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Harmonic mean curvature flow on surfaces of
negative Gaussian curvature

Panagiota Daskalopoulos and Richard Hamilton

We consider the evolution of a surface of revolution with boundary
Σ(t) in R

3 by the harmonic mean curvature flow (HMCF) where
each point P moves in the normal inward direction with velocity
equal to the harmonic mean curvature of the surface. We assume
that the principal eigenvalues λ1 and λ2 of the initial surface have
opposite signs, namely K = λ1 λ2 < 0, while H = λ1 + λ2 < 0. We
show that there exists a time T0 > 0 for which the (HMCF ) admits
a unique solution Σ(t) up to T0 such that H < 0 for all t < T0 and
H̃(·, T0) ≡ 0 on some set of sufficiently large measure. In addition,
the boundary of the surface evolves by the curve shortening flow.

1. Introduction

We consider the evolution of a surface Σ(t) in R
3 by the harmonic mean

curvature flow (HMCF)
∂P

∂t
=

K

H

→
N,

where each point P moves in the inward direction
→
N with velocity equal

to the harmonic mean curvature of the surface, namely the quotient K/H
of the Gaussian curvature K of the surface over the its mean curvature
H. Denoting by λ1, λ2 the two principal curvatures of the surface, we may
express the harmonic mean curvature K/H of the surface as

K

H
=

λ1λ2

λ1 + λ2
=

1
λ−1

1 + λ−1
2

.

The evolution of a strictly convex surface Σ(t) under the HMCF has
been studied by Andrews [1, 2], where existence and convergence to a round
sphere was shown. The existence for weakly convex surfaces with H > 0 has
been shown by Diater [3].

In this work, we will consider the case where the principal eigenvalues λ1
and λ2 have opposite signs, namely K = λ1λ2 < 0. We will restrict ourselves
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to surfaces of revolution r = f(x, t) around the x-axis. For such a surface of
revolution, the two principal curvatures are given by

λ1 = − fxx

(1 + f2
x)3/2 and λ2 =

1
f(1 + f2

x)1/2 .

Hence,

H = λ1 + λ2 =
−f fxx + f2

x + 1
f(1 + f2

x)3/2

and

K = λ1λ2 =
−fxx

f(1 + f2
x)2

.

When the surface r = f(x, t) evolves by the HMCF, the function f
evolves by the fully nonlinear equation

(1.1)
∂f

∂t
=

fxx

−ffxx + f2
x + 1

.

We will consider solutions of (1.1) on the interval I = [0, 1] such that

(1.2) f > 0 and fxx > 0 on I

and

(1.3) H̃ = −f fxx + f2
x + 1 < 0 on I.

Under the above assumptions ft ≤ 0, which makes f to decrease, i.e.,
the surface of revolution shrinks. Equation (1.1) becomes singular when the
denominator H̃ first becomes zero, i.e., when the mean curvature H of the
surface becomes zero. We will show in this paper that if the initial surface
satisfies conditions (1.2) and (1.3) and the boundary growth condition

(1.4) c ≤ x2−p(1 − x)2−pfxx ≤ C, 0 < x < 1

for some number 0 < p < 1 and some constants c > 0 and C < ∞, then there
exists a time T0 > 0 where first H̃ = 0 while conditions (1.2) and (1.4) hold
on 0 ≤ t ≤ T0. In addition, we will show that there exists a constant l0 > 0,
depending on the initial surface, such that H̃(·, T0) ≡ 0 on some interval I0
of length |I0| ≥ l0.
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Under the growth assumptions (1.4), the equation becomes degenerate
at the boundary points xi = 0, 1. As a consequence, f(xi, t) satisfy

(1.5) ft(xi, t) = − 1
f(xi, t)

, at xi = 0, 1

i.e., the boundary of the surface of revolution z = f(r, t) moves by the curve
shortening flow.

To understand better the behavior of Equation (1.1) let us linearize the
equation around a point f . We obtain the equation

(1.6) f̃t =
1 + f2

x

H̃2
f̃xx − 2 fx fxx

H̃2
f̃x +

f2
xx

H̃2
f̃

with H̃ = −f fxx + f2
x + 1.

We observe that the principal coefficient of the linearized equation is
non-negative independently of the sign of H̃ and fxx, i.e., independently
of the sign of the mean curvature H and the Gaussian curvature K of
the surface of revolution. This property distinguishes the HMCF from
other previously studied geometric flows, such as the Gauss curvature flow,
which becomes backwards parabolic at points of negative Gaussian
curvature.

Also, if f satisfies conditions (1.2)–(1.4), all the coefficients of Equa-
tion (1.6) are bounded on I and the principal coefficient is bounded away
from zero in the interior of I. However, the equation becomes degenerate at
the boundary points xi = 0, 1 and takes the degenerate form

(1.7) f̃t = (x − xi)2a(x, t)f̃xx + (x − xi)b(x, t)f̃x + c(x, t)f̃ ,

where all coefficients a, b, c are bounded on I and a is bounded away from
zero on I. Hence, near the boundary points xi = 0, 1, the evolution is
governed by the hyperbolic metric ds2

i = dx2/(x − xi)2.
For 0 < α < 1, let us denote by Cα

s (I) the set of all Hölder continuous
functions on I with respect to a fixed metric ds2 which is equivalent to
ds2

i = dx2/(x − xi)2 near the boundary points xi = 0, 1 while it is equivalent
to the standard metric in the interior of I.

Also, for 0 < p < 1, let us define C2+α,p
s (I) to be the space of all functions

g on I such that

|x − xi|−p(g − g(xi)), |x − xi|1−pgx, |x − xi|2−pgxx ∈ Cα
s
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with xi = 0, 1. Also, for T > 0, we set QT = I × [0, T ] and we define
C2+α,p

s (QT ) to be the space of all functions g on QT such that g̃i(x, t) =
g(x, t) − g(xi, t), xi = 0, 1 satisfies

|x − xi|−pg̃i, |x − xi|−pg̃i
t, |x − xi|1−pg̃i

x,

|x − xi|2−pg̃i
xx ∈ Cα

s (QT ),

where Cα
s (QT ) denotes the space of Hölder continuous functions on QT

with respect to the parabolic distance d̄s2 = ds2 + |dt|. Finally, for k ≥ 2,
0 < p < 1, we define Ck,p(QT ) to be the space of all functions g ∈ C0(QT )
on QT such that g̃i(x, t) = g(x, t) − g(xi, t), xi = 0, 1, satisfies

xj−p(1 − x)j−p|Dl
tD

j
xg̃i| ≤ C, 1 ≤ 2l + j ≤ k

on QT , and we set

C∞,p(QT ) = ∩kC
k,p(QT ).

The main result in this paper states as follows:

Theorem 1.1. Assume that at time t = 0, Σ is a surface of revolution r =
f(x, 0), with f(·, 0) ∈ C2+α,p

s (I) for some 0 < α, p < 1 and satisfies condi-
tions (1.2)–(1.4). Then, there exists a time T0 > 0 for which the HMCF (1.1)
admits a unique solution f ∈ C2,p(QT0) on QT0 = I × [0, T0] such that H̃ =
−f fxx + f2

x + 1 < 0 for all t < T0 and H̃(·, T0) ≡ 0 on some interval I0 ⊂
[0, 1] of length

|I0| ≥ l0,

with l0 > 0 depending on the initial data. In addition, f ∈ C∞,p(QT ) for all
T < T0, and it satisfies the boundary condition (1.5).

In Section 2, we will establish the short-time existence of the HMCF
for a surface of revolution under the initial assumptions of Theorem 1.1. In
Section 3, we will establish the short-time C∞,p regularity of the solution.
We will also show that the area of the surface remains constant under the
flow. In Section 5, we will show that the flow exists and it is smooth up to
the time T0 where H̃ first reaches zero. This result will be based on sharp
a priori derivative bounds up to T0, which will be established in Section 4.
Finally, in Section 6, we will show that H̃(·, T0) ≡ 0 on an interval I0 ⊂ I of
sufficiently large length.
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2. Short-time existence and uniqueness

In this section, we will establish the short-time existence for Equation (1.1)
under the initial assumptions of Theorem 1.1 as stated in the following
result.

Theorem 2.1. Assume that at time t = 0, Σ is a surface of revolution r =
f(x, 0), with f(·, 0) ∈ C2+α,p

s (I) for some 0 < α, p < 1. In addition, assume
that f(·, 0) satisfies conditions (1.2)–(1.4). Then, there exists τ0 > 0 for
which the HMCF (1.1) admits a unique solution f ∈ C2+α,p

s (Qτ0) on Qτ0 =
I × [0, τ0], which satisfies conditions (1.2)–(1.5).

The short-time existence for the highly degenerate HMCF on weakly con-
vex surfaces with flat sides was recently shown by Caputo and Daskalopou-
los [4], without the assumption of radial symmetry. Since the equation
becomes degenerate on the flat side, similar boundary conditions to (1.2)–
(1.4) need to be imposed near the flat side. The boundary of the flat side
evolves by the curve shortening flow as well.

