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A note on Perelman’s LYH-type inequality
Lei Ni

We give a proof to the Li–Yau–Hamilton-type inequality claimed
by Perelman on the fundamental solution to the conjugate heat
equation. The rest of the paper is devoted to improving the known
differential inequalities of Li–Yau–Hamilton type via monotonicity
formulae.

1. Introduction

In [1], Perelman stated a Li–Yau–Hamilton type (also called differential
Harnack) inequality for the fundamental solution of the conjugate heat equa-
tion on a manifold evolving by the Ricci flow. More precisely, let (M, gij(t))
be a solution to Ricci flow:

(1.1)
∂

∂t
gij = −2Rij

on M × [0, T ] and let H(x, y, τ) = e−f/(4πτ)n/2 (where τ = T − t) be the
fundamental solution to the conjugate heat equation uτ − Δu + Ru = 0.
(More precisely we should write the fundamental solution as H(y, t; x, T ),
which satisfies (−∂/∂t + Δy + R(y, t)) H(y, t; x, T ) = 0 for any (y, t) with
t < T and limt→T

∫
M H(y, t; x, T )f(y, t) dμt(y) = f(x, T ).) Define

vH =
[
τ

(
2Δf − |∇f |2 + R

)
+ f − n

]
H.

Here, all the differentiations are taken with respect to y, and n = dimR(M).
Then, vH ≤ 0 on M × [0, T ]. This result is a differential inequality of Li–Yau
type [2], which has important applications in the later part of [1]. For
example, it is essential in proving the pseudo-locality theorem in Section 10
of [1]. It is also crucial in localizing the entropy formula [3].

In Section 9 of [1], the following important differential equation

(1.2)
(

∂

∂τ
− Δ + R

)

vu = −2τ

∣
∣
∣
∣Rij + ∇i∇jf − 1

2τ
gij

∣
∣
∣
∣

2

u

883
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is stated for any positive solution u to the conjugate heat equation, whose
integration on M gives the celebrated entropy formula for the Ricci flow.
One can consult various sources (e.g. [4]) for the detailed computations
of this equation, which can also be done through a straightforward cal-
culation, after knowing the result. Perelman [1] then proceeds with the
proof of the claim vH ≤ 0 in a clever way by checking that for any τ∗ with
T ≥ τ∗ > 0,

∫
M vH(y)h(y) dμτ∗(y) ≤ 0, for any smooth function h(y) ≥ 0

with compact support. In order to achieve this, in [1] the heat equation
(∂/∂t − Δ) h(y, t) = 0 with the “initial data” h(y, T − τ∗) = h(y) (more pre-
cisely t = T − τ∗), the given compactly supported non-negative function, is
solved. Applying (1.2) to u(y, τ) = H(x, y, τ), one can easily derive as in
[1], via integration by parts, that

(1.3)
d

dτ

∫

M
vHh dμτ = −2

∫

M
τ

∣
∣
∣
∣Rij + ∇i∇jf − 1

2τ
gij

∣
∣
∣
∣

2

Hh dμτ ≤ 0.

The Li–Yau-type inequality vH ≤ 0 then follows from the above monotoni-
city, provided the claim that

(1.4) lim
τ→0

∫

M
vHh dμτ ≤ 0.

The main purpose of this note is to prove (1.4) and hence provide a
complete proof of the claim vH ≤ 0. This will be done in Section 3 after
some preparations in Section 2. It was written in [1] that “it is easy to see”
that limτ→0

∫
M vHh dμτ = 0. It turns out that the proof found here needs

to use some gradient estimates for positive solutions, quite precise estimate
on the “reduced distance”, a tool also introduced by Perelman in [1], and
the monotonicity formula (1.3). (We shall focus on the proof of (1.4) for the
case when M is compact and leave the more technical details of generalizing
it to the non-compact setting to the later refinements.) Indeed the claim
that limτ→0

∫
M vHh dμτ = 0 follows from a blow-up argument of [1], after

we have established (1.4). Since our argument is a bit involved, this may
not be the proof.

In Section 4, we derive several monotonicity formulae, which improve
various Li–Yau–Hamilton inequalities for linear heat equation (systems) as
well as for Ricci flow, including the original Li–Yau’s inequality. In Section
5, we illustrate their localization by applying a general scheme of [5].
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2. Estimates and results needed

We shall collect some known results and derive some estimates needed for
proving (1.4) in this section. We need the asymptotic behavior of the funda-
mental solution to the conjugate heat equation for small τ . Let dτ (x, y) be
the distance function with respect to the metric g(τ). Let Bτ (x, r) (Volτ )
be the ball of radius r centered at x (the volume) with respect to the
metric g(τ).

Theorem 2.1. Let H(x, y, τ) be the fundamental solution to the (backward
in t) conjugate heat equation. Then, as τ → 0, we have that

(2.1) H(x, y, τ) ∼ exp(−d2
0(x, y)/4τ)

(4πτ)n/2

∞∑

j=0

τ juj(x, y, τ).

By (2.1), we mean that there exists T > 0 and sequence uj ∈ C∞(M × M ×
[0, T ]) such that

H(x, y, τ) − exp(−d2
0(x, y)/4τ)

(4πτ)n/2

k∑

j=0

τ juj(x, y, τ) = wk(x, y, τ)

with
wk(x, y, τ) = O(τk+1−n/2)

as τ → 0, uniformly for all x, y ∈ M . The function u0(x, y, τ) can be chosen
so that u0(x, x, 0) = 1.

