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Higher canonical asymptotics of Kahler—Einstein
metrics on quasi-projective manifolds

DaMIN Wu

We derive a canonical asymptotic expansion up to infinite order of
the Kahler—Einstein metric on a quasi-projective manifold, which
can be compactified by adding a divisor with simple normal cross-
ings. Characterized by the log filtration of the Cheng—Yau Holder
ring, the asymptotics are obtained by constructing an initial Kahler
metric, deriving certain iteration formula and applying the iso-
morphism theorems of the Monge—Ampere operators. This work
is parallel to the asymptotics of Fefferman, Lee and Melrose on
pseudoconvex domains in C™.

1. Introduction

On a complex manifold M of dimension n, a volume form W is a smooth pos-
itive (n,n) form. In a local coordinate neighborhood U, with holomorphic

coordinates z, = (2},...,27),

v=5]] (ﬁdzg Adzg) :

27

j=1

where &, is a positive C° function. Then the Ricci form Ric ¥ associated
to U is the real (1,1) form given locally by

Ric ¥ = dd°log &,

where d := /—1/47(0 — 9). It follows that Ric ¥ is globally defined on M
and that Ric ¥ = ¢;(Kjy), where Ky is the canonical bundle.
We define the generalized Fefferman operator J by

(Ric &))"

W) = —5—,
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where U is a volume form. Let U, =e?V¥. Then we have the following
iteration formula

(1.1) J(Vy) = Mricw () (P),
where ( )
_ (Ric¥ +dd°p)" _,
Mricv(#) = —giegyn ¢

which is the Monge—Ampere operator associated to Ric V. It follows from
the definition that J(¥,) = 1 if and only if Mricw(p) = 1/J(¥).

Let M be a complex manifold. A divisor D on M is said to have normal
crossings if locally D is given by an equation

Zl“'Zk:O,

where (z1,...,2,) are local holomorphic coordinates on M. Moreover, if
each irreducible component of D is smooth, then we shall say that D has
simple normal crossings.

Let M be a compact complex manifold and D be a divisor in M with
simple normal crossings. We impose the positivity condition

(1.2) KM+ [D] > 0.

Then, a theorem of Carlson—Griffiths [5] assures that there exists a vol-
ume form 2 on M = M\D such that RicQ > 0 on M, and (M,Ric) is a
complete Kahler manifold with negative Ricci curvature.

This theorem provides an initial metric w = Ric €2, which can be deformed
to the canonical Kéahler—Einstein metric on M. In fact, this was first
addressed by Yau [40] and later on by Cheng and Yau [9], Kobayashi [22],
Tsuji [35], Tian and Yau [34] and Bando [2]. It follows that M possesses
a unique complete Kahler—Einstein metric of constant negative Ricci curva-
ture —1.

However, the results on the existence of Kéahler—Einstein metrics on M
are not enough when people want to know the singular description, in the
form of asymptotic expansion, of the canonical metric near the divisor D.
Actually, this geometric information would help us to develop broader and
deeper applications of the theory of quasi-projective manifolds to differential
and algebraic geometry. This was suggested by Yau [42, p. 377].

In this paper, we derive an asymptotic expansion of the Kahler—Einstein
metrics near a simple normal crossing divisor D. In order to characterize



Kahler—Einstein metrics on quasi-projective manifolds 797

the asymptotics, we introduce the weighted Cheng—Yau Hélder rings and
the associated filtrations based on the bounded geometry. We first develop
the analysis of the Monge—Ampere operators on these weighted spaces. We
derive certain isomorphism theorems for the Monge—Ampere operators and
their linearizations. These results imply that the Monge—Ampere operators
and the Laplacians preserve the log filtration of the Cheng—Yau Holder ring
up to infinite weight.

Secondly, we construct certain initial volume form which can be used
to approximate the canonical volume form in a nice way. This construction
depends on the existence of a canonical metric on the smooth subvariety.
Thirdly, by using the initial volume form and the iteration formula (1.1)
we can derive a formal asymptotic expansion of the Kéhler—Einstein vol-
ume form; then, by the isomorphism theorems, we prove that the formal
asymptotics is indeed the real asymptotics. Furthermore, we prove that the
obtained asymptotics is canonical in the sense that it is independent of the
extensions of the canonical metric on the subvariety.

The plan of this paper is to start from deriving the asymptotics in a
special case to make it easier for the reader to comprehend what is going
on before treating the more involved simple normal crossing case. The
whole machinery derived in the smooth case is generalized in a less triv-
ial way to overcome the difficulties arisen from the higher codimensional
situations. Also, the proof of canonicity requires some further development
of the analysis on the bounded geometry.

In Section 2, we establish the basic setting, the bounded geometry and
the weighted Cheng—Yau Hélder spaces, which are essential for our geometric
analysis. The notions of local quasi-coordinate map, bounded geometry and
the Cheng—Yau Holder spaces were introduced in [8,9, 34]. For completeness,
we include them in the first subsection. Then in Section 2.2, we introduce
the weighted Cheng—Yau Hélder rings and the associated filtrations, which
will be used to characterize the asymptotics. Furthermore, we define the
differential forms over the weighted rings, which are convenient for the later
analysis.

In Section 3, we derive the asymptotics in the case of complement of a
smooth divisor D. In section 3.1, we establish the isomorphism theorems
for both the Monge-Ampeére operator M, and its linearization. To do this,
we first linearize M, as certain negative Laplacian A, by fixing the solution
u. Then, we construct a family of linear elliptic operators which can be
viewed as certain conjugacies of A, — 1. By the Schauder theory and Yau’s
generalized maximum principle, we derive a theorem of Fredholm alternative
for such elliptic operators, which, in turn, implies the isomorphism theorems.
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In section 3.2, the solution u of the Monge—Ampere equation
(1.3) M, (u) = J(Q)~*

can be characterized by the weight 1 Cheng—Yau Holder ring R1(M). This
is obtained from a careful construction of the initial metric, which depends
on a canonical metric on the smooth divisor D. This characterization result,
followed immediately from the isomorphism theorem for M,,, is independent
of the extension of the canonical metric. In Section 3.3, a formal asymptotic
expansion is derived by the perturbation method based on the iteration
formula (1.1). The crucial part is to prove that this formal asymptotics is
the real asymptotics, which is achieved by the isomorphism theorems derived
in Section 3.1.

In Section 4, the whole machinery used in the previous section is gener-
alized to derive the asymptotics near a divisor with simple normal crossings.
More precisely, we obtain the asymptotics of Kédhler—Einstein volume form
near the complete intersections of the irreducible components of the divisor.
In Section 4.1, we establish the isomorphism theorems on the homogeneous
weighted Cheng—Yau Holder spaces with respect to an index subset I, which
is essential in the proof of asymptotics in the simple normal crossing case.
Moreover, our isomorphism theorems are formulated and proved in a much
general form, which, we believe, should have interests of their own.

The construction of initial volume forms in Section 4.2 is less trivial
than that of the smooth case. In fact, we study the construction from
the view-point of “moduli spaces”; namely, we consider M; and M7y, the
families of the initial volume forms which satisfy the adjunction formula, and
the formula plus certain compatibility condition, respectively. The latter
condition is useful in characterizing the canonicity of the asymptotics. In
Theorem 4.8, we present a general way to extend the metric while preserving
the positivity of the curvature form on any higher codimensional subvarieties
of complete intersection. We believe such a metric extension theorem should
also have interests of its own.

Finally, together with the results in the previous sections and the iter-
ation formula, in Section 4.3, we derive the canonical asymptotics near the
complete intersection. Namely, given 2 € My, the Kahler-Einstein volume
form Qx_g = e“Q) on M has the following canonical asymptotic expansion
near the complete intersection Dy:

(1.4) Qr_p~ |1+ Z f;j Q,
Irr|=1
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where ¢,, € R(M) for each rj € Z'ﬂ, and ¢"" is the monomial involving the
logarithm of norms of defining sections of the irreducible components D;
with ¢ € I (see Section 2.2 for the definitions). The asymptotics is canonical
in the the following sense: Let Q2 € My q,. If (1.4) is derived in terms of

another Q' € M 4,, and coefficients {qb;r}mez'j" then

' —u € Rpoo(M)
&, — dr, € Rioo(M), for any r € Z!]1.

