Double fibrations
(
D, (2, 1), (2, 1)

) ⋃
(

a b
c d

) X = (B ×∼S1)
⋃

(
b b − a
d d − c

) X(2.9)

X
⋃

(
a b
c d

)
(
D, (2, 1), (2, 1)

)
= X

⋃
(

a + c b + d
−a −b

) B ×∼S1(2.10)

Reducible manifolds
(
S2, (i1, j1), (i2, j2), (0, 1)

)
= L(i1, j1)#L(i2, j2)(2.11)

(
D, (0, 1), (i, j)

) ⋃
(

a b
c d

)
(
F, . . .

)
= L(i, j)#

(
F ′, (b, d), . . .

)
(2.12)
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Torus bundles

(
A × S1)/(

a b
c d

) = T(
−a −b
c d

)(2.13)

(
S2, (2, 1), (3, 1), (6, 1),−1

)
= T(

1 1
−1 0

)(2.14)
(
S2, (2, 1), (4, 1), (4, 1),−1

)
= T(

0 1
−1 0

)(2.15)
(
S2, (3, 1), (3, 1), (3, 1),−1

)
= T(

−1 1
−1 0

)(2.16)
(
K, 1

)
= T(

−2 1
−1 0

).(2.17)

The homeomorphisms proving these equalities respect the homology bases
on the boundary, except in formulae (2.1) and (2.3). Relations (2.6) and
(2.7) are also valid if

(
a b
c d

)
is used to glue together two boundary components

of the same Seifert block
(
F, (i, j), . . .

)
.

Basic recognition result. Recall that we are always denoting by N the
complement of the chain link with three components. We now establish the
following:

Proposition 2.2. The following homeomorphisms hold:

N

(
∞,

r

s
,
t

u

)
=

(
S2, (r, s), (−u, t)

)
(2.18)

N

(
−3,

r

s
,
t

u

)
=

(
D, (2, 1), (r+s, s)

) ⋃
(

0 1
1 0

)
(
D, (2, 1), (t+u, u)

)
(2.19)

N

(
−2,

r

s
,
t

u

)
=

(
S2, (3, 2), (r+2s, −s), (t+2u, −u)

)
(2.20)

N

(
−1,

r

s
,
t

u

)
=

(
S2, (2, 1), (r+3s, −s), (t+3u, −u)

)
(2.21)

N

(
0,

r

s
,
t

u

)
=

(
D, (s, r+2s), (u, t+2u)

) ⋃
(

0 1
−1 −1

)
(
D, (2, 1), (3, 1)

)
(2.22)

N

(
1, 1,

t

u

)
=

(
A, (u, t+u)

)/
(

0 1
1 0

)(2.23)
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N (1, 3, 3) =
(
D, (2, 1), (2, 1)

) ⋃
(

1 2
0 −1

)
(
D, (2, 1), (3, 1)

)
(2.24)

N (2, 2, 2) =
(
D, (2, 1), (2, 1)

) ⋃
(

2 3
−1 −2

)
(
D, (2, 1), (3, 1)

)
.(2.25)

Equalities (2.18) to (2.23) also hold for partial fillings: if a symbol r/s or
t/u is missing on the left-hand side (so the relative cusp is not filled), an
open neighborhood of the corresponding fibre on the right-hand side should
be removed.

Proof. The first equality is easy: doing ∞-surgery on a component of a link
means cancelling this component. So N(∞) is the complement of the Hopf
link, which is homeomorphic to T × I, and it is easy to see that the actual
homeomorphism leads to relation (2.18).

The other equalities are proved using spines. Recall that a spine of a
PL manifold M with boundary is a subpolyhedron onto which M collapses.
Moreover, if M is cusped, the two-skeleton of the cellularization dual to
an ideal triangulation of M is always a spine P of M . The singular (non-
surface) points of P give a 4-valent graph S(P ) such that P \ S(P ) consists
of discs (called the faces of P ). A spine of this sort is called standard, and
it is known to determine M . Moreover, P itself can be reconstructed by a
neighbourhood of S(P ) in P , which we draw as in figure 3(A): see [23] for
more details. Below, we will employ also many non-standard spines.

The usual triangulation technique for complements of alternating links
shows that our chain-link complement N is obtained by pairing the faces of
two triangular prisms. Subdividing the prism and dualizing we see that N

Figure 3: A neighbourhood of S(P ) and a neighbourhood of Fi (edges with
the same label are identified).
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has a standard spine with six vertices. One can actually show that six is
the minimal number of vertices for a spine of N and that there are several
spines with six vertices, related to the original one by the moves of the
Matveev-Piergallini calculus. One such spine, denoted by P and shown in
figure 3, is particularly suitable for the recognition of fillings. We could
give a constructive proof of the fact that P is a spine of N , but we confine
ourselves to a quick indirect proof. �

Lemma 2.3. Let P be the standard polyhedron with a neighbourhood of
S(P ) as in figure 3(A). Then,

1) P is a spine of N ;

2) P has two faces F1 and F2 such that Fi is a torus parallel to a com-
ponent Ti of ∂N , and the rest of P is attached to Fi along a θ-shaped
graph as shown in figure 3(B); the attachment takes place on the side
of Fi opposite to the parallelism with Ti;

3) There are four other faces in P ; a hexagon E and a decagon C, each
incident to both Fi’s along an edge, and two squares Q1 and Q2, with
Qi incident to Fi along an edge.

Proof. Points (2) and (3) are proved by direct inspection. Let M be the
manifold P is a spine of. By point (2), M has at least three boundary
components, and dual to P there is an ideal triangulation of M involving
six tetrahedra. We now claim M is (complete, finite-volume) hyperbolic.
It is sufficient to prove that M = N because N is the unique hyperbolic
manifold with at least three cusps which can be triangulated with at most
six tetrahedra [6].

We prove the claim recalling that Thurston has associated certain hyper-
bolicity equations to each triangulated manifold and that Casson has shown
that a solution of the angle part of the consistency equations is already suffi-
cient to ensure hyperbolicity [20]. In terms of spines, we must assign angles
to the corners of the faces, and we do this as follows: (1) we put π/3 on the
corners of E and on the six corners opposite to those of E; (2) we put π/2
on the corners of the Qi’s and on those opposite to them; (3) we put π/6
on all other corners. One readily sees that angles at opposite corners are
always the same and the sum is 2π on all faces, so we have solved the angle
equations. �

Let us resume the proof of Proposition 2.2.
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Homology bases. We now isotope Fi so that it coincides with Ti ⊂ ∂N
and note that the complement in Ti of the θ-graph ∂Fi is a disc; so ∂Fi con-
tains three unoriented loops giving three slopes on Ti with mutual distance
1. We can therefore choose a basis of H1(Ti) so that ∂Fi contains the slopes
−1, −2 and ∞. More precisely, we arrange so that −1 (respectively, −2 and
∞) is the slope obtained by erasing from ∂Fi the edge which belongs to Qi

(respectively, E and C). We will also say that −1 (respectively, −2 and ∞)
is the slope associated to Qi (respectively, E and C).

We will now proceed using these homology bases, to recognize many
fillings of N , and only later show that these bases are actually (up to sign)
the natural ones. For this reason, we recognize again N(∞) because it is not
obvious at this stage that ∞ represents the same slope it did with respect
to the meridian-longitude basis.

General recognition strategy. Our recognition of N(α) for α ∈ {∞,−3,
− 2,−1, 0} is based on the construction of a spine P (α). We first illustrate
here how to build P (α) for arbitrary α. The same method also gives a spine
of N(α, β), which we will use to recognize N(1, 1), but it does not apply
to the closed fillings N(α, β, γ). To recognize N(1, 3, 3) and N(2, 2, 2), we
construct spines of the punctured manifolds via a slightly different technique
sketched below.

The spine P (α) of N(α) is constructed from P by removing the (open)
hexagon F1, thus getting a θ-shaped “boundary,” and attaching a poly-
hedron Q(α) having θ-shaped boundary too, with a map matching the two
θ’s. More precisely, consider N(α) = N ∪ V , where V is an open solid torus,
glued to N along T1 ⊂ ∂N . Since F1 = T1, then N(α) \ P is the union of
V and two copies of T × (0, 1]. Suppose we have a polyhedron Q(α) ⊂ V so
that (i) Q(α) ∩ ∂V is contained in the θ-shaped graph ∂F1 and (ii) V \ Q(α)
is an open ball. By (i), the complement of P ∪ Q(α) inside N(α) is the
union of two T × (0, 1]’s and one open ball. By (ii), F1 is again an (open)
face of P ∪ Q(α), which separates the ball from one T × (0, 1]. Therefore,
(P ∪ Q(α)) \ F1 is a spine of N(α), which we call P (α).

We explain now how to construct Q(α) for all α (even if we will only be
using the construction for a few α’s). If α ∈ {−2,−1,∞}, then the meridian
of V is isotopic to one of the three loops in ∂F1, and we are in a “degen-
erate” case because Q(α) can be taken to be just a meridinal disc of V , as
in figure 4(A), so P (α) is not standard. If α ∈ {−3,−3/2, 0}, the θ-shaped
graph ∂F1 does not contain the meridian of V , but it intersects the meridian
in two points. We can then take as Q(α) the Möbius triplet shown in fig-
ure 4(B). For all remaining α’s, the θ-shaped graph intersects the meridian
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Figure 4: Two polyhedra in the solid torus (A and B) and a flip (C and D)
realized by adding a vertex (E).

in more than two points. Therefore we change the θ-shaped boundary of
the Möbius triplet via some flips (see figure 4(C and D)) in order to get
a θ-shaped graph which matches ∂F1, each flip adding a vertex to Q(α) as
shown in figure 4(E). (This Q(α) is dual to a layered triangulation.)

The same technique, applied to both F1 and F2, allows to get a spine of
any N(α, β), as we will do below for N(1, 1), while for N(α, β, γ), we will
use a slightly different method.

Recognition of degenerate fillings. As we said, if α ∈ {−2,−1,∞}, we
are in a special case because Q(α) does not contain the whole θ-graph ∂F1,
but only a circle in it. The edge in ∂F1 not contained in Q(α) is therefore
adjacent to a single face Σ in P (α), namely the face (Q1, E or C) of P
associated to α. We can therefore collapse Σ and then further collapse as
much as possible, getting a polyhedron P ′(α) which is still a spine of N(α).
Along the collapse, we kill some vertices of P , so P ′(α) has less than six
vertices and can be easily analysed.

To construct P ′(α), we must first replace by three parallel strands the
portion of figure 3(A) within a dotted rectangle and then remove the attach-
ing circle of the face Σ. If Σ is doubly incident to some edge e, then, after
collapsing Σ, e is again incident to one face Σ′ only, so we can collapse
Σ′ too, and so on. The spine P ′(α) we get here at the end of the process
has a (maybe empty) singular set S(P ′(α)) which again is 4-valent, but
P ′(α) \ S(P ′(α)) may not consist of discs only because some of the original
discs of P have been glued together, maybe producing annuli, Möbius strips
or even more complicated surfaces.