This result was proved in detail, for example in [6], when there is no
zero order term R(y, τ)u(y, τ) in the equation

∂

∂τ
u − Δu + Ru = 0

and replacing d0(x, y) by dτ (x, y). However, one can check that the argument
carries over to this case if one assumes that the metric g(τ) is C∞ near τ = 0.
One can consult [7, 8] for intrinsic presentations.

Let

Wh(g, H, τ) =
∫

M
vHh dμτ ,

where h is the previously described solution to the heat equation. It is
clear that for any τ with T ≥ τ > 0, Wh(g, H, τ) is a well-defined quantity.



886 Lei Ni

A priori it may blow up as τ → 0. It turns out that in our course of proving
that limτ→0 Wh(g, H, τ) ≤ 0, we need to show first that there exists C > 0,
which may depend on the geometry of the Ricci flow solution (M, g(τ))
defined on M × [0, T ], but independent of τ (as τ → 0) so that Wh(g, H, τ) ≤
C for all T ≥ τ > 0. The following lemma (see also [5] for a localized version
of it) supplies the key estimates for this purpose.

Lemma 2.2. Let (M, g(t)) be a smooth solution to the Ricci flow on M ×
[0, T ]. Assume that there exist k1 ≥ 0 and k2 ≥ 0, such that the Ricci
curvature Rij(g(τ)) ≥ −k1gij(τ) and max(R(y, τ), |∇R|2(y, τ)) ≤ k2, on
M × [0, t].

(i) If u ≤ A is a positive solution to the conjugate heat equation on
M × [0, T ], then there exist C1 and C2 depending on k1, k2 and n such
that for 0 < τ ≤ min(1, T, 1/2k2),

(2.2) τ
|∇u|2

u2 ≤ (1 + C1τ)
(

log
(

A

u

)

+ C2τ

)

.

(ii) If u is a positive solution to the conjugate heat equation on M ×
[0, T ], then there exists B depending on (M, g(τ)) so that for 0 ≤ τ ≤
min(T, 1/2k2, 1),

(2.3) τ
|∇u|2

u2 ≤ (2 + C1τ)
(

log
(

B

uτn/2

∫

M
u dμτ

)

+ C2τ

)

.

Remark 2.3. Here and thereafter we use the same Ci(B) at different lines
if they differ only by a constant depending on n. Notice that

∫
M u dμτ is

independent of τ and equal to 1 if u is the fundamental solution. The proof
of the lemma given below is a modification of some arguments in [9].

Proof. Direct computation, using a unitary frame, gives

(
∂

∂τ
− Δ

) (
|∇u|2

u

)

= −2
u

∣
∣
∣uij − uiuj

u

∣
∣
∣
2
+

|∇u|2
u

R

+
−4Rijuiuj − 2〈∇(Ru),∇u〉

u

≤ (4 + n)k1
|∇u|2

u
+ 2|∇R||∇u|

≤ [(4 + n)k1 + 1]
|∇u|2

u
+ k2u
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and

(
∂

∂τ
− Δ

) (

u log
(

A

u

))

=
|∇u|2

u
+ Ru − Ru log

(
A

u

)

≥ |∇u|2
u

− nk1u − k2u log
(

A

u

)

.

Combining the above two equations, we have that

(
∂

∂τ
− Δ

)

Φ ≤ 0,

where

Φ = ϕ
|∇u|2

u
− ek2τu log

(
A

u

)

− 2(k2 + nk1ek2)τu

with

ϕ =
τ

1 + [(4 + n)k1 + 1] τ
,

which satisfies
d

dτ
ϕ + [(4 + n)k1 + 1]ϕ < 1.

By the maximum principle, we have that

ϕ
|∇u|2

u
≤ ek2τu log

(
A

u

)

+ 2(k2 + nk1ek2)τu.

From this, one can derive (2.2) easily.
To prove the second part, we claim that for u, a positive solution to the

conjugate heat equation, there exists a C depending on (M, g(τ)) such that

(2.4) u(y, τ) ≤ C

τn/2

∫

M
u(z, τ) dμτ (z).

This is a mean-value-type inequality, which can be proved via, for example,
the Moser iteration. Here, we follow [9]. We may assume that supy∈M,0≤τ≤1
τn/2u(y, τ) is finite. Otherwise, we may replace τ by τε = τ − ε and let ε → 0
after establishing the claim for τε. Now let (x0, τ0) ∈ M × [0, 1] be such a
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space–time point that max τn/2u(y, τ) = τ
n/2
0 u(y0, τ0). Then, we have that

sup
M×[τ0/2,τ0]

u(y, t) ≤
(

2
τ0

)n/2

τ
n/2
0 u(y0, τ0) = 2n/2u(y0, t0).

Noticing this upper bound, we apply (2.2) to u on M × [τ0/2, τ0] and con-
clude that

τ0

2

(
|∇u|2

u2

)

(y, τ0) ≤ (1 + C1τ0)

(

log

(
2n/2u(y0, τ0)

u(y, τ0)

)

+ C2τ0

)

.

Let

g = log

(
2n/2u(y0, τ0)

u(y, τ0)

)

+ C2τ0.

The above can be written as

|∇√
g| ≤

√
1 + C1τ0

2τ0
,

which implies that

sup
Bτ0

(
y0,

√
τ0/(1+C1τ0)

)
√

g(y, τ0) ≤ √
g(y0, τ0) +

1√
2
.

