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Harmonic morphisms between Weyl
spaces and twistorial maps
Eric Loubeau and Radu Pantilie

We show that Weyl spaces provide a natural context for harmonic
morphisms, and we give the necessary and sufficient conditions
under which on an Einstein–Weyl space of dimension 4 there can
be defined, locally, at least five distinct foliations of dimension
2 which produce harmonic morphisms (Theorem 7.4). Also, we
describe the harmonic morphisms between Einstein–Weyl spaces
of dimensions 4 and 3 (Theorem 7.6).

1. Introduction

Harmonic morphisms between Riemannian manifolds are smooth maps
which pull back (local) harmonic functions to harmonic functions. By the
basic characterization theorem of Fuglede and Ishihara [8, 14], harmonic
morphisms are harmonic maps which are horizontally weakly conformal.
See [11] for a frequently updated list of publications on harmonic morphisms.

The simplest nontrivial examples of harmonic morphisms are given by
harmonic functions from a two-dimensional oriented conformal manifold:
any such harmonic morphism is, locally, the sum of a (+)holomorphic func-
tion and a (−)holomorphic function (see [3]). Similar descriptions, in higher
dimensions, can be obtained if instead of (±)holomorphic functions, we use
the more general notion of twistorial map [26]. A twistorial structure on
a complex manifold M is given by a foliation F on a complex manifold
P such that F ∩ ker dπ = {0}, where π : P → M is a proper complex ana-
lytic submersion; the leaf space of F is called the twistor space of the given
twistorial structure (P, M, π,F ) and is usually denoted Z(M) . It follows
that, locally, we can find sections of π whose images are foliated by leaves
of F ; by projecting back through π, we endow M with a sheaf of complex
analytic submersions. Locally, a twistorial function is the composition of
such a submersion followed by a complex analytic function.

A sufficient condition for a complex analytic map ϕ : M → N between
complex manifolds endowed with twistorial structures (P, M, πP ,F )
and (Q, N, πQ,G ) to be twistorial, with respect to a map Φ : P → Q , is
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πQ ◦ Φ = ϕ ◦ πP and dΦ(F ) = G ; then, Φ induces a map between the
twistor spaces of (P, M, πP ,F ) and (Q, N, πQ,G ) which we call the twistorial
representation of ϕ (with respect to Φ). To define the notion of twistorial
map, it is not necessary to assume that F and G are integrable; that is, we
can speak about twistorial maps between manifolds endowed with almost
twistorial structures (see [26, §3] for the definition of twistorial map in the
category of complex manifolds and [20] for the definitions of almost twisto-
rial structure and twistorial map in the smooth category).

Thus, any twistorial structure on M determines a sheaf of twistorial
functions FM on M ; such sheaves can be obtained by complexifying the
following examples of complex valued functions:

(i) (±)Holomorphic functions on a Hermitian manifold; here (M, c, J)
is the (germ-unique) complexification of a Hermitian manifold, P =
M+ � M− , with M± = M , and the twistor distribution F |M± is the
(∓i)eigendistribution of J (cf. [26, Example 2.3]).

(ii) Functions on a three-dimensional Einstein–Weyl space, which, locally,
are the composition of a horizontally conformal submersion with
geodesic fibres followed by a complex analytic function; here (M3, c, D)
is the complexification of a three-dimensional Einstein–Weyl space,
π : P → M is the bundle of two-dimensional degenerate spaces on
(M3, c) and, for each p ∈ P , the subspace Fp ⊆ TpP is the horizontal
lift of p ⊆ Tπ(p)M with respect to D (see [26, Example 2.4] for details
about this twistorial structure).

(iii) Functions on a four-dimensional anti-self-dual manifold, which are
holomorphic with respect to a (local) positive Hermitian structure
on it; here (M4, c) is the complexification of a four-dimensional anti-
self-dual manifold, π : P → M is the bundle of self-dual spaces on
(M4, c) and, for each p ∈ P , the subspace Fp ⊆ TpP is the horizontal
lift of p ⊆ Tπ(p)M with respect to the Levi–Civita connection of any
local representative of c (see [26, Example 2.6] for details about this
twistorial structure).

One of the main steps in the process of classifying harmonic morphisms
is to prove that these are twistorial. For example, any harmonic morphism
from an Einstein manifold of dimension 4 with fibres of dimension 1 or 2 is
twistorial ([23, 26, 29]; cf. Corollaries 7.1 and 7.2 below).

This paper gives an answer to the following question of John C. Wood:
Can (the submersive) twistorial maps be seen as harmonic morphisms? If we
restrict ourselves to twistorial maps which pull back twistorial functions to
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twistorial functions (for example, if we work with twistorial maps, as above,
with the further property that their twistorial representation is submersive),
then the answer, in the affirmative, to this question follows if we work with
sheaves of twistorial functions FM for which there exists a sheaf of “har-
monic” functions L such that FM ∩ L is a “sufficiently large” subsheaf of L
(in particular, if the sheaf of vector spaces generated by FM ∩ L is equal to
L, like in the case of two-dimensional conformal manifolds). We argue that
for each of the examples (i), (ii) and (iii), above, a good candidate for L
can be obtained by endowing the given conformal structure with a suitable
Weyl connection (the obvious one for (ii)).

The definition of harmonic functions on a Weyl space is given in Sec-
tion 2; there we also show that the basic theorem of Fuglede and Ishihara
generalizes to harmonic morphisms between Weyl spaces. In Section 3, we
do the same for the fundamental equation for harmonic morphisms (see [3]).

In Section 4, we recall the definition and the basic properties of the Weyl
connection of an almost Hermitian manifold [28]; we show that for Hermitian
manifolds, this is characterized by the property that all the (±)holomorphic
functions are harmonic with respect to it. We also prove that any holomor-
phic horizontally weakly conformal map between almost Hermitian mani-
folds endowed with their Weyl connections is harmonic and, hence, a har-
monic morphism (cf. [12, 18]).

In Section 5, we recall from [26] the basic examples of twistorial maps
and study the conditions under which these are harmonic morphisms; the
resulting harmonic morphisms are between Weyl spaces of dimensions m
and n where (m, n) = (3, 2), (4, 2), (4, 3). Thus, we obtain the following for
an analytic submersion ϕ between Weyl spaces of dimensions m and n.

• If (m, n) = (3, 2), then ϕ is twistorial if and only if it is a harmonic
morphism (Example 5.1).

• If (m, n) = (4, 2), (4, 3), then we obtain necessary and sufficient condi-
tions under which ϕ is a twistorial harmonic morphism (Example 5.2,
Theorem 5.4).

The main purpose of Section 6 is to prove that if ϕ is a harmonic mor-
phism from a Weyl space of dimension 4 to a Weyl space of dimension 2 or
3, then ϕ is twistorial if and only if the difference between the Ricci tensor
of the domain and the pull-back of the Ricci tensor of the codomain is zero
along the horizontal null directions (Propositions 6.3 and 6.6).

In Section 7, we apply the results of Sections 5 and 6 to study harmonic
morphisms from four-dimensional Einstein–Weyl spaces. Thus,
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• we give the necessary and sufficient conditions under which on an
Einstein–Weyl space of dimension 4 there can be defined, locally, at
least five distinct foliations of dimension 2 which produce harmonic
morphisms (Theorem 7.4);

• we describe the harmonic morphisms between Einstein–Weyl spaces of
dimensions 4 and 3 (Theorem 7.6).

We are grateful to Paul Baird for his interest in this work and to John
C. Wood for useful comments.

2. Harmonic morphisms between Weyl spaces

In this section, we shall work in the smooth and (real or complex) ana-
lytic categories; unless otherwise stated, all the manifolds are assumed to
be connected. A conformal manifold (Mm, c) is a manifold endowed with a
reduction of its frame bundle to CO(m, K) , (K = R, C ). We shall denote by
L2 the line bundle associated to the bundle of conformal frames of (Mm, c)
via the morphism of Lie groups ρm : CO(m, K) → K \ {0} characterized by
aTa = ρm(a)Im, (a ∈ CO(m, K), K = R, C ). In the smooth and real ana-
lytic categories, L2 is canonically oriented and so it admits a canonical
square root, denoted by L; moreover, L does not depend on c (see [5]). In
the complex analytic category, such a square root can be found locally; fur-
thermore, if m is odd, then there exists a canonical choice for L (this follows
from the fact that if m is odd, then there exists a natural isomorphism of
Lie groups CO(m, K) = K

∗ × SO(m, K), (K = R, C )). In the smooth and
real analytic categories, positively oriented local sections of L2 correspond
to local representatives of c . In the complex analytic category, nowhere zero
local sections of L2 correspond to local representatives of c. Note that if b is
a section of ⊗2 T ∗M , then its traces with respect to local representatives of
c define a section of L∗ 2 which will be denoted tracec b. More generally, if b
is a section of E ⊗ (⊗2T ∗M) for some vector bundle E over M , then we can
define tracec b which is a section of E ⊗ L∗ 2; if E = TM , then (traceg b)�,
where g is any local representative of c , defines a 1-form on M which will
be denoted (tracec b)� (see [5, 9]).

The following definition is a simple generalization of the well-known
notion of harmonic map (see [3]).

Definition 2.1. Let (M, c) be a conformal manifold, N a manifold and
DM , DN linear connections on M, N, respectively.
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A map ϕ : (M, c, DM ) → (N, DN ) is called harmonic (with respect to c,
DM , DN ) if

(2.1) tracec(Ddϕ) = 0,

where D is the connection on ϕ∗(TN) ⊗ T ∗M induced by DM , DN and ϕ.

There is no loss of generality if we assume DM and DN to be torsion-
free. Indeed, Equation (2.1) is unchanged if we replace DM and DN with
the associated torsion-free affinely equivalent connections (see [16, Chapter
III, Proposition 7.9]).