To simplify the computations and the notation, we will assume that
f(0, t) = f(1, t), at t = 0, which will imply that

f(0, t) = f(1, t) = d(t), ∀t < T0

once we show that f(xi, t), xi = 0, 1 evolve by (1.5). This assumption is
only technical and can be easily removed.
Local change of coordinates. Since we expect the linearized Equation (1.6)
to be of the form (1.7), we introduce near the boundary point x = 0 the
change of variables

h(z, t) = f(x, t) − f(0, t), z = log x.

Then z → −∞, as x → 0. Denoting by d(t) = f(0, t) and using the equation
d′(t) = −1/d(t) (as implied by (1.5)) we find by direct computation that h
satisfies the equation

(2.1) ht =
hzz − hz

e2z + h2
z − (h + d(t)) (hzz − hz)

+
1

d(t)
.

The linearized equation around a point h is

(2.2) h̃t = α(h, z)h̃zz + β(h, z)h̃z + γ(h, z)h̃
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with

α(h, z) =
e2z + h2

z

(e2z + h2
z − (h + d(t))(hzz − hz))2

(2.3)

β(h, z) =
−e2z + h2

z − 2 hz hzz

(e2z + h2
z − (h + d(t)) (hzz − hz))2

(2.4)

γ(h, z) =
(hzz − hz)2

(e2z + h2
z − (h + d(t)) (hzz − hz))2

.(2.5)

We will show that under the assumptions of Theorem 2.1, the linearized
Equation (2.2) is non-degenerate.

Similarly, near the boundary point x = 1, we introduce the change of
variables

h(z, t) = f(x, t) − f(1, t), z = − log(1 − x)

so that this time z → +∞, as x → 1. The function h satisfies this time the
equation

(2.6) ht =
hzz − hz

e−2z + h2
z − (h + d(t))(hzz − hz)

+
1

d(t)
,

and the linearized equation is non-degenerate and similar to (2.2).
For T > 0, we set ST = R × [0, T ] and define the space C2+α,p(ST ) of all

functions h on ST such that epz h ∈ C2+α(ST ) and e−pz h ∈ C2+α(ST ) with
norm

‖h‖C2+α,p(ST ) = ‖epzh‖C2+α(ST ) + ‖e−pzh‖C2+α(ST ).

Similarly, we denote by Cα,p(ST ) the space of all functions h on ST such
that epz h ∈ Cα(ST ) and e−pz h ∈ Cα(ST ) with norm

‖h‖Cα,p(ST ) = ‖epzh‖Cα(ST ) + ‖e−pzh‖Cα(ST ).

Here, C2+α(ST ) denotes the standard space of all functions g such that

g, gt, gz, gzz ∈ Cα(ST )

with respect to the standard parabolic distance.
Global change of coordinates. To prove Theorem 2.1, we need to introduce a
global coordinate change which near the boundary points xi = 0, 1 is equal
to the local coordinate change we introduced above. Let θ be a smooth,
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non-increasing function on [0, 1] such that θ = 1 on 0 ≤ x ≤ e−1 and θ = 0
on 1 − e−1 ≤ x ≤ 1. We set

(2.7) h(z, t) = f(x, t) − d(t), z = θ(x) log x − (1 − θ(x)) log(1 − x).

It is clear that z = log x, x ∈ [0, e−1] and z = − log(1 − x), x ∈ [1 − e−1, 1].
Hence, the function h satisfies Equation (2.1) on z ∈ (−∞,−1] and
Equation (2.6) on z ∈ [1, +∞). On the interval [−1, 1], h satisfies a strictly
parabolic fully nonlinear equation as long as H̃ > 0.

The condition that f ∈ C2+α,p
s (QT ) is equivalent to the condition that

h ∈ C2+α,p(ST ). In terms of the new coordinates, conditions (1.2) and (1.3)
may be expressed

(2.8) h + d(t) > 0 and hzz − hz > 0 on R

and

(2.9) H̃ = −(h + d(t)) hzz + h2
z + e2z < 0 on R,

and while assuming that h ∈ C2+α,p(ST ), condition (1.4) is equivalent to the
non-degeneracy condition

(2.10) (e−pz + epz)(hzz − hz) ≥ μ, ∀z ∈ R

for some number μ > 0.
It follows that the linearized equation around a function h ∈ C2+α,p(ST )

which satisfies conditions (2.8)–(2.10), is of the form

(2.11) wt = α̃(z, t) wzz + β̃(z, t) wz + γ̃(z, t) w

with

(2.12) inf
ST

α̃(z, t) ≥ λ

and

(2.13) ‖α̃‖Cα(ST ) + ‖β‖Cα(ST ) + ‖γ̃‖Cα(ST ) ≤ λ−1

for some number 0 < λ < ∞. Let us denote by L the operator

Lw = wt − [α̃(z, t) wzz + β̃(z, t) wz + γ̃(z, t) w].
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The following result is a consequence of the classical Schauder estimates for
linear parabolic equations.
Proposition 2.2. Assume that w0 ∈ C2+α,p(R) and g ∈ C2+α,p(ST )
for some numbers 0 < α, p < 1. Then, there exists a unique solution w ∈
C2+α,p(ST ) of the initial value problem Lw = g in ST , w(·, 0) = w0,
satisfying

||w||C2+α,p(ST ) ≤ C(T )(||w0||C2+α,p(R) + ||g||Cα,p(ST ))

for any T > 0. The constant C(T ) depends only on the numbers α, p and λ.

Lemma 2.3. Assume that at time t = 0, h(·, 0) ∈ C2+α,p(R), 0 < α, p < 1.
In addition, assume that h0 = h(·, 0) satisfies conditions (2.8)–(2.10). Then,
there exists τ0 > 0 for which the HMCF admits a solution h ∈ C2+α,p(Sτ0)
on Sτ0 = R × [0, τ0].

Proof. For τ > 0, let us denote by M : C2+α,p(Sτ ) → Cα,p(Sτ ) the fully non-
linear operator

M(h) = ht − F (z, t, h, hz, hzz)

with

F (z, t, h, hz, hzz) =
hzz − hz

e2z + h2
z − (h + d(t)) (hzz − hz)

+
1

d(t)
.

It is easy to observe that the linearization

wt = DF (h̃)(w)

around a point h̃ ∈ C2+α,p(Sτ ) satisfies all the hypotheses of Proposition 2.2,
provided that ‖h̃ − h0‖C2+α,p(Sτ ) < δ, with δ sufficiently small, depending on
the initial data.

Hence, combining Proposition 2.2 and the inverse function theorem
between Banach spaces, we conclude that there exists a number τ0 > 0
depending on the initial data, for which the initial value problem

(2.14)

{
ht = F (z, t, h, hz, hzz)

h(z, 0) = h0

admits a solution h in the space C2+α,p(Sτ0), finishing the proof of
the lemma. For more details, we refer the reader to the proof of Theorem 8.5
in [5]. �
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Proof of Theorem 2.1. The existence of the solution f of (1.1) on Qτ0 satis-
fying conditions (1.2)–(1.4) follows directly from Lemma 2.3 by expressing
h back to the original coordinates.

To see that f also satisfies (1.5), one simply takes the limit x → xi on
Equation (1.1), observing that by condition (1.4) (with 0 < p < 1) both fxx

and f2
x tend to infinity as x → xi, while fxx/f2

x → 0.
The uniqueness of such a solution f follows by observing that any two

solutions f1, f2 of (1.1) with the same initial data will coincide at the bound-
ary points xi = 0, 1 for all times 0 ≤ t ≤ τ0, as they satisfy (1.5). Hence, the
classical comparison principle applies in this case. �

3. Higher regularity and area formula

We will establish next the higher regularity of a solution f ∈ C2+α,p(QT ) of
(1.1) up to the boundary, which will be used in the proof of Theorem 1.1.

For 0 < α, p < 1 and k ≥ 2, we define Ck+α,p
s (QT ) to be the space of all

functions g on QT such that

g, |x − xi|j−p Dl
tD

j
xg ∈ Cα

s (QT ), xi = 0, 1, 1 ≤ 2 l + j ≤ k,

where Cα
s (QT ) denotes the space of Hölder continuous functions on QT with

respect to the hyperbolic–parabolic distance d̄s2 = ds2 + |dt| (as defined in
the Introduction).

Proposition 3.1. Assume that f ∈ C2+α,p
s (QT ) is a solution of the HMCF

(1.1) which satisfies conditions (1.2)–(1.4) on QT . Then, f ∈ Ck+α,p
s (QT ),

for any k ≥ 2. Hence, f ∈ C∞,p(QT ).
Proof. The C∞ regularity of f in the interior of the interval I readily follows
by classical regularity theory and conditions (1.2)–(1.4). Hence, we only
need to show the regularity of f near the boundary points xi = 0, 1.