Rewriting the above in terms of u, we have that

u(y, τ0) ≥ 2n/2u(y0, τ0)e−(1/2+2/
√

2
√

(n/2) log 2+C2) = C3u(y0, τ0)

for all y ∈ Bτ0

(
y0,

√
τ0/(1 + C1τ0)

)
. Here we have also used τ0 ≤ 1. Noticing

that

Volτ0

(

Bτ0

(

y0,

√
τ0

1 + C1τ0

))

≥ C4τ
n/2
0

for some C4 depending on the geometry of (M, g(τ0)). Therefore, we have
that

C5

τ
n/2
0

∫

M
u(y, τ0) dμτ0(y) ≥ u(y0, τ0)

for some C5 depending on C3 and C4. By the way we choose (y0, τ0), we
have that

τn/2u(y, τ) ≤ τ
n/2
0 u(y0, τ0) ≤ C5

∫

M
u(y, τ0) dμτ0(y) = C5

∫

M
u(y, τ) dμτ (y).
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This proves the claim (2.4). Now the estimate (2.3) follows from (2.2),
applied to u on M × [τ/2, τ ], and the just proved (2.4), which ensures the
needed upper bound for applying the estimate (2.2). �

If

u(y, τ) =
e−f

(4πτ)n/2

is the fundamental solution H(y, τ ; x0, 0) (expressed in terms of τ) to the
conjugate heat equation, we have that

∫
M u dμτ = 1. Therefore, by (2.3),

we have that
(2.5)∫

M
τ |∇f |2uh dμτ ≤ (2 + C1τ)

∫

M

(
log B + f +

n

2
log(4π) + C2τ

)
uh dμτ .

On the other hand, integrating by parts, we can rewrite

Wh(g, u, τ) =
∫

M
τ |∇f |2uh dμτ − 2τ

∫

M
〈∇f,∇h〉u dμτ + τ

∫

M
Ruh dμτ

+
∫

M
(f − n)uh dμτ

= I + II + III + IV.

The I term can be estimated by (2.5), whose right hand side contains only
one “bad” term

∫
M fuh dμτ in the sense that it could possibly blow up. The

second term

II = 2τ

∫

M
〈∇u, ∇h〉 dμ = −2τ

∫

M
uΔh dμτ

is clearly bounded as τ → 0. In fact II → 0 as τ → 0. The same conclu-
sion obviously holds for III. Summarizing above, we reduce the question of
bounding from above the quantity Wh(u, g, τ) to bounding one single term

V =
∫

M
fuh dμτ

from above (as τ → 0). We shall show later that limτ→0 V ≤ 0. To do this,
we need to use the “reduced distance”, introduced by Perelman in [1] for
the Ricci flow geometry.

Let x be a fixed point in M . Let �(y, τ) be the reduced distance in
[1] with respect to (x, 0) (more precisely τ = 0). We collect the relevant
properties of �(y, τ) in the following lemma (cf. [8, 10]).
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Lemma 2.4. Let L̄(y, τ) = 4τ�(y, τ).

(i) Assume that there exists a constant k1 such that Rij(g(τ)) ≥ −k1gij(τ),
L̄(y, τ) is a local Lipschitz function on M × [0, T ];

(ii) Assume that there exist constant k1 and k2 so that −k1gij(τ) ≤ Rij
(g(τ)) ≤ k2gij(τ). Then,

(2.6) L̄(y, τ) ≤ e2k2τd2
0(x, y) +

4k2n

3
τ2

and

(2.7) d2
0(x, y) ≤ e2k1τ

(

L̄(y, τ) +
4k1n

3
τ2

)

;

(iii)

(2.8)
(

∂

∂τ
− Δ + R

) (
exp

(
−L̄(y, τ)/4τ

)

(4πτ)n/2

)

≤ 0.

Proof. The first two claims follow from the definition by straight forward
checking. For (iii), it was proved in Section 7 of [1]. By now, there are various
sources where a detailed proof can be found; see, for example, [8, 10]. �

As a consequence of (2.6) and (2.7),

lim
τ→0

exp(−L̄(y, τ)/4τ)
(4πτ)n/2 = δx(y),

which together with (2.8) implies that H, the fundamental solution to the
conjugate heat equation, is bounded from below as

H(x, y, τ) ≥
exp

(
−L̄(y, τ)/4τ

)

(4πτ)n/2 ,

by the heat kernel comparison principle (cf. [11, Proposition 1], noticing
the duality between the fundamental solution of the heat equation and the
fundamental solution of the conjugate heat equation). Hence,

(2.9) f(y, τ) ≤ L̄(y, τ)
4τ

.

This was proved in [1] making use of the inequality vH ≤ 0. Since we
are in the middle of proving vH ≤ 0, we provide the above alternative of
obtaining (2.9).
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3. Synthesis

Now we assemble the results in the previous section to prove (1.4). As the
first step, we show that Wh(g, H, τ) is bounded (thanks to the monotonicity
(1.3), it is sufficient to bound it from above) as τ → 0, where H(x, y, τ) is the
fundamental solution to the conjugate heat equation with H(x, y, 0) = δx(y).
By the reduction done in the previous section, we only need to show that

V =
∫

M
fHh dμτ

is bounded from above, as τ → 0. By (2.9), we have that

lim sup
τ→0

∫

M
fHh dμτ

≤ lim sup
τ→0

∫

M

L̄(y, τ)
4τ

H(x, y, τ)h(y, τ) dμτ (y)

≤ lim sup
τ→0

∫

M

d2
0(x, y)
4τ

H(x, y, τ)h(y, τ) dμτ (y)

+ lim
τ→0

∫

M

(
ek2τ − 1

4τ
d2

0(x, y) +
k2n

3
τ

)

H(x, y, τ)h(y, τ) dμτ (y).