A harmonic map ϕ : (M, g) → (N, h) between Riemannian manifolds is
harmonic in the sense of Definition 2.1 if M and N are endowed with the
Levi–Civita connections of g and h, respectively, and M is considered with
the conformal structure determined by g.

We shall always consider K(= R, C ) to be endowed with its confor-
mal structure and canonical connection (here C is considered to be a one-
dimensional complex manifold). Clearly, a curve on (M, D) is harmonic if
and only if it is a geodesic of D.

Let (M, c) be a conformal manifold. A torsion-free conformal connection
on (M, c) is called a Weyl connection; if D is a Weyl connection on (M, c),
then (M, c, D) is called a Weyl space (see [9]). A function (locally) defined on
a Weyl space (M, c, D) will be called harmonic if it is harmonic with respect
to c, D. If dimM = 2, then a function f on the Weyl space (M, c, D) is
harmonic if and only if it is harmonic with respect to any local representative
of c.

Proposition 2.2. Let (M, cM ) be a conformal manifold of dimension m 
=
2, endowed with a linear connection D.

Then there exists a unique Weyl connection D1 on (M, cM ) such that

(2.2) tracecM
(Ddf) = tracecM

(D1df)

for any function f (locally) defined on M .

Proof. For each local representative g of cM , we define a (local) 1-form αg

by

(2.3) αg(X) =
1

m − 2
g(traceg(∇g − D), X)

for all X ∈ TM , where ∇g is the Levi–Civita connection of g . It is easy to
prove that αgλ−2

= αg + λ−1 dλ. Hence, the family of 1-forms {αg} defines a
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connection on L. But any connection on L corresponds to a Weyl connection
D1 on (M, cM ) (see [9], the 1-form αg is the Lee form of D1 with respect to
g). Now, (2.2) is equivalent to (2.3) and the proof follows. �

The following definition (cf. [3, 8, 14]) will be central in this paper.

Definition 2.3. Let (M, cM , DM ) and (N, cN , DN ) be Weyl spaces.
A map ϕ : (M, cM , DM ) → (N, cN , DN ) is called a harmonic morphism

if for any harmonic function f defined on some open set U of N, such that
ϕ−1(U) 
= ∅, the function f ◦ ϕ|ϕ−1(U) is harmonic.

Remark 2.4. Proposition 2.2 shows that if dimM, dim N 
= 2, then Defi-
nition 2.3 does not become more general by using linear connections instead
of Weyl connections.

Any harmonic morphism between Riemannian manifolds ϕ : (M, g) →
(N, h) is also a harmonic morphism between Weyl spaces ϕ : (M, [g],∇g) →
(N, [h],∇h), where [g], [h] are the conformal structures determined by g , h
and ∇g, ∇h are the Levi–Civita connections of g , h , respectively. However,
not all harmonic morphisms between Weyl spaces arise in this way (see, for
example, Remark 3.3(2), Corollary 4.6 and Example 7.7(2) below).

Definition 2.5 [3]. Let (M, cM , DM ) be a Weyl space. A foliation V on M
produces harmonic morphisms on (M, cM , DM ) if, locally, it can be defined
by submersive harmonic morphisms; that is, for any point of x ∈ M, there
exists a submersive harmonic morphism ϕ : (U, cM |U , DM |U ) → (N, cN , DN )
such that V |U = ker dϕ, where U is an open neighbourhood of x.

Next, we shall prove the Fuglede–Ishihara theorem ([8, 14], see [3]) for
harmonic morphisms between Weyl spaces. For this, we apply the standard
strategy (see [3]). First, we need an existence result for harmonic functions
from Weyl spaces.

Lemma 2.6 (cf. [3]). Let (M, c, D) be a Weyl space and let x ∈ M . Then
for any v ∈ T ∗

xM and any trace-free symmetric bilinear form b on (TxM, cx),
there exists a harmonic function f defined on some open neighbourhood of
x such that dfx = v and (Ddf)x = b.

Proof. This is essentially the same as for harmonic functions on Riemannian
manifolds (see [3] and the references therein).
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We shall give a straightforward proof assuming (M, c, D) (real or com-
plex) analytic (cf. [19, Lemma 2], where we assume that the metric is ana-
lytic). Let U be the domain of a normal coordinate system x1, . . . , xm for
D, centred at x, where m = dimM . We may assume g(dxm, dxm) = 1, at x,
for some local representative g of c over U . Hence, by passing to a smaller
open neighbourhood of x, if necessary, we may assume that the hypersurface
S = {xm = 0} is nowhere degenerate; equivalently, S is noncharacteristic for
the second-order differential operator f 
→ traceg(Ddf).

Let p = bijx
ixj + vix

i. Then, by further restricting U , if necessary, and
by applying the Cauchy–Kovalevskaya theorem, we can find a harmonic
function f , with respect to c, D, defined on U such that f and p are equal
up to the first derivatives along S; in particular, dfx = v. Hence, possibly
excepting ∂2f

(∂xm)2 (x), all the second-order partial derivatives of f , at x, are
equal to the corresponding derivatives of p, at x. As f is harmonic, b is
trace-free with respect to g, and x is the centre of the normal system of
coordinates x1, . . . , xm, for D, the derivatives ∂2f

(∂xm)2 (x) and ∂2p
(∂xm)2 (x) are

determined by the other second-order partial derivatives, at x, of f and p,
respectively, and hence must be equal. Thus, (Ddf)x = b. �

Remark 2.7. Let f be a harmonic function (locally defined) on a Weyl
space (M, c, D) and let x ∈ M such that dfx 
= 0. Then there exists a local
representative g of c defined on some neighbourhood U of x such that f
is harmonic with respect to g (this follows, for example, from (2.3) applied
to D). However, the sheaf of harmonic functions on U with respect to c,
D, is equal to the sheaf of harmonic functions of g if and only if D is the
Levi–Civita connection of g.

Let (M, cM ) be a conformal manifold and let LM be the associated line
bundle. Note that the conformal structure cM corresponds to a “musical”
isomorphism T ∗M

∼−→ TM ⊗ L∗
M

2. Hence, the differential of any map ϕ :
(M, cM ) → (N, cN ) between conformal manifolds has an adjoint (dϕ)T which
is a section of the vector bundle Hom(ϕ∗(TN), TM) ⊗ Hom(L2

M , ϕ∗(L2
N )).

Definition 2.8 (cf. [3, 22]). A map ϕ : (M, cM ) → (N, cN ) between con-
formal manifolds is called horizontally weakly conformal if there exists a
section Λ of Hom(L2

M , ϕ∗(L2
N )) such that

((dϕ)T)∗(cM ) = Λ ⊗ cϕ∗(TN),
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where cϕ∗(TN) is the conformal structure on ϕ∗(TN) induced by ϕ and
cN ; Λ is called the square dilation of ϕ. If Λ = λ2 for some section λ of
Hom(LM , ϕ∗(LN )), then λ is a dilation of ϕ.

Let (M, cM ) be a conformal manifold. A conformal foliation on (M, cM )
is a foliation which is locally defined by horizontally conformal submersions.

In the complex analytic category, let ϕ : (M, cM ) → (N, cN ) be a hori-
zontally conformal submersion with nowhere degenerate fibres. Then, each
point of M has an open neighbourhood U such that ϕ|U admits a dilation.
In fact, by passing, if necessary, to a conformal Z2-covering space of M , we
can suppose that ϕ admits a dilation.

In the smooth (real analytic) category, any horizontally conformal sub-
mersion admits a dilation. Furthermore, if ϕ : (M, cM ) → (N, cN ) is hor-
izontally weakly conformal, then there exists a continuous section λ of
Hom(LM , ϕ∗(LN )) such that Λ = λ2; moreover, λ is smooth (real analytic)
over the set of regular points of ϕ (cf. [3]).

Now we can prove the Fuglede–Ishihara theorem for harmonic mor-
phisms between Weyl spaces.

Theorem 2.9 (cf. [8, 14]). Let (M, cM , DM ) and (N, cN , DN ) be Weyl
spaces.

A map ϕ : (M, cM , DM ) → (N, cN , DN ) is a harmonic morphism if and
only if it is harmonic with respect to cM , DM , DN and horizontally weakly
conformal.

Proof. For any function f , locally defined on M , a straightforward calcula-
tion gives

(2.4) tracecM
(Dd(f ◦ ϕ)) = df(tracecM

(Ddϕ)) + cN (Ddf, ((dϕ)T)∗(cM )).