To show the regularity near x = 0, we set

h(z, t) = f(x, t) − d(t), z = log x, d(t) = f(0, t)

and compute, as in the previous section, that h satisfies (2.1). Since h̃ := hz

satisfies (2.2) with coefficients given, in terms of h, by (2.3)–(2.5), and h ∈
C2+α((−∞,−1] × [0, T ]), we conclude that the coefficients of (2.2) satisfy
conditions (2.12) and (2.13). Hence, the regularity e−pz hz ∈ C2+α

((−∞,−1] × [0, T ]) follows by the classical Schauder estimates. By repeating
differentiating Equation (2.2) in z and applying the same argument, we prove
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that e−pzDk
zh ∈ C2+α((−∞,−1] × [0, T ]), ∀k > 0. Similarly, we show that

h(z, t) = f(x, t) − d̃(t), z = − log(1 − x), d̃(t) = f(1, t)

satisfies epzDk
zh ∈ C2+α([1, +∞) × [0, T ]). The regularity in t follows from

the regularity in z through Equation (2.1). Translating back to the vari-
able x, we easily conclude that f ∈ Ck+α

s (QT ), for all k ≥ 2, as desired. �
Combining Theorem 2.1 and Proposition 3.1 gives:

Theorem 3.2. Assume that at time t = 0, Σ is a surface of revolution r =
f(x, 0), with f(·, 0) ∈ C2+α,p

s (I) for some 0 < α, p < 1. In addition, assume
that f(·, 0) satisfies conditions (1.2)–(1.4). Then, there exists τ0 > 0 for
which the HMCF (1.1) admits a unique solution f ∈ C∞,p(Qτ0) on Qτ0 =
I × [0, τ0], which satisfies conditions (1.2)–(1.5).

We finish this section with the additional observation that the area of
the surface of revolution r = f(x, t) remains constant under the HMCF.

Proposition 3.3. Assume that f ∈ C∞,p(QT ) is a solution of the HMCF
(1.1) on QT for some T > 0, which satisfies conditions (1.2)–(1.5). Then,
the area

A(t) =
∫ 1

0
f

√
1 + f2

x dx

of the surface r = f(x, t) remains constant under the flow.

Proof. We will show that
dA(t)

dt
= 0

by a direct computation. Set R = arctan fx. A direct computation shows
that R evolves by

Rt =
(Rxx + R2

x tanR) cos2 R

(1 − Rx f)2
.

Hence
∂(f sec R)

∂t
=

Rxx f sin R + Rx sec R − R2
x f cos R

(1 − Rx f)2
.

Observing that

∂

∂x

(
sin R

1 − Rx f

)
=

Rxx f sin R + Rx sec R − R2
x f cos R

(1 − Rx f)2
,
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we conclude

dA(t)
dt

=
d

dt

∫ 1

0
f sec R dx =

∫ 1

0

∂

∂x

(
sin R

1 − Rx f

)
dx.

To conclude the proof, we need to show that

sin R

1 − Rx f
= 0, at x = 0, 1.

To this end, we use the formula

−f fxx + f2
x + 1 = (1 − Rx f) sec2 R

and (1.1) to compute that

sin R

1 − Rx f
= f

(
ft +

1
f

)
sin R.

Since ft = −1/f at xi = 0, 1, by (1.5), and sinR = −π/2 at x = 0 and
sin R = π/2 at x = 1, the desired equality follows, finishing the proof. �

4. A priori derivative bounds

Throughout this section, we will assume that f ∈ C∞,p(I × [0, T0)) is a stric-
tly convex positive solution of the HMCF (1.1) with strictly negative mean
curvature H(x, t) < 0 and that it satisfies the non-degeneracy condition

(4.1) x2−p(1 − x)2−p fxx(x, t) ≥ c(T ) > 0, on QT = I × [0, T ]

for every 0 < T < T0. We show uniform derivative bounds up to T0 as stated
next.

Theorem 4.1. Assume that f ∈ C∞,p(I × [0, T0)) is a solution of the
HMCF (1.1) satisfying

(4.2) H̃ = −f fxx + f2
x + 1 < 0 on I × [0, T0)

and the non-degeneracy condition (4.1). Then, there exist constants C0 < ∞
and c0 > 0, depending only on the initial data, such that f satisfies the uni-
form derivative bounds

(4.3) x1−p(1 − x)1−p |fx| ≤ C0 and x2−p(1 − x)2−p fxx ≤ C0
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and the non-degeneracy condition

(4.4) x2−p(1 − x)2−p fxx ≥ c0

on QT0.

We begin by estimating infQT0
f in terms of ‖f(·, 0)‖L∞(I). This, in

particular, shows that a neck-pinch cannot occur.

Proposition 4.2. Under the assumptions of Theorem 4.1, there exists a
constant β0 > 0, depending only on ‖f(·, 0)‖L∞(I), such that

(4.5) f(x, t) ≥ β0, ∀(x, t) ∈ QT0 .

Proof. Fix 0 < t < T0. The proof only uses that F = f(·, t) is a continu-
ous function on I = [0, 1], smooth in its interior, which satisfies inequal-
ity (4.2). We will compare F with the minimal surfaces of revolution
φ(x) = θ−1 cosh (θ (x − x0)) centered at the minimum point x0 of F . We
chose θ−1 = F (x0) so that φ(x0) = F (x0). We observe that the inequality
H̃ = −f fxx + f2

x + 1 < 0 implies the derivative bound

d

dx

(
1 + F ′2

F 2

)
=

2 F ′

F 3 (F F ′′ − F ′2 − 1) > 0

so that (
F (x0)
F (x)

)2

(1 + F ′(x)2) > 1

provided x > x0 (or equivalently F ′(x) > 0). Hence

d

dx

(
F (x0) arcosh

F (x)
F (x0)

)
> 1,

which yields the inequality

F (x) > θ−1 cosh(θ(x − x0)), x0 < x < 1

since θ−1 = F (x0). The same argument also gives the inequality for
0 < x < x0, finishing the proof of the proposition. �

The following simple first-order derivative upper bound will be used in
the sequel.
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Lemma 4.3. Under the assumptions of Theorem 4.1, we have

(4.6) x (1 − x) |fx| ≤ ‖f‖L∞(QT0 ), on QT0 .

Proof. We will estimate from above −x fx and (1 − x)fx on QT0 using the
inequality −f fxx + f2

x + 1 < 0. Set X = −x fx(·, t), for 0 < t < T0. The
maximum of X on I cannot occur at the boundary of I, as X = 0 at x = 0
and X < 0 near x = 1. At an interior maximum point x0, Xx = 0, i.e.,
x fxx = −fx. Hence,

f2
x < f fxx =

−f fx

x

at x0, readily implying that X < f at x0. The bound on (1 − x) fx can be
shown similarly. �

Lemma 4.4. Under the assumptions of Theorem 4.1, there exists a con-
stant C0 > 0 such that

(4.7) x1−q (1 − x)1−q |fx| ≤ C0, on QT0

for any 0 < q < p.

Proof. Fix 0 < q < p. From the previous lemma, it is enough to estab-
lish the bound (4.7) near the boundary points xi = 0, 1. Set G = −1/fx

and fix T < T0. We will show that G ≥ c0 x1−q on Qδ
T = [0, δ] × [0, T ], for

δ, c0 > 0 sufficiently small, both independent of T , by comparing with
explicit sub-solutions.

A direct computation shows that G satisfies the evolution equation

(4.8) Gt =
G2 (1 + G2) Gxx − G (1 + 2G2) G2

x

(1 + G2 − f Gx)2
.

Defining φ(x, t) = α(t) x1−q, one easily computes that

(4.9) φt <
φ2 (1 + φ2) φxx − φ (1 + 2φ2) φ2

x

(1 + φ2 − f φx)2
,

provided

(4.10) α′(t) < − α(t)3 (1 − q) ((2 − q) α(t)2 x2 + x2q)
(α(t)2 x2 + x2q − (1 − q) f(x, t) α(t)xq)2

.
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Since 0 < c ≤ f(x, t) ≤ C on I × [0, T0), there exist constants M < ∞ and
δ > 0 such that inequality (4.10) holds, provided

α′(t) < −M α(t), on Qδ
T = [0, δ] × [0, T ],

in particular, if α(t) = α0 e−(M/2)t, with α0 > 0. Hence, φ(x, t) = α0 e−(M/2)t

x1−q satisfies (4.9). Since f(·, 0) ∈ C2+α,p
s (I), we may choose α0 > 0, suf-

ficiently small, such that G > φ on (0, 1] at t = 0. Also, by the previous
Lemma, G(δ, t) > φ(δ, t), ∀t < T0 if α0 > 0 is chosen sufficiently small. Since,
in addition x1−p |fx| ≤ C(T ) on Qδ

T (because f ∈ C∞,p(I × [0, T ])), there
exists μT with 0 < μT < δ such that G > φ on (0, μT ] × [0, T ]. Hence, the
classical maximum principle shows that G > φ on Qδ

T . Since T is arbi-
trary, we conclude that G ≥ c0 x1−q with c0 = α0 e−(M/2)T0 on [0, δ] × [0, T0),
implying the desired bound x1−q |fx| ≤ c−1

0 . The bound near the boundary
point x = 1 can be obtained similarly. �

We will next establish the following sharp first-order derivative upper
bound.

