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Higher canonical asymptotics of Kähler–Einstein
metrics on quasi-projective manifolds

Damin Wu

We derive a canonical asymptotic expansion up to infinite order of
the Kähler–Einstein metric on a quasi-projective manifold, which
can be compactified by adding a divisor with simple normal cross-
ings. Characterized by the log filtration of the Cheng–Yau Hölder
ring, the asymptotics are obtained by constructing an initial Kähler
metric, deriving certain iteration formula and applying the iso-
morphism theorems of the Monge–Ampère operators. This work
is parallel to the asymptotics of Fefferman, Lee and Melrose on
pseudoconvex domains in C

n.

1. Introduction

On a complex manifold M of dimension n, a volume form Ψ is a smooth pos-
itive (n, n) form. In a local coordinate neighborhood Uα with holomorphic
coordinates zα = (z1

α, . . . , zn
α),

Ψ = ξα

n∏

j=1

(√
−1
2π

dzj
α ∧ dz̄j

α

)
,

where ξα is a positive C∞ function. Then the Ricci form Ric Ψ associated
to Ψ is the real (1, 1) form given locally by

Ric Ψ = ddc log ξα,

where dc :=
√

−1/4π(∂̄ − ∂). It follows that Ric Ψ is globally defined on M
and that Ric Ψ = c1(KM ), where KM is the canonical bundle.

We define the generalized Fefferman operator J by

J(Ψ) =
(Ric Ψ)n

Ψ
,
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where Ψ is a volume form. Let Ψϕ = eϕΨ. Then we have the following
iteration formula

(1.1) J(Ψϕ) = MRic Ψ(ϕ)J(Ψ),

where

MRic Ψ(ϕ) =
(Ric Ψ + ddcϕ)n

(Ric Ψ)n
e−ϕ,

which is the Monge–Ampère operator associated to Ric Ψ. It follows from
the definition that J(Ψϕ) = 1 if and only if MRic Ψ(ϕ) = 1/J(Ψ).

Let M be a complex manifold. A divisor D on M is said to have normal
crossings if locally D is given by an equation

z1 · · · zk = 0,

where (z1, . . . , zn) are local holomorphic coordinates on M . Moreover, if
each irreducible component of D is smooth, then we shall say that D has
simple normal crossings.

Let M be a compact complex manifold and D be a divisor in M with
simple normal crossings. We impose the positivity condition

(1.2) KM + [D] > 0.

Then, a theorem of Carlson–Griffiths [5] assures that there exists a vol-
ume form Ω on M ≡ M\D such that Ric Ω > 0 on M , and (M, Ric Ω) is a
complete Kähler manifold with negative Ricci curvature.

This theorem provides an initial metric ω ≡ Ric Ω, which can be deformed
to the canonical Kähler–Einstein metric on M . In fact, this was first
addressed by Yau [40] and later on by Cheng and Yau [9], Kobayashi [22],
Tsuji [35], Tian and Yau [34] and Bando [2]. It follows that M possesses
a unique complete Kähler–Einstein metric of constant negative Ricci curva-
ture −1.

However, the results on the existence of Kähler–Einstein metrics on M
are not enough when people want to know the singular description, in the
form of asymptotic expansion, of the canonical metric near the divisor D.
Actually, this geometric information would help us to develop broader and
deeper applications of the theory of quasi-projective manifolds to differential
and algebraic geometry. This was suggested by Yau [42, p. 377].

In this paper, we derive an asymptotic expansion of the Kähler–Einstein
metrics near a simple normal crossing divisor D. In order to characterize
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the asymptotics, we introduce the weighted Cheng–Yau Hölder rings and
the associated filtrations based on the bounded geometry. We first develop
the analysis of the Monge–Ampère operators on these weighted spaces. We
derive certain isomorphism theorems for the Monge–Ampère operators and
their linearizations. These results imply that the Monge–Ampère operators
and the Laplacians preserve the log filtration of the Cheng–Yau Hölder ring
up to infinite weight.