For α = ∞, everything collapses to the torus T2 = F2, as shown in
figure 5, so N(∞) = T × I. For α = −1, it is shown in figure 6(A and B)
how P ′(−1), which has two vertices, can be transformed via an inverse “lune
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Figure 5: The spine P ′(∞) is a torus.

Figure 6: The spine P ′(−1), its modification and the manifold it gives.

move” into a spine without vertices of the same manifold. This spine con-
sists of a torus with a Möbius strip attached, and it is a spine of

(
A, (2, 1)

)
,

since it is the inverse image in the Seifert fibration of
(
A, (2, 1)

)
of the graph

�� � contained in the base annulus, as shown in figure 6(C). Note that the
endpoint of �� � corresponds to the singular fibre.

The spine P ′(−2) is shown in figure 7(A and B). It is made of one
circle, one torus and one annulus having one boundary component on the
torus and the other one turning three times along the circle. This is a spine
of

(
A, (3, 1)

)
since it is the inverse image of the graph �� � in the base

annulus of the fibration, as in figure 7(C).

Next-to-degenerate fillings. If α ∈ {−3,−3/2, 0}, the polyhedron P ′(α)
is constructed by attaching the Möbius triplet to P \ F1 along their θ-shaped
boundaries. Drawing P ′(α) is easy: just replace the portion of figure 3(A)
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Figure 7: The spine P ′(−2), and the manifold it gives.

within a dotted rectangle by three “monotonic” strands. Two of these
strands must cross each other, while the other one must be straight ver-
tical: the straight one is that representing the face associated to the slope
in {−2,−1,∞} which is opposite to α (i.e., the only slope having distance
2 from α).

The polyhedron P ′(−3) is as shown in figure 8(A) because −3 is opposite
to −1, which corresponds to Q1. Since P ′(−3) has one face with two vertices,
we can apply to P ′(−3) a negative lune move, getting a polyhedron which
consists of a torus, a disc and a Möbius strip, as shown in figure 8(B).
Actually, if we remove the Möbius strip, we get a torus and another Möbius
strip, as for α = −1, whence a spine of

(
A, (2, 1)

)
. The boundary loop of the

removed Möbius strip intersects the fibre of
(
A, (2, 1)

)
at one point, and so

it contributes with a
(
D, (2, 1)

)
, with a vertical strip of

(
D, (2, 1)

)
glued to

a horizontal strip of
(
A, (2, 1)

)
, as suggested by figure 8(C). The result is

N(−3) =
(
A, (2, 1)

) ⋃
(

0 1
1 0

)
(
A, (2, 1)

)
.

Figure 8: The spine P ′(−3), its modification and the manifold it gives.
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Figure 9: The spine P ′(0), its modification and the manifold it gives.

The polyhedron P ′(0) is shown in figure 9(A) and (B) (top), where
each boundary arc should be glued to some other one. We do not show
all the gluings, but we note that the left is identified “straight across”
with the on the right. The union of the two squares U and V gives an
annulus in P ′(0). We can now modify P ′(0) as suggested in figure 9(B),
i.e., we imagine U ∪ V to be made of two annular films glued together, and
we blow air between the films from the front of the figure. The effect of
this move on left and right boundary graphs is given by → . Using
the exact identifications, one sees that the new spine R, which has two
vertices, consists of one annulus and two discs. By removing the annulus,
we get a polyhedron Q without vertices, with S(Q) = S1, and Q \ S(Q)
consisting of one Möbius strip whose boundary turns three times along the
circle S(Q). This is a spine of

(
D, (2, 1), (3, 1)

)
, since it is the inverse image of

a segment connecting the two singular points in the base disc, as suggested
by figure 9(C). The annulus R \ Q we have removed will contribute with
a D × S1 with two “vertical” (i.e., fibrewise) strips on ∂(D × S1) glued to
∂
(
D, (2, 1), (3, 1)

)
. To analyse the gluing, we must find which curves on

∂
(
D, (2, 1), (3, 1)

)
project in Q to the boundary curves γ0, γ1 of the annulus

R \ Q. Now γ0 and γ1 appear in the unfolded version of Q as in figure 9(C),
and it is easy to see that a curve on ∂

(
D, (2, 1), (3, 1)

)
projecting in Q to γi

must intersect the fibre once, and so it has slope 1/k for some k ∈ Z with
respect to the natural homology basis. We deduce that

N(0) =
(
Y × S1) ⋃

(
0 1

−1 k

)
(
D, (2, 1), (3, 1)

)
.

Note that we cannot modify k by changing bases because there is no free
boundary component on the right block. A more detailed analysis of R
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Figure 10: The spine P (1, 1) and its modification.

would allow to compute the exact value of k, but we will compute it later
by an easier indirect argument.

Double filling. Note that so far we have not used the flip of figure 4(C–
E), but we do use it now to get a spine P (1, 1) for N(1, 1). A neighbourhood
of the singular set of P (1, 1) is obtained from figure 3(A) by removing both
the portions within the dotted boxes and replacing them by a “curl,” as
shown in figure 10(A). The curl arises because the flip adds a vertex to the
spine. Figure 10(B and C) shows how to transform P (1, 1) into another
spine Q of N(1, 1) having only one vertex and two faces (a disc and an
annulus). The closure of the disc is a surface, which is easily seen to be
a torus. Therefore, Q is a torus with an annulus glued to it, and the two
boundary circles of the annulus intersect at one point on the torus (giving
the single vertex of Q). This implies that N(1, 1) =

(
Y × S1

)/
(

0 1
1 0

) .

Recognition of N(1, 3, 3) and N(2, 2, 2). To get a spine for N(α, β, γ),
the above method based on the spine P of N does not work. We use instead
a polyhedron P̃ ⊂ N which is a spine of N minus a ball (not of N) and
has three hexagonal faces F̃1, F̃2, F̃3 appearing in P̃ as F1 and F2 appear
in P . Now the construction leading from P to P (α) can be repeated for
all the F̃i’s and gives a spine P̃ (α, β, γ) of N(α, β, γ). The polyhedron
P̃ is more complicated than P , and it is shown in [21] as a “skeleton”
of the “brick” B9. Since P̃ has nine vertices, P̃ (1, 3, 3) has 9 + 1 + 3 +
3 = 16, while P̃ (2, 2, 2) has 9 + 2 + 2 + 2 = 13. Recognizing N(1, 3, 3) and
N(2, 2, 2) therefore requires several steps, which we have decided to omit
here.
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Naturality of bases. To show that the homology bases used so far in the
proof are (up to sign) the meridian-longitude bases, we state the following:

Lemma 2.4. With respect to the natural homology bases on ∂N , the slopes
α such that N(α) is non-hyperbolic are ∞,−3,−2,−1, 0.

This result can (and will) be proved very easily, using SnapPea for a
finite enumeration and the Gromov–Thurston 2π-theorem. Since these tools
are part of a more elaborate argument that we use to conclude the proof
of Theorems 1.1–1.3, we defer the proof of Lemma 2.4 to that argument,
presented at the end of the paper.

Back to naturality, let h : Q ∪ {∞} → Q ∪ {∞} be the map which
describes how the slopes change under the change of basis. Lemma 2.4
implies that h sends the set {∞,−3,−2,−1, 0} to itself. Therefore, it fixes
∞, and it maps t/u either to t/u or to −3 − t/u. The above recognition of
N(0) and N(−3), with coefficients with respect to the basis coming from
the spine P , easily implies that N(0) contains an incompressible annulus
connecting two distinct boundary components, while N(−3) does not. It
is now easy to see that, with respect to the meridian-longitude basis, N(0)
does contain such an annulus: a spanning disc of a component C of the
chain link of figure 1 gives a pair of pants P in N and, if we 0-fill C, the
union of P and a filling disc gives the desired annulus. Therefore h(0) = 0,
and h is the identity, as required.

Conclusion for the slopes −1 and −2. We will now deduce relations
(2.19)–(2.23) from (2.18) and the topological information on the fillings of
N just discovered. We start by proving (2.21). Since N(−1) =

(
A, (2, 1)

)
,

using the fact that the boundary components of N(−1) are symmetric, we
deduce that there exists

(
m n
p q

)
∈ GL2(Z) such that

N

(
−1,

r

s
,
t

u

)
=

(
S2, (2, 1), (mr + ns, pr + qs), (mt + nu, pt + qu)

)
.

Without loss of generality, we can also assume m � 0. Since N(−1,∞,∞)
equals

(
S2, (1, 0), (1, 1)

)
= S3, we have

(
S2, (2, 1), (m, p), (m, p)

)
= S3, which

implies that m = 1 and p = 0.
Now recall that among Seifert fibrations over S2 with at most three sin-

gular fibres, only three contain non-separating tori, namely those described
in (2.14)–(2.16). We have shown that N(1, 1) contains a non-separating
torus, so N(−1, 1, 1) =

(
S2, (2, 1), (1+n, q), (1+n, q)

)
also does, therefore it

must be (up to orientation) one of the three manifolds just mentioned. We
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easily deduce that either 1 + n = 4 and q = −1, whence relation (2.21), or
1 + n = −4 and q = 1. The latter possibility is however absurd because it
would imply that N(−1,−2) is

(
D, (2, 1), (7, −1)

)
, but we know that N(−2) =(

A, (3, 1)
)
.

Relation (2.20) is proved in the same way. We first note that

N

(
−2,

r

s
,
t

u

)
=

(
S2, (3, 2), (mr+ns, pr+qs), (mt+nu, pt+qu)

)
.

Using the identity N(−2,∞,∞) = S3, we then get m = 1 and p = 0. More-
over, N(−2, 1, 1) contains a non-separating torus, so 1 + n = 3 and q = −1.

Conclusion for the slope −3. Concerning (2.19), we have

N

(
−3,

r

s
,
t

u

)
=

(
D, (2, 1), (mr+ns, pr+qs)

) ⋃
(

0 1
1 0

)
(
D, (2, 1), (mt+nu, pt+qu)

)

for some
(

m n
p q

)
∈ GL2(Z) with m � 0. We first note that by reversing orien-

tations, we get two blocks of type
(
D, (2, −1), (mr+ns, −pr−qs)

)
=

(
D, (2, 1), (mr+ns, −(m+p)r−(n+q)s)

)
,

glued along the same
(

0 1
1 0

)
. Since det

(
m n

−(m + p) −(n + q)

)
= − det

(
m n
p q

)
, we can

suppose det
(

m n
p q

)
= 1. Now, we know that

L(3, 1) = N(−3,∞,∞) =
(
D, (2, 1), (m, p)

) ⋃
(

0 1
1 0

)
(
D, (2, 1), (m, p)

)
.

An obviously necessary condition for this to hold is that m = 1. In
addition,

(
D, (2, 1+2p)

) ⋃
(

0 1
1 0

)
(
D, (2, 1+2p)

)
=

(
S2, (2, 1+2p), (−1−2p, 2)

)
= L

(
4 − (1 + 2p)2, p(1 + 2p) − 2

)
must be equal to L(3, 1), whence 4 − (1 +

2p)2 = ±3. This implies that p ∈ {0,−1}.
Now we use the fact that N(−3,−2) and N(−3,−1), being single fillings

of
(
A, (2, 1)

)
and

(
A, (3, 1)

)
, respectively, are either reducible or atoroidal.