Here, we have used (2.6) in the last inequality. By Theorem 2.1, some
elementary computations give that

lim
τ→0

∫

M

d2
0(x, y)
4τ

H(x, y, τ)h(y, τ) dμτ (y) =
n

2
h(x, 0).

Since
ek2τ − 1

4τ
d2

0(x, y) +
k2n

3
τ

is a bounded continuous function even at τ = 0, we have that

lim
τ→0

∫

M

(
ek2τ − 1

4τ
d2

0(x, y) +
k2n

3
τ

)

H(x, y, τ)h(y, τ) dμτ (y) = 0.

This completes our proof of the finiteness of lim supτ→0
∫
M fHh dμτ . In fact,

we have proved that

(3.1) lim sup
τ→0

∫

M

(
f − n

2

)
Hh dμτ ≤ 0.
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By the just proved finiteness of Wh(g, H, τ) as τ → 0, and the (entropy)
monotonicity (1.3), we know that the limit limτ→0 Wh(g, H, τ) exists. Let

lim
τ→0

Wh(g, H, τ) = lim
τ→0

∫

M
vHh dμτ = α

for some finite α. Hence limτ→0 (Wh(g, H, τ) − Wh(g, H, τ/2)) = 0. By (1.3)
and the mean-value theorem, we can find τk → 0 such that

lim
τk→0

τ2
k

∫

M

∣
∣
∣
∣Rij + ∇i∇jf − 1

2τk
gij

∣
∣
∣
∣

2

Hh dμτk
= 0.

By the Cauchy–Schwartz inequality and the Hölder inequality, we have that

lim
τk→0

τk

∫

M

(

R + Δf − n

2τk

)

Hh dμτk
= 0.

This implies that

lim
τ→0

Wh(g, H, τ) = lim
τk→0

∫

M

(
τk(Δf − |∇f |2) + f − n

2

)
Hh dμτk

.

Again integration by parts shows that
∫

M
τk(Δf − |∇f |2)Hh dμτk

=
∫

M
τk〈∇H, ∇h〉 dμτk

= −τk

∫

M
HΔh dμτk

−→ 0.

Hence, by (3.1),

lim
τ→0

Wh(g, H, τ) = lim
τk→0

∫

M

(
f − n

2

)
Hh dμτk

≤ 0.

This proves α ≤ 0, namely (1.4).
The claim that α = limτ→0 Wh(g, H, τ) = 0 can now be proved by the

blow-up argument as in Section 4 of [1]. Assume that α < 0. One can easily
check that this would imply that limτ→0 μ(g, τ) < 0. Here μ(g, τ) is the
invariant defined in Section 4 of [1]. In fact, noticing that h(y, τ) > 0 for
all τ ≤ τ∗ (where τ∗ is the one we fixed in the introduction). Therefore,
by multiplying 1/h(x, 0) (more precisely 1/h(x, ·) at τ = 0) to the origi-
nal h(y, τ), we may assume that h(x, 0) =

∫
M H(x, y, τ)h(y, τ) dμτ = 1. Let
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ũ(y, τ) = H(x, y, τ)h(y, τ) and f̃ = − log ũ − n/2 log(4π). Now, direct com-
putation yields that

Wh(g, H, τ) = W(g, ũ, τ) +
∫

M

(

τ

(
|∇h|2

h

)

− h log h

)

H dμτ .

Noticing that the second integration goes to 0 as τ → 0, we can deduce
that W(g, ũ, τ) < 0 for sufficient small τ if α < 0. This, together with the
fact that

∫
M ũ dμ = 1, implies that μ(g, τ) < 0 for sufficiently small τ . Now

Perelman’s blow-up argument in Section 4 of [1] gives a contradiction with
the sharp logarithmic Sobolev inequality on the Euclidean space [12]. (One
can consult, for example, [4, 13] for more details of this part.)

Remark 3.1. The method of proof here follows a similar idea used in
[4], where the asymptotic limit of the entropy as τ → ∞ was computed.
Note that we have to use properties of the reduced distance, introduced in
Section 7 of [1], in our proof, while the similar, but slightly easier, claim
that limτ→0 W(g, H, τ) = 0 appears much earlier in Section 4 of [1].

Remark 3.2. Hamilton asked whether or not the LYH-type estimate
vu ≤ 0 still holds for more general positive solution u to the conjugate heat
equation, other than the fundamental solution. The proof presented here
can be adapted to show that it still holds for finite sum of fundamental
solutions. Namely, let u(y, τ) =

∑k
i=1 H(y, t; xi, T ). Then, estimate (1.4),

hence vu ≤ 0, still holds for such u.

The proof can be easily modified to give the asymptotic behavior of the
entropy defined in [4] for the fundamental solution to the linear heat equa-
tion, with respect to a fixed Riemannian metric. Indeed, if we restrict to the
class of complete Riemannian manifolds with non-negative Ricci curvature,
we have the following estimates.