Secondly, we construct certain initial volume form which can be used
to approximate the canonical volume form in a nice way. This construction
depends on the existence of a canonical metric on the smooth subvariety.
Thirdly, by using the initial volume form and the iteration formula (1.1)
we can derive a formal asymptotic expansion of the Kähler–Einstein vol-
ume form; then, by the isomorphism theorems, we prove that the formal
asymptotics is indeed the real asymptotics. Furthermore, we prove that the
obtained asymptotics is canonical in the sense that it is independent of the
extensions of the canonical metric on the subvariety.

The plan of this paper is to start from deriving the asymptotics in a
special case to make it easier for the reader to comprehend what is going
on before treating the more involved simple normal crossing case. The
whole machinery derived in the smooth case is generalized in a less triv-
ial way to overcome the difficulties arisen from the higher codimensional
situations. Also, the proof of canonicity requires some further development
of the analysis on the bounded geometry.

In Section 2, we establish the basic setting, the bounded geometry and
the weighted Cheng–Yau Hölder spaces, which are essential for our geometric
analysis. The notions of local quasi-coordinate map, bounded geometry and
the Cheng–Yau Hölder spaces were introduced in [8, 9, 34]. For completeness,
we include them in the first subsection. Then in Section 2.2, we introduce
the weighted Cheng–Yau Hölder rings and the associated filtrations, which
will be used to characterize the asymptotics. Furthermore, we define the
differential forms over the weighted rings, which are convenient for the later
analysis.

In Section 3, we derive the asymptotics in the case of complement of a
smooth divisor D. In section 3.1, we establish the isomorphism theorems
for both the Monge–Ampère operator Mω and its linearization. To do this,
we first linearize Mω as certain negative Laplacian ∆u by fixing the solution
u. Then, we construct a family of linear elliptic operators which can be
viewed as certain conjugacies of ∆u − 1. By the Schauder theory and Yau’s
generalized maximum principle, we derive a theorem of Fredholm alternative
for such elliptic operators, which, in turn, implies the isomorphism theorems.



798 Damin Wu

In section 3.2, the solution u of the Monge–Ampère equation

(1.3) Mω(u) = J(Ω)−1

can be characterized by the weight 1 Cheng–Yau Hölder ring R1(M). This
is obtained from a careful construction of the initial metric, which depends
on a canonical metric on the smooth divisor D. This characterization result,
followed immediately from the isomorphism theorem for Mω, is independent
of the extension of the canonical metric. In Section 3.3, a formal asymptotic
expansion is derived by the perturbation method based on the iteration
formula (1.1). The crucial part is to prove that this formal asymptotics is
the real asymptotics, which is achieved by the isomorphism theorems derived
in Section 3.1.

In Section 4, the whole machinery used in the previous section is gener-
alized to derive the asymptotics near a divisor with simple normal crossings.
More precisely, we obtain the asymptotics of Kähler–Einstein volume form
near the complete intersections of the irreducible components of the divisor.
In Section 4.1, we establish the isomorphism theorems on the homogeneous
weighted Cheng–Yau Hölder spaces with respect to an index subset I, which
is essential in the proof of asymptotics in the simple normal crossing case.
Moreover, our isomorphism theorems are formulated and proved in a much
general form, which, we believe, should have interests of their own.

The construction of initial volume forms in Section 4.2 is less trivial
than that of the smooth case. In fact, we study the construction from
the view-point of “moduli spaces”; namely, we consider MI and MI,HI

, the
families of the initial volume forms which satisfy the adjunction formula, and
the formula plus certain compatibility condition, respectively. The latter
condition is useful in characterizing the canonicity of the asymptotics. In
Theorem 4.8, we present a general way to extend the metric while preserving
the positivity of the curvature form on any higher codimensional subvarieties
of complete intersection. We believe such a metric extension theorem should
also have interests of its own.