By applying Lemma 2.6 with b = 0 and for all v ∈ T ∗
xN , (x ∈ N), from

Equation (2.4), we obtain that ϕ is harmonic with respect to cM , DM , DN .
Then, by applying again Lemma 2.6 from Equation (2.4), we obtain that for
all trace-free symmetric b ∈ ⊗2T ∗N , we have cN (b, ((dϕ)T)∗(cM )) = 0. The
proof follows. �

An immediate consequence of Theorem 2.9 is that any foliation which
produces harmonic morphisms is a conformal foliation (cf. [3]).
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3. The fundamental equation

In this section we shall work in the smooth and (real or complex) analytic
categories. Let (Mm, cM ) be a conformal manifold and let L be the associ-
ated line bundle on M . Let V ⊆ TM be a nondegenerate distribution, and
let H = V ⊥ be its orthogonal complement. Then, cM induces conformal
structures cM |V and cM |H on V and H , respectively. Let LV and LH be
the line bundles on M determined by the conformal structures cM |V and
cM |H , respectively. As any local representative of cM induces local repre-
sentatives of the conformal structures induced on V and H , we have iso-
morphisms between L2, L2

V and L2
H (seen as bundles with group ((0,∞), ·)

in the smooth and real analytic categories); we shall always identify L2 =
L2

V = L2
H in this way. Conversely, conformal structures on the complemen-

tary distributions V and H together with an isomorphism between L2
V and

L2
H determine a conformal structure on M such that H = V ⊥ [5]. In other

words, nondegenerate distributions V of dimension m − n on (Mm, cM ) cor-
respond to reductions of cM to the subgroup G = {(a, b) ∈ CO(m − n) ×
CO(n) | ρm−n(a) = ρn(b)} of CO(m). Then, as the morphisms of Lie groups
p1 : G → CO(m − n), (a, b) 
→ a, and p2 : G → CO(n), (a, b) 
→ b, satisfy
ρm|G = ρm−n ◦ p1 = ρn ◦ p2, we obtain that cM |V = p1(cM ) and cM |H =
p2(cM ) are such that L2

V and L2
H are isomorphic to L2. Conversely, if cV

and cH are (the bundles of conformal frames of) conformal structures on
the complementary distributions V and H , respectively, then cV + cH is a
reduction of the bundle of linear frames on Mm to CO(m − n) × CO(n), and
it is easy to see that isomorphisms between L2

V and L2
H correspond to reduc-

tions of L2
V ⊕ L2

H to ι : H ↪→ H × H, a 
→ (a, a), where H = ((0,∞), ·) in
the smooth and real analytic categories and H = (C \ {0}, ·) in the complex
analytic category. As G = (ρm−n × ρn)−1(ι(H)), it follows that reductions
of cV + cH to G correspond to isomorphisms between L2

V and L2
H ; any such

reduction determines a conformal structure cM on Mm such that H = V ⊥

and cM |V = cV , cM |H = cH .

Example 3.1 [4]. Let M be a manifold endowed with two complementary
distributions V and H . The Bott partial connection DBott on V , over H ,
is defined by DBott

X U = V [X, U ] for local sections X of H and U of V .
Suppose that M is endowed with a conformal structure cM with respect

to which V is nondegenerate and H = V ⊥. As (L2)m−n = (Λm−nV )2,
where m = dimM and n is the dimension of the distribution H , we have
that DBott induces a partial connection on L which will also be denoted
DBott; the local connection form of this connection with respect to a local
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section of L, corresponding to a local representative g of cM , is
1

m−n traceg(BV )�.

Let ϕ : (M, cM , DM ) → (N, cN , DN ) be a horizontally conformal sub-
mersion with nowhere degenerate fibres between Weyl spaces. We shall
denote, as usual (see, for example, [3]), V = ker dϕ, H = V ⊥. Then, DM

and DN induce Weyl partial connections with respect to V on (H , cM |H )
over H , which will be denoted H DM and DN , respectively. (Recall [26]
that a Weyl partial connection D on (H , c), over H , is a conformal par-
tial connection D on (H , c) whose torsion tensor field T with respect to V
defined by T (X, Y ) = DXY − DY X − H [X, Y ] for local sections X and Y
of H is zero.)

If D is a (partial) connection on L and k ∈ Z, then we shall denote by
Dk the (partial) connection induced on Lk, where Lk = ⊗kL if k is a natural
number and Lk = ⊗−k L∗ if k is a negative integer.

Proposition 3.2. Let ϕ : (Mm, cM , DM ) → (Nn, cN , DN ) be a horizon-
tally conformal submersion with nowhere degenerate fibres between Weyl
spaces. Then,

(3.1) tracecM
(Ddϕ)� = (H DM )m−2 ⊗ (DN )−(n−2) − (DBott)m−n.

Proof. Let BV ,DM

be the second fundamental form of V , with respect to
DM , defined by

BV ,DM

(U, V ) =
1
2

H (DM
U V + DM

V U)

for local sections U and V of V ([5], cf. [3]). A straightforward calculation
gives

(3.2) tracecM
(Ddϕ)� = tracecM

(DN − H DM ) − tracecM
(BV ,DM

)�.

Now let g be a local representative of cM , corresponding to some local
section s of L and let αM and αN be the Lee forms of DM and DN , respec-
tively, with respect to g. Recall (see [9]) that αM (αN ) is the local connection
form of DM (DN ) with respect to s. Also, it is easy to prove that

(3.3) traceg(BV ,DM

)� = traceg(BV )� − (m − n)αM |H ,

where BV is the second fundamental form of V with respect to (the Levi–
Civita connection of) g.



Harmonic morphisms 857

It follows that (3.2) is equivalent to

(3.4) tracecM
(Ddϕ)� = (m − 2)αM |H − (n − 2)αN − traceg(BV )�.

The proof follows from Example 3.1. �

Remark 3.3.

(1) When DM and DN are the Levi–Civita connections of (local) represen-
tatives of cM and cN , respectively, then (3.1) reduces to the fundamen-
tal equation (see [3]) for horizontally conformal submersions between
Riemannian manifolds.

(2) Let ϕ : (M, cM ) → (N, cN , DN ) be a horizontally conformal submer-
sion, with nowhere degenerate fibres, from a conformal manifold to a
Weyl space. From the fundamental Equation (3.1), it follows that there
exists a Weyl connection DM on (M, cM ) such that ϕ : (M, cM , DM ) →
(N, cN , DN ) is a harmonic morphism.

(3) Another consequence of Proposition 3.2 is that if D1 and D2 are Weyl
connections on a conformal manifold (N, cN ) of dimension not equal
to 2 and ϕ : (M, cM , DM ) → (N, cN , Dj), j = 1, 2, is a surjective har-
monic morphism with nowhere degenerate fibres, then D1 = D2 (cf. [3]).

We shall say that V is minimal with respect to DM if tracecM
(BV ,DM

) =
0; then V is minimal with respect to DM if and only if DM and DBott induce
the same partial connection on L over H [5].

Similar to the case of harmonic morphisms between Riemannian mani-
folds, the fundamental Equation (3.1) easily implies the following result.

Theorem 3.4 (cf. [1]). Let ϕ : (M, cM , DM ) → (N, cN , DN ) be a horizon-
tally conformal submersion with nowhere degenerate fibres between Weyl
spaces.

(a) If dim N = 2, then ϕ is a harmonic morphism if and only if its fibres
are minimal with respect to DM .

(b) If dim N 
= 2, then any two of the following assertions imply the third:
(i) ϕ is a harmonic morphism.
(ii) The fibres of ϕ are minimal with respect to DM .
(iii) H DM = DN .

Let (M, cM ) be a conformal manifold endowed with a conformal foliation
V . Note that if V is nowhere degenerate, then L is basic (with respect to
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V ) [5]. Indeed, for any point x ∈ M , there exists an open neighbourhood
U , of x, on which there can be defined a horizontally conformal submersion
ϕ : (U, cM |U ) → (N, cN ) which defines V on U and which admits a dilation
λ. Then λ is an isomorphism between L|U and ϕ∗(LN ).

The following proposition follows easily from (3.1).

Proposition 3.5 (cf. [3]). Let (Mm, cM , DM ) be a Weyl space, dimM =
m, endowed with a nowhere degenerate conformal foliation V .

(i) If codim V = 2, then V produces harmonic morphisms on (M,cM ,DM )
if and only if its leaves are minimal.

(ii) If codim V = n 
= 2, then V produces harmonic morphisms on (M, cM ,
DM ) if and only if the partial connection (H DM )m−2 ⊗ (DBott)−(m−n)

on Ln−2, over H , is basic.

We end this section with an example of a Weyl connection which will be
useful later on.

Example 3.6 [5]. Let (Mm, c) be a conformal manifold endowed with a
nondegenerate distribution V of codimension n and let H = V ⊥.

For each local representative g of cM , define a (local) 1-form αg by

(3.5) αg =
1

m − n
traceg(BV )� +

1
n

traceg(BH )�.

Then αgλ−2
= αg + λ−1 dλ. Hence, the family of 1-forms {αg} defines a Weyl

connection D on (Mm, c). The Weyl connection D is called the (minimal)
Weyl connection of (Mm, c,V ). Note that if we denote by DBott,V and
DBott,H the partial connections over H and V , respectively, induced on
L by the Bott partial connections (see Example 3.1) on V and H , then
D = DBott,V + DBott,H . Also, note that tracec(DV ) = tracec(DH ) = 0
(cf. Remark 4.7 below).

As (3.3) holds without the assumption that V is conformal, V and H
are minimal with respect to D; moreover, D is the unique Weyl connection
on (Mm, c) with this property. It follows that if V is one-dimensional and
conformal, then the connection induced by D on L is flat if and only if V is
locally generated by conformal vector fields.
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4. Harmonic maps and morphisms between almost
Hermitian manifolds

In this section, we shall work in the smooth and (real or complex) analytic
categories. An almost Hermitian (conformal) manifold is a triple (M, c, J),
where (M, c) is a conformal manifold and J is a compatible almost complex
structure; that is, if we consider c as an L2-valued Riemannian metric on M
[9], then we have c(JX, JY ) = c(X, Y ), (X, Y ∈ TM). Therefore, dimM
is even and the Kähler form of (M, c, J), defined by ω(X, Y ) = c(JX, Y ),
(X, Y ∈ TM), is an L2-valued almost symplectic structure on M . A Hermi-
tian (conformal) manifold is an almost Hermitian manifold (M, c, J) such
that J is integrable.

To any almost Hermitian manifold, of dimension at least 4, can be asso-
ciated, in a natural way, a Weyl connection as follows.

Proposition 4.1 [28]. Let (M, c, J) be an almost Hermitian manifold of
dimension m ≥ 4, and let ω ∈ Γ(L2 ⊗ Λ2T ∗M) be its Kähler form.