Proposition 3.3. For any δ > 0, there exists C(δ) such that

(3.2)
|∇H|2

H
(x, y, τ) ≤ 2

H(x, y, τ)
τ

(

C(δ) +
d2(x, y)
(4 − δ)τ

)

and

(3.3) ΔH(x, y, τ) +
|∇H|2

H
(x, y, τ) ≤ 2

H(x, y, τ)
τ

(

C(δ) + 4
d2(x, y)
(4 − δ)τ

)

.
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The previous argument for the Ricci flow case can be transplanted to
show that

τ(2Δf − |∇f |2) + f − n ≤ 0,

where

H(y, τ ; x, 0) =
1

(4πτ)n/2 e−f

is the fundamental solution to the heat operator ∂/∂τ − Δ. This gives
a rigorous argument for inequality (1.5) (Theorem 1.2) of [4], for both the
compact manifolds and complete manifolds with non-negative Ricci (or Ricci
curvature bounded from below). For the full detailed account, please see [8].

4. Improving Li–Yau–Hamilton estimates via monotonicity
formulae

The proof of (1.4) indicates a close relation between the monotonicity for-
mulae and the differential inequalities of Li–Yau type. The hinge is simply
Green’s second identity. This was discussed very generally in [5]. More-
over, if we chose h in the introduction to be the fundamental solution to the
time dependent heat equation (∂/∂t − Δ) centered at (x0, t0), we can have
a better upper bound on vH(x0, t0) in terms of the weighted integral which
is non-positive. In fact, this follows from the representation formula for the
solutions to the non-homogenous conjugate heat equation. More precisely,
since h(y, t; x0, t0) is the fundamental solution to the heat equation (to make
it very clear, vH is defined with respect to H = H(y, t; x, T ), the fundamen-
tal solution to the conjugate heat equation centered at (x, T ) with T > t0),
we have that

lim
t→t0

∫

M
h(y, t; x0, t0)vH(y, t) dμt(y) = vH(x0, t0).

On the other hand, from (1.2), we have that (by Green’s second identity)

d

dt

∫

M
hvH dμt = 2τ

∫

M

∣
∣
∣
∣Rij + fij − 1

2τ

∣
∣
∣
∣

2

Hh dμt.

Therefore,

lim
t→T

∫

M
hvH dμt − vH(x0, t0) =

∫ T

t0

2τ

∫

M

∣
∣
∣
∣Rij + fij − 1

2τ
gij

∣
∣
∣
∣

2

Hh dμt dt.
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Using the fact that limt→T vH = 0, we have that

vH(x0, t0) = −2
∫ T

t0

(T − t)
∫

M

∣
∣
∣
∣Rij + fij − 1

2(T − t)

∣
∣
∣
∣

2

Hh dμt dt ≤ 0,

which sharpens the estimate vH ≤ 0 by providing a non-positive upper
bound. Noticing also the duality h(y, t; x0, t0) = H(x0, t0; y, t) for any t > t0
(cf. [14]), we can express everything in terms of the fundamental solution
to the (backward) conjugate heat equation.

Below we show a few new monotonicity formulae, which expand the list
of examples shown in [5] and more importantly improve the earlier estab-
lished Li–Yau–Hamilton estimates in a similar way as above.

For simplicity, let us just consider the Kähler–Ricci flow case, even
though often the discussions are also valid for the Riemannian (Ricci flow)
case, after replacing the assumption on the non-negativity of the bisec-
tional curvature by the non-negativity of the curvature operator whenever
necessary.

We first let (M, gαβ̄(x, t)) (m = dimC M) be a solution to the Kähler–
Ricci flow:

∂

∂t
gαβ̄ = −Rαβ̄.

Let Υαβ̄(x, t) be a Hermitian symmetric tensor defined on M × [0, T ], which
is deformed by the complex Lichnerowicz–Laplacian heat equation (or L-heat
equation in short):

(
∂

∂t
− Δ

)

Υγδ̄ = Rβᾱγδ̄Υαβ̄ − 1
2

(
Rγp̄kpδ̄ + Rpδ̄Υγp̄

)
.

Let div(Υ)α = gγδ̄∇γΥαδ̄ and div(Υ)β̄ = gγδ̄∇δ̄Υγβ̄. Consider the quantity

Z = gαβ̄gγδ̄

[
1
2

(
∇β̄∇γ + ∇γ∇β̄

)
Υαδ̄ + Rαδ̄Υγβ̄ +

(
∇γΥαδ̄Vβ̄ + ∇β̄Υαδ̄Vγ

)

+ Υαδ̄Vβ̄Vγ

]

+
K

t
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=
1
2

[
gαβ̄∇β̄div(Υ)α + gγδ̄∇γ div(Υ)δ̄

]
+ gαβ̄gγδ̄

[
Rαδ̄Υγβ̄ + ∇γΥαδ̄Vβ̄

+ ∇β̄Υαδ̄Vγ + Υαδ̄Vβ̄Vγ

]
+

K

t
,

where K is the trace of Υαβ̄ with respect to gαβ̄(x, t). In [15], the following
result, which is the Kähler analog of an earlier result in [16], was showed by
the maximum principle.

Theorem 4.1. Let Υαβ̄ be a Hermitian symmetric tensor satisfying the
L-heat equation on M × [0, T ]. Suppose Υαβ̄(x, 0) ≥ 0 (and satisfies some
growth assumptions in the case M is non-compact). Then, Z ≥ 0 on M ×
(0, T ] for any smooth vector field V of type (1, 0).