Finally, together with the results in the previous sections and the iter-
ation formula, in Section 4.3, we derive the canonical asymptotics near the
complete intersection. Namely, given Ω ∈ MI , the Kähler–Einstein volume
form ΩK−E = euΩ on M has the following canonical asymptotic expansion
near the complete intersection DI :

(1.4) ΩK−E ∼

⎛

⎝1 +
∞∑

|rI |=1

φrI

σrI

⎞

⎠Ω,



Kähler–Einstein metrics on quasi-projective manifolds 799

where φrI
∈ R(M) for each rI ∈ Z

|I|
+ , and σrI is the monomial involving the

logarithm of norms of defining sections of the irreducible components Di

with i ∈ I (see Section 2.2 for the definitions). The asymptotics is canonical
in the the following sense: Let Ω ∈ MI,HI

. If (1.4) is derived in terms of
another Ω′ ∈ MI,HI

, and coefficients {φ′
rI

}rI∈Z
|I|
+

, then

u′ − u ∈ RI,∞(M)

φ′
rI

− φrI
∈ RI,∞(M), for any rI ∈ Z

|I|
+ .

Our work may be viewed as the counterpart of Fefferman [15] and Lee–
Melrose’s asymptotics [24] on pseudoconvex domains in C

n. The background
of their work refers to Fefferman’s papers [14, 15, 16, 3] and Cheng–Yau [8].
See also Bland [4], Graham [18], Hirachi [21] and the references therein
for the further development of the asymptotic geometry of pseudoconvex
domains and Cauchy–Riemann manifolds.

In the special case of a smooth divisor, certain initial results and appli-
cations were obtained by Schumacher in [32, 33], in which he used the idea
of using the canonical metric on the divisor to construct an initial volume
form on M . His main result is equivalent to u ∈ Rr(M) with 0 < r ≤ 1
undetermined, which is, however, less precise. Indeed, the accurate weight,
r = 1, is crucial for deriving the asymptotics, as in Section 3.3. Also, the
continuity method does not give information on the higher order terms of
the asymptotics.

Our work completely settles the general case of a simple normal crossing
divisor. The method was motivated in [24, 23]. Indeed, we first obtained a
formal asymptotic expansion in terms of the log filtration. The theorem of
Fredholm alternative derived in Section 3.1 enables us to prove the isomor-
phism theorems on Cheng–Yau Hölder spaces up to infinite weight. These,
in turn, imply that the formal asymptotics is the real asymptotics, which
is furthermore canonical provided the initial volume forms satisfy certain
compatibility condition.

The asymptotics near a simple normal crossing divisor can be viewed
as a higher dimensional generalization of Nevanlinna’s classic result on
P

1\{p1, . . . , pµ | µ ≥ 3} [29, p. 249–250], which played a fundamental role
in the second main theorem of the Nevanlinna theory. Hence, it is natural
to expect that this work could have applications to the modern Nevanlinna
theory, which, in turn, has applications to transcendental algebraic geometry
(see, for example, [5, 10, 20]).
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2. Bounded geometry

We first recall the notions of local quasi-coordinate map, bounded geometry
and the Cheng–Yau Hölder spaces in Section 2.1. In Section 2.2, we con-
sider the initial volume form and the associated initial metric, which can
be deformed to the Kähler–Einstein metric. Furthermore, to characterize
the asymptotics, we introduce the weighted Ching–Yau Hölder rings and
the associated filtrations, which will be used extensively in the following
sections.

2.1. Quasi-coordinate map and bounded geometry

Let X be an n-dimensional complex manifold. Recall that the notion of
quasi-coordinate is given as follows:

Definition 2.1. Let V ⊂ C
n be an open set. A holomorphic map φ : V →

Xn is called a quasi-coordinate map if rankp(dφ) = n for every p ∈ V . In
this case, (V, φ) is called a local quasi-coordinate chart of X.

Next, the bounded geometry is defined below in terms of a system of local
quasi-coordinates.

Definition 2.2. Given a complete Kähler manifold (X, ω), we say that
(X, ω) has bounded geometry of order m + µ, where m ∈ Z+, and µ ∈ [0, 1),
if there exists a system of local quasi-coordinates V = {(Vη, φη)} such that

(1) X =
⋃

η φη(Vη), and each x ∈ X is centered at some Vη;

(2) For each η, 1/2 ≤ radius of Vη ≤ 1;

(3) There exist constants C and Am such that, for each η, if we write

φ∗
η(ω) ≡

√
−1
2π

n∑

i,j=1

gη,ij̄dvi ∧ dv̄j ,

then

0 < C−1(δij) ≤ (gη,ij̄) ≤ C(δij),

∥∥gη,ij̄

∥∥
Cm,µ(Vη) ≡ sup

|p|+|q|≤m

∥∥∥∥∥
∂|p|+|q|

∂vp∂v̄q
gη,ij̄

∥∥∥∥∥
Cµ(Vη)

≤ Am.
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A fundamental example is the unit punch disk ∆∗ = {0 < |z| < 1} in C

together with the Poincaré metric

ω∆∗ =
√

−1
2π

dz ∧ dz̄

|z|2(log |z|2)2 .