However,

N(−3,−2) =
(
D, (2, 1), (2−n, 2p−q)

) ⋃
(

0 1
1 0

)
(
A, (2, 1)

)

N(−3,−1) =
(
D, (2, 1), (1−n, p−q)

) ⋃
(

0 1
1 0

)
(
A, (2, 1)

)
,
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so in both these expressions the block on the right-hand side must be either
reducible or a solid torus. This implies that |2 − n| � 1 and |1 − n| � 1,
whence n ∈ {1, 2}.

To conclude, we examine N(−3, 1, 1) and note that it can be expressed
both as

(
A, (a, b)

)/
(

0 1
1 0

) , for suitable a and b, and as

(
D, (2, 1), (1+n, p+q)

) ⋃
(

0 1
1 0

)
(
D, (2, 1), (1+n, p+q)

)
.

Uniqueness of the JSJ decomposition implies that one block of this expres-
sion, and hence also the other one, must have a non-unique fibration. So
n = 1, in which case

(
D, (2, 1), (2, 1)

)
can be fibred also as B ×∼S1. In addi-

tion, the alternative fibration of one block must be matched to either the
original or the alternative fibration of the other block. Using relations (2.6),
(2.9), and (2.10), one sees that this can only happen for (p, q) = (0, 1) and
(p, q) = (−1,−2), but det

(
1 1
p q

)
= 1, so (p, q) = (0, 1), as required. Even if not

necessary, note that we have shown the equality N(−3, 1, 1) = (K, 1), which
is coherent with (2.17) and (2.23).

Conclusion for the slope 0. Concerning (2.22), we have

N

(
0,

r

s
,
t

u

)
=

(
D, (mr+ns, pr+qs), (mt+nu, pt+qu)

) ⋃
(

0 1
−1 k

)
(
D, (2, 1), (3, 1)

)

for some
(

m n
p q

)
∈ GL2(Z) with p � 0 and some k ∈ Z. Since S2 × S1 =

N(0,∞,∞) =
(
D, (m, p), (m, p)

) ⋃
(

0 1
−1 k

)
(
D, (2, 1), (3, 1)

)
, we have m = 0,

p = 1 and
S2 × S1 = (S2 × S1)#

(
S2, (2, 1), (3, 1), (1, k)

)
.

Therefore,
(
S2, (2, 1+2k), (3, 1)

)
= S3, which implies that 5 + 6k = ±1, hence

k = −1.
Having shown that p = 1, we have n = ±1. We prove by contradiction

that n = 1. Assuming n = −1, we get

N

(
0,−2,

t

u

)
=

(
D, (1, 2−q), (−u, t+qu)

) ⋃
(

0 1
−1 −1

)
(
D, (2, 1), (3, 1)

)

=
(
S2, (2, −1), (3, 1), (t+2(q−1)u, −u)

)
.

Equation (2.20), now proved, shows that for all t/u, this manifold must be
equal to

(
S2, (2, −1), (3, 2), (t+2u, −u)

)
, which is clearly impossible whatever q.
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Having shown that n = 1, we determine q noting that

N(0, 1, 1) =
(
D, (1, 1+q), (1, 1+q)

) ⋃
(

0 1
−1 −1

)
(
D, (2, 1), (3, 1)

)

=
(
S2, (2, 1), (3, 1), (2(1+q), 1),−1

)

contains a non-separating torus, hence q = 2, as required.

Conclusion for the slopes (1,1). Finally, we prove (2.23). We have

N

(
1, 1,

t

u

)
=

(
A, (mt+nu, pt+qu)

)
/(

0 1
1 0

)

for some
(

m n
p q

)
∈ GL2(Z) with p � 0. First, S2 × S1 = N(1, 1,∞) =(

A, (m, p)
)
/(

0 1
1 0

) gives m = 0 and p = 1, and hence n = ±1. We also deduce

from relations (2.19)–(2.22) and (2.14)–(2.17) that N(1, 1, α) = T(
α + 1 1

−1 0

)

for α ∈ {−3,−2,−1, 0}. Using (2.13), we easily get q = 1 and n = 1, as
required. �

We can now prove our main results.

Proof of 1.1–1.3. The proof is divided in four steps:

1. we use Proposition 2.2 and Lemma 2.1 to recognize the JSJ decompo-
sition of many non-hyperbolic fillings;

2. we apply the symmetries listed in Proposition 1.5 finding more non-
hyperbolic fillings;

3. we use the Gromov–Thurston 2π-theorem to prove that M is nega-
tively curved except in the cases listed (up to permutation) in steps 1
and 2 and in a finite number of other cases. As already mentioned, the
orbifold theorem shows that M is hyperbolic if it is negatively curved;

4. using SnapPea, we examine the finite number of cases not covered by
the previous steps, and we check that the corresponding M is always
hyperbolic.

Step 1. Recognition of non-hyperbolic fillings. The equalities listed in The-
orem 1.1 are deduced from Proposition 2.2. We now prove most of the
equalities listed in tables 1–3 by studying the “degenerate” cases in which
the expressions in Proposition 2.2 do not describe the JSJ decomposition of
the manifold. We say that

(
F, (i1,j1),...,(ik,jk)

)
is genuine if it is irreducible and

not a solid torus. Degenerate cases occur mostly in presence of non-genuine
blocks.
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One-cusped fillings. We first prove all the equalities listed in table 1,
except the last two. For (p/q, r/s) = (1, 1), the equality follows from Propo-
sition 2.2 directly. For p/q ∈ {−3,−2,−1, 0}, the argument is quite simple:
we only spell it out here for p/q = −3, the other cases being even easier.

So, assume p/q = −3 and r/s ∈ Q. By (2.19), we have

M =
(
D, (2, 1), (r+s, s)

) ⋃
(

0 1
1 0

)
(
A, (2, 1)

)
.

This formula describes the JSJ decomposition of M except in the following
cases:

(A) the block on the left-hand side is non-genuine;

(B) the block on the left-hand side admits an alternative fibration which
is matched to the fibration of the block on the right-hand side.

Case (A) occurs for |r + s| � 1. When |r + s| = 0, i.e., r/s = −1, we have
M = RP3#

(
D, (2, 1)

)
= RP3#(D × S1) by (2.12). If |r + s| = 1, i.e., r/s =

−1 + 1
n for some n ∈ Z \ {0}, we have

M =
(
D, (1, 1+2n)

) ⋃
(

0 1
1 0

)
(
A, (2, 1)

)
=

(
D, (1+2n, −2), (2, 1)

)

=
(
D, (1+2n, 2), (2, 1)

)

by (2.1), (2.3) and (2.8), which is genuine except for |1 + 2n| � 1, and this
only occurs for n = −1, giving D × S1.

Using Lemma 2.1, it is not hard to see that case (B) occurs only for
r/s = −3, in which case M =

(
B, (2, 1)

)
.

We now prove all the equalities in table 2 and the equalities in table 3
corresponding to the case (p/q, r/s) = (1, 1).

The slope −3. We start by considering the case where p/q = −3. Rela-
tion (2.19) then shows that M is homeomorphic to

(2.26)
(
D, (2, 1), (r+s, s)

) ⋃
(

0 1
1 0

)
(
D, (2, 1), (t+u, u)

)
.

The first case where the block on the left-hand side is non-genuine occurs
when r/s = −1, in which case the block becomes

(
D, (2, 1), (0, 1)

)
, and we
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deduce from (2.5) and (2.12) that

M = RP3#
(
S2, (2, 1), (t+u, u)

)
.

Now we employ (2.4) to see that the second summand is L(t+3u, u). Summing
up, we have M = RP3#L(t+3u, u) when r/s = −1 (and p/q = −3).

Another case where the block on left-hand side of (2.26) is non-genuine
occurs when |r +s| = 1, namely when r/s = −1 +1/n for some n ∈ Z, n �= 0.
In this case, the block is

(
D, (2, 1), (1, n)

)
=

(
D, (2, 1+2n)

)
. We then use (2.8)

to deduce that

M =
(
S2, (2n+1, −2), (2, 1), (t+u, u)

)

in this case. Now this manifold is Seifert with three exceptional fibres unless
|2n + 1| � 1 or |t + u| � 1. The former inequality is only possible for n = −1
(recall that n �= 0), i.e., for r/s = −2, and M =

(
S2, (2, 1), (t+u, u), (1, 2)

)
=(

S2, (2, 5), (t+u, u)
)

in this case. Now we apply (2.4) to see that

M = L(2u+5(t+u), u+2(t+u)) = L(5t+7u, 2t+3u).

Let us assume instead that |t + u| � 1. We dismiss the case t/u = −1, which
was already considered up to permutation. So we have t/u = −1 + 1/m
for m ∈ Z, m �= 0, and M =

(
S2, (2, 1), (1, m), (2m+1, −2)

)
=

(
S2, (2, 2m + 1),

(2m + 1,−2)
)
. We now apply (2.4), eventually getting

M = L((2n+1)(2m+1)−4, (2n+1)m−2).

We also note that the lack of symmetry in n and m is only apparent because

(2nm + m − 2)(2nm + n − 2) ≡ 1 (mod (2n + 1)(2m + 1) − 4).

We have now recognized M whenever r/s equals −1 or −1 + 1/n (and p/q =
−3). So we assume neither r/s nor t/u have this form, i.e., |r + s| > 1 and
|t + u| > 1. So (2.26) describes the gluing of two genuine Seifert blocks, and
the gluing matrix does not match the fibres of the fibrations implicit in the
expressions of the blocks. Therefore, (2.26) gives the JSJ decomposition of
M except in the following cases (up to permutation):

(A) the block on left-hand side has an alternative fibration which is
matched to the original fibration of the block on the right-hand side;

(B) both the blocks admit alternative fibrations, and these fibrations are
matched.
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Now the left-hand side has an alternative fibration precisely when |r + s| =
2, namely when r/s = −1 + (2/2n + 1) for some n ∈ Z, and in this case we
deduce from (2.6) and (2.9) that

M =
(
D, (2, 1), (2, 2n+1)

) ⋃
(

0 1
1 0

)
(
D, (2, 1), (t+u, u)

)

=
(
D, (2, 1), (2, 1)

) ⋃
(

−n 1
1 0

)
(
D, (2, 1), (t+u, u)

)

=
(
B ×∼S1) ⋃

(
1 n + 1
0 −1

)
(
D, (2, 1), (t+u, u)

)
.

Now case (A) occurs precisely when n + 1 = 0, whence r/s = −3, and

M =
(
B ×∼S1) ⋃

(
1 0
0 −1

)
(
D, (2, 1), (t+u, u)

)
.