Our work may be viewed as the counterpart of Fefferman [15] and Lee—
Melrose’s asymptotics [24] on pseudoconvex domains in C". The background
of their work refers to Fefferman’s papers [14, 15,16, 3] and Cheng—Yau [8].
See also Bland [4], Graham [18], Hirachi [21] and the references therein
for the further development of the asymptotic geometry of pseudoconvex
domains and Cauchy—Riemann manifolds.

In the special case of a smooth divisor, certain initial results and appli-
cations were obtained by Schumacher in [32,33], in which he used the idea
of using the canonical metric on the divisor to construct an initial volume
form on M. His main result is equivalent to u € R,(M) with 0 <r <1
undetermined, which is, however, less precise. Indeed, the accurate weight,
r =1, is crucial for deriving the asymptotics, as in Section 3.3. Also, the
continuity method does not give information on the higher order terms of
the asymptotics.

Our work completely settles the general case of a simple normal crossing
divisor. The method was motivated in [24,23]. Indeed, we first obtained a
formal asymptotic expansion in terms of the log filtration. The theorem of
Fredholm alternative derived in Section 3.1 enables us to prove the isomor-
phism theorems on Cheng—Yau Holder spaces up to infinite weight. These,
in turn, imply that the formal asymptotics is the real asymptotics, which
is furthermore canonical provided the initial volume forms satisfy certain
compatibility condition.

The asymptotics near a simple normal crossing divisor can be viewed
as a higher dimensional generalization of Nevanlinna’s classic result on
P\{p1,...,pu | # >3} [29, p. 249-250], which played a fundamental role
in the second main theorem of the Nevanlinna theory. Hence, it is natural
to expect that this work could have applications to the modern Nevanlinna
theory, which, in turn, has applications to transcendental algebraic geometry
(see, for example, [5,10,20]).
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2. Bounded geometry

We first recall the notions of local quasi-coordinate map, bounded geometry
and the Cheng—Yau Hélder spaces in Section 2.1. In Section 2.2, we con-
sider the initial volume form and the associated initial metric, which can
be deformed to the Kéahler-Einstein metric. Furthermore, to characterize
the asymptotics, we introduce the weighted Ching—Yau Hoélder rings and
the associated filtrations, which will be used extensively in the following
sections.

2.1. Quasi-coordinate map and bounded geometry

Let X be an n-dimensional complex manifold. Recall that the notion of
quasi-coordinate is given as follows:

Definition 2.1. Let V C C" be an open set. A holomorphic map ¢ : V —
X" is called a quasi-coordinate map if rank,(d¢) =n for every p€ V. In
this case, (V, ¢) is called a local quasi-coordinate chart of X.

Next, the bounded geometry is defined below in terms of a system of local
quasi-coordinates.

Definition 2.2. Given a complete Kéhler manifold (X,w), we say that
(X, w) has bounded geometry of order m + u, where m € Z, and p € [0, 1),
if there exists a system of local quasi-coordinates V = {(V;), ¢,)} such that

(1) X =U, ¢n(Vy), and each z € X is centered at some Vj;
(2) For each 7, 1/2 < radius of V,, < 1;

(3) There exist constants C' and A,,, such that, for each 7, if we write

* _ V_]' - 7 —j
(bn((U) = ? Z gnyijdv /\ d'U],

ij=1
then

0 < C(6i5) < (gy5) < C(535),
Hlpl+lal

Dupdpa Inii

< A

Cr (Vi)

= sup

19,65 | ey Ipl+lal<m
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A fundamental example is the unit punch disk A* = {0 < |z] < 1} in C
together with the Poincaré metric

V=1 dzANdz
21 |z[?(log [2]%)%

WA =

Let Vi, = Az = {v € C;[v| < 3/4} and
pp(v) = LT/ A=) D/ =D " for each 5 € (0,1).

Then Up<y<1¢,(Vy) = A*, and the family {(V;,, ¢,)} forms a system of local
quasi-coordinates of A* such that (A*, wa-) has bounded geometry of order
infinity. Here, the essential point is the invariance of Poincaré metrics under
the map ¢y,

Based on the bounded geometry, the Cheng—Yau’s Hdélder spaces are
defined as follows:

Definition 2.3. Fix a quasi-coordinate system V = {(V;), ¢,)} with (2.2),
(2.2), and (2.2) stated in Definition 2.2. For k € Z,, a € [0,1), define the
norm || - [[o 00 C(X) by

w||p.o = su ()| cwa .
[[wllk, wgﬂ@%ﬂb W)}

Define

C*(X) = the completion of {u € C*°(X); |ullk,a < +o00}

with respect to | - ||x,a-
Define the Cheng—Yau Hoélder ring by

RX)= (] C"(X).

k>0,0<a<1

2.2. Weighted Cheng—Yau Hoélder rings and the associated
filtrations

Let M be a compact complex manifold and D = >P | D; be a simple
normal divisor, where the irreducible components D; are smooth and inter-
sect transversely. We let M = M\D. Assume that K;+ [D] > 0. Let
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s; € HY(M,O([D;])) be the holomorphic section defining D;. Then, by the
theorem of Carlson and Griffiths, there exists a C* volume form V on M
and a sufficiently small metric on each [D;] such that

V

2.1 Q
21) P TP (og 5 )?

is a volume on M satisfying the following properties:

(i) Ric©2 >0 on M, and (M,RicQ) is a complete K&hler manifold with
finite volume;

(ii) there is a positive constant C' such that
(2.2) Cl<JQ)<C onM.
Such a volume form §2 is called an initial volume form. Denote
w = RicQ

P P
=wg + QZU;%)Q + QZG;QdO‘i A dCo;,
i=1 i=1

where

|
wic = Ric () |
Hf:l |si|?
we, = —ddoy,

o; = —loglsi>, i=1,...,p.

It is well known that (M,w) has a system of local quasi-coordinates (V;,, ¢,,)
with bounded geometry of order infinity (see, for example, [9,22,34]). In
fact, the local quasi-coordinates are inspired from the fundamental exam-
ple given in Section 2.1. We only need to be careful near the divisor
D. Suppose that in a neighborhood (U, {z!,...,2"}) of p € D we have
DNU = {z'---2F =0} = (A")* x A"* where A is the unit disk in C.
Let V;, = (A3/4)k x A% and ¢,(v) = (qb}?(v), ooy O (v)) with

gZ)%(v) = n)/A=) - (D=1
gb%(v) =, j=k+1,...,n,
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for each n € (0,1)*. Then U is covered by Upe,0)x @y (V). Let U run
through all the neighborhoods. We get a system of local quasi-coordinates
of M such that (M,w) has bounded geometry of order infinity.

Denote by Ry and Z, the sets of non-negative real numbers and non-
negative integers, respectively; denote R = (R;)™ and Z7' = (Z4)™ for
each m € N. For r = (r1,...,rp) € RE with |[r| =71 + - + rp, denote by

o "= O'l_rl . Up_""p_

Then the weighted Cheng-Yau Holder spaces o~ "C*®(M) are the Banach
spaces defined as usual. For each | € N, the homogeneous weighted space
2 pr|=t o "C**(M) is defined as a normed linear subspace of C*<(M).
Similarly, let

Rr(M)=0c""R(M), foranyreRE.
Moreover, denote by R!(M) the R(M )-module of differential 1-forms on M;
namely, for each 1-form ¢ € RY(M), for any k € Z, , there exist a constant
Ay such that if, for each local quasi-coordinate (V},, ¢y,),

Or () = fidv' + gzdi’
then

I fillgma v,y < Ak g5llcraqv,) < Apk, for any a € (0,1).
Note that R'(M) is a subset of A'(M), the set of smooth 1-forms on M.
Let

R™(M) = A*RY (M) for any m € N.
Similarly, denote by RP?(M) the module of (p,q)-forms on M over the
ring R(M). In particular, it follows from the definition that w € RV (M);
furthermore, a (p, p)-form ¢ on M belongs to RPP(M) implies that
WP A
wn

(2.3) Au(p) = € R(M).

We are interested in the asymptotic behavior of the Kéahler—Einstein
metric near the (non-empty) complete intersections,

Dr=Di N---NDyg,,
where the index set

I:{il,...,ik}C{l,...,p}
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satisfies that
D;ND;=10 foranyj¢l.
It is convenient to denote by Z the collection of all such index subsets. By the

definition of simple normal crossing, each Dy, I € Z, is a smooth subvariety
of codimension ||, 1 < |I| < n, but is not necessary connected. Write

Dy =) Dy,

where each DY is a connected component. So, more precisely, we are inter-
ested in the asymptotics near each connected component D7.