There exists a unique Weyl connection D on (M, c) such that
tracec(DJ) = 0; the Lee form of D with respect to a local representative
g of c is equal to −1/(m − 2) times the Lee form of J with respect to g.

Proof. Let m = 2n, (n ≥ 2). From the fact that ω is an L2-valued almost
symplectic structure on M , it follows [5] that there exists a unique connec-
tion D on L2 such that

(4.1) dDω ∧ ωn−2 = 0.

We shall denote by the same letter D the induced connection on L and the
corresponding Weyl connection on (M, c). Let s be a local section of L and
let ωs be the Kähler form of J with respect to the local representative gs of c
corresponding to s; that is, ωs(X, Y ) = gs(JX, Y ), (X, Y ∈ TM). It is easy
to prove that (4.1) is equivalent to the fact that for any local section s of
L, the local connection form of D with respect to s is equal to −1/(m − 2)
times the Lee form of J with respect to gs.

Furthermore, (4.1) is also equivalent to
∑n

i=1(d
Dω)(Xi, JXi, ·) = 0 for

any conformal frame {X1, JX1, . . . , Xn, JXn}. Therefore, to end the proof,
it is sufficient to show that for any Weyl connection D on (M, c), we have

n∑

i=1

(dDω)(Xi, JXi, JY ) = −c(traceg(DJ), Y )
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for any Y ∈ TM, and where g is the metric determined by the conformal
frame {X1, JX1, . . . , Xn, JXn}. Indeed, as Dc = 0, we have (Dω)(X, Y ) =
c((DJ)(X), Y ) and (Dω)(X, JX) = 0, (X, Y ∈ TM). Therefore,

(dDω)(Xi, JXi, JY ) = (DXi
ω)(JXi, JY ) + (DJXi

ω)(JY, Xi)
+ (DJY ω)(Xi, JXi)

= c((DXi
J)(JXi), JY ) + c((DJXi

J)(JY ), Xi)
= −c(J(DXi

J)(Xi), JY ) − c(J(DJXi
J)(Y ), Xi)

= −c((DXi
J)(Xi), Y ) − c(Y, (DJXi

J)(JXi))

and the proof follows. �

Definition 4.2 [28]. Let (M, c, J) be an almost Hermitian manifold of
dimension dimM ≥ 4.

The Weyl connection of (M, c, J) is the Weyl connection D on (M, c)
such that tracec(DJ) = 0.

Remark 4.3.

(1) [28] Let (M, c, J) be an almost Hermitian manifold of dimension dim
M ≥ 4, and let D be a Weyl connection on (M, c).

Let ∇ be the Levi–Civita connection of a local representative g of
c. Then, DJXJ − J DXJ = ∇JXJ − J ∇XJ , (X ∈ TM). Hence, J is
integrable if and only if DJXJ = J DXJ , (X ∈ TM).

On the other hand, the condition DJXJ = −J DXJ , (X ∈ TM),
is equivalent to (dDω)(1,2)⊕(2,1) = 0 and is a sufficient condition for D
to be The Weyl connection of (M, c, J). Hence, if dimM = 4, then
DJXJ = −J DXJ , (X ∈ TM), if and only if D is the Weyl connection
of (M, c, J).

Thus, if dimM = 4, then DJ = 0 if and only if J is integrable and
D is the Weyl connection of (M, c, J). If dimM ≥ 6, then it follows
that DJ = 0 if and only if, locally, there exist representatives g of c
with respect to which (M, g, J) is Kähler.

(2) Let (M, c, J) be an almost Hermitian manifold and let f be a (±)
holomorphic function locally defined on (M, J). (If (M, c, J) is com-
plex analytic, then by a (±)holomorphic function, we mean a function
which is constant along curves tangent to the (∓i)eigendistributions
of J .) If dimM = 2, then f is harmonic with respect to any local
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representative of c (see [3]). If dim M ≥ 4 and D is the Weyl connec-
tion of (M, c, J), then f is a harmonic function of (M, c, D).

Furthermore, if (M, c, J) is a Hermitian manifold, dimM ≥ 4, then for
any Weyl connection D on (M, c), the following assertions are equiv-
alent:
(i) D is the Weyl connection of (M, c, J).
(ii) Any (±)holomorphic function of (M, J) is a harmonic function of

(M, c, D).
See Proposition 4.8 for a reformulation of this equivalence in the

complex analytic category.

Next, we prove the following useful lemma.

Lemma 4.4 (cf. [18, 24]). Let DM , DN be torsion-free connections on the
almost complex manifolds (M, JM ), (N, JN ), respectively. Suppose that M
is endowed with a conformal structure c and let ϕ : (M, JM ) → (N, JN ) be
a holomorphic map. Then,

(4.2) tracec ϕ∗(DNJN ) − dϕ(tracec(DMJM )) + JN (tracec(Ddϕ)) = 0.

Proof. It is easy to prove that for X, Y ∈ TM , we have

Ddϕ(X, JMY ) = (DN
dϕ(X)J

N )(dϕ(Y )) − dϕ((DM
X JM )(Y ))

+ JN (Ddϕ(X, Y )).

The proof follows. �

From Lemma 4.4, we easily obtain the following proposition (cf. Remark
4.3(2)).

Proposition 4.5 (cf. [18, 12]). Let (M, cM , JM ) and (N, cN , JN ) be almost
Hermitian manifolds. If dim M ≥ 4, dim N ≥ 4, let DM , DN be the Weyl
connections of (M, cM , JM ), (N, cN , JN ), respectively; if dim M = 2 or dim N =
2, then DM or DN will denote any Weyl connection on (M, cM ) or (N, cN ),
respectively.

Let ϕ : (M, JM ) → (N, JN ) be a holomorphic map.

(i) If (dDN

ωN )(1,2)⊕(2,1) = 0, where ωN is the Kähler form of (N, cN , JN ),
then ϕ : (M, cM , DM ) → (N, cN , DN ) is a harmonic map.
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(ii) If the map ϕ : (M, cM ) → (N, cN ) is horizontally weakly conformal and
has nowhere degenerate fibres, then ϕ : (M, cM , DM ) → (N, cN , DN ) is
a harmonic map and hence a harmonic morphism. �

Note that in assertion (i) of Proposition 4.5, if dimN = 2, 4, then the
condition (dDN

ωN )(1,2)⊕(2,1) = 0 is automatically satisfied. Also, in (ii) of
Proposition 4.5, we automatically have ϕ horizontally weakly conformal if
dim N = 2. Therefore, we have the following result.

Corollary 4.6. Any holomorphic map from an almost Hermitian manifold,
endowed with its Weyl connection, to a two-dimensional oriented conformal
manifold is a harmonic morphism.

The Weyl connections of Example 3.6 and Definition 4.2 can be gener-
alized as follows.

Remark 4.7. Let (M, c) be a conformal manifold, dimM = m, endowed
with a section P of End(TM) and let P = (m − 1)P + P ∗ − trace(P )IdTM .
It is easy to prove that if P is invertible at each point, then for any 1-form
α on M, there exists a unique Weyl connection D on (M, c) such that
tracec(DP )� = α.

Sufficient conditions under which P is invertible at each point are as
follows:

(a) P is self-adjoint and 1
m trace(P ) is not an eigenvalue of P (for example,

if P = V of Example 3.6).

(b) P is skew-adjoint, invertible at each point and m ≥ 3 (for example, if
P = J of Definition 4.2).

Furthermore, Proposition 4.5(ii) can be easily generalized to the case
when P satisfies condition (b).

The result of Proposition 4.5(ii) can be extended as follows.

Proposition 4.8. Let (M, cM , JM ) be a complex analytic almost Hermitian
manifold. If dim M ≥ 4, let DM be the Weyl connection of (M, cM , JM ); if
dim M = 2, let DM be any Weyl connection on (M, cM ).

Let ϕ : (M, cM ) → N be a horizontally conformal submersion with degen-
erate fibres such that ker dϕ contains F or F̃ , where F , F̃ are the eigendis-
tributions of JM .
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Then, ϕ : (M, cM , DM ) → (N, DN ) is a harmonic map with respect to
any connection DN on N, and ϕ : (M, cM , DM ) → (N, cN , DN ) is a har-
monic morphism with respect to any structure of Weyl space on N .

Conversely, if dim M ≥ 4, JM is integrable and D is a Weyl connection
on (M, cM ) such that the foliations F and F̃ are locally defined by harmonic
maps with respect to cM , D, then D is the Weyl connection of (M, cM , JM ).

Proof. Suppose that F ⊆ ker dϕ. Then for any function f , locally defined
on N , the function f ◦ ϕ is a holomorphic function of (M, JM ). By
Remark 4.3(2), f ◦ ϕ is a harmonic function of (M, cM , DM ) and hence
ϕ : (M, cM , DM ) → (N, cN , DN ) is a harmonic morphism with respect to
any structure of Weyl space on N .

The second statement follows from the implication (ii)⇒(i) of Remark
4.3(2). �

Let (N2, cN ) be a two-dimensional orientable conformal manifold. Then,
there exists a complex structure JN , uniquely determined up to sign, with
respect to which (N2, cN , JN ) is a Hermitian manifold.

Let (M4, cM ) be a four-dimensional complex analytic oriented conformal
manifold. An (anti -)self-dual space at x ∈ M is a two-dimensional vector
space p ⊆ TxM such that for some (and hence any) basis {X, Y } of p, the
2-form X ∧ Y is (anti-)self-dual; if (M4, cM ) is an oriented smooth or real
analytic manifold, then an (anti-)self-dual space at x ∈ M is an (anti-)self-
dual subspace of (T C

x M, (cM )C
x ) (see [21]).