Lemma 4.5. Under the assumptions of Theorem 4.1, there exists a con-
stant C0 > 0 such that

(4.11) x1−p (1 − x)1−p |fx| ≤ C0, on QT0 .

Proof. We only need to show the bound (4.11) near the boundary points
xi = 0, 1, since the interior bound follows from Lemma 4.3. Let us show
the bound near x = 0 by estimating F = −x1−p fx > 0 from above. The
bound near x = 1 can be shown similarly. Because the equations become
non-degenerate when introducing the variable z = log x (as seen in previous
sections), we set

h(z, t) = f(x, t) − d(t), z = log x, d(t) = f(0, t)

and estimate F in the new variable z namely

G = −e−pz hz.

Fix T < T0. We will show that G ≤ C0 (with C0 independent of T ) on Sδ
T =

(−∞,−δ] × (0, T ), provided δ is sufficiently large. A direct computation
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shows that G satisfies the evolution equation

(4.12) Gt = α(z, t) Gzz + β1(z, t) Gz + β2(z, t) G2
z + L, on Sδ

T

with
(4.13)

α =
e2z + e2pz G2

D2 , β1 =
−e2pz G2 + e2z (−3 + 2p)

D2 , β2 =
−e2pz G

D2

and

(4.14) D = e2z + e2pz G2 + epz [Gz − (1 − p) G] (h + d).

The lower order term L is given explicitly in terms of G by

(4.15) L =
(1 − p) [e2pz G2 + (2 − p) e2z]

[e2z + e2pz G2 + epz [Gz − (1 − p) G] (h + d)]2
.

Setting β = β1 + Gz β2, we conclude that

(4.16) Gt = α(z, t) Gzz + β(z, t) Gz + L, on Sδ
T .

The coefficients α, β satisfy the conditions

(4.17) ‖α‖C2(Sδ
T ) + ‖β‖C1(Sδ

T ) ≤ λ(T, δ)−1 < ∞

and

(4.18) α(z, t) ≥ λ(T, δ) > 0, on Sδ
T .

In addition,

(4.19) ‖G‖C∞(Sδ
T ) ≤ C(T ) < ∞

since f ∈ C∞,p(I × [0, T ]), by assumption. We will use (4.16) and the clas-
sical comparison principle to estimate G from above on Sδ

T . First, choose
δ sufficiently large so that G(−δ, t) ≤ C0 on 0 < t < T0 (which is possible
from the previous lemma) and also G(z, 0) ≤ C0 on (−∞, δ). Let

M =
8

(1 − p) β2
0

with β0 as in Proposition 4.2 and set G̃ = G − (M t + C0) with C0 chosen,
as above, so that G̃ < 0 on the parabolic boundary of the cylinder Sδ

T . The
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differential inequality (4.16) implies that

(4.20) G̃t ≤ α(z, t) G̃zz + β1(z, t) G̃z + L − M, on Sδ
T .

Let

m(t) = sup{ G̃(z, t), z ∈ (−∞,−δ]}.

If m(t) first becomes zero at an interior point x0(t) ∈ (−∞,−δ), then at this
point where G̃ = 0 and G̃z = Gz = 0, we have

L =
(1 − p) [e2pz G2 + (2 − p) e2z]

[e2z + epz G(epz G − (1 − p) (h + d))]2
.

By Proposition 4.2, h + d = f ≥ β0. Hence, it follows from the previous
lemma that e2pz G2 + (2 − p) e2z ≤ 2 e2pz G2 and [e2z + epz G (epz G − (1 −
p) (h + d))]2 ≥ [(1 − p) β0 epz G]2/4 on Sδ

T , if δ is chosen sufficiently large,
independent of T . We conclude that at the maximum point x0(t)

L ≤ 8
(1 − p) β2

0
= M,

implying that

m′(t) ≤ α(z, t) G̃zz + β1(z, t) G̃z ≤ 0.

In the case that G̃(·, t) achieves it supremum at z = −∞, similar arguments
can be applied to show that m′(t) ≤ 0. This is because in that situation,
there exists a sequence zi → −∞ such that G(zi, t) → m(t) and

lim
zi→−∞

G̃z(zi, t) = 0 and lim
zi→−∞

G̃zz(zi, t) ≤ 0.

We conclude from the discussion above that G ≤ M T + C0 on Sδ
T , finishing

the proof of the lemma. �

It is easy to observe (and it is left to the reader) that under the assump-
tions of Theorem 4.1, the non-degeneracy condition (4.1) implies the lower
bound

(4.21) lim inf
|x−xi|→0

|x − xi|1−p |fx|(x, t) ≥ c(T ) > 0, on 0 ≤ t ≤ T

at xi = 0, 1, for all 0 < T < T0.
Actually, this bound is uniform up to T0, as stated next.
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Lemma 4.6. Under the assumptions of Theorem 4.1, there exists a con-
stant c0 > 0 such that

(4.22) lim inf
|x−xi|→0

|x − xi|1−p |fx|(x, t) ≥ c0, on 0 ≤ t ≤ T0

at the boundary points xi = 0, 1.

We will first show that the graph of f cannot turn horizontal at the
boundary points xi = 0, 1 at time T0.

Lemma 4.7. Under the assumptions of Theorem 4.1, there exist η > 0 and
two points 0 < X1 < X2 < 1 such that

(4.23) fx(X1, t) ≤ −η and fx(X2, t) ≥ η, on 0 ≤ t ≤ T0.

Proof. It is clear from (4.21) that for all points Xi sufficiently close to the
boundary points xi = 0, 1, we have

fx(X1, t) ≤ −η(T ) and fx(X2, t) ≥ η(T ), on 0 ≤ t ≤ T

for all 0 < T < T0. Hence, we only need to show (4.23) near t = T0. To this
end, we will construct smooth, strictly convex upper barriers ψi(x, t) on QT0

with
ψ0

x(0, T0) < 0 and ψ1
x(1, T0) > 0

and such that

f ≤ ψi, on QT0 , f(xi, t) = ψi(xi, t), 0 ≤ t < T0.

We will construct ψ = ψ0, the construction of ψ1 is similar. Let θ > 0 and
0 < x0 < 1 be two constants to be determined in the sequel. We consider
the solution

φ(x) =
eθ(x−x0) + e−θ(x−x0)

2θ

of −φ φ′′ + φ2 + 1 = 0, and for ε > 0, we set

ψε(x, t) = φ(x) − φ(0) + d(t) + ε

with d(t) = f(0, t). A direct computation shows that ψε satisfies

ψt ≥ ψxx

−ψ ψxx + ψ2
x + 1

,
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provided

d′(t) ≥ 1
φ(0) − d(t) − ε

.

Since d′(t) = −1/d(t) (as shown in (1.5)), the last inequality holds, provided
ε < φ(0) < d(t). By definition,

ψε(0, t) = d(t) + ε > f(0, t), t ≤ T0.

Also, by choosing θ sufficiently small and x0 > 0 sufficiently close to zero,
depending only on ‖f(·, 0)‖C2+α,p(I), we can make:

(i) ψε(x, 0) > f(x, 0) on I,

(ii) ψε(1, t) > f(1, t) on 0 ≤ t ≤ T0 and

(iii) φ(0) < d(T0) ≤ d(t) on 0 ≤ t ≤ T0.

We conclude, by the maximum principle, that ψε(x, t) ≥ f(x, t) on QT0 .
Letting ε → 0, we obtain the estimate

ψ(x, t) ≡ φ(x) − φ(0) + d(t) ≥ f(x, t).

The lemma now follows from the observation that

ψx(0, t) = φx(0) =
e−θx0 − eθx0

2
< 0.

�

Proof of Lemma 4.6. We will only establish the bound lim infx→0 x1−p |fx|
(x, t) ≥ c0 > 0, as the proof of lim infx→1(1 − x)1−p |fx| ≥ c0 > 0 is identical.
As in the proof of Lemma 4.5, we introduce

(4.24) h(z, t) = f(x, t) − d(t), z = log x, d(t) = f(0, t)

and estimate F = x1−p |fx|(x, t) in the new variable z, namely G = −e−pz hz.
Fix T < T0. We will show that G ≥ c0 (with c0 independent of T ) on
Sδ

T = (−∞,−δ] × (0, T ), provided δ is sufficiently large so that G > 0 on
(−∞,−δ] × (0, T0) and actually G(−δ, t) ≥ c0 > 0 on 0 < t < T0 (this is pos-
sible because of the previous lemma).