To characterize the asymptotics, we introduce the weighted Cheng—Yau
Holder rings associated to Dy, I = {iy,...,ix} € Z, as below:

Rr (M) =1iR(M), foranytecRy.
Rioo(M) = [ Ris(M),

>0

T = <Z a;2> - :

il

where the weight function

They are all ideals of R(M). Moreover, it follows from the definition that,
for each [ € N,

l
Rii(M) = (Z Ufl> R(M)

i€l
= Z o "TR(M),

|rr|=l

where
UﬁrI:HO';ri, T]:(Til,...,Tz‘k)EZI_ﬁ.
i€l
Furthermore, we can also define the differential forms over the weighted
Cheng—Yau Holder rings as follows:

Te(M) =7fR™M),  RYL(M) =7[RPI(M),

k>0 k>0
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for any m, k, p, ¢ € Z4. By the definitions and (2.3), we have
Au(RTR(M)) C Rrx(M),

for any m, k, p, ¢ € Z+. The similar results also hold for the Cheng—Yau
Holder rings with infinite weight.

Any sequence of non-decreasing numbers {t;};eny C Ry gives rise to a
filtration of R(M):

R[’tl(M) D Rl,tz (M) D R[7t3(M) Do

Now we consider the log-filtration {Ry(M)}rez, of R(M). Define the
graded Cheng—Yau Hélder ring RIG(M ) associated to the log filtration by

RY (M) :{u € R(M) ‘ there exist a multiple sequence
{ € R(M) | r€eZt ,r; =0ifi ¢ I}, where

o
not all 1, are zero, such that u ~ Z Yro ", lLe.,
|r|=0

N
for each N € N, u — Z Yo" € RLNH(M).}.
[r|=0
Let
'RIGJC(M) =RY ﬂRI,k(M), for each k € N.

In the special case that D is smooth, we have
Rii(M) =Ri(M) =0 "R(M), forallteRy,

where

0= - lOg |S|27
in which s € H%(M, O[D]) defines D. In this case, Ry(M )gez, gives rise to
the log filtration of R(M). Similarly, we have the graded Cheng—Yau Holder

rings R$ (M) for each k € Zy. We will first derive the asymptotics in this
special case, which is the content of the next section.

3. Smooth divisor case

The approach of deriving the asymptotics near a smooth divisor consists of
three parts: the first part is to establish the isomorphism theorems for both
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the Monge-Ampere operator and its linearizations. The second part is to
construct certain initial volume form which can approximate the Kéahler—
Einstein volume form in a nice way. Finally, by the initial volume form and
the iteration formula, we derive the asymptotics, which is proved to be the
real asymptotics by the isomorphism theorems.

3.1. Isomorphism theorems

Let M be a compact complex manifold and D be a smooth divisor. Denote
M = M\D. Suppose K7+ [D] > 0. Let s € H(M, O([D])) to be a holo-
morphic section defining D. Then, there exists a C> volume form V on M
such that

§
3.1 Q="
(3. PEINEINE

is an initial volume form on M. (See (2.2) and (2.2) in Section 2.) Denote
w = Ric () and o = —log|s|>. Then,

w=wg + 20w, + 20 2do A d°o,
in which
|4
wrg = Ric | —5 | > 0,
|s]?
—w, =dd‘ € Cl([D])v on M.
Let C**(M), k>0 and « € (0,1) be the Cheng-Yau Holder spaces

formed by the local quasi-coordinates. Then we have the first isomorphism
theorem as follows:

Theorem 3.1. Fiz an arbitrary r € Ry, k>0 and a € (0,1). For each
F € o "CP(M), let u € C**29(M) be the unique solution of

(3.2) M,(u) = Me*“ = el

wTL

1
(3.3) ov <w+ddu<Cw, C>0.

Then, u € o~ "CF2(M).
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Proof of Theorem 3.1. (3.2) implies that

(w + dd°u)™

wn

u+ F =log

Let wy = w + tddu. Then it follows that

1
d wi
F= —log [ =L )| dt
wrr= e ()]
1 n—1
A dd°
JNCeor
0 Wi

i.e., we can view the Monge-Ampere Equation (3.2) as the following “linear”
equation:

(Ay — Du=F,

where

1 n—1
A dde
(34)  Au(v) = / (m"t“> dt, for all v € C2(M).
0

wy'
Therefore, it suffices to show that
(3.5) Ay —1:077CH2 (M) — o7"CP(M)

is an isomorphism.
Observe that (3.3) implies

(3.6) [é +(1- t)} w<w <[Ct+ (1 —t)w, foralltel0,1],

which assures that A, — 1 is uniformly elliptic in each local quasi-coordinate.
It follows from Yau’s generalized maximum principle and Schauder’s theory
that

Ay —1:CH2(M) — Ck(M)

is a linear homeomorphism. Now we want to construct a linear operator

(3.7) Ly, : C*P2(M) — (M),



808 Damin Wu

which is uniformly elliptic in each local quasi-coordinate chart, such that
the following diagram commutes:

o~ "

Ck+2,a(M) 9, o,ferJrQ,a(M) 4Z> Ck+2’a(M)

~
~

(3-8) Lu.r ~ Au_l

—r i

CF (M) o k(M) CF(M).

(In this paper, the map ¢ stands for the inclusion unless otherwise indicated.)
Assume that (3.8) is true and that L, , is an isomorphism; then the proof
is finished since (3.8) will give rise to the following commutative diagram:

Ch+2a () % o~ R 2 ()

(3,9) Ly, |~ A,—1

Cre (M) o " CR(M).

Therefore, it remains to construct an isomorphism L, , such that (3.8) holds.
Now for each v € C**(M), we define

Ly,(v)=0"(Ay—1)(c""v)

= A,V — 27“0_1Hu(a, V) + Cur - U,

where
Lo A df A deg
(3.10) mif)= [ (ML
0 W
and

Cur =0 Ay(o7") — 1,

=ro ' Ay(=0) +r(r+1)0 2Hy(0,0) — 1.

It is easy to show UﬁlHu(a, -) and ¢, are well defined in each local quasi-
coordinate chart. Indeed, it suffices to check that o~ 'do and o~ 2do A d°o
are well defined. For a coordinate neighborhood (U, {z!,...,2"}) of p € D
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with U = Up<y<19,(Vy), assume that DN U = {z! = 0} and that
s|? = |212e?, we C®().
Then, for each (V,, ¢,), one has

L= G(m)/(1=n) - (v 1)/ (0 ~1)

P =0, j=2,...,n,
on V, = Agz/y X A"~1. These imply that

dz! ol —1 dv!

Zlog 212 vl—1 1—[vlf2’

which is independent of 7, and so

dzt A dzt dvt A dot

|21 2log? |12 (1 = [v!]?)*”

809

for 0 < |vt| < 3/4. Therefore, we have showed that L, is uniformly elliptic

in each local quasi-coordinate chart and satisfies (3.8).

Next we show that L, , is an isomorphism. Firstly, we observe that there

exists a constant K, > 0 such that

sup ¢y < K.

Indeed, one has the more precise estimate as follows: On one hand, there

exists a constant A > 0 such that
—Awg < we < Awg.

We can choose the norm | - | of s sufficiently small such that

2A
— <
o

DO | =
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Then,
1 n—1
Au(—o) = [ TNl g
0 Wy
1 n—1
< A/ ML N g
(3.11) 0 wt
< nw" A wk /1 dt
= wn o t/C+(1—1t)
ClnC
< 2A = .
< nC’l, 1 C_1 >0
Hence,

r(e A, (—0) < r%nCl < m“%.
o

On the other hand, (3.6) implies that

nw ' A2072do A d°o 1 nw" 1A 2072do A d°o
Wy “t/C+(1—1t) w" ‘
Write
nw" ' A2072do Nd°s 1
wn 1+ i’
in which

(Wi + 2071w, )"

3.12 = 0.
(3:12) To n(wg + 207 lw. )"t A 2072do A do ~
Hence,

1 ! dt
20 2H,(0,0) <
’ <UU)_1+fb/0 t/C+ (1—1)
ClnC
< = .
Soo1o 9
Let
1
K, 7“(7“;— )Cl+7”L27'Cl > 0;

therefore, we have

(3.13) sup ¢y, < K, — 1.
M
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Secondly, we have the following two lemmas:

Lemma 3.2. Li = Ly, — K, : C¥*2%(M) — C**(M) is a linear homeo-
morphism.