Let (M4, cM ) be a four-dimensional oriented conformal manifold endo-
wed with a two-dimensional nondegenerate distribution V . Suppose, for
simplicity, that V (and hence also its orthogonal complement H ) endowed
with the conformal structure induced by cM is orientable. We choose orienta-
tions on (V , cM |V ) and (H , cM |H ), so that a conformal frame (X1, . . . , X4)
on (M4, cM ), adapted to the orthogonal decomposition TM = V ⊕ H , to be
positive if (X1, X2) and (X3, X4) are positively oriented frames on (V , cM |V )
and (H , cM |H ), respectively. Then there exists an almost complex structure
JM , uniquely determined up to sign, with respect to which (M4, cM , JM ) is
a positive almost Hermitian manifold such that JM (V ) = V . (We say that
(M4, cM , JM ) is positive if some (and hence, any) conformal frame of the
form (X1, J

MX1, X2, J
MX2) is positive; equivalently, at some (and hence,

any) point, the eigenspaces of JM are self-dual. Note that in the smooth and
real analytic categories, this just means that JM is a positive almost com-
plex structure on M4.) It follows that the Weyl connection of (M4, cM , JM )
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is equal to

D − 1
2
(JM (∗V IV ))� − 1

2
(JM (∗H IH ))�,

where D is the Weyl connection of (M4, cM ,V ), IV , IH are the integrability
tensors of V , H , respectively, ∗V , ∗H are the Hodge star-operators of
(V , cM |V ) and (H , cM |H ), respectively and � : TM ⊗ L∗

M
2 −→ T ∗M is the

“musical” isomorphism of (M4, cM ) [5]; equivalently, the Lee form of JM

with respect to any local representative g of cM is equal to

− traceg(BV )� − traceg(BH )� +
(
JM (∗V IV )

)� +
(
JM (∗H IH )

)�
.

Let ϕ : (M4, cM ) → (N2, cN ) be a horizontally conformal submersion,
with nowhere degenerate fibres, between oriented conformal manifolds of
dimensions 4 and 2. Then, there exists a unique almost complex struc-
ture JM on M4 with respect to which the map ϕ : (M4, JM ) → (N2, JN )
is holomorphic and (M4, cM , JM ) is a positive almost Hermitian manifold.
Let DM be a Weyl connection on (M4, cM ).

Proposition 4.9 (cf. [29]). The following assertions are equivalent:

(i) The map ϕ : (M4, cM , DM ) → (N2, cN ) is a harmonic morphism and
JM is integrable.

(ii) The almost complex structure JM is parallel along the fibres of ϕ with
respect to DM ; that is, DM

U JM = 0, (U ∈ ker dϕ).

Proof. First, we shall write the proof in the complex analytic category. Let
F and F̃ be the eigendistributions of JM . Then, JM is integrable if and
only if F and F̃ are integrable. Also note that assertion (ii) holds if and
only if F and F̃ are parallel with respect to DM along V (= ker dϕ).

Let f and f̃ be the components of ϕ with respect to null local coordi-
nates on (N2, cN ). As ϕ : (M4, cM ) → (N2, cN ) is horizontally conformal,
ϕ : (M4, cM , DM ) → (N2, cN ) is a harmonic morphism if and only if f and f̃
are harmonic functions of (M4, cM , DM ). Also, we may suppose F ⊆ ker df ,
F̃ ⊆ ker df̃ .

There exists a local frame {U, Ũ , Y, Ỹ } on M4 such that g = 2(U � Ũ +
Y � Ỹ ) is a local representative of cM , U, Ũ are vertical, Y, Ỹ are horizontal
and {U, Y }, {Ũ , Ỹ } are local frames of F , F̃ , respectively.

As {U, Ũ , Y } is a local frame of ker df, we have g([U, Y ], Y ) = 0. Hence,
F is integrable if and only if g([U, Y ], U) = 0. As g([U, Y ], U) = g(DM

U Y, U),
we obtain that F is integrable if and only if F is parallel along U , with
respect to DM .
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Also, traceg(DMdf) = −2g(DM
U Ũ , Y ) Ỹ(f). Hence, f is a harmonic

function of (M4, cM , DM ) if and only if F is parallel along Ũ , with respect
to DM .

Therefore, F is integrable and f is harmonic if and only if F is parallel,
with respect to DM , along V . Similarly, F̃ is integrable and f̃ is harmonic
if and only if F̃ is parallel with respect to DM along V . Thus, the proof is
complete in the complex analytic category.

In the smooth and real analytic categories, essentially the same argument
applies to the complexification (dϕ)C : T CM → T CN . �

5. Harmonic morphisms and twistorial maps

In this section, we shall work in the complex analytic category.
We continue the study, initiated in the previous section, of the relation

between harmonic morphisms and twistorial maps. We start with a brief
presentation of the examples of twistorial maps with which we shall work;
more details can be found in [26] (and in [20], for the notions of almost
twistorial structure and twistorial map in the smooth category).

Example 5.1. Let (M3, cM , DM ) be a three-dimensional Weyl space and
let (N2, cN ) be a two-dimensional conformal manifold.

A twistorial map ϕ : (M3, cM , DM ) → (N2, cN ) with nowhere degener-
ate fibres is a horizontally conformal submersion whose fibres are geodesics
with respect to DM . The existence of such twistorial maps is related to
(M3, cM , DM ) being Einstein–Weyl [13] (see [26]; see also Remark 6.4(1)
below).

Let ϕ : M3 → N2 be a submersion with nowhere degenerate fibres and
let p, p̃ be the two-dimensional degenerate distributions locally defined on
(M3, cM ) such that ker dϕ = p ∩ p̃. Then, ϕ : (M3, cM ) → (N2, cN ) is hor-
izontally conformal if and only if p and p̃ are integrable. It follows that
ϕ : (M3, cM , DM ) → (N2, cN ) is twistorial if and only if p and p̃ are inte-
grable and their integral manifolds are totally geodesic with respect to DM ;
note that ϕ maps any such surface to a null geodesic on (N2, cN ).

By Theorems 2.9 and 3.4, ϕ : (M3, cM , DM ) → (N2, cN ) is a twistorial
map if and only if it is a harmonic morphism.

Example 5.2. Let (M4, cM ) and (N2, cN ) be oriented conformal manifolds
of dimensions 4 and 2, respectively.

A twistorial map ϕ : (M4, cM ) → (N2, cN ) with nowhere degenerate fib-
res is a horizontally conformal submersion for which the almost complex
structure JM on M4, with respect to which ϕ : (M4, JM ) → (N2, JN ) is
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holomorphic and (M4, cM , JM ) is a positive almost Hermitian manifold, is
integrable (cf. [29]).

If ϕ : (M4, cM , DM ) → (N2, cN ) is twistorial and F , F̃ are the, neces-
sarily integrable, eigendistributions of JM , then ϕ maps the leaves of F and
F̃ to null geodesics on (N2, cN ).

By Remark 4.3(1), ϕ : (M4, cM ) → (N2, cN ) is a twistorial map if and
only if DMJM = 0, where DM is the Weyl connection of (M4, cM , JM ).
Furthermore, if ϕ : (M4, cM ) → (N2, cN ) is twistorial, then, by Proposi-
tion 4.5, ϕ : (M4, cM , DM ) → (N2, cN ) is a harmonic morphism. More gen-
erally, by Proposition 4.9, if D is a Weyl connection on (M4, cM ), then
ϕ : (M4, cM , D) → (N2, cN ) is a twistorial harmonic morphism if and only
if JM is parallel along the fibres of ϕ with respect to D.

A two-dimensional foliation V with nowhere degenerate leaves on (M4,
cM ) is twistorial if it can be locally defined by twistorial maps; note that
V is twistorial with respect to both orientations of (M4, cM ) if and only
if its leaves are totally umbilical. If (M4, cM ) is nonorientable, then V is
twistorial if its lift to the oriented Z2-covering space of (M4, cM ) is twistorial;
equivalently, V has totally umbilical leaves.

Example 5.3. Let (M4, cM ) be an oriented four-dimensional conformal
manifold, and let (N3, cN , DN ) be a three-dimensional Weyl space.

Let ϕ : (M4, cM ) → (N3, cN ) be a horizontally conformal submersion
with nowhere degenerate fibres. Let V = ker dϕ, H = V ⊥ and let D be
the Weyl connection of (M4, cM ,V ) (see Example 3.6). Let IH be the inte-
grability tensor of H defined by IH (X, Y ) = −V [X, Y ] for any horizontal
local vector fields X and Y .

As both V and H are distributions of odd dimensions, the orientation
of (M4, cM ) corresponds to an isomorphism between the line bundles canon-
ically associated to the conformal structures induced by cM on V and H .
Hence, as V is one dimensional, both these line bundles are isomorphic to
V . Therefore, if we apply the Hodge star-operator ∗H of (H , cM |H ) to
the integrability tensor IH ∈ Γ(V ⊗ Λ2H ∗) of H , we obtain a horizontal
1-form on M4. Let D± be the Weyl partial connections on (H , cM |H ), over
H , given by D± = H D ± ∗H IH ([5], see [26]).

The map ϕ : (M4, cM ) → (N3, cN , DN ) is twistorial, with respect to the
given orientation on (M4, cM ), if and only if it is horizontally conformal and
the Weyl partial connection on (H , cM |H ), over H , determined by DN is
equal to D+.

The following assertions are equivalent for a submersion ϕ : M4 → N3

with connected nowhere degenerate fibres ([5], see [26]):
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(i) There exists a Weyl connection DN on (N3, cN ) with respect to which
ϕ : (M4, cM ) → (N3, cN , DN ) is twistorial.

(ii) ϕ : (M4, cM ) → (N3, cN ) is horizontally conformal and the curvature
form of the connection induced by D on LM is anti-self-dual (that is,
ϕ : (M4, cM ) → (N3, cN , DN ) is anti-self-dual in the sense of [5]).