Up to changing sign, the gluing matrix is now properly matching both the
sections and the fibres, so M is Seifert fibred over the gluing of B and D,
which gives

M =
(
RP2, (2, 1), (t+u, u)

)

for r/s = −3 (and p/q = −3).
Assume case (B) occurs. Then t/u also has the form −1 + (2/2m + 1),

and by (2.7) and (2.10), we have

M =
(
B ×∼S1) ⋃

(
1 n + 1
0 −1

)
(
D, (2, 1), (2, 2m+1)

)

=
(
B ×∼S1) ⋃

(
1 n + 1
m mn + m − 1

)
(
D, (2, 1), (2, 1)

)

=
(
B ×∼S1) ⋃

(
m + 1 m + n + mn

−1 −n − 1

)
(
B ×∼S1).

Moreover the fibres should match, so m + n + mn = 0. Therefore, we have
either n = m = 0 or n = m = −2, namely either r/s = t/u = 1 or r/s =
t/u = −5/3. The two manifolds we get are

M =
(
B ×∼S1) ⋃

(
−1 0
±1 1

) (
B ×∼S1),

which are easily seen to be (K, ±1), where K is the Klein bottle. Finally,
we have (K, +1) = (K, −1).
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The slope −2. Let us consider now the case p/q = −2, where Equa-
tion (2.20) shows that M is

(
S2, (3, 2), (r+2s, −s), (t+2u, −u)

)
.

There are three exceptional fibres unless |r + 2s| � 1 (up to permutation).
If r/s = −2, we have M =

(
S2, (3, 2), (0, 1), (t+2u, −u)

)
, which is equal to

L(3, 1)#L(t+2u, u) by (2.11). If |r + 2s| = 1, i.e., r/s = −2 + 1/n, then M =(
S2, (3, 2), (1, −n), (t+2u, −u)

)
=

(
S2, (3, 2−3n), (t+2u, −u)

)
. We apply (2.4), get-

ting

M = L(3u−(2−3n)(t+2u), u−(1−n)(t+2u)) = L(3n(t+2u)−2t−u, n(t+2u)−t−u).

The slope −1. The case p/q = −1 is similar to the previous one. Rela-
tion (2.21) proves that M is

(
S2, (2, 1), (r+3s, −s), (t+3u, −u)

)
.

This manifold is Seifert fibred over S2, and there are three exceptional fibres
unless |r + 3s| � 1 up to permutation. If r/s = −3, then M =(
S2, (2, 1), (1, 0), (t+3u, −u)

)
, which is equal to RP3#L(t+3u, u) by (2.11). If

|r + 3s| = 1, i.e., r/s = −3 + 1/n, we have M =
(
S2, (2, 1), (1, −n), (t+3u, −u)

)

=
(
S2, (2, 1−2n), (t+3u, −u)

)
. Now we use (2.4), deducing that

M = L(−2u+(1−2n)(t+3u), u+n(t+3u)) = L(2n(t+3u)−t−u, n(t+3u)+u).

The slope 0. Let us turn now to the case p/q = 0, where (2.22) shows
that M is

(2.27)
(
D, (s, r+2s), (u, t+2u)

) ⋃
(

0 −1
1 1

)
(
D, (2, 1), (3, 1)

)
.

The right-hand side block is now always genuine, but the left-hand side
block is not if |s| = 1 (recall that s �= 0), namely when r/s = n ∈ Z. In this
case, the block becomes

(
D, (1, n+2), (u, t+2u)

)
=

(
D, (u, t+(n+4)u)

)
. Now we

use (2.8) to see that

M =
(
S2, (2, 1), (3, 1), (t+(4+n)u, −t−(3+n)u)

)
=

(
S2, (2, −1), (3, 1), (t+(4+n)u, u)

)
.

So M is Seifert with three exceptional fibres unless |t + (4 + n)u| � 1. If
t + (4 + n)u = 0, namely t/u = −4 − n, we use (2.11) and see that
M = RP3#L(3, 1). If |t + (4 + n)u| = 1, i.e., t/u = −4 − n + 1/m, we have
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M =
(
S2, (2, 1), (3, 1), (1, m−1)

)
=

(
S2, (3, 1), (2, 2m−1)

)
. We eventually use

(2.4) and see that M = L(6m−1, 2m−1).
We consider now the case where r/s, t/u �∈ Z in (2.27). So both the

blocks involved are genuine Seifert, and the gluing matrix does not match
the fibrations. In addition, the right-hand side block has a unique fibration,
and so the JSJ decomposition of M is given by

(2.28)
(
D, (s, r+2s), (u, t+2u)

) ⋃
(

0 −1
1 1

) (
D, (2, 1), (3, 1)

)

unless the left-hand side block has an alternative fibration whose fibre is
matched to the fibre of (D, (2, 1), (3, 1)). Assuming this happens, we must
have |s| = |u| = 2, and so r/s = n + 1/2 and t/u = m + 1/2. By (2.6) and
(2.9), we then have

M =
(
D, (2, 2n+5), (2, 2m+5)

) ⋃
(

0 −1
1 1

)
(
D, (2, 1), (3, 1)

)

=
(
D, (2, 1), (2, 1)

) ⋃
(

m + n + 4 −1
−m − n − 3 1

)
(
D, (2, 1), (3, 1)

)

=
(
B ×∼S1) ⋃

(
−1 −m − n − 5
1 m + n + 4

)
(
D, (2, 1), (3, 1)

)
.

Fibres match for n + m + 5 = 0, i.e., m = −n − 5. Summing up, we have
shown that for r/s, t/u �∈ Z, the JSJ decomposition of M is given by (2.28)
unless r/s = n + 1/2 and t/u = −n − 9/2. In this case, we have, using (2.7)
with l = −1 and switching the orientation of B ×∼S1:

M =
(
B ×∼S1) ⋃

(
−1 0
1 −1

) (
D, (2, 1), (3, 1)

)

=
(
B ×∼S1) ⋃

(
−1 0
0 −1

) (
D, (2, −1), (3, 1)

)

=
(
B ×∼S1) ⋃

(
−1 0
0 1

) (
D, (2, −1), (3, 1)

)

=
(
RP2, (2, 1), (3, 1),−1

)
.

The slopes (1,1). We now study the case p/q = r/s = 1, where Equa-
tion (2.23) shows that

M =
(
A, (u, t+u)

)/
(

0 1
1 0

) .

The block which is being glued to itself is non-genuine if t/u = n ∈ Z. If
this is the case, the block becomes

(
A, (1, n+1)

)
, and we deduce from (2.6)
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and (2.13) that

M =
(
A × S1)

/
(

−1 − n 1
1 0

) = T(
n + 1 1
−1 0

).

If t/u �∈ Z, then
(
A, (u, t+u)

)
is genuine Seifert with a unique fibration

and the self-gluing does not match the fibres, and so the JSJ decomposition
of M is as required.

Step 2. Recognition of more non-hyperbolic fillings. As announced, we
use now relations (1.1)–(1.6) to find triples which were not listed in step 1
but give the same fillings as triples listed in step 1. This will complete
the proof of all the equalities listed in tables 1–4. We can immediately
conclude with table 1: Proposition 1.5 gives N(−3/2,−5/2) = N(−3/2, 0) =
N(−4,−1/2), and therefore, the last two lines of table 1 are deduced from
the case (p/q, r/s) = (0,−3/2) in the same table.

All equalities of table 2 have already been proved. We therefore turn to
tables 3 and 4. For the sake of conciseness and clarity, we have organized our
constructions in table 6. Let us first comment on the first nine lines of this
table. Here we find on the first column a triple not found in step 1 (except
for t/u ∈ {−3,−2,−1, 0} in the first two lines). In the second column, there
is a reference to one of the symmetry relations listed in Proposition 1.5. We
view this relation as a move acting on the triple to its left, and, in the third
column, we give the triple resulting from this action; this triple is readily
seen to be one of those of step 1. The last two lines are similar, except

Table 6: Sporadic triples giving non-hyperbolic fillings.

Original triple Move New triple
−3/2,−5/2, t/u (1.3) −3/2, 0,−u/(t + 2u) − 2
−4,−1/2, t/u Inverse of (1.1) −3/2, 0,−t/u − 3
−3/2,−7/3,−7/3 (1.3) −3/2, 1, 1
−4,−4,−2/3 Inverse of (1.1) −3/2, 1, 1
−3/2,−3/2,−4 (1.1) −4, 1, 1
−5/2,−5/2,−4/3 (1.2) −5/2, 1, 1
−1/2,−5,−5 (1.4) −1/2, 1, 1
1, 2, n, n = 2, 3, 4, 5 (1.5) 1, 2, 2 − n
1,−4,−1/3 (1.6) 1,−4,−3
−3/2,−3/2,−8/3 (1.1) −4,−1/3, 1
−5/2,−5/3,−5/3 (1.2) −5/2,−4,−1/2



Dehn filling 1005

that in the last column, the triple is not one of those of step 1. Instead, it
appears in the first column of the ninth and second line, respectively.

Let us now recognize M in all the lines listed in the first column of table 6.
Of course this is trivial for all the lines except the first two, because for the
other cases we only have to use step 1 for the triple on the last column (but
in table 4 we have often simplified the expression using formulae (2.5)–(2.7)
and changes of orientation).

Then, let us start from the case −3
2 ,−5

2 , t/u; so M is the same as the
manifold obtained with the filling coefficients 0,−3

2 ,−(2t + 5u)/(t + 2u).
First, if t + 2u = 0, i.e., t/u = −2, we easily get from the case p/q = ∞ that
M = L(2, 1) = RP3. Otherwise, we have to refer to the case p/q = 0. Now
−(2t + 5u)/(t + 2u) is an integer when |t + 2u| = 1, i.e., t/u = −2 + 1/n,
and in this case −(2t + 5u)/(t + 2u) = −n − 2. We further need to make
distinctions depending on whether

−3 + (4 − (n + 2))2 = −2n + 1

has value 0 or ±1. Of course 0 cannot be attained, and +1 also cannot
(because n �= 0), and so the only special case occurs for n = 1, namely for
t/u = −1, and M = L(13, 5), as we knew already from the discussion of slope
−1. We then deduce that for t/u = −2 + 1/n but n �= 1, we have

M =
(
S2, (2, −1), (3, 1), (3−(4−n−2)2, −2)

)
=

(
S2, (2, −1), (3, 1), (2n−1, −2)

)
.

When −(2t + 5u)/(t + 2u) is neither an integer nor infinity, i.e., when t/u
is not −2 or −2 + 1/n, we will have, after easy calculations,

M =
(
D, (2, 1), (3, 1)

) ⋃
(

1 1
0 −1

) (
D, (2, 1), (t+2u, u)

))

except in the special case where −(2t + 5u)/(t + 2u) = −(−3
2) − 4, which

occurs for t/u = 0, and

M =
(
RP2, (2, 1), (3, 1),−1

)

in this case, as we knew already.
The discussion of the cases −4,−1/2, t/u is easier because it reduces

to that of 0,−3/2,−t/u − 3. Namely, for t/u = n, we have to consider the
special cases n = 0,−1, leading to L(13, 5) and L(11, 3), respectively (as we
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knew already); otherwise,

M =
(
S2, (2, −1), (3, 1), (2n+1, −2)

)
.