Proof of Lemma 3.2. This proof is similar to Cheng—Yau’s in [8]. The injec-
tivity of L follows immediately from Yau’s generalized maximum principle
[8, p. 516]. The surjectivity can be proved as follows. Since (M,w) is a
complete manifold, we can choose a sequence of relatively compact domains
{Bj};il to exhaust M. The standard Schauder theory (see, for example,
Gilbarg and Trudinger [17, p. 107].) implies the following Direchlet problem,

Lgv=f, on Bj,
v=0, on dB;,

has a unique solution v; € C**22(B;). It follows from (3.13) and the usual
maximum principle that

sup |vj| <sup|f|, forall j €N.
B, M

Then the standard interior Schauder estimates (see, for example, [17, p. 93])
applied to the local quasi-coordinates show that a subsequence of {v;}
converges to v € C**2:%(M), which satisfies

Lgv=f on M,
||U||k’+2,o¢ < CHfHk,om

where C' is a constant independent of v. This proves Lemma 3.2. (Il

Lemma 3.3. Let Ly, be defined as in (3.7). Then either

(1) the homogeneous problem
Ly,v=0

has mon-trivial solutions, which form a finite dimensional subspace of
Ck+2a(M), or

(2) the inhomogeneous problem
Lu,rv = f

has a unique C*T22(M) solution for all f € C*(M).
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For a proof of Lemma 3.3, we are going to make use of the standard
Fredholm alternative for compact linear mapping.

Theorem 3.4 (Fredholm alternative for compact linear mapping).
Let V be a normed linear space and let T : V — V be a compact linear map-
ping. Then either

(1) ker(I —T) # {0}, and dimker(I —T') < oo; or

(2) I —=T:V =V is a linear isomorphism.

See, for example, [17, p. 76], for a proof.
Proof of Lemma 3.3. By definition

Lyr=Lg+ K,.
It follows from Lemma 3.2 that Lx has a bounded inverse
Lt CF (M) — CFP2 ().
Now for any f € C*%(M), L, ,v = f is equivalent to
(3.14) v+ K, Lv=Lgf.

We claim that L' : CF*(M) — C**(M) is a bounded compact linear oper-
ator. Indeed, this follows from the Ascoli-Arzela theorem and the following
commutative diagram:

-1

Ly
Ck,a(M) = Ck+2,oz(M)

Che(M)

Therefore, by the above theorem of Fredholm alternative, either

(3.15) v+ K,.Ldv=0
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has mnon-trivial solutions which form a finite dimensional subspace of
Ck(M) or, for each f € C*(M), there exists a unique v € C*(M) such
that

(3.16) v+ K. Lgv = f.

Note that in the first case, (3.15) implies that v = — K, L 'v € Ck+2e(M),
and so

ker Ly, = ker(I + K, L)

If ker L, = {0}, then for each f € C**(M), L' f € CF+22(M) C CF(M),
there is a unique v € C**(M) that satisfies (3.14), which in turn implies that
v € CF29(M) and that L,,v = f. This finishes the proof of Lemma 3.3.
Finally, note that (3.8) implies ker L, , = {0}. This together with
Lemma 3.3 shows that L,, is a continuous linear isomorphism and
hence, a linear homeomorphism. Therefore, the proof of Theorem 3.1 is
completed. ]

Similarly we also have the following linear version of the isomorphism
theorem.

Theorem 3.5. Assume that for some v € R(M), w, = w + ddv satisfies
1/Cw < w, < Cw for some C > 0. Then for each r e Ry, k>0 and o €
(0,1), we have the following commutative diagram:

A, —1
O_—rck+2,a (M) — a—rck,a (M)

7 %

Ao, -1
CFH2(M) —%— C™(M),

where A, is the negative Laplacian with respect to the metric w,, and ~
stands for the homeomorphism of the Banach spaces.

The proof is similar but easier. So we omit it here.
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3.2. Characterization of the solution of Monge—Ampeére
equations

Recall the weighted Cheng—Yau Hélder rings R, (M), r > 0, introduced in
Section 2:

R(M):= (] " (M)
k>0,0<a<1

is the Cheng—Yau Holder ring. For each r € Ry,
Rr(M):=0""R(M)

is the weight  Cheng—Yau Hoélder ring, which is an ideal in R(M). Then any
sequence of non-decreasing numbers {r; };’il C R, gives rise to a filtration
of R(M):

R (M) D Ryy(M) D Ryy (M) D - -

Now before carrying out the asymptotic expansion, we give a precise char-
acterization of the solution by the aid of Theorem 3.1.

Theorem 3.6. If D C M is a smooth divisor, then one can choose a canon-
ical metric on D such that the solution of

(3.17) M, (u) = J(Q)71,
(3.18) %w <w, < Cw, C>0.
18 1n Rl (M)

Proof of Theorem 3.6. It suffices to construct an initial volume form 2 on
M such that

log J(2) € R1(M).

Given any volume V on M and a metric h on the line bundle [D], V/h
give rise to a metric on K57 + [D]. Without loss of generality, suppose the

curvature form
1%
w = Ri — 0.
w ic ( h> >

Then, by the adjunction formula, the pull back

Cl(KD) > Z*(CT)) > 0.
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It follows from Yau’s solution of Calabi conjecture ([39], see also [1]) that
there exists a function ¢p on D unique up to a constant such that

WK-ED = Z*(c~d) + ddchD

is the Kahler—Einstein metric on D with the Einstein constant —1.
We claim that ¢pp can be extended to a smooth function ¢ on M such
that

¢lp=¢p
and
©+dd°¢ >0 on M.
We can choose a large constant C'p depending only on D such that
& +dd°(¢p + Cpls|?) =& + dd°¢pp + Cphdz' Adz' >0
at every point of D. Then there exists a small constant § > 0 such that
@ +dd°(¢p + Cpls*) >0 on {|s|* <}

Let x € C*°(R) be a non-negative cut-off function with y =1 on [—1,1] and
vanishes outside [—2, 2], and let

ox = x(Is*/8) (¢p + Cpls[?).

Let )
o = —log (™ + Cls[°),
m

where m € N and C > 1 are constants to be determined. Then we have
p e C>®(M), ¢|p =¢p, and

(3.19) @ +dd°p =&+ dd°(¢p + Cpls|*) > 0
at every point of D. On M = M\ D, we have

e (D + dd°py)  (C/m)]s|®(m@ + 3dd° log h)
emex + C|s|6 emex + C|s|6

(3.20) @+ ddp >

Since w > 0, we can choose m sufficiently large such that

mw + 3dd®log h > 0.

On the region {|s|? > §/2}, for a fixed m, we can choose the constant C' =

C(6, m) sufficiently large such that the second term in (3.20) dominates the
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first term, while on {0 < |s|? < 6}, both two terms in (3.20) are positive
definite. Therefore, w + dd°p is positive definite on the whole M. This
together with (3.19) proves the claim.

Now by adding a constant to ¢, we get that

(e?y/h) ‘{leo} 1

3.21 -

where we write

dzj A dZ? )

(%
and
V=1 .
WK-ED = Z 9D ij (27r dz* NdZ ).
2<i,j<n

Let V = e?V. Then we define the initial volume form Q as in (3.1).
Recall that

w=wg + 20w, + 207 2do A d.
Then,

<1 + Z o~ > + /) - nwln(_l Ao 22do A do,

where

2k (”zl)w?{ ML AWk A 207 2do A déo
fi = onT , k=1,...,n—1
Wi A2072do N déo

nd fp is defined in (3.12). Then,

(Ric Q)"

Q
wn|8’2

J(2)
log” |s|?
v

= G+ZU >1+m

where
_ 2nwi NE |2dlog]5]2/\dclog|s|2
\%
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So, it suffices to show that
(3.22) fo—1€eR. (M), forallr>1.
In local coordinate {U, (2%,...,2™)}, set DNU = {z! = 0}. Write

|s|* = Izll2 Y, weCF(U);

V’yH

ZRW 5 dz AdZ.

Then, straightforward computations show that

dzj AdZ, 4 =7e? > 0.

2n
fo= U(RH + ' RYw; + leUw + |21]2R”w2 7)s
e

where Rinkj = §;j det(Rpg) and wy, = (Jw/d2*). Denote
H =~e™".