As in the proof of Lemma 4.5, G satisfies the evolution Equation (4.12)
on Sδ

T , with coefficients given by (4.13) and (4.14) and lower order term L
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given by (4.15) and satisfying L ≥ 0. Hence,

(4.25) Gt ≥ α(z, t) Gzz + β(z, t) Gz, on Sδ
T ,

with α and β = β1 + Gz β2 satisfying the bounds (4.17) and (4.18). In addi-
tion, G satisfies the bound (4.19). Hence, the desired bound G ≥ c0 on Sδ

T

follows from the comparison principle (as in the proof in Lemma 4.5) and
the initial bound G(x, 0) ≥ c0 > 0 on (−∞,−δ), provided that δ is chosen
sufficiently large. �

The following second-order derivative upper bound implies, in particular,
that fxx remains bounded up to T0 in the interior of I.

Lemma 4.8. Under the assumptions of Theorem 4.1, there exists constant
C0 < ∞ such that

(4.26) x2 (1 − x)2 fxx ≤ C0, on QT0 .

Proof. Let T < T0. We will estimate F = x2 (1 − x)2 fxx on QT by control-
ling its evolution. Clearly, F = 0 at both boundaries xi = 0, 1, and hence we
will just need to control dFmax/dt at an interior maximum point. A direct
computation shows that F evolves by

Ft = α(x, t) Fxx + β(x, t) Fx + L,

with α ≥ 0 on QT and ‖α‖L∞(QT ) < ∞, ‖β‖L∞(QT ) < ∞ and

L =
Σ4

i=1γi F
i

D3 , D = x2 (1 − x)2 (1 + f2
x − f fxx) < 0

and γi given by

γ4 = f, γ3 = W 2 + 4 (1 − 2x) f W − x2 (1 − x)2

and

γ2 = −2 [W 2 + x2(1 − x)2][2(2x − 1)W − (1 − 6 x (x − 1)) f ]

and

γ1 = 2 [3 + 10x (x − 1)][W 2 + x2(1 − x)2]2,

with W = x (1 − x) fx bounded (by Lemma 4.3).
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Claim. There exist a constant C0, depending only on the initial data, such
that if Fmax(t) ≥ C0, then dFmax/dt ≤ 0.

Indeed, we only need to show that if Fmax(t) ≥ C0, then L(x0, t) ≤ 0 at
the interior maximum point x0 of F (·, t). Since, D ≤ 0 and γ4 = f ≥ β0 > 0,
by Proposition 4.2, this easily follows by observing that the γi, i = 1, 2, 3,
are bounded. �

We will next show the optimal second-order derivative upper bound.

Lemma 4.9. Under the assumptions of Theorem 4.1, there exists constant
C0 < ∞ such that

(4.27) x2−p (1 − x)2−p fxx ≤ C0, on QT0 .

Proof. We only need to show the bound (4.37) near the boundary points
xi = 0, 1, since the interior bound follows from Lemma 4.8. Let us show the
bound near x = 0 by estimating F = x2−p fxx from above. The bound near
x = 1 can be shown similarly. Because the equations become non-degenerate
when introducing the variable z = log x (as seen in previous sections), it is
simpler to set

(4.28) h(z, t) = f(x, t) − d(t), z = log x, d(t) = f(0, t)

and estimate F in the new variable z, namely

G = e−pz (hzz − hz).

Fix T < T0. We will show that G ≤ C0 (with C0 independent of T ) on Sδ
T =

(−∞,−δ] × (0, T ), provided δ is sufficiently large. A direct computation
shows that G satisfies the evolution equation

(4.29) Gt = α(z, t) Gzz + β1(z, t) Gz + β2(z, t) G2
z + L

on Sδ
T , with

α =
e2z + e2pz W 2

D2 , β2 =
2epz (e2z + e2pz W 2) (h + d)

D3

D = e2z + e2pz W 2 − epzG(h + d) < 0, W = −e−pz hz(4.30)
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and

β1 =
G (h + d) [(2p − 3) e(2+p)z + e3pzW (2G + (2p − 3)W )]

D3

+
[e2z + e2pz W 2] [e2z (2p − 5) + e2pzW (2G + (2p − 5)W )]

D3 .

(4.31)

The lower order term L is of the form

(4.32) L =
Σ4

i=1γi G
i

D3 ,

with

γ4 = e3pz(h + d), γ3 = e3pz[ epz W 2 − 2 (2 − p) W (h + d) − e(2−p)z]

γ2 = (2 − p) e3pz(e2(1−p) z + W 2)[ (1 − p) (h + d) − 2 epzW ]

γ1 = (6 − 5p + p2) (e2z + e2pz W 2)2.

Notice that by Lemma 4.5, W ≤ C0 on Sδ
T , ∀T < T0.

We may write (4.29) in the form

(4.33) Gt = α(z, t) Gzz + β(z, t) Gz + L, on Sδ
T

with β = β1 + β2 Gz.
The coefficients α, β satisfy the conditions

(4.34) ‖α‖C2(Sδ
T ) + ‖β‖C1(Sδ

T ) ≤ λ(T, δ)−1 < ∞

and

(4.35) α(z, t) ≥ λ(T, δ) > 0, on Sδ
T .

In addition, ‖G‖C∞(Sδ
T ) ≤ C(T, δ) < ∞, since f ∈ C∞,p(I × [0, T0) by

assumption in this section. Since h + d = f ≥ β0, by Proposition 4.2, one
easily concludes that Σiγi G

i > 0, on Sδ
T , provided G ≥ M0 is sufficiently

large, depending only on C0. Also, D < 0 on Sδ
T , provided G ≥ M0 is suffi-

ciently large. Hence, L < 0. The lemma now follows from the interior bound
of Lemma 4.8 and the comparison principle on Sδ

T . �
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We next bound from below, away from zero, the

(4.36) F =
x2−p(1 − x)2−p fxx

[x1−p(1 − x)1−p|fx|]1+1/(1−p) =
fxx

|fx|1+1/(1−p)

as stated in the following lemma. This, combined with Lemma 4.6, will
show that x2−p (1 − x)2−pfxx is bounded from below away from zero on
QT0 . The reason for estimating the quotient (4.36) is that we cannot bound
x2−p(1 − x)2−p fxx from below away from zero directly from its evolution.

Lemma 4.10. Under the assumptions of Theorem 4.1, there exists a con-
stant c0 > 0 such that

(4.37) F =
x2−p(1 − x)2−p fxx

[ x1−p(1 − x)1−p |fx| ]1+1/(1−p) ≥ c0, on QT0 .

Proof. We begin by noticing that

F ≥ c(J) > 0, on J × [0, T0), J ⊂⊂ I

since fxx ≥ (1 + f2
x)/f (implied by inequality −f fxx + f2

x + 1 < 0) and
|fx| ≤ C(J) < ∞ on J × [0, T0) by Lemma 4.3. Since, we only need to esti-
mate F from below near the boundary points, xi = 0, 1.

Let us estimate F̃ = (x2−pfxx)/(x1−p|fx|)1+1/(1−p) near x = 0. As in the
proof of Lemma 4.6, we will express F̃ in terms of h(z, t) = f(x, t) − d(t),
with z = log x, and therefore compute the evolution of

G =
e−pz(hzz − hz)

W 1+1/(1−p)

with W = −e−pz hz > 0 on Sδ
T0

= (−∞,−δ] × (0, T0) (choosing δ > 0 suffi-
ciently large). By our discussion above,

(4.38) G(δ, t) ≥ c0 > 0, on 0 ≤ t ≤ T0.

A direct computation shows that G satisfies the evolution equation

(4.39) Gt = α(z, t) Gzz + β(z, t) Gz + L1 + L2

with

L1 =
epz [W 4 − (1 + 3p − 2p2) e(2−p)zW 2 + (2 − p) e(1−p)z] G3

(1 − p)2 D3
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and

L2 =
W 1+1/(1−p) [(6 − 7p + 2p2) e2(1−p)z + W 2]h G4

(1 − p)2 D3 ,

with

D = e(2−p)z + epz W 2 − GW 1+1/(1−p)(h + d(t)) < 0, on QT0 ,

and coefficients α, β which satisfy conditions (4.34) and (4.35), provided
h ∈ C∞,p(Sδ

T ), as assumed.
Claim. There exists a uniform constant M < ∞ such that

(4.40) L1 + L2 ≥ −M G, on Sδ
T , ∀T < T0,

provided

(4.41) D < −1
2
GW 1+1/(1−p)(h + d(t)).