If (M4, cM ) is anti-self-dual, then the following assertions can be added
to this list [5] (cf. [13, 15]; see [26]).

(iii) There exists an Einstein–Weyl connection DN on (N3, cN ) such that
for any twistorial map ψ locally defined on (N3, cN , DN ) with values
in a conformal manifold (P 2, cP ), the map ψ ◦ ϕ from (M4, cM ) to
(P 2, cP ) is twistorial.

(iv) There exists an Einstein–Weyl connection DN on (N3, cN ) such that
ϕ maps self-dual surfaces on (M4, cM ) to degenerate surfaces on (N3,
cN ), which are totally geodesic with respect to DN .

It follows that if ϕ : (M4, cM ) → (N3, cN , DN ) is twistorial, then (M4,
cM ) is anti-self-dual if and only if (N3, cN , DN ) is Einstein–Weyl [5] (cf.
[13, 15]; see [26]). Furthermore, if (M4, cM ) is anti-self-dual, then, locally, ϕ
corresponds to a submersion Z(ϕ) from the twistor space Z(M) of (M4, cM )
onto the twistor space Z(N) of (N3, cN , DN ), which maps each twistor line
on Z(M) diffeomorphically onto a twistor line on Z(N); the map Z(ϕ) is
the twistorial representation of ϕ.

As in Example 5.2, a one-dimensional foliation V with nowhere degen-
erate leaves is twistorial if it can be locally defined by twistorial maps. Note
that V is twistorial with respect to both orientations of (M4, cM ) if and
only if it is locally generated by conformal vector fields [5] (this follows from
the equivalence (i) ⇐⇒ (ii) above and Example 3.6). If (M4, cM ) is nonori-
entable, then V is twistorial if its lift to the oriented Z2-covering space of
(M4, cM ) is twistorial; equivalently, V is locally generated by nowhere zero
conformal vector fields.

Next, we give necessary and sufficient conditions under which a map
between Weyl spaces of dimensions 4 and 3 is a twistorial harmonic mor-
phism.

Theorem 5.4. Let (M4, cM , DM ) be an oriented Weyl space of dimension
4 and let (N3, cN ) be a conformal manifold of dimension 3. We denote by
DM ⊆ TPM the connection induced by DM on the bundle πM : PM → M of
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self-dual spaces on (M4, cM ). Also, we denote by πN : PN → N the bundle
of two-dimensional degenerate spaces on (N3, cN ).

Let ϕ : (M4, cM ) → (N3, cN ) be a horizontally conformal submersion
with connected nowhere degenerate fibres and let D be the Weyl connec-
tion of (M4, cM ,V ). We denote by Φ : PM → PN the bundle map defined
by Φ(p) = dϕ(p), (p ∈ PM ).

(a) Let DN be a Weyl connection on (N3, cN ). Any two of the following
assertions imply the third:

(a1) ϕ : (M4, cM , DM ) → (N3, cN , DN ) is a harmonic morphism.
(a2) ϕ : (M4, cM ) → (N3, cN , DN ) is twistorial.
(a3) The fibres of Φ are tangent to DM .

(b) The following assertions are equivalent:
(b1) There exists a Weyl connection DN on (N3, cN ) and a section k of

the dual of the line bundle LN of (N3, cN ) such that
ϕ : (M4, cM , DM ) → (N3, cN , DN ) is a twistorial harmonic mor-
phism, and the vertical component of DM − D is equal to 1

2 k, under
the isomorphism V = ϕ∗(LN ) corresponding to the orientation of
(M4, cM ).

(b2) DM is projectable with respect to Φ onto a three-dimensional dis-
tribution on PN .

(b3) There exists a Weyl connection DN on (N3, cN ) and a section k of
L∗

N such that dΦ(DM ) = D∇, where D∇ ⊆ TPN is the connection
on PN induced by the connection ∇ on L∗

N ⊗ TN defined by

(5.1) ∇Xξ = DN
Xξ +

1
2

kX × ξ

for any local sections X of TN and ξ of L∗
N ⊗ TN .

Furthermore, if assertions (b1), (b2) and (b3) hold, then DN and k are
determined by

(5.2) DM = D + 1
2(k + ∗HIH ) and DN = D+.

Proof. To prove (a), we claim that (a3) is equivalent to the following equality
of partial connections, over H ,

(5.3) H DM = H D +
1
2

∗H IH .

Indeed, note that (a3) holds if and only if for any positively oriented con-
formal local frame (X0, X1, X2, X3) such that X0 is tangent to the fibres of
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ϕ and X1, X2, X3 are basic, we have

(5.4) g(DM
X0

(X0 + iX1), X2 + iX3) = 0,

where g is the local representative of cM determined by (X0, X1, X2, X3).
An easy calculation shows that (5.4) is equivalent to

(

αM −
(

traceg(BV )� +
1
2

∗H IH

))

(X2 + iX3) = 0,

where αM is the Lee form of DM with respect to g. Now, the equivalence
(a3) ⇐⇒ (5.3) follows easily.

Assertion (a) follows from Proposition 3.2 and Example 5.3.
To prove (b), first note that (b3)=⇒(b2) is trivial. Conversely, if (b2)

holds, then as πN is proper, dΦ(DM ) is a connection on PN whose holonomy
group is contained in the group of (complex analytic) diffeomorphisms of
CP 1. Hence, the holonomy group of dΦ(DM ) is contained in PGL(2, C )(=
SL(2, C )/Z2). As SO(3, C ) is the adjoint group of SL(2, C ), we have
SO(3, C ) = SL(2, C )/Z2. Therefore, any connection on PN corresponds to
a connection on the oriented Riemannian bundle (L∗

N ⊗ TN, cN ). In partic-
ular, there exists a unique connection ∇ on (L∗

N ⊗ TN, cN ), which induces
the connection dΦ(DM ) on PN . Note that ∇ canonically determines a pro-
jective structure on N3 which has the property that any of its geodesics
which is null at some point is null everywhere. Furthermore, a null curve on
(N3, cN ) is a geodesic of ∇ if and only if its velocity vector field Y has the
property that Y ⊥ is parallel with respect to ∇. From the fact that ϕ is hor-
izontally conformal, it follows that ∇ and cN have the same null geodesics;
equivalently, there exists a Weyl connection DN on (N3, cN ) and a section
k of L∗

N so that (5.1) holds. Thus, we have proved that (b2)=⇒(b3).
It is obvious that if (b3) holds, then ∇ and DN determine the same

projective structure. It follows that ϕ : (M4, cM ) → (N3, cN , DN ) is twisto-
rial. Thus, by (a), if (b3) holds, then ϕ : (M4, cM , DM ) → (N3, cN , DN ) is
a twistorial harmonic morphism. Further, as ϕ : (M4, cM ) → (N3, cN , DN )
is twistorial, the partial connection over H determined by the pull-back of
DN by ϕ is equal to D+. Also, an argument similar to the proof of (a)
shows that a field p of self-dual spaces over a horizontal curve on (M4, cM )
is parallel with respect to DM if and only if H p is parallel with respect to
the partial connection ∇̂ on V ∗⊗H , over H , defined by

∇̂Xξ = (D+)Xξ +
1
2

k̂X × ξ
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for any local sections X of H and ξ of V ∗⊗H , where k̂ is the section of
V ∗ defined by

DM = D +
1
2
(k̂ + ∗H IH ).

Thus, the partial connection over H induced by the pull-back of ∇ by ϕ
is equal to ∇̂. Consequently, k̂ is the pull-back of k by ϕ. In particular,
(b3)=⇒(b1).

We have proved that (b3) is equivalent to the existence of a Weyl connec-
tion DN on (N3, cN ) and a basic section k of V ∗(= ϕ∗(L∗

N )) such that (5.2)
holds. On the other hand, by the proof of (a), the map ϕ : (M4, cM , DM ) →
(N3, cN , DN ) is a twistorial harmonic morphism for some Weyl connection
DN on (N3, cN ) if and only if there exists a section k of V ∗ such that (5.2)
holds. Thus, (b1)=⇒(b3).

The theorem is proved. �

Remark 5.5. Let ϕ : (M4, cM , DM ) → (N3, cN , DN ) be a twistorial har-
monic morphism with nowhere degenerate fibres. From Theorems 3.4 and
5.4(a), it follows that the fibres of ϕ are geodesics with respect to DM if and
only if H is integrable; in particular, ϕ is also twistorial with respect to
the reversed orientation of (M4, cM ), and hence, the fibres of ϕ are locally
generated by nowhere zero conformal vector fields.

For later use, we formulate the following definition (cf. [7, 10]).

Definition 5.6. Let (N3, c, D) be a three-dimensional Weyl space. We
say that (N3, c, D) is a Gauduchon–Tod space if there exist three one-
dimensional conformal foliations by geodesics V1, V2, V3 which are orthogo-
nal on each other and such that V ⊥

j , considered with the conformal structure
induced by c, is orientable, j = 1, 2, 3.

Remark 5.7. Let (N3, c) be a three-dimensional conformal manifold, and
let L be the associated line bundle. Then, it is known that, locally, the
following assertions are equivalent (the equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) are
proved in [10] while (i) ⇐⇒ (iv) ⇐⇒ (v) follow from [13]):

(i) There exists a Weyl connection D on (N3, c) with respect to which
(N3, c, D) is Gauduchon–Tod.

(ii) There exists an Einstein–Weyl connection D on (N3, c) whose scalar
curvature sD is given by sD = 3

2 k2 for a section k of L∗ which satisfies
∗cDk = FD, where FD is the curvature form of the connection, on L,
corresponding to D.
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(iii) There exists a Weyl connection D on (N3, c) and a section k of L∗

such that the connection ∇ on L∗ ⊗ TN , defined by

∇Xξ = DXξ +
1
2

kX × ξ

for any local sections X of TN and ξ of L∗ ⊗ TN , is flat.