Let Vη ≡ ∆3/4 := {v ∈ C; |v| < 3/4} and

φη(v) = e(1+η)/(1−η) · (v+1)/(v−1), for each η ∈ (0, 1).

Then ∪0<η<1φη(Vη) = ∆∗, and the family {(Vη, φη)} forms a system of local
quasi-coordinates of ∆∗ such that (∆∗, ω∆∗) has bounded geometry of order
infinity. Here, the essential point is the invariance of Poincaré metrics under
the map φη.

Based on the bounded geometry, the Cheng–Yau’s Hölder spaces are
defined as follows:

Definition 2.3. Fix a quasi-coordinate system V = {(Vη, φη)} with (2.2),
(2.2), and (2.2) stated in Definition 2.2. For k ∈ Z+, α ∈ [0, 1), define the
norm ‖ · ‖k,α on C∞(X) by

‖u‖k,α = sup
Vη∈V

{
‖φ∗

η(u)‖Ck,α(Vη)
}

.

Define

Ck,α(X) = the completion of {u ∈ C∞(X); ‖u‖k,α < +∞}
with respect to ‖ · ‖k,α.

Define the Cheng–Yau Hölder ring by

R(X) =
⋂

k≥0,0<α<1

Ck,α(X).

2.2. Weighted Cheng–Yau Hölder rings and the associated
filtrations

Let M be a compact complex manifold and D =
∑p

i=1 Di be a simple
normal divisor, where the irreducible components Di are smooth and inter-
sect transversely. We let M = M\D. Assume that KM + [D] > 0. Let
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si ∈ H0(M, O([Di])) be the holomorphic section defining Di. Then, by the
theorem of Carlson and Griffiths, there exists a C∞ volume form V on M
and a sufficiently small metric on each [Di] such that

(2.1) Ω ≡ V∏p
i=1 |si|2(log |si|2)2

is a volume on M satisfying the following properties:

(i) Ric Ω > 0 on M , and (M, Ric Ω) is a complete Kähler manifold with
finite volume;

(ii) there is a positive constant C such that

(2.2) C−1 < J(Ω) < C on M.

Such a volume form Ω is called an initial volume form. Denote

ω = Ric Ω

= ωK + 2
p∑

i=1

σ−1
i ωci

+ 2
p∑

i=1

σ−2
i dσi ∧ dcσi,

where

ωK = Ric
(

V∏p
i=1 |si|2

)
,

ωci
= −ddcσi,

σi = − log |si|2, i = 1, . . . , p.

It is well known that (M, ω) has a system of local quasi-coordinates (Vη, φη)
with bounded geometry of order infinity (see, for example, [9, 22, 34]). In
fact, the local quasi-coordinates are inspired from the fundamental exam-
ple given in Section 2.1. We only need to be careful near the divisor
D. Suppose that in a neighborhood (U, {z1, . . . , zn}) of p ∈ D we have
D ∩ U = {z1 · · · zk = 0} = (∆∗)k × ∆n−k, where ∆ is the unit disk in C.
Let Vη ≡ (∆3/4)k × ∆n−k and φη(v) = (φ1

η(v), . . . , φn
η (v)) with

φi
η(v) = e(1+ηi)/(1−ηi) · (vi+1)/(vi−1), i = 1, . . . , k,

φj
η(v) = vj , j = k + 1, . . . , n,
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for each η ∈ (0, 1)k. Then U is covered by ∪η∈(0,1)kφη(Vη). Let U run
through all the neighborhoods. We get a system of local quasi-coordinates
of M such that (M, ω) has bounded geometry of order infinity.