Indeed, we observe first that since W ≥ c0 > 0 on QT0 (by Lemma 4.6)
and D < 0, we have

L1 + L2 ≥ −C

(
epzW 4

G
+ W 3+1/(1−p)

)
G4

|D|3

for a uniform constant C. Observing that W 3+1/(1−p) ≥ c0 epz W 4/G (with
c0 > 0 uniform on QT0) is equivalent to fxx ≥ c̃0 f2

x , which is implied by the
inequality −f fxx + f2

x + 1 < 0, we conclude that

L1 + L2 ≥ −C
W 3+1/(1−p)G4

|D|3

for a uniform constant C. Hence, assumption (4.41) and Lemmas 4.5 and 4.6
imply (4.40).

We will use this inequality and the comparison principle to control G
from below on Sδ

T0
for δ > 0 sufficiently small. Let ζ(t) = ζ0 e−2M t be the

solution of ζ ′(t) = −2M ζ(t), with ζ0 sufficiently small so that G(·, 0) ≥ ζ0
on z = log x < 0. Next, choose δ > 0 sufficiently small so that (4.38) and
(4.41) hold, provided G(z, t) ≥ ζ(t) = ζ0 e−2M t. This is possible since W is
bounded from above and below away from zero on Sδ

T0
. Let T < T0. Since

h ∈ C∞,p(Sδ
T ) and f satisfies condition (4.1), G and all its derivatives are

bounded in Sδ
T . The comparison principle then implies that G ≥ ζ(t) on Sδ

T ,
which readily implies the bound G ≥ ζ0e−2M T0 on Sδ

T0
, finishing the proof

of the Lemma. �
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5. Existence and regularity up to when H = 0

In this section, will show that under the initial conditions of Theorem 2.1,
the solution f of the HMCF (1.1) exists for as long as the mean curvature
H remains strictly negative, as stated in the next result.

Theorem 5.1. Under the assumptions of Theorem 2.1 the solution f of
the HMCF (1.1) exists up to the time T0, where first H(x0, T0) = 0, at
some point x0 ∈ [0, 1]. In addition, f ∈ C2,p(QT0) and it satisfies the non-
degeneracy condition

(5.1) x2−p (1 − x)2−p fxx ≥ c0 > 0, on QT0 .

The proof of Theorem 5.1 readily follows from the next result.

Lemma 5.2. Assume that f ∈ C2+α,p
s (Qτ ) is a positive strictly convex solu-

tion of the HMCF (1.1) on I × [0, T ), which satisfies the non-degeneracy
condition

(5.2) x2−p (1 − x)2−p fxx(x, t) ≥ c(τ) > 0, on Qτ ,

for all τ < T and the condition

H̃ = −f fxx + f2
x + 1 < −δ0 < 0, on I × [0, T ).

Then, the solution f can be extended to exist on QT̃ for some T̃ > T . In
addition, f ∈ C∞,p(QT̃ ), and it satisfies the non-degeneracy condition (5.2)
on QT̃ .

In the proof of Lemma 5.2, we will use the following variant of the
Krylov–Safonov [6] Hölder regularity result.

Proposition 5.3. Let u be a C2 solution of the semi-linear equation

ut = α(z, t) uzz + β1(z, t) uz + β2(z, t) u2
z + L(z, t)

on Q2 = [−2, 2] × [−4, 0], with coefficients satisfying β2 ≤ 0 and

‖α‖L∞(Q2) + ‖β1‖L∞(Q2) + ‖β2‖L∞(Q2) + ‖L‖L∞(Q2) ≤ λ−1

and also α(z, t) ≥ λ on Q2, for some number λ > 0. Assume, in addition,
that

(5.3) 0 < μ ≤ u(z, t) ≤ M < ∞, on Q2.
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Then, there exists a number θ ∈ (0, 1) and a constant C(λ, μ, M) < ∞ such
that

‖u‖Cθ(Q1) ≤ C(λ, μ, M), on Q1 = [−1, 1] × [−1, 0].

Proof. For a point, (x0, t0) ∈ Q1 and ρ < 1, and let us denote by mρ =
infQρ(x0,t0) u, Mρ = supQρ(x0,t0) u. Also, to simplify the notation, let us set
Qρ := Qρ(x0, t0) and Q−

ρ := Qρ(x0, t0 − 3ρ2/4).
Claim. There exist absolute constants 0 < γ, η < 1 and a constant C =
C(λ, ‖u‖L∞(Q2)) such that for all ρ > 0, sufficiently small, we have

(5.4) oscQρ/4u ≤ γ oscQρ
u + C ρ1/2.

We begin by observing that since β2 ≤ 0, the function v = u − mρ ≥ 0
is a sub-solution of equation

vt ≤ α(z, t) vzz + β1(z, t) vz + L(z, t)

on Q2 = [−2, 2] × [−4, 0]. Hence, the local maximum principle for sub-
solutions to linear parabolic equations [7, Theorem 7.26] implies the bound

sup
Q−

ρ/4

(u − mρ) ≤ C(λ, p)

⎧⎨
⎩

(
ρ−3

∫
Q−

ρ/2

(u − mρ)p dx dt

)1/p

+ ρ1/2‖L‖L2(Q2)

⎫⎬
⎭

for any p > 0. Since with ‖L‖L∞(Q2) ≤ λ−1, we conclude the estimate

(5.5) sup
Q−

ρ/4

(u − mρ) ≤ C(λ, p)

⎧⎨
⎩

(
ρ−3

∫
Q−

ρ/2

(u − mρ)p dx dt

)1/p

+ ρ1/2

⎫⎬
⎭ .

For a number d > 0, set w =
√

u/d > 0 on Qρ. A direct computation
shows that w is a solution of the equation

wt = α(z, t) wzz + β1(z, t) wz + β̃2(z, t) w2
z +

L(z, t)
2d

√
u

on Qρ, with

β̃2(z, t) = 2 dβ2(z, t) w(z, t) +
α(z, t)
w(z, t)

.

Although β2 < 0, the bounds on the coefficients α and β2 imply that we can
make β̃2 ≥ 0 if

d =
λ2

2M2 ,
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i.e., depending only on λ and M . Hence, w is a super-solution of the equation

wt ≥ α(z, t) wzz + β1(z, t) wz + L̃

on Qρ, with

(5.6) ‖L̃‖L∞(Q2) = ‖L(z, t)
2d

√
u

‖L∞(Q2) ≤
√

μ−1 ‖L‖L∞(Q2)

2d

by (5.3). Hence, the Harnack estimate for super-solutions to linear parabolic
equations [7, Theorem 7.22] implies the bound

(
ρ−3

∫
Q−

ρ/2

(
√

u − √
mρ)p0 dx dt

)1/p0

≤ C(λ)
(

inf
Qρ/2

(
√

u − √
mρ) + d ρ1/2‖L̃‖L2(Q2)

)
(5.7)

for some p0 > 0. However, by (5.3), we have

u − mρ

2
√

M
≤

√
u − √

mρ =
u − mρ√
u + √

mρ
≤ u − mρ

2
√

μ
,

which combined with (5.7) and (5.6) gives
(5.8)(

1
|Q−

ρ/2|

∫
Q−

ρ/2

(u − mρ)p0 dx dt

)1/p0

≤ C(λ, μ, M)
(

inf
Qρ/2

(u − mρ) + ρ1/2
)

for some p0 > 0. Combining (5.5) with p = p0 and (5.8), we obtain

(5.9) sup
Q−

ρ/4

(u − mρ) ≤ C(λ, μ, M)
(

inf
Qρ/2

(u − mρ) + ρ1/2
)

.

Similarly, we obtain the estimate

(5.10) sup
Q−

ρ/4

(Mρ − u) ≤ C(λ, μ, M)
(

inf
Qρ/2

(Mρ − u) + ρ1/2
)

.

Combining (5.9) and (5.10) in a standard way implies the Claim from which
the Hölder continuity of u follows. For details, we refer the reader to [7]. �
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Proof of Lemma 5.2. We begin by observing that by Theorem 4.1, the solu-
tion f satisfies the uniform derivative bounds (4.3) and (4.4) on QT . We
will use these bounds to show that

(5.11) ‖f‖C2+θ,p
s (QT ) ≤ C0 < ∞, on QT

for some number 0 < θ < 1, with c0, C0 independent of T < T0. Since, in
addition, H̃ = −f fxx + f2

x + 1 ≤ −δ0 < 0 at t = T , (5.11) combined with
the short-time existence Theorem 2.1 implies that f can be extended to a
solution of (1.1) on QT̃ , for some T̃ > T , with f ∈ C2+θ,p

s (QT̃ ) and satisfying
conditions (1.2)–(1.4) on QT̃ . Theorem 3.2 then implies that f ∈ C∞,p(QT̃ ),
finishing the proof of the lemma.

To show (5.11), we will prove that e−pzh ∈ C2+θ(S−
T ), with h(z, t) =

f(x, t) − f(0, t), z = log x, and S−
T = (−∞, 0] × [0, T ] (and similarly epzĥ ∈

C2+θ(S+
T ), with ĥ(z, t) = f(x, t) − f(1, t), z = − log(1 − x), and S−

T =
[0, +∞) × [0, T ]).