(iv) There exists a flat connection on (L∗ ⊗ TN, c) for which the associ-
ated twistor distribution on the bundle of two-dimensional degenerate
spaces on (N3, c) is integrable.

(v) There exists an Einstein–Weyl connection D on (N3, c) for which there
exists a submersion from its twistor space onto CP 1 whose fibres are
transversal to the twistor lines.

We end this section with the following result.

Corollary 5.8. Let ϕ : (M4, cM , DM ) → (N3, cN , DN ) be a twistorial har-
monic morphism with nowhere degenerate fibres from an oriented Weyl space
of dimension 4 to a Weyl space of dimension 3; let k ∈ Γ(V ∗) be the ver-
tical component of 2(DM − D). Then, locally, the following assertions are
equivalent:

(i) DM is the Obata connection of a hyper-Hermitian structure on
(M4, cM ).

(ii) (N3, cN , DN ) is Gauduchon–Tod and ∗NDNk = FDN

.

(iii) (M4, cM , DM ) is Einstein–Weyl anti-self-dual and k is basic.

Conversely, let ϕ : (M4, cM ) → (N3, cN , DN ) be a twistorial map, with
nowhere degenerate fibres, from an oriented conformal manifold of dimen-
sion 4 to a Gauduchon–Tod space, and let DM be the Obata connection of the
hyper-Hermitian structure induced on (M4, cM ). Then, ϕ : (M4, cM , DM ) →
(N3, cN , DN ) is a harmonic morphism.

Proof. With the same notations as in Theorem 5.4, let F ⊆ DM be the
twistor distribution defined by Fp ⊆ TpPM is the horizontal lift of
p ⊆ TπM (p)M with respect to DM , (p ∈ PM ). Then, (M4, cM ) is anti-self-
dual if and only if F is integrable. Also, (M4, cM , DM ) is Einstein–Weyl
anti-self-dual if and only if DM is projectable with respect to F (that is,
[X, Y ] is a local section of DM if X and Y are local sections of DM and F ,
respectively).
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As (i) is satisfied if and only if the connection DM is trivial, the equiv-
alence (i) ⇐⇒ (ii) follows from Theorem 5.4 and Remark 5.7.

If (i) holds, from Theorem 5.4(a) we obtain that DM is projectable with
respect to Φ. Thus, by Theorem 5.4(b), k is basic. Hence, (i)=⇒(iii).

If (iii) holds, then by Theorem 5.4(b), DM is projectable with respect
to Φ. It follows easily that DM is integrable. Thus, locally, (iii)=⇒(i).

The converse statement follows from Theorem 5.4(b). �

6. Relations between the twistoriality of harmonic
morphisms and the Ricci tensor

In this section, we shall work in the complex analytic category. Here, by
a real conformal manifold, we mean the (germ-unique) complexification of
a real analytic conformal manifold; similarly, we sometimes work with real
Weyl spaces.

The following lemma follows from a straightforward computation.

Lemma 6.1 (cf. [2]). Let (M, c, D) be a Weyl space, dimM = 3, 4, and let
Ric be its Ricci tensor. Let F be a foliation by null geodesics on (M, c, D)
such that F⊥ is integrable.

(i) If dim M = 3, then

Ric(Y, Y ) = Y (g(DUU, Y )) − g(DUU, Y )2,

where {U, Y, Ỹ } is a local frame on M such that Y is a local section of
F , DY Y = 0 and g = U � U + 2 Y � Ỹ is a local representative of c.

(ii) If dim M = 4, then

Ric(Y, Y ) = 2[Y (g(DU Ũ , Y )) − g(DU Ũ , Y )2 − g([U, Y ], U)g([Ũ , Y ], Ũ)],

where {U, Ũ , Y, Ỹ } is a local frame on M such that Y is a local section
of F , DY Y = 0 and g = 2(U � Ũ + Y � Ỹ ) is a local representative
of c. �

Remark 6.2.

(1) In Lemma 6.1(i), the condition F⊥ integrable is superfluous. It follows
that from any three-dimensional conformal manifold, we can, locally,
define horizontally conformal submersions with one-dimensional
nowhere degenerate fibres tangent to any given direction at a point. A
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similar statement holds for real analytic three-dimensional conformal
manifolds.

(2) A relation slightly longer than in Lemma 6.1(ii) can be obtained for
a foliation F by null geodesics on a four-dimensional Weyl space,
without the assumption F⊥ is integrable.

Proposition 6.3 (cf. [2, 29]). Let (M, cM , DM ) be a Weyl space, and let
(N, cN ) be a conformal manifold, dimM = 3, 4, dim N = 2.

Let ϕ : (M, cM ) → (N, cN ) be a horizontally conformal submersion with
nowhere degenerate fibres; if dim M = 4, assume ϕ real (that is, ϕ is the
(germ-unique) complexification of a real analytic map and, in particular,
(M, cM , DM ) and (N, cN ) are complexifications of a real analytic Weyl space
and a real analytic conformal manifold, respectively).

If tracecM
(Ddϕ) = 0 along a nondegenerate hypersurface foliated by the

fibres of ϕ, then any two of the following assertions imply the third:

(i) ϕ : (M, cM , DM ) → (N, cN ) is a harmonic morphism.

(ii) ϕ : (M, cM , DM ) → (N, cN ) is twistorial.

(iii) The trace-free symmetric part of the horizontal component of the Ricci
tensor of DM is zero.

Proof. If dimM = 3, then (i) ⇐⇒ (ii). Also, we can find a local frame
{U, Y, Ỹ }, as in Lemma 6.1(i), such that U is tangent to the fibres of ϕ.
Then, assertion (ii) is equivalent to g(DM

U U, Y ) = g(DM
U U, Ỹ ) = 0. On the

other hand, assertion (iii) is equivalent to MRic(Y, Y ) = MRic(Ỹ , Ỹ ) = 0,
where MRic is the Ricci tensor of DM . Thus, if dimM = 3, the proof fol-
lows from Lemma 6.1(i).

Suppose dimM = 4. Then we can find a local frame {U, Ũ , Y, Ỹ } like in
Lemma 6.1(ii) such that U and Ũ are tangent to the fibres of ϕ. Moreover, we
may assume g oriented such that F+ = Span(U, Y ) and F̃+ = Span(Ũ , Ỹ )
are self-dual while F− = Span(Ũ , Y ) and F̃− = Span(U, Ỹ ) are anti-self-
dual. Then assertion (ii) is equivalent to the fact that either F+, F̃+

are integrable or F−, F̃− are integrable. On the other hand, assertion
(i) is equivalent to g(DM

U Ũ , Y ) = g(DM
U Ũ , Ỹ ) = 0 (see the proof of Proposi-

tion 4.9). Thus, if dimM = 4, the proof follows from Lemma 6.1(ii). �

Remark 6.4.

(1) If dimM = 3, then in the hypotheses of Proposition 6.3, assertions (i),
(ii), (iii) are equivalent.
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It follows that if (M, cM , DM ) is a three-dimensional Weyl space
from which there can be locally defined more than k = 6 harmonic mor-
phisms with one-dimensional nowhere degenerate fibres, then (M, cM ,
DM ) is Einstein–Weyl; in the smooth category, the same statement
holds with k = 2 ([7], cf. [2]).

(2) In the smooth category, suppose assertion (i) of Proposition 6.3 holds.
(a) If dimM = 3, then assertion (iii) also holds (cf. [2]).
(b) If dimM = 4, then the implication (ii)⇒(iii) holds on M while the

implication (iii)⇒(ii) holds locally on a dense open set of M (cf.
[29]).

(3) Proposition 6.3 also holds for any horizontally conformal submersion
ϕ : (M, cM , DM ) → (N, cN , DN ) with nowhere degenerate fibres from
a Weyl space to an Einstein–Weyl space, dim M = 4, dimN = 3 (see
Proposition 6.6 below for an extension of this fact).

(4) For the implications (i), (ii)⇒(iii) and (ii), (iii)⇒(i) of Proposition 6.3,
it is not necessary to assume that ϕ is real when dim M = 4.

The proof of the following lemma is omitted.

Lemma 6.5 (cf. [25]). Let ϕ : (M, cM , DM ) → (N, cN , DN ) be a submer-
sive harmonic morphism with nowhere degenerate fibres between Weyl spaces,
dim M = 4, dim N = 3.

Let A± = D± − DN . Then for any horizontal null vector Y, we have

MRic(Y, Y ) − NRic(dϕ(Y ), dϕ(Y )) = −1
2
A+(Y )A−(Y ),

where MRic and NRic are the Ricci tensors of DM and DN , respectively. �

The following result follows from Lemmas 6.1(ii) and 6.5.

Proposition 6.6 (cf. [25]). Let ϕ : (M, cM , DM ) → (N, cN , DN ) be a non-
constant harmonic morphism with nowhere degenerate fibres between Weyl
spaces, dimM = 4, dim N = 2, 3. If dim N = 2, suppose that ϕ is real.

Let MRic and NRic be the Ricci tensors of DM and DN , respectively.
Then the following assertions are equivalent:

(i) ϕ is twistorial.

(ii) The trace-free symmetric part of the horizontal component of
MRic −ϕ∗(NRic) is zero. �
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7. Harmonic morphisms from four-dimensional
Einstein–Weyl spaces

In this section, we shall work in the complex analytic category; here, as in
the previous section, by a real conformal manifold (Weyl space), we mean
the complexification of a real analytic conformal manifold (Weyl space).

From Proposition 6.6, we obtain the following two corollaries.