Denote by R+ and Z+ the sets of non-negative real numbers and non-
negative integers, respectively; denote R

m
+ ≡ (R+)m and Z

m
+ ≡ (Z+)m for

each m ∈ N. For r = (r1, . . . , rp) ∈ R
p
+ with |r| ≡ r1 + · · · + rp, denote by

σ−r = σ−r1
1 · · ·σ−rp

p .

Then the weighted Cheng–Yau Hölder spaces σ−rCk,α(M) are the Banach
spaces defined as usual. For each l ∈ N, the homogeneous weighted space∑

|r|=l σ
−rCk,α(M) is defined as a normed linear subspace of Ck,α(M).

Similarly, let
Rr(M) = σ−rR(M), for any r ∈ R

p
+.

Moreover, denote by R1(M) the R(M)-module of differential 1-forms on M ;
namely, for each 1-form ϕ ∈ R1(M), for any k ∈ Z+, there exist a constant
Aϕ,k such that if, for each local quasi-coordinate (Vη, φη),

φ∗
η(ϕ) = fidvi + gj̄dv̄j ,

then

‖fi‖Ck,α(Vη) ≤ Aϕ,k, ‖gj̄‖Ck,α(Vη) ≤ Aϕ,k, for any α ∈ (0, 1).

Note that R1(M) is a subset of A1(M), the set of smooth 1-forms on M .
Let

Rm(M) = ∧kR1(M) for any m ∈ N.

Similarly, denote by Rp,q(M) the module of (p, q)-forms on M over the
ring R(M). In particular, it follows from the definition that ω ∈ R1,1(M);
furthermore, a (p, p)-form ϕ on M belongs to Rp,p(M) implies that

(2.3) Λω(ϕ) ≡ ωn−p ∧ ϕ

ωn
∈ R(M).

We are interested in the asymptotic behavior of the Kähler–Einstein
metric near the (non-empty) complete intersections,

DI ≡ Dk1 ∩ · · · ∩ Dki
,

where the index set

I = {i1, . . . , ik} ⊂ {1, . . . , p}
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satisfies that
Dj ∩ DI = ∅ for any j /∈ I.

It is convenient to denote by I the collection of all such index subsets. By the
definition of simple normal crossing, each DI , I ∈ I, is a smooth subvariety
of codimension |I|, 1 ≤ |I| ≤ n, but is not necessary connected. Write

DI =
∑

ν

Dν
I ,

where each Dν
I is a connected component. So, more precisely, we are inter-

ested in the asymptotics near each connected component Dν
I .

To characterize the asymptotics, we introduce the weighted Cheng–Yau
Hölder rings associated to DI , I = {i1, . . . , ik} ∈ I, as below:

RI,t(M) = τ t
IR(M), for any t ∈ R+.

RI,∞(M) =
⋂

t≥0

RI,t(M),

where the weight function

τI ≡
(
∑

i∈I

σ−2
i

)1/2

.

They are all ideals of R(M). Moreover, it follows from the definition that,
for each l ∈ N,

RI,l(M) =

(
∑

i∈I

σ−1
i

)l

R(M)

=
∑

|rI |=l

σ−rI R(M),

where
σ−rI =

∏

i∈I

σ−ri

i , rI = (ri1 , . . . , rik
) ∈ Z

|I|
+ .

Furthermore, we can also define the differential forms over the weighted
Cheng–Yau Hölder rings as follows:

Rm
I,k(M) ≡ τk

I Rm(M), Rp,q
I,k(M) ≡ τk

I Rp,q(M),

Rm
I,∞(M) ≡

⋂

k≥0

Rm
I,k(M), Rp,q

I,∞(M) ≡
⋂

k≥0

Rp,q
I,k(M).
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for any m, k, p, q ∈ Z+. By the definitions and (2.3), we have

Λω(Rp,p
I,k(M)) ⊂ RI,k(M),

for any m, k, p, q ∈ Z+. The similar results also hold for the Cheng–Yau
Hölder rings with infinite weight.

Any sequence of non-decreasing numbers {tj}j∈N ⊂ R+ gives rise to a
filtration of R(M):

RI,t1(M) ⊃ RI,t2(M) ⊃ RI,t3(M) ⊃ · · · .