It follows that

R' = det 62 -log H .
021077 e
_ 0 1 15 12
= det 8la_ﬂlgH|{Zl 0} +2B+z B+ 0O(z]),
0,52

where B € C*(U). Therefore, to prove (3.22), it suffices to prove that for
each r > 1, the C**(U) norm of

2n! det (((62/6zi82j) log H|,1—0}) i,j22)
H| (10

(log |2']*)" -

is uniformly bounded. This, however, follows immediately from the above
construction (3.21). We have also shown that the conclusion u € Rq(M) is
independent of the extension of Wi E p to M. O

Remark 3.7. The reader is referred to Theorem 4.8 in Section 4.2 for
constructing the initial volume form in a general setting.
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3.3. Asymptotic expansions

Recall that the graded Cheng-Yau Hélder ring RY (M) associated to the
log-filtration {R;(M)}32, is given by
RY(M) = {u € R(M) | there exist a sequence {1;}72,, where

(3.23) not all v; are zero, such that for each N € N,

N
u — Z¢j0_j € RN_H(M).}
j=0

Note that 0= € RY(M), but |s|?, |s|*(—log|s|})* ¢ R (M), where a, 3,
Aand p € Ry. Let

RS (M) =RE(M)NR;(M), jeN.

Denote L;j = Ly in (3.7), i.e.,
(3.24) Li(v) = Ay(v) — 2j0  Hy(o,v) +cju,  jEN,
where A, is the negative Laplacian with respect to the metric w,

nw™ L Adf A d€
H,(f,9) = wnf I fgec(M);

¢j=jo tAy(—0) +7(j + 1o 2H,(0,0) — 1.

Now we derive the desired asymptotic expansion in the following
theorem.

Theorem 3.8. With the assumptions in Theorem 8.6, the solution u of
(3.17) is in RY(M). More precisely, there exists a sequence {9152, C
R(M) such that for any N € N,

N
u — ijU_j S RN_H(M),
j=1
where each 1; satisfies

(325) Lj(w]) = Fj j € N,
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i which

2n(n — Vw2 Awe A (2do A do[o?)
v

and Fj € R(M), j > 2, are given by induction.

I =-

Remark 3.9. The coefficients 9, of the asymptotics are required to satisfy
the Elliptic linear second-order PDE (3.25), in contrast to the ODE in the
case of pseudoconvex domain [24].

Proof of Theorem 3.8. As in the proof of Theorem 3.6,
n—1
J(Q) = fo (1 + ngfk> (14 fo)
k=1
n—1
=1-) fio "+ F,
k=1
in which

n—1
By =[(fo—1) + fufo] (1 + ZU_kfk> € () Rn(M).
k=1 >0
Let F1 = —f1, and let ¢; € R(M) be the unique solution of
Li(¢1) = Fy.
Then u; = 0! satisfies that
(A, — 1)(uy) = Fro L.
We want to show
(3.26) u—uj € Rao(M).

Let hy =u; —u. By Theorem 3.6 we have u € Ry(M), so hy € Ri(M).
Observe that by construction

Ra(M) > J(e"Q) — J(e"Q)
= Mwu<h1) -1
=14+ Ay, h1 +G5(ha) +---+ G’Z(hl))efhl -1,
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where A ‘
MW=t A (ddhy )
Gt () = WA

Wy
Hence,
(Aw“ — 1)h1 S RQ(M)

Therefore, it follows from Theorem 3.5 that h; € Ra(M). This proves (3.26).
Now assume that by induction, we have

N-1

i

UN—1 = E Vo
=1

such that
(3.27) U—UN-1 ERN(M).
(3.28) JeW1Q)=1—Fyo ¥, FyeR(M).

Then, there exist a ¥y € R(M) such that Lyyny = Fy. Let

-N
uny =un—1+Yno .

Thus, we have
J(@~Q) =14 Fy o~ W+
for some Fyy1 € R(M). Let hy = uy —u. Then, hy € Ry(M). Further-
more,
Ry+1(M) 3 J(e"~¥Q) — J(e“Q)
=M,, (hy)—1
= (1+ Ay, hy + GY(hy) + -+ GY(hn))e™™ —1,

which implies that
(Awu — 1)hN S RN+1(M),
Hence, hy € Ry+1(M) by Theorem 3.5. This completes the induction. [

4. Simple normal crossing case
In this section, the isomorphism theorems are stated and proved in a much

general form. We also derive a theorem on the extension of Hermitian met-
rics with positive curvature. By combining these results with the iteration
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formula, we obtain the asymptotics of Kéhler—Einstein volume form near
the complete intersections of the irreducible components of the divisor. Fur-
thermore, the obtained asymptotics is canonical in the sense that it is unique
up to infinite weight, provided the metrics of the restricted normal bundles
are fixed.

4.1. Isomorphism theorems

We first generalize Theorems 3.1, 3.5, and 3.8 to the case that D has simple
normal crossing. In this case, let D = >"F | D;, where the irreducible com-
ponents D; are smooth and intersect transversely. Let s; € HY(M,O[D;])

define D; and denote by o; = — log \si\Q. Choose a volume form V on M
such that

v
(4.1) Q=

[Ti= [sil*(log si]?)?

is the initial volume form on M satisfying the properties (2.2) and (2.2) in
Section 2. Recall that

w = RicQ

p P
= wg "’220;1‘*)@ +220;2d0i A dCo;,

i=1 i=1
where
. Vv
WK = R,IC <p2 3
i=1 |s:]
We, = —ddCO'i.

For any subset I = {i1,...,ix} C {1,...,p}, denote by

T

i1 -

: I
B, forall rp = (riy,...,7i,) ERL'.

o " =0y i
Denote 07" =07 if I ={1,...,p}. Note that we implicitly assume
rr € Z'ﬂ when we write |r7| =1 € Z4 in the follows.

The weighted Cheng-Yau Holder spaces o~ "C*(M) are the Banach
spaces defined as usual. For each [ €N, 37, o1 Ck(M) is defined to

be the Cheng—Yau Holder space of homogeneous weight [ associated to the
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index set I. Recall that

Rii(M) = 7iR(M)
=> o "R(M), leN.

|rr|=l

= (Z 0;2> v .

il

in which

Now we state and prove the following simple normal crossing version of the
isomorphism theorem.

Theorem 4.1. Fiz an arbitrary r € Rﬁ, k>0 and o € (0,1). Let
we =w+dd°p, ¢ € R(M),

satisfy w/Cy <wy, < Ciw, C; > 0. For each F € a7 "CH*(M), let u €
Ck+2.2(M) be the unique solution of

ddC n
M, (u) = (W + ddeu) e v =el

We

1
aww Lwy +ddu < Cw,, C > 0.
Then, u € o~ "Ck*22(M). Furthermore, for any subset I C {1,...,p}, if

Fe Y o mC"™(M), l€N,

|rr|=L, TIGZL:‘

then
u € Z o ek Re (M.

\r1|:l,r1€ZL{|

Proof of Theorem /.1. Firstly, observe that

D
_ T
o'do™" = — E —do;,
. o;
i=1



Kahler—Einstein metrics on quasi-projective manifolds 823

and

p

o"dd(o™") E[—mc IR

o4
i=1 B

Z ik, daj A dCo;
i

Similar to the proof of Theorem 3.1, we define
Ly, (v)=0"(Ay —1)(c7 ")

P
-1
= A0 —2 E rio;  Hy(oi,v) + ¢y v,
i=1

where A, and H, are defined by the same form of (3.4) and (3.10) with w;
replaced by w,; = w, + tdd“u, respectively; and

Cur =0 Ay(c™") — 1,

p
. (r 4+ 1 T
=3 [ Zaut-o) + " o0 + 3 P H(o) | -1,
=1

a; o

;04
-y Z
’ gAY

Similarly, A,, o, 1Hu(o—i, -) and ¢, , are well defined in each local quasi-
coordinate chart. These follows from the well-definedness of o, Ydo,; for
1=1,...,p: Without loss of generality, we assume that locally DNU =
{z'... 2% =0} and that

15,2 = |2 2e%,  w; e C®U), j=1,....k

Let {(V;,¢n) | m € (0,1)k} be a family of local quasi-coordinates which
covers U. Then for each (V},, ¢,) in the family, we have

i () /() (erl)/(vi,l)7 i=1,....,k,
Zj:’(}j’ j:k+1,,n

onV, = AF

3/4 % A" % These imply that

dzt ot —1 dv’

Zilog|zi2  vi—1 1— [vi]2’
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which is independent of 7, for 0 < |[v!| < 3/4, i =1,...,k. Therefore, we
have shown that L, , is uniformly elliptic in each local quasi-coordinate
chart and satisfies (3.8).