Moreover, we have the exceptional case where −t/u − 3 = −(−3/2) − 4,
which occurs for t/u = −1/2 and leads to

M =
(
RP2, (2, 1), (3, 1),−1

)
.

In all other cases, we have

M =
(
D, (2, 1), (3, 1)

) ⋃
(

1 1
1 0

)
(
D, (2, 1), (u, t)

)
.

Now that we have recognized the M ’s arising from the triples on the first
column of table 6, we could show, with a little patience, that even a repeated
application of the symmetries (1.1)–(1.6) to any of the triples found so far
does not lead to new triples. This will actually be deduced from the rest of
our argument because we will see that all the triples, except those listed so
far (up to permutation), give a hyperbolic M .

Step 3. Application of the 2π-theorem. As announced, we will now use
the Gromov–Thurston 2π-theorem [3] to show that a Dehn filling of N is
negatively curved for all fillings except those listed in steps 1 and 2 and a
finite number of other ones. More precisely, let us define G as the set of
all slopes, pairs of slopes and triples of slopes that were proved in steps 1
and 2 to give a non-hyperbolic filling of N . The aim of step 3 is to construct
three finite sets of slopes S1, S2, S3 such that if α, β, γ are slopes on ∂N
and N(α, β, γ) is not negatively curved, then either (α, β, γ) ∈ G or, up to
permutation, (α, β, γ) ∈ S1 × S2 × S3.

We begin by recalling the statement of the 2π-theorem, so we consider
a cusped hyperbolic manifold M and a horospherical cusp section H of M ,
that is an embedded surface parallel to ∂M such that the metric of M
restricts to a Euclidean metric on H. Then, H = �k

i=1T
′
i , where T ′

i is a
Euclidean torus isotopic to the i-th component Ti of ∂M . If αi is a slope on
Ti, we now define the length of αi with respect to H (or H-length for short)
as the shortest length of a curve in T ′

i parallel to αi. The Gromov–Thurston
theorem now asserts that M(αi1 , . . . , αih

) is negatively curved whenever all
filling slopes αij

have H-length larger than 2π.
Before proceeding, we note that if a homology basis (a, b) is fixed on a

torus T , the Euclidean structures on T up to isotopy are determined by two
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parameters x + iy ∈ C with y > 0 and A ∈ R with A > 0. Here, x + iy gives
the shape of T (i.e., the Euclidean structure up to scaling) while A gives
the area. The relation with the fixed basis (a, b) comes from the fact that
there should exist a locally isometric covering C → T on which a and b act
as the translations z → z +

√
A/y and z → z + (x + iy)

√
A/y, respectively.

It is now an easy exercise to show that the minimal length �(p/q) of a slope
pa + qb on T satisfies

(2.29) �

(
p

q

)2

=
A

y

(
(p + xq)2 + (yq)2

)
.

We now specialize to our chain-link exterior N and note that it has
symmetries realizing any permutation of the boundary components, and
so the shapes of its three cusps are actually the same. We describe this
common shape using the homology bases (ai, bi) chosen by SnapPea, where
ai = μi and bi = 2μi − λi for i = 1, 2, 3, with (μi, λi) being the meridian-
longitude basis used above. The shape is then described by the parameter
1/2 + i

√
7/2. Moreover, if we choose a maximal horospherical cusp section

H consisting of three tori having the same area, this area turns out to be√
7/2. Using this information and (2.29), it is now easy to prove that the

slopes on any component of ∂N having H-length less that 2π are those in
the following set:

S̃1 =
{

∞,−6,−5,−4,−3,−5
2
,−2,−5

3
,−3

2
,−4

3
,−5

4
,−1,

− 3
4
,−2

3
,−1

2
,−1

3
,−1

4
, 0,

1
4
,
1
3
,
1
2
,
2
3
, 1,

3
2
, 2, 3, 4, 5

}
.

Now we remark that S̃1 ∩ G = {∞,−2,−1, 0, 1} (recall that the homol-
ogy bases are changed: a slope previously corresponding to p/q is now given
by −2 − p/q and conversely). And we set S1 = S̃1 \ G, noting that S1 has
23 elements. Using SnapPea, it is now easy to check that N(α) is actually
hyperbolic for all α ∈ S1. Moreover, since there is a symmetry of N fixing
any boundary component and exchanging the other two, the two cusps of
N(α) have the same shape given by a certain zα ∈ C. Let us consider as
above the maximal cusp section Hα in N(α) consisting of two tori of the
same area, and let us denote by Aα this area. Again using SnapPea, one can
determine zα and Aα for all α ∈ S1 and correspondingly compute, via (2.29),
the set S̃2(α) of slopes on (any component of) ∂N(α) having Hα-length less
than 2π. We now define

S2(α) =
{
β ∈ S̃2(α) : (α, β) �∈ G

}
, S2 =

⋃

α∈S1
S2(α).
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This set S2 consists of 55 elements. Again using SnapPea, one can now check
that N(α, β) is actually hyperbolic for all (α, β) ∈ (S1 × S2) \ G and com-
pute the shape zα,β = xα,β + iyα,β and the area Aα,β of the maximal cusp
Hα,β of N(α, β). With the list of actual values at hand, one can check that

−1 � xα,β � 4, 0.5 � yα,β � 4, Aα,β � 1 ∀(α, β) ∈ (S1 × S2) \ G

(the last inequality is actually known from the theory, but one can also check
it experimentally). Now let p/q be a slope on ∂N(α, β). Up to switching
signs, we can assume q � 0, whence, by (2.29) and the previous inequalities,

�

(
p

q

)2

=
Aα,β

yα,β

(
(p + q · xα,β)2 + (q · yα,β)2

)
� 1

4
(
f(p, q)2 + q2 · (0.5)2

)

=: g(p, q),

where f(p, q) is 0 if 0 ∈ (p − q, p + 4q) and min{|p − q|, |p + 4q|} otherwise.
We then define S3 = {p/q : g(p, q) � 4π2} and note that S3 has 200
elements.

Having constructed S1, S2, S3, let us check that they work. If N(α, β, γ)
is not negatively curved, then, up to permutation, we have α ∈ S̃1 by the
2π-theorem. So either α ∈ S1 or α ∈ G. And (α, β, γ) ∈ G in the latter
case. Assuming α ∈ S1, we know N(α) is hyperbolic, and so β ∈ S̃2(α) up
to permutation by the 2π-theorem. So, either β ∈ S2 or (α, β) ∈ G, or both.
And (α, β, γ) ∈ G if (α, β) ∈ G. Assuming (α, β) �∈ G, we know that N(α, β)
is hyperbolic, and so γ ∈ S3 by the 2π-theorem.

Step 4. Finite enumeration. To conclude, we are left to investigate all
the 23 · 55 · 200 = 253000 triples of slopes in S1 × S2 × S3 and check that
those not lying in G define hyperbolic fillings. We have done this using the
scriptable Python version of SnapPea. Many of the triples in (S1 × S2 ×
S3) \ G turned out to give solutions of the hyperbolic Dehn filling equations
with some inverted tetrahedra. For these triples, we have tried with several
alternative triangulations of N and of some partial fillings of N , getting
a genuine solution after some attempts. The only triple resisting to this
method was {1,−5,−1/2}, which is known [18] to give the closed hyperbolic
manifold with volume 1.0149416. . . (and complexity 9). �

A. Hyperbolic manifolds with one or two cusps

Theorems 1.1–1.3 can be used to list all the non-hyperbolic Dehn fillings
of infinitely many hyperbolic manifolds with one or two cusps. We study
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in this section the most notable of these manifolds. Recall that N always
denotes the chain-link complement.

A.1. Number of exceptional slopes

If M is a one-cusped hyperbolic manifold, following [19], we denote by E(M)
the set of exceptional slopes on ∂M (i.e., the slopes giving non-hyperbolic
filling), and we set e(M) = |E(M)|, which is finite by [28]. If M has more
than one cusp, we pick one T and define ET (M) as the set of exceptional
slopes on T . Then, we define e(M) as the maximum of |ET (M)| over all
cusps T . Theorem 1.1 readily implies the following.

Corollary A.1. ET (N) = {∞,−3,−2,−1, 0} for all cusps T, whence
e(N) = 5.

We do not know whether there is any other hyperbolic M with at least
three cusps, and e(M) � 5.

Exceptional slopes on two-cusped manifolds. Since no filling of a
graph manifold is hyperbolic, Theorem 1.1 gives e(M) � 5 for all hyper-
bolic partial fillings M of N . We carefully describe now the M ’s such that
e(M) > 5, starting from the two-cusped ones. Theorems 1.1 and 1.2 and
Proposition 1.5 imply the following.

Corollary A.2. Assume α �∈ {∞,−3,−2,−1, 0}, so that N(α) is hyper-
bolic. Then e(N(α)) = 5 except for α = −4,−5/2,−3/2,−1/2, 1, in which
case e(N(α)) = 6. There are four distinct N(α)’s corresponding to these
five slopes because N(−4) = N(−3/2).

Much information on the four manifolds described in the previous propo-
sition and their non-hyperbolic filling are contained in table A.1. All four
manifolds are actually well-known ones, being the Whitehead link exterior,
the Whitehead sister (or (−2, 3, 8) pretzel) link exterior, the Berge manifold
and the exterior of the 2-bridge link with parameter 3/10 (Remarks A.3
and A.4 show how to recognize each of them by looking at its fillings). We
provide for each manifold its label Mikj in the Callahan–Hildebrand–Weeks
census [6] (recall that Mikj is the j-th manifold among those having k cusps
and an ideal triangulation with i tetrahedra, ordered by increasing volume,
and k is omitted if it is 1). We also show the relevant slopes, addressing the
reader to figure 2 for an explanation of their pictorial description. Finally,
we completely describe the non-hyperbolic fillings.
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Table A.1: Non-hyperbolic fillings of the two-cusped N(α)’s with
e(N(α)) > 5.

The Whitehead link exterior
M42

1 = N(1)

∞ : D × S1

−3 :
(
D, (2, 1), (2, 1)

) ⋃
(

0 1
1 0

)
(
A, (2, 1)

)

−2 :
(
D, (3, 1), (3, 1)

)

−1 :
(
D, (2, 1), (4, 1)

)

0 :
(
D, (2, 1), (3, 1)

)

1 :
(
Y × S1

)/
(

0 1
1 0

)

The Whitehead sister link exterior
M42

2 = N(−3/2) = N(−4)

∞,−2 : D × S1

−3,−1 :
(
D, (2, 1), (3, 1)

)

−5/2, 0 :
(
D, (2, 1), (3, 1)

) ⋃
(

1 1
1 0

)
(
A, (2, 1)

)

The Berge manifold M42
3 = N(−5/2)

∞,−2,−1 : D × S1

−3,−3/2, 0 :
(
D, (2, 1), (3, 1)

)
⋃

(
1 1
1 0

)
(
A, (2, 1)

)

The 3/10-bridge link exterior
M42

4 = N(−1/2)

∞ : D × S1

−4, 0 :
(
D, (2, 1), (3, 1)

) ⋃
(

1 1
1 0

)
(
A, (2, 1)

)

−3,−1 :
(
D, (2, 1), (5, 2)

)

−2 :
(
D, (3, 1), (3, 2)

)
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An important caveat concerning table A.1 is that, to express slopes on
∂N(α), we are still using the homology bases induced from those of N . In
particular, when N(α) is a link complement, we are not using the natural
(meridian, longitude) bases. In some cases, switching from our basis to the
natural one is easy (as an example, for the Whitehead link complement,
using the natural basis each coefficient β in table A.1 should be replaced
by β − 1), but in other cases it is harder. For M42

2, the list of exceptional
slopes refers to its realization as N(−3/2), not as N(−4).