Now we consider the log-filtration {RI,k(M)}k∈Z+ of R(M). Define the
graded Cheng–Yau Hölder ring RG

I (M) associated to the log filtration by

RG
I (M) =

{
u ∈ R(M)

∣∣∣∣ there exist a multiple sequence

{ψr ∈ R(M) | r ∈ Z
p
+, ri = 0 if i /∈ I}, where

not all ψr are zero, such that u ∼
∞∑

|r|=0

ψrσ
−r, i.e.,

for each N ∈ N, u −
N∑

|r|=0

ψrσ
−r ∈ RI,N+1(M).

}
.

Let
RG

I,k(M) = RG
I

⋂
RI,k(M), for each k ∈ N.

In the special case that D is smooth, we have

RI,t(M) = Rt(M) = σ−tR(M), for all t ∈ R+,

where
σ = − log |s|2,

in which s ∈ H0(M, O[D]) defines D. In this case, Rk(M)k∈Z+ gives rise to
the log filtration of R(M). Similarly, we have the graded Cheng–Yau Hölder
rings RG

k (M) for each k ∈ Z+. We will first derive the asymptotics in this
special case, which is the content of the next section.

3. Smooth divisor case

The approach of deriving the asymptotics near a smooth divisor consists of
three parts: the first part is to establish the isomorphism theorems for both
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the Monge–Ampère operator and its linearizations. The second part is to
construct certain initial volume form which can approximate the Kähler–
Einstein volume form in a nice way. Finally, by the initial volume form and
the iteration formula, we derive the asymptotics, which is proved to be the
real asymptotics by the isomorphism theorems.

3.1. Isomorphism theorems

Let M be a compact complex manifold and D be a smooth divisor. Denote
M = M\D. Suppose KM + [D] > 0. Let s ∈ H0(M, O([D])) to be a holo-
morphic section defining D. Then, there exists a C∞ volume form V on M
such that

(3.1) Ω =
V

|s|2 log2 |s|2

is an initial volume form on M . (See (2.2) and (2.2) in Section 2.) Denote
ω = Ric (Ω) and σ = − log |s|2. Then,

ω = ωK + 2σ−1ωc + 2σ−2dσ ∧ dcσ,

in which

ωK = Ric
(

V

|s|2

)
> 0,

−ωc = ddcσ ∈ c1([D]), on M.

Let Ck,α(M), k ≥ 0 and α ∈ (0, 1) be the Cheng–Yau Hölder spaces
formed by the local quasi-coordinates. Then we have the first isomorphism
theorem as follows:

Theorem 3.1. Fix an arbitrary r ∈ R+, k ≥ 0 and α ∈ (0, 1). For each
F ∈ σ−rCk,α(M), let u ∈ Ck+2,α(M) be the unique solution of

Mω(u) ≡ (ω + ddcu)n

ωn
e−u = eF ,(3.2)

1
C

ω ≤ ω + ddcu ≤ Cω, C > 0.(3.3)

Then, u ∈ σ−rCk+2,α(M).
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Proof of Theorem 3.1. (3.2) implies that

u + F = log
(ω + ddcu)n

ωn
.

Let ωt = ω + tddcu. Then it follows that

u + F =
∫ 1

0

[
d

dt
log

(
ωn

t

ωn

)]
dt

=
∫ 1

0

(
nωn−1

t ∧ ddcu

ωn
t

)
dt

i.e., we can view the Monge–Ampère Equation (3.2) as the following “linear”
equation:

(∆u − 1)u = F,

where

(3.4) ∆u(v) ≡
∫ 1

0

(
nωn−1

t ∧ ddcv

ωn
t

)
dt, for all v ∈ C2(M).

Therefore, it suffices to show that

(3.5) ∆u − 1 : σ−rCk+2,α(M) −→ σ−rCk,α(M)

is an isomorphism.
Observe that (3.3) implies

(3.6)
[

t

C
+ (1 − t)

]
ω ≤ ωt ≤ [Ct + (1 − t)]ω, for all t ∈ [0, 1],

which assures that ∆u − 1 is uniformly elliptic in each local quasi-coordinate.
It follows from Yau’s generalized maximum principle and Schauder’s theory
that

∆u − 1 : Ck+2,α(M) −→ Ck,α(M)

is a linear homeomorphism. Now we want to construct a linear operator

(3.7) Lu,r : Ck+2,α(M) −→ Ck,α(M),
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which is uniformly elliptic in each local quasi-coordinate chart, such that
the following diagram commutes:

(3.8)

Ck+2,α(M) σ−rCk+2,α(M) Ck+2,α(M)

Ck,α(M) σ−rCk,α(M) Ck,α(M).