Set G = e−pz (hzz − hz) = x2−p fxx. We will show that G ∈ Cθ(S−
T ). As

we have shown in the proof of Lemma 4.9, G satisfies the equation

Gt = αGzz + β1G
2
z + β2Gz + L

coefficients given by (4.30)–(4.32). It follows from the derivative bounds (4.3)
and (4.4) on QT that α, βi, i = 1, 2, and L satisfy the bounds

‖α‖L∞(S−
T ) + ‖βi‖L∞(S−

T ) + ‖L‖L∞(S−
T ) ≤ λ−1

and also α(z, t) ≥ λ on S−
T , for a positive constant λ > 0. Since, in addition,

0 < c0 ≤ G ≤ C0 < ∞ on S−
T0

, we conclude from Proposition 5.3 that
‖G‖Cθ(S−

T ) < C0(λ) < ∞. Similarly, from the evolution of W = −e−pz hz, the
derivative bounds (4.3), (4.4) and Proposition 5.3, it follows that
‖W‖Cθ(S−

T ) < C0(λ) < ∞. Combining the two implies the desired bound
‖e−pz h‖C2,θ(S−

T ) < C0 < ∞, for some constant C0 independent of T, finishing
the proof of the lemma. �

We have actually shown Corollary 5.4 which will be used in the next
section.

Corollary 5.4. Under the assumptions of Theorem 5.1, there exists a num-
ber δ > 0 such that f ∈ C∞,p(([0, δ] ∪ [1 − δ, 1]) × [0, T0]).

Proof of Theorem 5.1. The theorem follows for the previous lemma and the
observation that the bound (5.11) is independent of T , for all T < T0. �
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6. The blow-up of H̃−1

In this final section, we will show that

H̃−1 =
1

−f fxx + f2
x + 1

vanishes on an interval of sufficiently large length, depending on the initial
data, leading to the proof of Theorem 1.1.
The evolution of R = arctan fx. To simplify the notation, we introduce
R = arctan fx. A direct computation shows that R evolves by

(6.1) Rt =
cos2 R (Rxx + R2

x tanR)
(Rxf − 1)2

.

The evolution of H̃. Using the evolution equations of f and R, we find, after
a direct calculation, that H̃ = −f fxx + f2

x + 1 evolves by

H̃t =
sec2 R

H̃2
H̃xx − sec2 R sin(2R)

H̃ f
H̃x − 2 sec2 R

H̃3
H̃2

x

+
(1 − H̃)(H̃ cos(2R) + H − 2) sec2 R

H̃ f2
.

This is an equation of fast-diffusion near H̃ = 0.
We wish to estimate H̃−1 from above. It is more convenient to estimate

(6.2) w = −sec2 R

H̃
= − 1 + f2

x

−f fxx + f2
x + 1

> 0

instead. Observe that the estimates of Section 4 imply that

(6.3) w(xi, t) = 0, at xi = 0, 1, 0 ≤ t ≤ T0.

The evolution of w. Using the evolution equations of R and H̃, we find,
after a direct calculation, that w evolves by the simple equation

(6.4) wt = w2
{

wxx − 2 tanR

f
wx +

sec2 R

f2 w +
2 sec R

f2 +
1

f2 w

}
.

We will use this equation together with Equations (6.1) and (1.1) to estimate
from below the length of the blow-up set of w. The simpler model equation

wt = w2 wxx + w3
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has been studied by Gage and Hamilton [8], Friedman and McLeod [9] and
Gage [10]. There, an estimate on the size of the blow-up set was given. Here,
we will follow some of the techniques in [10] adopted to our, more complex,
equation. Following [8], we define, for l ∈ (0, 1),

w∗
l (t) = sup{b |w(x, t) > b on some interval of length l}.

The main result of this section states as follows.

Theorem 6.1. Assume that f ∈ C2,p(QT ) is a solution of the HMCF (1.1)
on I × [0, T ), with H̃ = −f fxx + f2

x + 1 < 0 on I × [0, T ) and which satisfies
the non-degeneracy condition

(6.5) x2−p(1 − x)2−p fxx(x, t) ≥ c(T ) > 0, on QT .

Assume, in addition, that f ∈ C∞,p(([0, δ0] ∪ [1 − δ0, 1]) × [0, T ]) for some
δ0 > 0. Then, there exists an l0 > 0, depending only on the initial data
f(·, 0), such that if

(6.6) sup
t∈[0,T )

w∗
l0(t) < ∞,

then w = −(1 + f2
x) H̃−1 is bounded on QT .

Our main result Theorem 1.1 stated in the Introduction readily follows
from Theorems 6.1 and 5.1 and Corollary 5.4. The proof of Theorem 6.1
will be done in several steps. We begin by observing that the assumptions of
Theorem 6.1 imply that there exists a number δ > 0 sufficiently small such
that

(6.7) f ∈ C∞,p(Q̃δ) and w ≤ 1, on Q̃δ = ([0, δ] ∪ [1 − δ, 1]) × [0, T ].

This, in particular, implies that the blow-up set of w is contained in [δ, 1 − δ].

Lemma 6.2. Assume that f ∈ C2,p(QT ) ∩ C∞,p(Q̃δ) and satisfies the non-
degeneracy condition (6.5). Then, the function w defined by (6.2) satisfies
the integral bound

(6.8)
∫ T

0

∫ 1

0
w(x, t) dx dt < ∞.
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Proof. Choose δ > 0 sufficiently small so that (6.7) holds. Using Equa-
tion (6.4) and integration by parts on [δ, 1 − δ], we find

− d

dt

∫ 1−δ

δ

1
w

dx =
∫ 1−δ

δ

wt

w2 dx =
∫ 1−δ

δ

{[(
2 tanR

f

)
x

+
sec2 R

f2

]
w

+
2 sec R

f2 +
1

f2 w

}
dx + Bδ(t)

(6.9)

with

Bδ(t) = wx

∣∣∣1−δ
δ +

2 tanR

f
w

∣∣∣1−δ
δ .

Since, (
2 tanR

f

)
x

=
2
f2 +

2 sec R

w f2 ,

by direct computation, we obtain

− d

dt

∫ 1−δ

δ

1
w

dx =
∫ 1−δ

δ

[
2 + sec2 R

f2 w +
4 sec R

f2 +
1

f2 w

]
dx + Bδ(t).

Integrating in time and deleting positive terms give

∫ T

0

∫ 1−δ

δ

2 + sec2 R

f2 w dx dt ≤
∫ 1−δ

δ

1
w

dx|t=0 −
∫ T

0
Bδ(t) dt.

Observe next that by (6.7), |Bδ(t)| ≤ Bδ is uniformly bounded on [0, T ].
Since

∫ 1−δ
δ 1/w dx|t=0 ≤ Cδ < ∞, depending only on the initial data, we

conclude the estimate

(6.10)
∫ T

0

∫ 1−δ

δ
w dx dt ≤ C(δ, T )

‖f‖L∞(QT )
< ∞,

which combined with (6.7) implies the desired integral bound. �

Lemma 6.3. Under the assumptions of Theorem 6.1, if supt∈[0,T ) w∗
l0
(t) <

∞, then

(6.11) sup
t∈[0,T )

∫ 1

0
(log w)+(x, t) dx < ∞.
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Proof. Let δ > 0 be as in (6.7). We will show that

(6.12) sup
t∈[0,T )

∫ 1−δ

δ
log w(x, t) dx < ∞,

provided (6.6) holds. Since, w ≤ 1 on [0, δ] ∪ [1 − δ, 1] and

(6.13) w ≥ cδ > 0, on [δ, 1 − δ] × [0, T ]

(because f ∈ C2,p(QT )), (6.12) readily implies (6.8).
We begin by expressing (6.4) in the form

(6.14) (log w)t = wwxx − 2 tanR

f
wwx +

sec2 R

f2 w2 +
2 sec R

f2 w +
1
f2 .

Since
2 tanR

f
wwx =

(
tanR

f
w2

)
x

−
(

tanR

f

)
x

and (
tanR

f

)
x

=
1
f2 +

sec R

w f2

(by direct computation using (6.1) and (6.2)), we may express (6.14) as
(6.15)

(log w)t = wwxx −
(

tanR

f
w2

)
x

+
1 + sec2 R

f2 w2 +
3 sec R

f2 w +
1
f2 .

Integrating by parts Equation (6.15) on [δ, 1 − δ], we obtain

d

dt

∫ 1−δ

δ
(log w)t = −

∫ 1−δ

δ
w2

x dx +
∫ 1−δ

δ

1 + sec2 R

f2 w2 dx

+
∫ 1−δ

δ

3 sec R

f2 w dx +
∫ 1−δ

δ

1
f2 dx

+ wwx

∣∣∣1−δ
δ − tanR

f
w2

∣∣∣1−δ
δ .