The use of the maximum principle in the proof can be replaced by the
integration argument as in the proof of (1.4). For any T ≥ t0 > 0, in order to
prove that Z ≥ 0 at t0, it suffices to show that when t = t0,

∫
M t2Zh dμt ≥ 0

for any compact-supported non-negative function h. Now we solve the conju-
gate heat equation (∂/∂τ − Δ + R) h(y, τ) = 0 with τ = t0 − t and h(y, τ =
0) = h(y), the given compact-supported function at t0. By the perturbation
argument, we may as well as assume that Υ > 0. Let Zm(y, t) = infV Z(y, t).
It was shown in [15] that

(
∂

∂t
− Δ

)

Zm = Y1 + Y2 − 2
Zm

t
,

where

Y1 = Υp̄q

(

ΔRpq̄ + Rpq̄αβ̄Rᾱβ + ∇αRpq̄Vᾱ + ∇ᾱRpq̄Vα + Rpq̄αβ̄VᾱVβ +
Rpq̄

t

)

and

Y2 = Υγᾱ

[

∇pVγ̄ − Rpγ̄ − 1
t
gpγ̄

] [

∇p̄Vα − Rαp̄ − 1
t
gp̄α

]

+ Υγᾱ∇p̄Vγ̄∇pVα

≥ 0.

Notice that in the above expressions, at every point (y, t), the vector V (y, t)
is the vector minimizing Zm. This implies the monotonicity

d

dt

∫

M
t2Zmh dμt = t2

∫

M
(Y1 + Y2) h dμt ≥ 0.
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Since limt→0 t2Zm = 0, which is certainly the case if Υ is smooth at t = 0
and can be assumed so in general by shifting t with a ε > 0, we have that∫
M t2Zmh dμ|t=t0 ≥ 0. This proof via the integration by parts implies the

following monotonicity formula.

Proposition 4.2. Let (M, g(t)), Υ and Z be as in Theorem 4.1. For any
space–time point (x0, t0) with 0 < t0 ≤ T , let �(y, τ) be the reduced distance
function with respect to (x0, t0). Then,

(4.1)
d

dt

∫

M
t2Zm

(
exp(−�)
(πτ)m

)

dμt ≥ t2
∫

M
(Y1 + Y2)

(
exp(−�)
(πτ)m

)

dμt ≥ 0.

In particular,

(4.2) t20Z(x0, t0) ≥
∫ t0

0
t2

(∫

M
(Y1 + Y2)

(
exp(−�)
(πτ)m

)

dμt

)

dt ≥ 0.

Notice that (4.2) sharpens the original Li–Yau–Hamilton estimate of
[15], by encoding the rigidity (such as Hamilton–Cao’s characterization on
the singularity models), derived out of the equality case in the Li–Yau–
Hamilton estimate Z ≥ 0, into the integral of the right hand side. The
result holds for the Riemannian case if one uses computation from [16].

In [3], the author discovered a new matrix Li–Yau–Hamilton inequality
for the Kähler–Ricci flow. (We also showed a family of equations which
connects this matrix inequality to Perelman’s entropy formula.) More pre-
cisely, we showed that for any positive solution u to the forward conjugate
heat equation (∂/∂t − Δ − R) u = 0, we have that

(4.3) Υαβ̄ := u

(

∇α∇β̄ log u + Rαβ̄ +
1
t
gαβ̄

)

≥ 0

under the assumption that (M, g(t)) has bounded non-negative bisectional
curvature. Using the above argument, we can also obtain a new monotoni-
city related to (4.3). Indeed, tracing (1.21) of [3] gives that

(
∂

∂t
− Δ

)

Q = RQ − Rαβ̄Υβᾱ − 2
t
Q +

1
u

|Υαβ̄|2 + u |∇α∇β log u|2 + Y3,
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where Q = gαβ̄Υαβ̄ and

Y3 = u

(

ΔR + |Rαβ̄|2 + ∇αR∇ᾱ log u + ∇α log u∇ᾱR

+ Rαβ̄∇ᾱ log u∇β log u +
1
t
R

)

≥ 0.

Hence, we have the following monotonicity formula, noticing that

Y4 := RQ − Rαβ̄Υβᾱ ≥ 0.

Proposition 4.3. Let (M, g(t)) and (x0, t0) be as in Proposition 4.2. Then,

d

dt

∫

M
t2Q

(
exp(−�)
(πτ)m

)

dμt ≥ t2
∫

M

(
1
u

|Υαβ̄|2 + u |∇α∇β log u|2 + Y3 + Y4

)

×
(

exp(−�)
(πτ)m

)

dμt

≥ 0.(4.4)

In particular,
(4.5)

t20Q(x0, t0) ≥
∫ t0

0
t2

∫

M

(
1
u

|Υαβ̄|2 + u |∇α∇β log u|2 + Y3 + Y4

)(
exp(−�)
(πτ)m

)

.

Again the advantage of the above monotonicity formula is that it encodes
the consequence on equality case (which is that (M, g(t)) is a gradient
expanding soliton) into the right hand side integral.

Without Ricci flow, we can apply the similar argument to prove Li–
Yau’s inequality and obtain a monotonicity formula. More precisely, let
(M, g) (n = dimR M) be a complete Riemannian manifold with non-negative
Ricci curvature. Let u(x, t) be a positive solution to the heat equation on
M × [0, T ]. Li and Yau proved that

Δ log u +
n

2t
≥ 0.