Next, we will derive the following estimate

(4.2) sup ¢y, < K, — 1
M
where
1 P P
K, = ;nC er + 2nCy ;ri(m +1)>0
in which
CiClnC
4.3 Co= ———.

There exists a constant A > 0 such that
—Awg < we, < Awg.

Also, we can choose the norm | - | of s sufficiently small such that

p
2
A o<

l\D\»—t

Note that for all ¢t € [0, 1],

2 +(1—1) “ < wi = wy + tddu < C1{Ct + (1 — t)]w,
C Ch

Then it follows from the same estimate in (3.11) that

P
Ay(—0i) _n
) Zul T
(4.4) Zrz S5 |r|Cy,
1=1
where Cy > 0 is given by (4.3). Moreover, we have

)
Z rido; A TijUj < Z deO'k /2\ dCO']€7
o; oj o

i#j k=1
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and hence,
(45) S H 07, 00) < 2 (o, )
. 0j,01) < =S Hy(0;,0;).
“O_io_ju]z Uguzz
JFi
It remains to control " r;(r; + 1)o; 2H, (04, 0;): fix an arbitrary i = 1,...,p,
nwf_l A 202-_2da,~ A dCo; 4 nw™ 1A 20;2dai A dfo;
wi ~t/C+(1-1) wn ’
Write

w" = (207 2do; A d°o;) Aw™ !

P
+ wK+2Zai_1wci+2Za[2dai/\dcai AL

i=1 i
Then,
WA 20;2d0i Ndo; 1
w™ 1+
in which
- (wi +23°F 07 we, + 23 54 o; 2do; A d°o;) Awn T -
"= (20, 2do; A déo;) A wnt .
Hence,
p p
(4.6) ZTZ'(H + 1)0—1'_2Hu(0_i7 Ji) < nCy Zri(ri + 1).

=1 i=1

Therefore, (4.2) follows from (4.4), (4.5) and (4.6).

Then, by going through the same process in the proof of Theorem 3.1, we
show that L, : C¥+*%2(M) — C**(M) is a linear homeomorphism. This
proves the first part of the theorem.

For the second part, we write

F=)> F, F,ecoCHM).

[rr|=l

Denote by u € C*+2(M) the corresponding solution for F. Each r; € Z'ﬂ
can be viewed as an element in R% via the natural embedding
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I — {1,...,p}; hence, by the argument above, we know that
Ay —1:07ICMEY(M) — 07O (M)

is a linear homeomorphism for each ry € Z'ﬂ. Then, there exists a u,, €
o~ Ck 2.2 (M) such that

(Au—1)(ur,) = F,,, forall | =1.

Hence, by linearity,

(A =1 | > uy, | =F.

|rr|=l

Therefore, it follows from the injectivity of (A, — 1) : CF*+22 (M) — C*(M)
that

u= E Uy, .

|’f‘]‘:l
This proves the second part. O

Theorem 4.1 also has a similar linear version, which can be stated in the
following:

Theorem 4.2. Letw, = w + ddv satisfy (1/C)w < w, < Cw for some C >
0, where v € R(M). Then, for each r € RE, k>0 and a € (0,1), we have
the following commutative diagram:

A,—1
O_—er-i—Q,oa(M) ~ . O_—rck,a(M)

% %

Ck+2,oc(M)

. Ck?a(M) )

2|

where A, is the negative Laplacian with respect to the metric w,, and ~
stands for the linear isomorphism of the Banach spaces. Consequently, for
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any I C {1,...,p}, letry € ZL{', l € N; we have

Z O,frlck+2,a(M) Ao, —1 Z Ufrlck,a(M)

~
~

|TI|:l ‘T‘I|:l
[ [

Ck+2’a(M) v . Ck,a(M) :

4.2. Canonical initial volume forms and the metric
extension theorem

Based on these two isomorphism theorems, we can derive the asymptotics
of the Kéahler—Einstein metric near each connected component of the non-
empty complete intersection Dy, where I € Z. (Z is defined in Section 2.2.)
Without loss of generality, assume that the index set I = {1,...,q}. Let

Dr=Dp,.q =) Di,
14

where each DY is a connected component.
Observe that by repeatedly using the adjunction formula, we have

(4.7) (K37 +[D))|py = Kpy

for each component DY. Then, it follows from the positivity condition (1.2)
and Yau’s solution of Calabi conjecture that there exists a unique Kéahler—
Einstein metric wg_ g, of Ricci curvature —1 on DY, when |[I| = ¢ <n. In
the case ¢ = n, each DY is just a point in M; we set wx_p, = 1.

Note that the holomorphic defining section of a divisor on M is unique
only up to a constant function on M. Let us first fix one of them. Let

Sr={si € H'(M,O([Dy)) | (ss) = Di foriel={1,...,q}}
be a set of given defining sections, and let

HI:{hI,i‘iEI:{la"'vq}}v
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where each hr; is an arbitrary given metric on the restriction of the normal
bundle Np,|p, = [Di]|p,. Since D; N Dy = 0 for j ¢ I, we have

-1
p

H U? S COO(D[)

J=q+1

In order to derive an asymptotic expansion near Dj with certain canonicity,
we introduce the family, M7.s, g, , of initial volume forms

v
i=1 [si[*(log |s:[*)*’

Q=
satisfy the following constraints:

(1) For each connected component DY,

v
[Lics hi ngz |5j|20']2'

(2) s; € Sy forieI. (For j ¢ I, s; is unique only up to a constant.)

(4.8)

B {Qqn! det(g;7,), if 1 <|I| <m;

Dy T 2, if |[I| =n.

(3) Each h|p, = hy; ,foranyi e I ={1,...,q}, where locally DY is given
by {z!---29 =0} and denote

n 1 ) '
v27H<V - dzﬂAdzJ>,
j=1

2

V=1 . .
WK-Ev = Z gijﬂ,( 5 dz"NdZ ),

™
q+1<i,j<n

and h; is the metric on [D;] such that |s;|? = hy|z¢|%,i = 1,...,q. Given
an index set I, we say that two families M5, g, and My g, are
canonically compatible if

2

hr;
. = constant,

(4.9) -
hp

S~

S

54

where hy,; € Hy, ’“ € Hj, s; € Sy and s € S, for each i € I. Note
that (4.9) is nothing but

S|y g eachic 1
T = or each 1 ,
T

Dy

|s

where | - |" is the metric on [D;] locally given by h!.
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It is easy to see that the canonical compatibility is an equivalence rela-
tion. In particular, My.g, g, is canonically compatible with itself. Let
M3, be the union of all the families M 1,5, 1, which are canonically com-
patible with a given My.g, f,. Finally, for convenience, we denote by My
the family of initial volume forms which satisfies condition (4.2) only. Before
actually constructing such a family, we make the following remark.

Remark 4.3. The initial volume form together with property (4.2) only
enable us to obtain an asymptotics whose coefficients are all given by the
solutions of certain second-order linear elliptic PDE (see the proof of
Theorem 4.12), similar to Theorem 3.8. The additional compatibility con-
dition, however, will assure that the obtained asymptotics, with respect to
RE (M), is canonical in the sense of the following two propositions:

Proposition 4.4. Let Q, Q' € Mry,, and w = Ric (), ' = Ric (). Let
u and u' be the solution of

M, (u) = J(Q)71, éw<w+ddcu<0w, C > 0;
My (u') = J(Q)™ %w < +ddu<C'W', C' >0,
respectively. Then, u —u' € R cc-
Proof of Proposition 4.4. By definition, we have
J(e'Q) =1 = J(e" Q).
By the uniqueness of Kéhler—Einstein volume form on M,
' =e"Q =Qx g

Observe that

o log |s:[* \*
o Gll;[l (log\s’\’Z ’

where

s> 1 log|si|?
G = H| ,|,2 H e R(M).