Remark A.3. The Berge manifold N(−5/2) is the unique manifold having
three fillings giving the solid torus [2]. As shown in table A.1, it also has
three annular and toroidal fillings. In [11], we have generalized this example,
building an infinite class of hyperbolic manifolds M with non-empty geodesic
boundary and e(M) = 6, with three fillings giving a handlebody and three
other ones giving an annular manifold.

Remark A.4. The manifold N(−3/2) is determined as the only one with
two annular fillings at distance 5, while N(1) and N(−1/2) are the only
two manifolds with two annular fillings at distance 4, see [14, 17]. They
can be further distinguished because N(1) has one filling containing a non-
separating torus, while N(−3/2) has not.

Remark A.5. The four manifolds of table A.1 are the two-cusped ones
with least known volume and precisely the four ones having the smallest
complexity 4 [6]. The first two have canonical decomposition given by one
regular ideal octahedron and the other two by four regular ideal tetrahedra.
Repetitions in table A.1 are the effect of the relations listed in Proposi-
tion 1.5.

Exceptional slopes on one-cusped manifolds. We now concentrate
on the hyperbolic N(α, β)’s and describe those having more than five excep-
tional slopes. As above, we first provide a summarizing statement and then
give much extra information.

Corollary A.6. Assume α, β do not appear (up to permutation) in table 1,
and so M = N(α, β) is hyperbolic. Then,

(A) e(M) � 7 for the 11 manifolds described in tables A.2–A.4 (where
e(M) attains once the value 10, twice the value 8 and eight times the
value 7);
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Table A.2: Non-hyperbolic fillings of one-cusped M = N(α, β)’s with
e(M) � 8.

The figure-8 knot
M21 = N(1, 2)

∞ : S3

−3, 5 :
(
D, (2, 1), (2, 1)

) ⋃(
0 1
1 0

)
(
D, (2, 1), (3, 1)

)

−2, 4 :
(
S2, (3, 1), (3, 1), (4, 1),−1

)

−1, 3 :
(
S2, (2, 1), (4, 1), (5, 1),−1

)

0, 2 :
(
S2, (2, 1), (3, 1), (7, 1),−1

)

1 : T(
3 1

−1 0

)

The figure-8 knot sister
M22 = N(1,−4) =

N(−4,−3/2) =
N(−3/2,−3/2)

−1 : L(10, 3)
−1/2,−2 :

(
S2, (2, 1), (3, 2), (3, 2),−1

)

−1/3,−3 :
(
D, (2, 1), (2, 1)

)⋃(
0 1

−1 −1

)
(
D, (2, 1), (3, 1)

)

0,∞ : L(5, 1)
1 : T(

−3 1
−1 0

)

M33 = N(1, 3)

∞ : P3

−3 :
(
D, (2, 1), (2, 1)

)⋃(
0 1
1 0

)
(
D, (2, 1), (4, 1)

)

−2 :
(
S2, (3, 1), (3, 1), (5, 1),−1

)

−1 :
(
S2, (2, 1), (4, 1), (6, 1),−1

)

0 :
(
S2, (2, 1), (3, 1), (8, 1),−1

)

1 : T(
4 1

−1 0

)

2 :
(
S2, (2, 1), (4, 1), (5, 1),−1

)

3 :
(
D, (2, 1), (2, 1)

)⋃(
1 2
0 −1

)
(
D, (2, 1), (3, 1)

)
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Table A.3: Non-hyperbolic fillings of one-cusped M = N(α, β)’s with
e(M) = 7.

M31 = N(1,−3/2) =
N(−4,−4) = N(−4,−2/3)

= N(−3/2,−7/3)

∞ : L(5, 2)
−3 :

(
S2, (2, 1), (2, 1), (3, 2)

)

−2 : L(15, 4)
−1 :

(
S2, (2, 1), (3, 2), (4, 1),−1

)

0 :
(
S2, (2, 1), (3, 1), (7, 2),−1

)

1 :
(
A, (2, 1)

)
/(

1 1
1 0

)

−5/2 :
(
D, (2, 1), (3, 1)

)⋃(
1 1
0 −1

)
(
D, (2, 1), (3, 1)

)

M32 = N(1,−1/2) =
N(−5,−1/2)

∞ : L(3, 1)
−4 :

(
S2, (2, 1), (3, 2), (3, 2),−1

)

−3 :
(
S2, (2, 1), (2, 1), (5, 3),−1

)

−2 :
(
S2, (3, 1), (3, 1), (3, 2),−1

)

−1 :
(
S2, (2, 1), (4, 1), (5, 2),−1

)

0 :
(
S2, (2, 1), (3, 1), (9, 2),−1

)

1 :
(
A, (2, 1)

)
/(

0 1
1 0

)

M38 = N(1,−5/2) =
N(−5/2,−4/3) =
N(−5/2,−5/2)

∞ : L(7, 2)
−3 :

(
D, (2, 1), (2, 1)

)⋃(
0 1
1 −1

)
(
D, (2, 1), (3, 1)

)

−2 : L(21, 8)
−3/2 :

(
D, (2, 1), (3, 1)

)⋃(
1 1
0 −1

)
(
D, (2, 1), (3, 1)

)

−1 : L(14, 3)
0 :

(
S2, (2, 1), (3, 1), (5, 2),−1

)

1 :
(
A, (2, 1)

)
/(

2 1
1 0

)

M42 = N(1, 4)

∞ : L(3, 1)
−3 :

(
D, (2, 1), (2, 1)

)⋃(
0 1
1 0

)
(
D, (2, 1), (5, 1)

)

−2 :
(
S2, (3, 1), (3, 1), (6, 1),−1

)

−1 :
(
S2, (2, 1), (4, 1), (7, 1),−1

)

0 :
(
S2, (2, 1), (3, 1), (9, 1),−1

)

1 : T(
5 1

−1 0

)

2 :
(
S2, (3, 1), (3, 1), (4, 1),−1

)
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Table A.4: Non-hyperbolic fillings of one-cusped M = N(α, β)’s with
e(M) = 7.

M51 = N(1, 5)

∞ : L(4, 1)
−3 :

(
D, (2, 1), (2, 1)

)⋃(
0 1
1 0

)
(
D, (2, 1), (6, 1)

)

−2 :
(
S2, (3, 1), (3, 1), (7, 1),−1

)

−1 :
(
S2, (2, 1), (4, 1), (8, 1),−1

)

0 :
(
S2, (2, 1), (3, 1), (10, 1),−1

)

1 : T(
6 1

−1 0

)

2 :
(
D, (2, 1), (2, 1)

)⋃(
0 1
1 0

)
(
D, (2, 1), (3, 1)

)

M412 = N(1,−1/3)

∞ : L(4, 1)
−4 :

(
D, (2, 1), (2, 1)

)⋃(
0 1

−1 −1

)
(
D, (2, 1), (3, 1)

)

−3 :
(
D, (2, 1), (2, 1)

)⋃(
0 1
1 1

)
(
D, (2, 1), (2, 1)

)

−2 :
(
S2, (3, 1), (3, 1), (5, 3),−1

)

−1 :
(
S2, (2, 1), (4, 1), (8, 3),−1

)

0 :
(
S2, (2, 1), (3, 1), (14, 3),−1

)

1 :
(
A, (3, 2)

)
/(

0 1
1 0

)

(−2, 3, 7) pretzel knot
M37=N(−4,−1/3)=N(−3/2,−1/2)

=N(−3/2,−8/3)=N(−4,−5/2)

=N(−1/2,−5/2)=N(−5/2,−5/3)

∞ : S3

−3 :
(
D, (2, 1), (2, 1)

)⋃(
−1 1
0 −1

)
(
D, (2, 1), (3, 1)

)

−2 :
(
S2, (2, 1), (3, 2), (5, 2),−1

)

−1 : L(18, 5)
−1/2 :

(
D, (2, 1), (3, 1)

)⋃(
1 1

−2 −1

)
(
D, (2, 1), (3, 1)

)

0 : L(19, 7)
1 :

(
D, (2, 1), (2, 1)

)⋃(
0 1

−1 −1

)
(
D, (2, 1), (3, 1)

)

(continued)
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Table A.4: Continued.

M410 = N(2, 2)

∞ : L(3, 1)
−3 :

(
D, (2, 1), (3, 1)

)⋃(
0 1
1 0

)
(
D, (2, 1), (3, 1)

)

−2 :
(
S2, (3, 1), (4, 1), (4, 1),−1

)

−1 :
(
S2, (2, 1), (5, 1), (5, 1),−1

)

0 :
(
S2, (2, 1), (3, 1), (8, 1),−1

)

1 :
(
S2, (2, 1), (3, 1), (7, 1),−1

)

2 :
(
D, (2, 1), (2, 1)

)⋃(
2 3

−1 −2

)
(
D, (2, 1), (3, 1)

)

Table A.5: If M42
1 = N(1) is the Whitehead link exterior and M =

M42
1(r/s) = N(1, r/s), then M is hyperbolic with e(M) = 6 if and only if

r/s �∈ {∞,−4,−3, −5/2,−2,−3/2,−1,−1/2,−1/3, 0, 1/2, 0, 1, 2, 3, 4, 5}.

p/q r/s M

∞ Any L(r−s, s)
−3 −1 + 1/n

(
S2, (2, 1), (2, 1), (2n+1, −2)

)

�= −1 + 1/n
(
D, (2, 1), (2, 1)

)⋃(
0 1
1 0

)(
D, (2, 1), (r+s, s)

)

−2 −2 + 1/n L(9n−3, 3n−2)
�= −2 + 1/n

(
S2, (3, −2), (3, 1), (r+2s, s)

)

−1 −3 + 1/n L(8n−2, 4n+1)
�= −3 + 1/n

(
S2, (2, −1), (4, 1), (r+3s, s)

)

0 −5 RP3#L(3, 1)
−5 + 1/n L(6n−1, 2n−1)

�= −5,−5 + 1/n
(
S2, (2, −1), (3, 1), (r+5s, s)

)

1 n T(
n + 1 1
−1 0

)

�∈ Z
(
A, (s, r+s)

)
/(

0 1
1 0

)