Another way of proving the above Li–Yau’s inequality is through the above
integration by parts argument and the differential equation

(
∂

∂t
− Δ

)

Q =
2
u

|Υij|2 − 2
t
Q +

2
u

Rij∇iu∇ju,
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where

Υij = ∇i∇ju +
u

2t
gij − uiuj

u

and Q = gijΥij = u(Δ log u + n/2t). This together with Cheeger–Yau’s the-
orem [17] on lower bound of the heat kernel gives the following monotonic-
ity formula, which also give characterization on the manifold if the equality
holds somewhere for some positive u.

Proposition 4.4. Let (M, g) be a complete Riemannian manifold with
non-negative Ricci curvature. Let (x0, t0) be a space–time point with t0 > 0.
Let τ = t0 − t. Then,

d

dt

(∫

M
t2Q(y, t)Ĥ(x0, y, τ) dμ(x)

)

≥ 2t2
∫

M

(∣
∣
∣
∣∇i∇j log u +

1
2t

gij

∣
∣
∣
∣

2

(4.6)

+Rij∇i log u∇j log u

)

uĤ dμ ≥ 0,

where

Ĥ(x0, y, τ) =
1

(4πτ)n/2 exp
(

−d2(x0, y)
4τ

)

with d(x0, y) being the distance function between x0 and y. In particular, we
have that

(
uΔ log u +

n

2t
u
)

(x0, t0) ≥ 2
t20

∫ t0

0
t2

∫

M

(∣
∣
∣
∣∇i∇j log u +

1
2t

gij

∣
∣
∣
∣

2

+Rij∇i log u∇j log u) uĤ.(4.7)

It is clear that (4.7) improves the estimate of Li–Yau slightly by provi-
ding the lower estimate, from which one can see easily that the equality (for
Li–Yau’s estimate) holding somewhere implies that M = R

n (this was first
observed in [4], with the help of an entropy formula). The expression in the
right hand side of (4.6) also appears in the linear entropy formula of [4].

One can write down similar improving results for the Li–Yau–type
estimate proved in [4], which is a linear analog of Perelman’s estimate
vH ≤ 0, and the one in [18], which is a linear version of Theorem 4.1. For
example, when M is a complete Riemannian manifold with the non-negative
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Ricci curvature, if

u = H(x, y, t) =
e−f

(4πt)n/2 ,

the fundamental solution to the heat equation centered at x at t = 0, letting
W = t(2Δf − |∇f |) + f − n, we have that W ≤ 0. If Ĥ is the “pseudo-
backward heat kernel” defined as in Proposition 4.4, we have that

d

dt

∫

M
(−W )uĤ(x0, y, τ) dμ(y)

= 2t

∫

M

(∣
∣
∣
∣∇i∇jf − 1

2t
gij

∣
∣
∣
∣

2

+ Rij∇if∇jf

)

uĤ(x0, y, τ) dμ(y) ≥ 0

and

(−Wu) (x0, t0) ≥ 2
∫ t0

0
t

∫

M

(∣
∣
∣
∣∇i∇jf − 1

2t
gij

∣
∣
∣
∣

2

+ Rij∇if∇jf

)

uĤ.

If we assume further that M is a complete Kähler manifold with non-negative
bisectional curvature and u(y, t) is a strictly plurisubharmonic solution to
the heat equation with w = ut, then

d

dt

∫

M
t2Zw

mĤ(x0, y, t) dμ(y) = t2
∫

M
Y5Ĥ(x0, y, t) dμ(y) ≥ 0,

where

Zw
m(y, t) = inf

V ∈T 1,0M

(
wt + ∇αwVᾱ + ∇ᾱwVα + uαβ̄VᾱVβ +

w

t

)

and

Y5 = uγᾱ

[

∇pVγ̄ − 1
t
gpγ̄

] [

∇p̄Vα − 1
t
gp̄α

]

+ uγᾱ∇p̄Vγ̄∇pVα + Rαβ̄st̄us̄tVβVᾱ

≥ 0

with V being the minimizing vector in the definition of Zw
m. In particular,

(
∂2

∂(log t)2
u(y, t)

)

(x0, t0) ≥
∫ t0

0
t2

∫

M
Y5Ĥ(x0, y, t) dμ(y) dt.

This sharpens the logarithmic convexity of u(y, t) proved in [17].
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Finally, we should remark that in all the discussions above, one can
replace the pseudo-backward heat kernel

Ĥ(y, t; x0, t0) =
exp(−d2(x0, y)/4(t0 − t))

(4π(t0 − t))n/2

(
or exp(−�(y, τ))/(4πτ)n/2, centered at (x0, t0) in the case of Ricci flow

)
,

which we wrote before as Ĥ(y, x0, τ) by abusing the notation, by the funda-
mental solution to the backward heat equation (even by constant 1 in the
case of compact manifolds). Also, it still remains interesting on how to make
effective use of these improved estimates, besides the rigidity results out of
the inequality being equality somewhere. There is also a small point that
should not be glossed over. When the manifold is complete non-compact,
one has to justify the validity of Green’s second identity (for example, in
Proposition 4.4, we need to justify that

∫
M (ĤΔQ − QΔĤ) dμ = 0). This

can be done when t0 is sufficiently small, together with integral estimates
on the Li–Yau–Hamilton quantity (cf. [8]). The local monotonicity formula
that shall be discussed in the next section provides another way to avoid
possible technical complications caused by the non-compactness.