Vs | log E log|s/|”?
Also, G is smooth near each D7; furthermore, by condition (1), we have

G|D?:1
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for each v. Hence, G € 1 + Ry o(M). On the other hand,
—log|si|* = 0; = o} +log B; = oi(1 + o} L log ),
where 3; =|s;|?/|s}|"> € C>°(M). Since B;|p, =1, we have 3; € 1 + Ry 00(M)
and O’;_l log B € Rr,00(M). Therefore,
Q/
—u' =loc— R M).
u—u =log- € I.00(M) .

Our asymptotics will be derived by the following linear operator L,
associated with w:

q

(4.10) L,(v) =A,v—2 Z rio; "H(og,v) + cpv = — fy,
i=1

where A, is the negative Laplacian with respect to w, and

nw 1 A dw A dv

H(v,w) = o0 ;
q
i ri(ri + 1) T
G=Y ;ZAW(_O-i)+1#H(Ui,0'i)+zo_:o;H(Uj,O'i) —1.
i=1 i i

Proposition 4.5. Let Q, Q' € Mry,, and w = Ric(Q), ' = Ric ().
Consider the the following two equations:

Lyv = f)
L/ /: f/
where v,v" € R(M). If f — ' € Ri00(M), then v —v" € Ry oo(M).

To prove this proposition, we first observe the following isomorphic
property of the operator L,.:

Lemma 4.6. Let v € C*2%(M) satisfy L,(v) = f. If
fermrche (M), meN,

then
v € 7" CFTE (M),
Consequently, if f € Rioo(M), then v € Ry oo(M).
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Proof of Lemma 4.6. Recall that

(5"

iel
= Z (JZ) 0; € ZO‘Z'R(M).
ier \TI icl

Then,

CHO(M) = Y oCHA(M), forallle Zy, Be(0,1).

|7r|=m

Let f = Z\m:m 0" frry fry € OB (M). Then,

(A, — 1)(ve™") = Z o "o fr.

rr|=m

On the other hand, it follows from Theorem 4.2 that for each rj, there exists
a vy, € C*29(M) such that

(A, — D)(vp,0"0™ ") = fr,o o™ ",
Thus, by the uniqueness of A, — 1, we have

v=> o ", € TCME(M),
ri|=m ]

Next, we derive the following lemma:

Lemma 4.7. LetQ, Y € Myy,, and L, and L. be the corresponding linear
operators with respect to Q and ', respectively. Then

(Ly — L) (v) € Ri0o(M), for allv e R(M).
Proof of Lemma 4.7. We want to show that

(Ay — Ay )v € Rroo(M), for all v e R(M),
o Y H(ol,v) — 07 ' H(04,v) € Rrco(M), for all v € R(M),
¢r — € € Rioo(M).
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It suffices to check the following:

(4.11) ARy (M) C RN (M), for all [,m > 0,
(4.12) Wb — W e REX (M), forall k> 1,
(4.13) o; 'do; — i 'do} € R oo (M).

Recall that
(M) =7 R™M) = > o "R™(M).
‘T‘I|:l

For ¢ € R™(M), we have

do;
TN € R (M),

—0;

o"d(o ) =dp + Z i
el

This proves (4.11). Similarly, we have
(4.14) ARy (M) C RYFH(M).

Next, it follows from (4.11), (4.14) and the proof of Proposition 4.4 that
= ddlog L € RV (M
w—uw = og@ERLm( )

Since w € RM(M), we get

1,00

k .
W - e Y Wi A (R}:;(M))k_z c RYE ().
=1

Finally, as in the proof of Proposition 4.4,

if €l +RI7OO(M)§

7

therefore, by (4.11),

O',;ldO'i — Jfldag =dlog % € R},oo(M)-
1

This completes the proof.

Proof of Proposition 4.5. By the assumption and Lemma 4.7, we have
Li(w—1') = (f = ') = (Ly — L)' € Ryoo(M).

Hence, it follows from Lemma 4.6 that v —v' € Ry oo (M).
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Now given I = {1,..., g}, we will construct a family My,s, g, with cer-
tain canonicity on the H: Fix a Kahler metric wy; on M. Write

o1 .
w”zﬁH( dzj/\dz]>
j=1

M 27
J-1 . .
(Gwgp)" ' = %H < 5 dz) A dz]> ,

J#

where ¢; : D; < M is the inclusion. Then it follows from the usual adjunc-
tion formula that M induces a metric hp, on the normal bundle Np, =
[Di]|p;:

i — 7|~Di

D; )

Vi

ey .
Now set
hri=¢€hp,|p,, i=1,...,q.

where each ¢; is a small constant. Let
H[ :{hl,i ’ ) EI}

This implies that H; is canonical in terms of w7 up to a constant. Extend
each hy; to a smooth metric on [D;] — M, which is denoted by h;.

For each j ¢ I, [Dj]|p, is a trivial line bundle on D; since D; N Dy = .
Hence, we can choose a trivial metric on [D;]|p, and extend it to a smooth
metric h; on [D;] — M. By this construction, |s;|? is a constant on Dy for
each j ¢ I.

Note that

(4.15) [dd° log | = c1 (K7 + [D]).

0
hy---hy

We claim that there exists a function p € C°°(M) such that

116 ePy | 2%nldet(gg,), if1<qg<mn;
(4.16) 7 I8 |5:]202 ) 9ng g —
i=1 Vi Ll j=g+1 1571705 | pv 2"n!, if ¢ = n.
P~ J—
(4.17) dd®log —="'— >0, on M.
hy---hy

Indeed, (4.15) and (1.2) imply that there exists a p € C°°(M) such that

P
dd¢log hc;’y
1

0.
“hy =
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If ¢ < n, then by (4.7), there exists a ¢, € C*°(DY) such that

+ dd° log H 0'52 + ddchL,, = WK-Euv-
Dy T Dy

ePy
dd°log —
-y

Then, by adding a constant to ¢y, we get

e’y

i1 hi H?:q—f—l |Sj\20']2~

L¢P = 20n) det(g,7,)-
Dy

As for ¢ = n, each DY is a point in M. Let ¢y, be the constant such that

e’y
[T b H?=q+1 ’%‘\2%2'

Take s; € Sy for each i € I. Let x € C*°(R) be a cut-off function such that
X =1 on (—oo,1] and x =0 on [2,+00). Denote by

o= %log exp (mx (Z |Sg|2> (w +Cry !Si!2>> +C (Z |5i|2>3 :

iel iel el

Pl = 2Ipl.
Dy

where ¢; € C*°(Dy) is defined by ¢; = ¢, on each DY, C; > 0 is a large
constant depending only on Dy, § > 0 is a small number and m € N and
C = C(d6,m) > 1 are sufficiently large numbers. It follows from either direct
calculations, or the following general theorem on metric extension, that

pP=Eptey

satisfies both (4.16) and (4.17). Therefore, let V' = efwi-, and €2 be the
volume form given by (4.1); then, Q € M., g, by the above construction.
Finally, let M7 3, be the union of all the families M;.s: g which are canon-
ically compatible with Mr.s, o, .

As mentioned above, we can finish the construction of My 4, by direct
calculations without using the following theorem. However, since the theo-
rem on metric extensions may have interests of its own, we include it here.

Theorem 4.8. Let X be an n-dimensional compact complex manifold, and
L an ample line bundle over X. Let E C X be a subvariety of complete
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intersection, i.e.,
k

E=()Di 1<k<n,
i=1
where D; C X are smooth irreducible hypersurfaces that meet transversally
at each point of intersection. Let hg be a smooth metric on L|g, with positive
curvature form on E. Then, hg can be extended to a smooth metric h on
L, with positive curvature form on X.

A similar result, which works for codimension 1, i.e., £ = Dy as above,
was obtained by Schumacher (see Theorem 4 in [32]). His extended metric,
however, is not globally smooth, since it contains a term as |s E|2/ ™ where
sg is the holomorphic section defining the divisor E [32, p. 634]. This
difficulity can be overcome by increasing the multiplicity of the line bundle.
Furthermore, by patching a cut-off function with the global defining sections
instead of local ones (see also the proof of Theorem 3.6 in Section 3.2), and
applying Schumacher’s lemma (see below or Lemma 3 in [32]) enables us to
generalize the result to any higher codimension.

Lemma 4.9 (Schumacher). Given an open set U in a complex manifold,
let

F(f) = fdd“log f,

for any smooth positive function f on U. Then, for any two such functions

F(f+g9) >F(f)+F(g) onU.

Proof.