Observe next that since f ≥ c > 0 on QT and (6.7) holds, it follows from
Proposition 3.1 that

∫ 1−δ

δ

1
f2 dx + wwx

∣∣∣1−δ
δ − tanR

f
w2

∣∣∣1−δ
δ ≤ Cδ
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is uniformly bounded on [0, T ]. Also,
∫ 1−δ

δ

3 sec R

f2 w dx ≤ C

∫ 1−δ

δ
w dx.

Let

L0 = sup
[δ,1−δ]×[0,T ]

1 + sec2 R

f2 < ∞.

We conclude from above that
(6.16)

d

dt

∫ 1−δ

δ
log w = −

∫ 1−δ

δ
w2

x dx + L0

∫ 1−δ

δ
w2 dx + C

(∫ 1−δ

δ
w dx + 1

)
.

Let us choose the number l0 > 0 so that the Poincaré inequality

(6.17)
∫

I
u2

x dx > L0

∫
I
u2 dx, L0 =

(
π

l0

)2

holds on any interval I of length |I| < l0 and for any smooth function u
which is zero on the boundary of I. Assuming that supt∈[0,T ) w∗

l0
(t) < ∞

for this chosen number l0 and choosing θ > supt∈[0,T ) w∗
l0
(t), the definition

of w∗
l0

implies that

{x ∈ [δ, 1 − δ]|w(x, t) > θ} = ∪kIk,

where Ik are disjoint open intervals of length |Ik| < l0. Let J = [δ, 1 − δ] \
∪kIk. Then,∫ 1−δ

δ
w2 dx =

∫ 1−δ

δ
(w − θ)2 + 2θw − θ2 dx

≤
∑

k

∫
Ik

(w − θ)2 dx +
∫

J
(w − θ)2 dx +

∫ 1−δ

δ
2θw dx.

(6.18)

Since w − θ = 0 at the boundary of Ik, by the Poincaré inequality (6.17)

∑
k

∫
Ik

w2
x dx > L0

∑
k

∫
Ik

(w − θ)2.

Hence from (6.16) and (6.18), we have

d

dt

∫ 1−δ

δ
log w ≤ C

(∫ 1−δ

δ
w dx + 1

)
,
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implying that

∫ 1−δ

δ
log w(x, t) dx ≤ C

(∫ T

0

∫ 1−δ

δ
w dx + T

)
+

∫ 1−δ

δ
log w(x, 0) dx

for all t ∈ [0, T ). The proof of (6.11) now readily follows from (6.13) and
the observation that

∫ 1−δ
δ log w(x, 0) dx < ∞. �

Lemma 6.4. Under the assumptions of Theorem 6.1, if supt∈[0,T ) w∗
l0
(t) <

∞, then

(6.19) sup
t∈[0,T )

∫ 1

0
w(x, t)2 dx < ∞.

Proof. Let δ > 0 be as in (6.7). It is sufficient bound
∫ 1−δ
δ w2 dx. By direct

computation, using (6.4), we have

d

dt

∫ 1−δ

δ
w2 dx =

∫ 1−δ

δ
2wwt dx =

∫ 1−δ

δ
2 w3wxx dx −

∫ 1−δ

δ

4w3 wx tanR

f
dx

+
∫ 1−δ

δ

2w4 sec2 R

f2 +
4 w3 sec R

f2 +
2w2

f2 dx.

Integrating by parts, using that

(
tanR

f

)
x

=
1
f2 +

sec R

wf2 ,

we obtain

d

dt

∫ 1−δ

δ
w2 dx = −6

∫ 1−δ

δ
w2w2

x dx +
∫ 1−δ

δ

w4 (1 + 2 sec2 R)
f2 dx

+
∫ 1−δ

δ

5 w3 sec R

f2 dx +
∫ 1−δ

δ

2w2

f2 dx

+ 2w3wx

∣∣∣1−δ
δ − tanR

f
w4

∣∣∣1−δ
δ .

Similarly to the proof of Lemma 6.4,

2w3wx

∣∣∣1−δ
δ − tanR

f
w4

∣∣∣1−δ
δ ≤ C
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is uniformly bounded on [0, T ]. Also, let C > 0 sufficiently large so that

1 + 2 sec2 R

f2 ≤ C,
5 sec R

f2 ≤ C,
2
f2 ≤ C, on [δ, 1 − δ] × [0, T ).

Since w3 ≤ w4 + 1 and w2 ≤ w4 + 1, we conclude the estimate

(6.20)
d

dt

∫ 1−δ

δ
w2 dx ≤ −4

∫ 1−δ

δ
w2 w2

x dx + C1

∫ 1−δ

δ
w4 dx + C

with C < ∞ and C1 < ∞ constants independent of t.
Next, fix t ∈ (0, T ). For a number θ > 1 to be chosen momentarily, we

define J = { x : w(x, t) > θ } so that by Lemma 6.3, we have

|J | log θ ≤
∫

J
log w ≤ M := sup

t∈[0,T )

∫ 1

0
[log w]+(x, t) dx.

The Poincaré inequality implies that

∫
J

w2 w2
x dx ≥

(
2 π

|J |

)2 ∫
J
(w2 − θ2)2 dx.

Hence, by choosing θ = exp
(√

C1 M
4π

)
, we obtain

−4
∫

J
w2 w2

x dx + C1

∫
J
(w2 − θ2)2 dx ≤ 0,

which combined with (6.20), after expanding the square, gives

(6.21)
d

dt

∫ 1−δ

δ
w2 dx + 2

∫ 1−δ

δ
w2 w2

x dx ≤ C2

∫ 1−δ

δ
w2 dx + C

for constants C2 < ∞ and C < ∞, depending on θ, but independent of t.
This, in particular, implies the inequality

d

dt

∫ 1−δ

δ
w2 dx + 2

∫ 1−δ

δ
w2 w2

x dx ≤ C2

∫ 1−δ

δ
w2 dx + C,

providing the desired bound on
∫ 1−δ
δ w2(x, t) dx, thus finishing the proof of

the lemma. �
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Lemma 6.5. Under the same conditions as in Lemma 6.4

∫ T

0

∫ 1

0
w2 w2

x dx dt < ∞.

Proof. Let δ > 0 be as in (6.7). Then, |wx| ≤ C is uniformly bounded on
(I \ [δ, 1 − δ]) × [0, T ]. To bound

∫ T
0

∫ 1−δ
δ w2 w2

x dx dt, we integrate (6.21)
and use Lemma 6.14. �

Lemma 6.6. Under the assumptions of Theorem 6.1, if supt∈[0,T ) w∗
l0
(t) <

∞, then

(6.22) sup
t∈[0,T )

∫ 1

0
w2

x(x, t) dx < ∞.

Proof. By direct computation, using (6.4), we have

d

dt

∫ 1

0

w2
x

2
dx =

∫ 1

0
wx wxt dx = −

∫ 1

0
wxx wt dx = −

∫ 1

0
w2 wxx

×
(

wxx − 2wx tanR

f
+

w sec2 R

f2 +
2 sec R

f2 +
1

w f2

)
dx.

Note that in the integration by parts, we used that wt(xi, t) = 0 at xi = 0, 1,
since w(xi, t) = 0 at xi = 0, 1 for all t. Completing the square and dropping
negative terms, we obtain the estimate

d

dt

∫ 1

0

w2
x

2
dx ≤ −

∫ 1

0
w2

(
wxx − wx tanR

f

)2

dx +
∫ 1

0

w2 tan2 R

f2 dx.

Hence,

sup
t∈[0,T )

∫ 1

0
w2

x(x, t) dx ≤
∫ 1

0
w2

x(x, 0) dx + 2
∫ T

0

∫ 1

0

w2 tan2 R

f2 w2
x dx dt.

Let δ > 0 be as in (6.7). Then, |wx| ≤ C is uniformly bounded on (I \ [δ, 1 −
δ]) × [0, T ], as we noted in the proof of Lemma 6.5. Also, the reader may ver-
ify that although tanR = fx is unbounded near the boundary points of [0, 1],
the growth estimates defining the space C2+α,p

s (QT ) imply that w2 tan2 R ≤
C is uniformly bounded on (I \ [δ, 1 − δ]) × [0, T ]. Since also f ≥ c > 0 on
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QT and | tanR| ≤ C on [δ, 1 − δ] × [0, T ], it follows from Lemma 6.5 that∫ T

0

∫ 1

0

w2 tan2 R

f2 w2
x dx dt < ∞,

finishing the proof of this lemma. �
Proof of Theorem 6.1. For any y ∈ (0, 1) and t ∈ (0, T ), we have

w(y, t) =
∫ y

0
wx(x, t) dx ≤

∫ 1

0
w2

x(x, t) dx

since w(0, t) = 0. It follows that

sup
QT

w ≤ sup
t∈[0,T )

∫ 1

0
w2

x(x, t) dx < ∞

by Lemma 6.6. �
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