Under this assumption, we have E(M) = {∞,−3,−2,−1, 0, 1} in all cases, and the
corresponding non-hyperbolic fillings are as described.
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Table A.6: Fillings of M42
2 = N(−3/2) for r/s �∈ {∞,−4,−3,−8/3,−5/2,

−7/3,−2,−3/2,−1, −1/2, 0, 1}.

p/q r/s M

∞ Any L(3r+2s, r+s)

−3 −1 + 1/n L(6n+7, 3n+2)

�= −1 + 1/n
(
S2, (2, 1), (3, 2), (r+s, s)

)

−5/2 −2 + 1/n
(
S2, (2, 1), (3, −1), (2n−1, 2)

)

�= −2 + 1/n
(
D, (2, 1), (3, 1)

)⋃(
1 1
0 −1

)(
D, (2, 1), (r+2s, s)

)

−2 Any L(4r+11s, r+3s)

−1 −3 + 1/n L(6n+1, 3n+2)

�= −3 + 1/n
(
S2, (2, −1), (3, 2), (r+3s, s)

)

0 n
(
S2, (2, −1), (3, 1), (2n+5, 2)

)

�∈ Z
(
D, (2, 1), (3, 1)

)⋃(
1 1

−1 0

)(
D, (2, 1), (s, r+2s)

)

Table A.7: Fillings of M42
3 = N(−5/2) for r/s �∈ {∞,−4,−3,−5/2,−2,

−5/3,−3/2,−4/3,−1, −1/2, 0, 1}.

p/q r/s M

∞ Any L(5r+2s, 2r+s)

−3 −1 + 1/n
(
S2, (2, −1), (3, 2), (2n+1, 2)

)

�= −1 + 1/n
(
D, (2, 1), (3, 1)

)⋃(
1 1
1 0

)(
D, (2, 1), (r+s, s)

)

−2 Any L(8r+13s, 3r+5s)

−3/2 −2 + 1/n
(
S2, (2, −1), (3, 2), (2n−1, 2)

)

�= −2 + 1/n
(
D, (2, 1), (3, 1)

)⋃(
1 1
0 −1

)(
D, (2, 1), (r+2s, s)

)

−1 Any L(3r+11s, 2r+7s)

0 n
(
S2, (2, −1), (3, 1), (2n+3, 2)

)

�∈ Z
(
D, (2, 1), (3, 1)

)⋃(
1 1
0 1

)(
D, (2, 1), (s, r)

)
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Table A.8: Fillings of M42
4 = N(−1/2) for r/s �∈ {∞,−5,−4,−3,−5/2,

−2,−3/2,−1, 0, 1}.

p/q r/s M

∞ Any L(r+2s, s)

−4 −1/2
(
RP2, (2, 1), (3, 1),−1

)

n
(
S2, (2, −1), (3, 2), (2n+1, 2)

)

�∈ Z ∪ {−1/2}
(
D, (2, 1), (3, 1)

)⋃(
1 1
1 0

)(
D, (2, 1), (s, r)

)

−3 −1 + 1/n L(10n+1, 5n−2)

�= −1 + 1/n
(
S2, (2, −1), (5, 3), (r+s, s)

)

−2 −2 + 1/n L(9n, 3n−1)

�= −2 + 1/n
(
S2, (3, −2), (3, 2), (r+2s, s)

)

−1 −3 + 1/n L(10n−1, 5n+2)

�= −3 + 1/n
(
S2, (2, −1), (5, 2), (r+3s, s)

)

0 −7/2
(
RP2, (2, 1), (3, 1),−1

)

n
(
S2, (2, −1), (3, 1), (2n+7, 2)

)

�∈ Z ∪ {−7/2}
(
D, (2, 1), (3, 1)

)⋃(
1 1
2 3

)(
D, (2, 1), (s, r)

)

(B) e(M) = 6 if α ∈ {−4,−5/2,−3/2,−1/2, 1} and β is arbitrary,
provided (α, β) is not in tables A.2–A.4; the corresponding fillings are
as in tables A.5–A.8; in all cases E(N(α, β)) = E(N(α));

(C) e(M) = 6 for the seven manifolds described in table A.9;

(D) e(M) = 5 in all other cases.

No M is of both types (B) and (C); if it is of type (B), then it can be realized
as N(α, β) for a unique α ∈ {−5/2,−3/2,−1/2, 1}.

Proof. The only non-trivial fact to be proved is the last sentence. Suppose
e(M) = 6 and M = N(α, β) is of type (B) with α ∈ {−5/2,−3/2,−1/2, 1}.
If M is also of type (C), its non-hyperbolic fillings are listed in table A.9. It is
not difficult to see from tables A.5–A.8 that no M of type (B) can have these
fillings, and so M is not of type (C). Assume M = N(α′, β′) for some α′ ∈
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Table A.9: Non-hyperbolic fillings of sporadic M = N(α, β)’s with
e(M) = 6.

m139 = N(−5,−5)
∞ : L(24, 5) −3 :

(
D, (2, 1), (4, 1)

)⋃(
1 1
0 −1

)(
D, (2, 1), (4, 1)

)

−2 :
(
S2, (3, 1), (3, 1), (3, 2)

)
−1 :

(
S2, (2, 1), (2, 1), (2, 1)

)

−1/2 :
(
A, (2, 1)

)
/(

0 1
1 0

) 0 :
(
S2, (2, 1), (3, 2), (6, 1),−1

)

M435 = N(−5/3,−5/3)
∞ : L(16, 7) −5/2 :

(
D, (2, 1), (2, 1)

)⋃(
−1 1
0 −1

)(
D, (2, 1), (3, 1)

)

−3 : (K, 1) −2 : L(16, 5)
−1 :

(
S2, (2, 1), (4, 3), (4, 3),−1

)
0 :

(
D, (2, 1), (3, 1)

)⋃(
1 1

−1 0

)(
D, (3, 1), (3, 1)

)

m208 = N(−7/3,−7/3)
∞ : L(40, 11) −3 :

(
D, (2, 1), (4, 1)

)⋃(
1 1
0 −1

)(
D, (2, 1), (4, 1)

)

−2 : L(20, 7) −3/2 :
(
A, (2, 1)

)
/(

1 1
1 0

)

−1 :
(
S2, (2, 1), (2, 1), (2, 1), 1

)
0 :

(
D, (2, 1), (3, 1)

)⋃(
1 1
1 0

)(
D, (3, 1), (3, 1)

)

m120 = N(2, 3)
∞ : L(5, 2) −3 :

(
D, (2, 1), (3, 1)

)⋃(
0 1
1 0

)(
D, (2, 1), (4, 1)

)

−2 :
(
S2, (3, 1), (4, 1), (5, 1),−1

)
−1 :

(
S2, (2, 1), (5, 1), (6, 1),−1

)

0 :
(
S2, (2, 1), (3, 1), (9, 1),−1

)
1 :

(
S2, (2, 1), (4, 1), (5, 1),−1

)

s90 = N(2, 4)
∞ : L(7, 2) −3 :

(
D, (2, 1), (3, 1)

)⋃(
0 1
1 0

)(
D, (2, 1), (5, 1)

)

−2 :
(
S2, (3, 1), (4, 1), (6, 1),−1

)
−1 :

(
S2, (2, 1), (5, 1), (7, 1),−1

)

0 :
(
S2, (2, 1), (3, 1), (10, 1),−1

)
1 :

(
S2, (3, 1), (3, 1), (4, 1),−1

)

v224 = N(2, 5)
∞ : L(9, 2) −3 :

(
D, (2, 1), (3, 1)

)⋃(
0 1
1 0

)(
D, (2, 1), (6, 1)

)

−2 :
(
S2, (3, 1), (4, 1), (7, 1),−1

)
−1 :

(
S2, (2, 1), (5, 1), (8, 1),−1

)

0 :
(
S2, (2, 1), (3, 1), (11, 1),−1

)
1 :

(
D, (2, 1), (2, 1)

)⋃(
0 1
1 0

)(
D, (2, 1), (3, 1)

)

s118 = N(3, 3)
∞ : L(8, 3) −3 :

(
D, (2, 1), (4, 1)

)⋃(
0 1
1 0

)(
D, (2, 1), (4, 1)

)

−2 :
(
S2, (3, 1), (5, 1), (5, 1),−1

)
−1 :

(
S2, (2, 1), (6, 1), (6, 1),−1

)

0 :
(
S2, (2, 1), (3, 1), (10, 1),−1

)
1 :

(
D, (2, 1), (2, 1)

)⋃(
1 2
0 −1

)(
D, (2, 1), (3, 1)

)

The old SnapPea name of M is shown when M has complexity more than 4.
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{−5/2,−3/2,−1/2, 1} distinct from α. Since E(N(α, β)) and E(N(α′, β′))
are the same, we must have {α, α′} = {1,−1/2}. But N(1, β, 1) contains a
non-separating torus, whereas N(−1/2, β′, γ) does not, whatever γ. �

We warn the reader that, as above, the filling coefficients of each N(α, β)
in tables A.2–A.9 are expressed using the homology bases induced from
N . When the same manifold admits several presentations as N(α, β), the
coefficients refer to the first presentation listed. In tables A.2–A.4, we also
provide for each manifold a surgery presentation along a link in S3, taken
from [19]. Surgery coefficients on link diagrams always refer to the meridian-
longitude homology bases.

Our next remark concerning Corollary A.6 is that the 11 manifolds of
point (A) are precisely the 11 known M ’s with e(M) � 7, and they are
conjectured [19] to be the only ones. Moreover,

• precisely two of the 11 manifolds are knot complements, namely N21 =
N(1, 2), the complement of the figure-8 knot, and M37 (obtained in
six different ways as a filling of N), the complement of the (−2, 3, 7)
pretzel knot;

• all the 11 manifolds, except M37 and M410 = N(2, 2), are fillings of
the Whitehead link; M37 is a filling of any of the four manifolds in
table A.1 except the Whitehead link; M410 is not a filling of any of
these manifolds.

Turning to the M ’s with e(M) = 6 in Corollary A.6, we note that point
(B) of course gives infinitely many examples, described in detail in tables
A.5–A.8, according to which one of the four manifolds in table A.1 they are a
filling of. The captions of tables A.6–A.8 should be interpreted as shortened
versions of the caption of table A.5.

Remark A.7. There are 67 hyperbolic manifolds with complexity at most
4, see [6]. Using SnapPea, one sees that 60 of them are fillings of N , while
the other seven, namely M4i for i ∈ {33, 34, 40, 41, 45, 51, 52}, do not seem
to be. Since M4i is amphicheiral for i ∈ {33, 34, 51, 52}, Proposition 2.9
shows it is certainly not a filling of N in these cases, but we do not know
for i ∈ {40, 41, 45}.
Automorphisms. We can now prove Theorem 1.7 and Proposition 2.9.
We start with the following.