Fii+a) -2 -7 = Esa(D)aa (D20

Corollary 4.10. For any finitely many smooth positive functions f1,..., fn
on U,

N N
F (Z fk> > F(fr) onU.
k=1

k=1

Lemma 4.11. Assume that there exists an open neighborhood U of & and
a smooth metric hy on L|y such that hy|g = hg, and the curvature form of
hy is positive on U. Then, the metric hg can be extended to a metric h on
L with positive curvature form on X.
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Proof of Lemma 4.11. Extend hy (with some shrinking of U, if necessary)
to a smooth metric hy of L over X, without any curvature assumptions on
X\U. On the other hand, since L is ample, there exists a metric h, on L
with positive curvature form on X. Let s; € H%(X, O([D;])) be the defining
section of D; and locally |s;|? = |2¢|?hp, for each i = 1,... k. Let

C i 3 l/m
1 1 )
ho (Z“) |

where m is a sufficiently large integer such that hj'hp, 3 is a metric on
mL — 3| D;] with positive curvature form on X for i = 1 yk,and C > 11s
a large constant depending only on m and U. We claim that h is the desired
extension metric.

Applying Schumacher’s lemma, we get

(4.18) f(iﬂ) zf(hfn) YO F him (i‘siP)B on X\E.

p =1

We want to show that f(l/h;”(z:le |s;|2)3) is positive definite on X\ E. In
fact, on X\ D, where D := Dy + --- + Dy, applying Corollary 4.10 yields

(o)) e () (29

. k 2k K,
2 2 7 3C
> T (E |si ) E |s;|“dd logh— > 0.

=1 i=1

For an arbitrary point P € (X\E) N D, without loss of generality, assume
that si,...,s; pass through P while s;41,...5, donot, 1 < < k. Note that

k 1 _; k
. hp.dz N\ dZ
dd‘ log <§ |5i|2> = Zl:lk D: z/\2 : + dd°log E |s4]?
i=1 Zg =I+1 i j=1+1

> dd°log Z |si ]2 at P.
j=l+1
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Hence, applying Corollary 4.10 again, we have

k 3 k 3
1 2 1 2
F W(;‘SZ‘) > F hgﬂ(Z\s,\) >0 at P.

i=l+1

Therefore, ]—"(I/h;"(Zf:1 |5:1?)3) is positive definite on X\ E.

Let U’ C U be a relatively compact open neighborhood of E. On X\U’,
for a fixed m, we can choose C'= C(U’,m) > 0 sufficiently large such that
the right hand side of (4.18) is positive definite, which implies that the curva-
ture form of h is positive on X\U’. On U\ E, by the assumption of hy;, apply-
ing (4.18) again, we know that the curvature form of h is positive on U\ E.
Finally, by direct calculation, we have that the curvature forms of h and hy
coincide at every point of the subvariety E. This completes the proof. [

Proof of Theorem 4.8. By Lemma 4.11, it suffices to extend hg to a metric
whose curvature form is positive on a neighborhood of E. It follows from
positivity of L that there exists a metric h, with positive curvature form 6,
on X. Note that [©,|g] = c¢i1(L|g). Hence, there is a ¢ € C°°(F) such that

e¥E 1

hp‘ 5 " hg’
We can choose a large constant C'r depending only on E such that
k
(4.19) 0, + dd° <¢E+CEZ|si|2> >0
i=1

at every point of E. Then, there exists a small constant § > 0 such that
(4.19) holds on {3F | [si|?> < 6}. Let

k 2 k
S;
P =X (Z ’5’> <<PE+CEZ!SZ-!2> ,
i=1 i=1

where x € C*°(R) is a non-negative cut-off function with value 1 on (—o0, 1)
and value 0 on (2, 400). Now let
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Then, h; is a smooth metric of L whose curvature form is positive on
{S°F | Isi]? < ). Hence, by (the proof of) Lemma 4.11, the metric
) ) i 3 1/m
= [emr 0 |2
s \ee(zer) )

where m € N and C' = C(d,m) > 1 are sufficiently large constants, is the
desired extension metric on X. O

4.3. Higher canonical asymptotics of Kiahler—Einstein metrics

Finally, we will state and prove the asymptotics theorem in the case of
complement of a simple normal crossing divisor.

Theorem 4.12. Suppose [ ={1,...,q} € Z. Let Q € Mj. Then the solu-
tion u of

(4.20) M, (u) = J(Q)7},
(4.21) %w <we<Cw, C>0,

18 in R?l(M) More precisely, u € Ry 1(M); furthermore, there is a multiple
sequence {4y }re(z1 x0) C R(M) such that for any N € N,

N

(4.22) u— > o € RNy (M).
[r|=1

Moreover, assume that Q € My, ; if we start from another Q' € My, and
get

N
u' — Z Yo’ € Rins1(M), forall N €N,
|r]=1

(4.23) W —u € C ot Ryne(M);
(4.24) Y —Yr € Rioo(M), forallr € Z% x0.
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Consequently, the Kdhler—FEinstein volume form Qg _gp = e“Q on M has
the following canonical asymptotic expansion near the smooth subvariety Dy :

(4.25) O p~|[1+) = |9

where ¢, € R(M) for each r € (Z1 x 0). The asymptotics is canonical in
the following sense: if (4.25) is derived in terms of another Q' € My, and

COGJ%Cients {(b;"}rEZ‘jera then
qb;,—gbr ERI,OO(M), f07’ CL”?“EZ(JIr x 0.

Proof of Theorem 4.12. For simplicity, we identify the index set Z‘i x 0
with Z%; namely, in the following proof, r =r; = (r1,...,rq) € Z% and
o" =0T =07 04" Write

w
JQ) =<
@)=
n—q
=fol1+ D o7fH | QA+ 1),
[r|=1
where
29! wi A ATTL |siPdoi AdCo; 2 5 o
fo= ’ IT Isi0%

—q)!
(n—q)V Pl
fo= 20 () wrer + 300 207 we,)" ™ A (XL 207 2doy A deoy))
T () s+ X 207 e ) AT 20, 2doi A deo

il (1w AT wi AT 207 2doi A do

||

T!(Z)W%,_Iq A Hg:1 201-_2d01‘ A dCo;

T )

in which 1 < |r| <n —gq, and

p

wg,r = Ric (H V > = wg — 2dd°log H of

P 12 2
i=1 |SZ| H]il Jj j=q+1

By definition, we know that f,. € C*°(M) C R(M), f» € Rico(M), fp >0

on M, and that fy € R(M), is smooth near Dy, and fo > 0 on M. Since



840 Damin Wu

Q € My, by (4.8) of condition (4.2), we have

f0’D1 =L

Hence, fo —1 € R oo(M). Moreover,
Y o f eRR(M), k=1
|r|=k
These imply that
log J(Q) € Ry1(M).
Then, applying Theorem 4.1 yields that the solution

u € R[J(M).

Next, to derive (4.22), for each r € Z% and |r| =1, let ¢, € R(M) be the
unique solution of

q
Lr(wr) = Autpr =2 Zriai_lH(Uiv %) +crthp = —fr.

=1

Denote by

up = Z o .

|r|=1
Then, we have

(Ap—D(ur) ==Y fro "
|

r|=1
Also,
J(€Q) = M, (u1)J(Q)
=1+ Auvur + Ga(ur) + -+ + G(ur))e” " J(Q)
€14 > Ry(M)C1+Rys(M),
Ir|=2
in which

(MW"t A (ddv)"

(4.26) Gi(v) - , forallveR(M), i>2.
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By the same argument in the proof of Theorem 3.8, and applying Theo-
rem 4.2, we have that

Then, similar to the proof of Theorem 3.8, by induction and Theorem 4.2,
we prove that there exists a sequence {wr},ﬂezgr such that for each N € N,

N
J | exp Z Yo" - —1¢€ Z R, (M) C Rrn+1(M),
Irj=1 Ir|=N+1

N
u— Y o " € Ry (M).
Ir=1

Therefore, this completes the proof of (4.22).
As for the canonicity, (4.23) follows from Proposition 4.4. It remains to
prove (4.24). In fact, by construction

(4.27) fr—fr € Rioo(M), foralll<|r|<n-—q.

Furthermore, it follows from (4.11) and (4.12), in the proof of Lemma 4.7,
that

(4.28) Gi(v") — Gi(v) € Rioo(M), forallv' —v e Ryo(M),

where G%(M) is given by (4.26) with w’ replaced by w. Then, (4.24) follows

immediately from (4.27), Proposition 4.5, (4.28) and induction. O
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