Corollary 7.1 (cf. [26, 29]). Let ϕ : (M4, cM , DM ) → (N2, cN ) be a real
submersive harmonic morphism from a four-dimensional real Einstein–Weyl
space to a two-dimensional real conformal manifold.

Then, ϕ : (M4, cM ) → (N2, cN ) is a twistorial map. Furthermore, if
(M4, cM ) is nonorientable, then the fibres of ϕ are totally geodesic. �

Corollary 7.2 (cf. [23, 25, 26]). Let (M4, cM , DM ) be an Einstein–Weyl
space of dimension 4, and let ϕ : (M4, cM , DM ) → (N3, cN , DN ) be a sub-
mersive harmonic morphism with nowhere degenerate fibres to a Weyl space
of dimension 3.

Then, ϕ : (M4, cM ) → (N3, cN , DN ) is a twistorial map if and only if
DN is an Einstein–Weyl connection. �

Remark 7.3. We do not know whether or not it is true that if
(M4, cM , DM ) is Einstein–Weyl and ϕ : (M4, cM , DM ) → (N3, cN , DN ) is
a submersive harmonic morphism with nowhere degenerate fibres, then,
locally, there exists a Weyl connection D on (N3, cN ) with respect to which
ϕ : (M4, cM ) → (N3, cN , D) is twistorial.

From [23, 26], it follows that this holds if DM and DN are Levi–Civita
connections of representatives of cM and cN , respectively. Furthermore, if
we also assume D 
= DN , then ϕ must be of Killing type; for example, the
Killing vector field V = x1 ∂/∂x2 − x2 ∂/∂x1 on C

4 defines such harmonic
morphisms (this follows from Example 5.3 by noting that V ⊥ is integrable
but the nondegenerate orbits of V are nowhere geodesic).

Next, we give the necessary and sufficient conditions under which on a
real Einstein–Weyl space of dimension 4 there can be defined, locally, at
least five distinct real foliations of dimension 2 which produce harmonic
morphisms (cf. Remark 6.4(1)).

Theorem 7.4. Let (M4, cM , DM ) be an orientable real Einstein–Weyl
space of dimension 4.
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Then, locally, there can be defined on (M4, cM , DM ) five distinct real
foliations of dimension 2 which produce harmonic morphisms if and only if
one of the following two assertions holds:

(i) DM is the Weyl connection of a Hermitian structure locally defined on
(M4, cM );

(ii) (M4, cM ) is anti-self-dual with respect to a suitable orientation, and
DM is the Levi–Civita connection of a local Einstein representative of
cM .

Proof. Let Vk, k = 1, . . . , 5, be five distinct two-dimensional foliations which
produce harmonic morphisms on (M4, cM , DM ). By passing to a conformal
covering, if necessary, we may assume that Vk, k = 1, . . . , 5, endowed with
the conformal structures induced by cM , are orientable. Also, as M4 is
locally compact, we may suppose that Vk(x), k = 1, . . . , 5, are distinct at
each x ∈ M .

By Corollary 7.1, for each k = 1, . . . , 5, we have Vk twistorial with respect
to a suitable orientation on (M4, cM ). Thus, there exists an orientation on
(M4, cM ) with respect to which, after a renumbering, Vk is twistorial for
k = 1, 2, 3.

Let Jk be the positive Hermitian structures on (M4, cM ), uniquely deter-
mined up to sign, such that Jk(Vk) = Vk, k = 1, 2, 3. Then, either there
exists k ∈ {1, 2, 3} such that DM is the Weyl connection of (M4, cM , Jk) or
for any k ∈ {1, 2, 3}, we have DMJk 
= 0. In the latter case, from Proposi-
tion 4.9, it follows that for k = 1, 2, 3, the complex structure Jk determines
Vk [29], and hence we obtain that Jk ± Jl 
= 0 for k 
= l; thus, (M4, cM )
is anti-self-dual (see [27]). Now, as (M4, cM , DM ) is anti-self-dual and
Einstein–Weyl, by a result of Pedersen, Swann and Calderbank (see [6] and
the references therein), we have that, locally, either DM is the Obata connec-
tion of a hyper-Hermitian structure on (M4, cM ) or DM is the Levi–Civita
connection of an Einstein representative of cM .

Conversely, if (i) or (ii) holds, then, locally, there can be defined infinitely
many two-dimensional foliations on (M4, cM , DM ) which produce harmonic
morphisms. Indeed if (M4, cM , DM ) satisfies assertion (i), then this follows
easily from Remark 4.3(ii), while if (M4, cM , DM ) satisfies assertion (ii),
then this is, essentially, proved in [29]. The theorem is proved. �

Remark 7.5. Let (M4, cM , DM ) be an orientable four-dimensional
Einstein–Weyl space endowed either with nine distinct foliations by degen-
erate hypersurfaces, which produce harmonic morphisms, or with thirteen
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distinct foliations, by nondegenerate surfaces, which produce harmonic mor-
phisms.

Then, arguments as in the proof of Theorem 7.4 show that up to con-
formal covering spaces, one of the following two assertions holds:

(i) The connection induced by DM on the bundle of self-dual spaces on
(M4, cM ), considered with a suitable orientation, admits a reduction
to the group of affine transformations of C .

(ii) (M4, cM ) is anti-self-dual with respect to a suitable orientation, and
DM is the Levi–Civita connection of an Einstein representative of cM .

Finally, we describe the harmonic morphisms with nowhere degenerate
fibres between Einstein–Weyl spaces of dimensions 4 and 3.

Theorem 7.6. Let (M4, cM , DM ) and (N3, cN , DN ) be Einstein–Weyl spa-
ces of dimensions 4 and 3, respectively, and let ϕ : M4 → N3 be a submer-
sion with nowhere degenerate fibres.

If (M4, cM ) is orientable, then ϕ : (M4, cM , DM ) → (N3, cN , DN ) is a
harmonic morphism if and only if (M4, cM ) is anti-self-dual with respect to a
suitable orientation, ϕ : (M4, cM ) → (N3, cN , DN ) is twistorial and, locally,
either

(i) (N3, cN , DN ) is Gauduchon–Tod and DM is the Obata connection of
the hyper-Hermitian structure induced on (M4, cM ), or

(ii) DM is the Levi–Civita connection of an Einstein representative g of
cM with nonzero scalar curvature, and the fibres of the twistorial rep-
resentation Z(ϕ) : Z(M) → Z(N) of ϕ are tangent to the contact dis-
tribution on Z(M) corresponding to g.

If (M4, cM ) is nonorientable, then ϕ : (M4, cM , DM ) → (N3, cN , DN ) is
a harmonic morphism if and only if, locally, DM and DN are the Levi–Civita
connections of constant curvature representatives of cM and cN , respectively,
and ϕ is a harmonic morphism of warped product type.

Proof. If ϕ : (M4, cM ) → (N3, cN , DN ) is twistorial and (i) or (ii) holds, then
(a2) and (a3) of Theorem 5.4 are satisfied and hence ϕ : (M4, cM , DM ) →
(N3, cN , DN ) is a harmonic morphism.

Conversely, if ϕ : (M4,cM ,DM ) → (N3,cN ,DN ) is a harmonic morphism,
then, by Corollary 7.2, we have that ϕ : (M4, cM ) → (N3, cN , DN ) is a
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twistorial map. From ([5], see [26]), it follows that either (M4, cM ) is ori-
entable and anti-self-dual, with respect to a suitable orientation, or (M4, cM )
is flat.

If (M4, cM ) is orientable, as (M4, cM , DM ) is Einstein–Weyl, then, as
in the proof of Theorem 7.4, we have that, locally, either DM is the Obata
connection of a hyper-Hermitian structure on (M4, cM ) or DM is the Levi–
Civita connection of an Einstein representative of cM ; if (M4, cM ) is nonori-
entable, then it must be flat, and hence, by a result of Eastwood and Tod, we
have that, locally, DM is the Levi–Civita connection of some constant curva-
ture representative of cM (see [6] and the references therein, and note that
similar calculations prove that these two results also hold in the complex
analytic category).

If (M4, cM ) is orientable, then from Theorem 5.4(a), it follows that,
locally, we have the alternative (i) or (ii).

If (M4, cM ) is nonorientable, then by passing to its oriented Z2-covering,
we obtain that ϕ has integrable horizontal distribution. Hence, by Remark
5.5, the fibres of ϕ are geodesics of DM . Furthermore, as (N3, cN ) can be,
locally, identified with any leaf of the horizontal distribution of ϕ endowed
with the conformal structure induced by cM , we have that (N3, cN ) is flat.
Hence, locally, DN is the Levi–Civita connection of some constant curvature
representative of cN . Thus, if (M4, cM ) is nonorientable, then up to con-
formal coverings, ϕ is a harmonic morphism with geodesic fibres and inte-
grable horizontal distribution between Riemannian manifolds of constant
curvature. �

Example 7.7.

(1) The harmonic morphisms given by the Gibbons–Hawking and the Bel-
trami fields constructions (see [25]) satisfy assertion (i) of Theorem 7.6.

(2) The harmonic morphisms of warped product type with one-dimen-
sional fibres from an oriented four-dimensional Riemannian manifold
with nonzero constant sectional curvature satisfy assertion (ii) of The-
orem 7.6. More generally, let (M4, g) be the H-space [17] of the three-
dimensional conformal manifold (N3, cN ), and let ∇g be the Levi–
Civita connection of g. Suppose that (N3, cN ) is endowed with an
Einstein–Weyl connection DN , and let ϕ : M4 → N3 be the (local)
retraction [13] of N3 ↪→ M4 corresponding to DN . Then, the map
ϕ : (M4, [g],∇g) → (N3, cN , DN ) is a harmonic morphism which sat-
isfies assertion (ii) of Theorem 7.6.
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