5. Local monotonicity formulae

In [5], a very general scheme on localizing the monotonicity formulae is
developed. It is for any family of metrics evolved by the equation ∂/∂tgij =
−2κij. The localization is through the so-called “heat ball”. More precisely,
for a smooth positive space–time function v, which often is the fundamental
solution to the backward conjugate heat equation or the pseudo-backward
heat kernel

Ĥ(x0, y, τ) =
e−r2(x0,y)/4τ

(4πτ)n/2

(
or e−�(y,τ)/(4πτ)n/2 in the case of Ricci flow

)
, with τ = t0 − t, one defines

the heat ball by Er = {(y, t)| v ≥ r−n; t < t0}. For all interesting cases, we
can check that Er is compact for small r (cf. [5]). Let ψr = log v + n log r.
For any Li–Yau–Hamilton quantity Q, we define the local quantity:

P (r) :=
∫

Er

(
|∇ψr|2 + ψr(trg κ)

)
Q dμt dt.



902 Lei Ni

The finiteness of the integral can be verified via the localization of
Lemma 2.2, a local gradient estimate. The general form of the theorem,
which is proved in Theorem 1 of [5], reads as the following.

Theorem 5.1. Let

I(r) =
P (r)
rn

.

Then,

I(r2) − I(r1) = −
∫ r2

r1

n

rn+1

∫

Er

[((
∂

∂t
+ Δ − trg κ

)

v

)
Q
v

(5.1)

+ ψr

(
∂

∂t
− Δ

)

Q
]

dμt dt dr.

It gives the monotonicity of I(r) in the cases that Q ≥ 0, which is
ensured by the Li–Yau–Hamilton estimates in the case we shall consider,
and both (∂/∂t + Δ − trg κ) v and (∂/∂t − Δ) Q are non-negative. The non-
negativity of (∂/∂t + Δ − trg κ) v comes for free if we chose v to be the
pseudo-backward heat kernel. The non-negativity of (∂/∂t − Δ) Q follows
from the computation, which we may call as in [3] the pre-Li–Yau–Hamilton
equation, during the proof of the corresponding Li–Yau–Hamilton estimate.
Below, we illustrate examples corresponding to the monotonicity formulae
derived in the previous section. These new ones expand the list of examples
given in Section 4 of [5].

For the case of Ricci/Kähler–Ricci flow, for a fixed (x0, t0), let

v =
e−�(y,τ)

(4πτ)n/2 ,

the pseudo-backward heat kernel, where � is the reduced distance centered
at (x0, t0).

Example 5.2. Let Zm, Y1 and Y2 be as in Proposition 4.2. Let Q = t2Zm.
Then,

d

dr
I(r) ≤ − n

rn+1

∫

Er

[
t2ψr (Y1 + Y2)

]
dμt dt ≤ 0

and

Q(x0, t0) ≥ I(r̄) +
∫ r̄

0

n

rn+1

∫

Er

[
t2ψr (Y1 + Y2)

]
dμt dt dr.
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Example 5.3. Let u, Q = t2Q, Υαβ̄, Y3 and Y4 be as in Proposition 4.3.
Then,

d

dr
I(r) ≤ − n

rn+1

∫

Er

t2ψr

(
1
u

|Υαβ̄|2 + u |∇α∇β log u|2 + Y3 + Y4

)

≤ 0

and

Q(x0, t0) ≥ I(r̄) +
∫ r̄

0

n

rn+1

∫

Er

t2ψr

(
1
u

|Υαβ̄|2 + u |∇α∇β log u|2 + Y3 + Y4

)

.

For the fixed metric case, we may choose either v = H(x0, y, τ), the
backward heat kernel or

v = Ĥ(x0, y, τ) =
e−d2(x0,y)/4τ

(4πτ)n/2 ,

the pseudo-backward heat kernel.

Example 5.4. Let u and Q be as in Proposition 4.4. Let Q = t2Q and
f = log u. Then,

d

dr
I(r) ≤ − 2n

rn+1

∫

Er

t2uψr

(∣
∣
∣
∣∇i∇jf +

1
2t

gij

∣
∣
∣
∣

2

+ Rij∇if∇jf

)

dμ dt ≤ 0

and

Q(x0, t0) ≥ I(r̄) +
∫ r̄

0

2n

rn+1

∫

Er

t2uψr

(∣
∣
∣
∣∇i∇jf +

1
2t

gij

∣
∣
∣
∣

2

+ Rij∇if∇jf

)

.

Example 5.5. Let u = e−f/(4πt)n/2 be the fundamental solution to the
(regular) heat equation. Let W = t(2Δf − |∇f |2) + f − n and Q = −uW .
Then,

d

dr
I(r) ≤ − 2n

rn+1

∫

Er

tuψr

(∣
∣
∣
∣∇i∇jf − 1

2t
gij

∣
∣
∣
∣

2

+ Rij∇if∇jf

)

dμ dt ≤ 0

and

Q(x0, t0) ≥ I(r̄) +
∫ r̄

0

2n

rn+1

∫

Er

tuψr

(∣
∣
∣
∣∇i∇jf − 1

2t
gij

∣
∣
∣
∣

2

+ Rij∇if∇jf

)

.

Note that this provides another localization of entropy, other than the one
in [3] (see also [8]).
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Example 5.6. Let M be a complete Kähler manifold with non-negative
bisectional curvature. Let u, Zw

m and Y5 be as in the last case considered in
Section 4. Let Q = t2Zw

m. Then,

d

dr
I(r) ≤ − n

rn+1

∫

Er

t2Y5ψr dμ dt

and
(

∂2

∂(log t)2
u(x, t)

)

(x0, t0) ≥ I(r̄) +
∫ r̄

0

n

rn+1

∫

Er

t2Y5ψr dμ dt dr.
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