Theorem A.8. Let M be a hyperbolic N(α) or N(α, β), and let f be an
automorphism of M which leaves a component T of ∂M invariant. Then
f acts on H1(T ) as the multiplication by ±1, except when M and f are as
described in Proposition 1.5.
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Proof. We begin by noting that f acts on the slopes on T , and it leaves
ET (M) invariant. Since ET (M) contains more than two slopes, the action
on ET (M) is trivial if and only if the action on H1(T ) is the multiplication
by ±1. We suppose now that the action of f on ET (M) is not trivial, and
examining the various possibilities for ET (M) and the number of cusps of
M , we deduce either a contradiction or that the action of f is as described
in Proposition 1.5.

To begin, we note that the action of f on ET (M) must preserve the
filled manifolds and can have at most two fixed points. Using also the fact
that |ET (M)| � 5, we deduce that, among the non-hyperbolic fillings of M ,
either there is at least one appearing at least three times, or there are at
least two appearing at least twice each. If e(M) > 6, tables A.2–A.4 show
that this happens only for N(1, 2) and N(1,−4), and the action of f is given
by relations (1.5) and (1.6), respectively. If e(M) = 6 and M has two cusps,
then M is one of the four manifolds listed in table A.1, and the action of f
is given by one of the relations (1.2)–(1.4).

Assume now e(M) = 6 and M has one cusp. By Corollary A.6, M is
one of the manifolds listed in tables A.5 to A.9. It cannot be one of those
in table A.9 because in this table the same filling never appears more than
once. The other cases are discussed as follows:

• if M appears in table A.5 or A.8, we have E(M) = {∞, a − 2, a −
1, a, a + 1, a + 2} for a = −1 or a = −2, respectively. Since ∞ is the
only slope with distance 1 from all other ones in E(M), it is fixed by
f . The action is then given by a + n → a − n, but one sees quite easily
that M(a − 2) is never equal to M(a + 2): a contradiction;

• if M appears in table A.6, one sees that f is the unique non-trivial
symmetry of the set E(M) = {∞,−3,−5/2,−2,−1, 0}, which inter-
changes ∞ and −2. But L(3r+2s, r+s) never equals L(4r+11s, r+3s): a
contradiction;

• if M appears in table A.7, one sees that f permutes non-trivially each
set {−2,−1,∞} and {−3,−3/2, 0}. The three lens spaces M(∞),
M(−2) and M(−1) are distinct except for r/s ∈{−2/5,−11/3,−13/8},
but in each of these cases (which give the cosmetic example found in [4]
and mentioned in Section 1.2), the manifolds M(−3), M(−3/2) and
M(0) are distinct, giving a contradiction.

We are left to discuss the case where e(M) = 5, so ET (M) = {∞,−3,−2,
−1, 0}, and f is the unique non-trivial symmetry of ET (M), which fixes ∞
and maps n to −3 − n. With some effort, one checks from tables 1 and 2
that M(0) and M(3) are always distinct.
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Remark A.9. If M = N(α, β), then the assumption f(T ) = T is empty.
If M = N(α), there exists τ : M → M switching the components of ∂M ; so
either f or τ ◦ f satisfies the assumption.

Proof of 2.9. Let M be amphicheiral and let τ : M → M be orientation-
reversing. Since the components of ∂M are symmetric, we can assume τ
leaves them invariant. If T ⊂ ∂M , then τ acts on H1(T ) as a matrix with
determinant −1, in particular not as multiplication by ±1. Then M and
τ appear in Proposition 1.5. And the only orientation-reversing automor-
phisms in this proposition are those giving (1.4)–(1.6). �
Proof of 1.7. If M = N , then α, β �∈ {∞,−3,−2,−1, 0} because the fillings
listed in Theorem 1.1 are all distinct. Then N(α) = N(β) is hyperbolic.
If e(N(α)) = 6, by Corollary A.2 we have {α, β} = {−4,−3/2}, and the
homeomorphism is the orientation-reversing (1.1). Assume e(N(α)) = 5,
and so E(N(α)) = E(N(β)) = {∞,−3,−2,−1, 0}, and let f : N(α) → N(β)
be the homeomorphism. Note that f acts on {∞,−3,−2,−1, 0}. As in the
previous proof, ∞ is the only exceptional slope having distance 1 from all
other ones, and so f(∞) = ∞. Then f(n) is either n or −3 − n, and so
either N(α, n) = N(β, n) for n = −3,−2,−1, 0 or N(α, n) = N(β,−3 − n)
for n = −3,−2,−1, 0, but table 1 easily allows us to conclude that this is
impossible for α �= β.

Suppose now M = N(γ). If M(α) = M(β) is not hyperbolic, then α, β
are found by examining the repetitions in the fillings in table 1 and dis-
missing the pairs related by the automorphisms of Proposition 1.5. The
resulting pairs are precisely those of table 5. Of these pairs, those giving
as a filling the solid torus, which is amphicheiral, are both truly and reflec-
tively cosmetic. In the other cases, the filling is chiral, and so the pair
cannot be both truly and reflectively cosmetic. For γ ∈ {−12/5,−6,−4/3},
we now explain how to determine the type of the pair α, β by examin-
ing the fillings of M(α) = M(β). In fact, using on ∂M(α) = ∂N(γ, α)
and ∂M(β) = ∂N(γ, β) the homology bases induced by N , we will have
M

(
α, t/u

)
= M

(
β, (at + bu)/(ct + du)

)
for some

(
a b
c d

)
∈ GL2(Z), and the

pair α, β is truly or reflectively cosmetic depending on whether det
(

a b
c d

)
is

+1 or −1. For instance, for γ = −4/3, we have from table 2

M

(
−3, =

t

u

)
= N

(
−3,−4

3
,
t

u

)
=

(
S2, (2, 1), (5, 2), (t+u, u)

)

M

(
−1,

t

u

)
= N

(
−1,−4

3
,
t

u

)
=

(
S2, (2, 1), (5, 2), (t+3u, −t−4u)

)
,

whence
(

a b
c d

)
= ±

(
4 7

−1 −2

)
, and so −3,−1 are reflectively cosmetic.
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To conclude, we are left to show that M(α) = M(β) cannot be hyper-
bolic. Assume first e(M(α)) > 6, and so M(α) appears in one of the tab-
les A.2–A.4. By construction, the manifolds listed in these tables are distinct
and appear with all their possible presentations as fillings of N . Whenever
multiple presentations exist, one sees they are related by the symmetries of
Proposition 1.5, and so α and β are equivalent.

Suppose now e(M(α)) = 6, and so M(α) appears in one of the tab-
les A.5–A.9. Each manifold in table A.9 has a unique presentation as a filling
of N , and so M(α) cannot appear there. If M(α) appears in table A.5, so
γ = 1, the only filling of M(α) admitting a non-separating torus is M(α, 1),
and the topological type of M(α, 1) determines α, whence α = β, a con-
tradiction. If M(α) appears in table A.8, the only non-trivial symmetry
of E(M(α)) is t/u → −t/u − 4, and so either M(α, t/u) = M(β, t/u) or
M(α, t/u) = M(β,−t/u − 4) for all t/u. Looking at table A.8 itself, one
easily sees that the former equality is impossible for α �= β. If the lat-
ter equality holds, using (1.3) we get a slope β′ equivalent to β such that
M(α, t/u) = M(β,−t/u − 4) = M(β′, t/u), giving α = β′ for what just said.
Hence, α and β are equivalent, a contradiction. A similar argument applies
if M(α) appears in table A.6 or A.7.

If e(M(α)) = 5, then N(γ, α, δ) = N(γ, β, h(δ)), where h leaves {∞,−3,
− 2,−1, 0} invariant; so either h(δ) = δ or h(δ) = −3 − δ. With a little
patience, one sees from table 2 that the latter possibility is actually absurd,
while the former implies that α = β. �

A.2. Distance between exceptional slopes

As stated in the Introduction, the maximal distance Δ(X0, X1) of excep-
tional slopes giving manifolds of some types X0 and X1 in {S, D, A, T, SH ,
TH , Z} is known for most cases when both X0, X1 are not Z. It turns out
that the partial fillings of our chain-link complement N allow us to realize
many values of Δ(X0, X1), as summarized in table A.10 and shown below.
For this reason, we think that most of the lower bounds for Δ(X, Z) stated
in the Introduction (and shown below) should be optimal.

Table A.11 describes some notable families of hyperbolic manifolds
obtained from N by filling one or two cusps. It gives the topological type
of the fillings of these manifolds along the exceptional slopes ∞, −3, −2,
−1 and 0. The table easily allows us to prove most of the lower bounds
Δ(X0, X1) stated in table A.10 and in the Introduction. The remaining
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Table A.10: Known or conjectured values of Δ(X0, X1) shown in boldface,
and best lower bounds realized by fillings of N shown between brackets.

S D A T SH TH

S 1 (� 0) 0 (� −∞) 2 (� −∞) 3 (3) −∞ ? (� −∞) 1 (1)

D 1 (1) 2 (2) 2 (2) — —

A 5 (5) 5 (5) — —

T 8 (8) 2 (2) 3? (� 3)

SH 0 (0) 1 (1)

TH 1 (1)

Every known Δ(X0, X1) with X0, X1 �= S is realized.

bounds are given by the Whitehead sister link and figure-8 knot exteriors
N(−3/2) and N(1, 2), see tables A.1 and A.2.

Some of the filled manifolds of table A.11 are noteworthy and partic-
ularly easy to describe. All boundary-reducible (D-type) manifolds in the
first row are equal to the solid torus. The reducible (S-type) manifold in
the second row is always RP3#L(3, 1). The lens spaces (TH -type) in row 2,

Table A.11: Exceptional fillings of some families N(α) or N(α, β) of cusped
hyperbolic manifolds constructed from N .

∞ −3 −2 −1 0

N(−2 + 1/n) D A, T D A A, T

N(n, −4 − n) TH T Z Z S

N(n, −4 − n + 1/k) TH T Z Z TH

N(−3 + 1/n, (±(3n + 1) + k(6n − 1))/
(∓n − k(2n − 1))) TH T Z SH T

N(−2 + 1/n, (kn ± 1)/(k − 2(kn ± 1))) SH T TH Z T

N(−1 + 1/n, −1 − 1/n) SH TH Z Z T

N(−5/2, β) TH T TH TH T

The parameters n, k ∈ Z and β ∈ Q vary in the complement of a finite set in Z
or Q.
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row 3 last column and row 6 are, respectively, L(n2−4n−1, n), L(6k−1, 2k−1)
and L(4n2+3, 2n2+n+2). Note that the only SH -manifold is S3.

Most of the families shown in Table A.11 have already appeared else-
where: the first row consists of some complements of 1-bridge braids in the
solid torus, classified by Berge [2] and Gabai [12, 13], the third row proba-
bly shows a family already found by Gordon [14] and the fourth row must
consist of the Eudave–Muñoz knot complements [9] by a result of Gordon
and Luecke [16]. Finally, we do not know whether the fifth and sixth rows
give rise to Berge knots, as conjectured in [19].
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Università di Pisa

Largo Bruno Pontecorvo, 5

56127 Pisa

Italy

E-mail address: martelli@mail.dm.unipi.it

Dipartimento di Matematica Applicata

Università di Pisa
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