�·σ−r

≈

�
Lu,r

�i

�
≈ ∆u−1

�·σ−r

≈
�i

(In this paper, the map i stands for the inclusion unless otherwise indicated.)
Assume that (3.8) is true and that Lu,r is an isomorphism; then the proof

is finished since (3.8) will give rise to the following commutative diagram:

(3.9)

Ck+2,α(M) σ−rCk+2,α(M)

Ck,α(M) σ−rCk,α(M).

�·σ−r

≈

�
Lu,r ≈

�
∆u−1

�·σ−r

≈

Therefore, it remains to construct an isomorphism Lu,r such that (3.8) holds.
Now for each v ∈ Ck,α(M), we define

Lu,r(v) ≡ σr(∆u − 1)(σ−rv)

= ∆uv − 2rσ−1Hu(σ, v) + cu,r · v,

where

(3.10) Hu(f, g) ≡
∫ 1

0

(
nωn−1

t ∧ df ∧ dcg

ωn
t

)
dt,

and

cu,r ≡ σr∆u(σ−r) − 1,

= rσ−1∆u(−σ) + r(r + 1)σ−2Hu(σ, σ) − 1.

It is easy to show σ−1Hu(σ, ·) and cu,r are well defined in each local quasi-
coordinate chart. Indeed, it suffices to check that σ−1dσ and σ−2dσ ∧ dcσ
are well defined. For a coordinate neighborhood (U, {z1, . . . , zn}) of p ∈ D
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with U = ∪0<η<1φη(Vη), assume that D ∩ U = {z1 = 0} and that

|s|2 = |z1|2ew, w ∈ C∞(U).

Then, for each (Vη, φη), one has

z1 = e(1+η)/(1−η) · (v1+1)/(v1−1)

zj = vj , j = 2, . . . , n,

on Vη ≡ ∆3/4 × ∆n−1. These imply that

dz1

z1 log |z1|2 =
v̄1 − 1
v1 − 1

· dv1

1 − |v1|2 ,

which is independent of η, and so

dz1 ∧ dz̄1

|z1|2 log2 |z1|2
=

dv1 ∧ dv̄1

(1 − |v1|2)2 ,

for 0 ≤ |v1| ≤ 3/4. Therefore, we have showed that Lu,r is uniformly elliptic
in each local quasi-coordinate chart and satisfies (3.8).

Next we show that Lu,r is an isomorphism. Firstly, we observe that there
exists a constant Kr > 0 such that

sup cu,r < Kr.

Indeed, one has the more precise estimate as follows: On one hand, there
exists a constant Λ > 0 such that

−ΛωK < ωc < ΛωK .

We can choose the norm | · | of s sufficiently small such that

2Λ
σ

<
1
2
.
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Then,

∆u(−σ) =
∫ 1

0

nωn−1
t ∧ (ωc)

ωn
t

dt

≤ Λ
∫ 1

0

nωn−1
t ∧ ωK

ωn
t

dt

≤ nωn−1 ∧ ωK

ωn

∫ 1

0

dt

t/C + (1 − t)

≤ 2ΛnC1, C1 ≡ C lnC

C − 1
> 0.

(3.11)

Hence,

r(σ−1)∆u(−σ) ≤ r
2Λ
σ

nC1 ≤ nr
C1

2
.

On the other hand, (3.6) implies that

nωn−1
t ∧ 2σ−2dσ ∧ dcσ

ωn
t

≤ 1
t/C + (1 − t)

· nωn−1 ∧ 2σ−2dσ ∧ dcσ

ωn
.

Write
nωn−1 ∧ 2σ−2dσ ∧ dcσ

ωn
=

1
1 + fb

,

in which

(3.12) fb ≡ (ωK + 2σ−1ωc)n

n(ωK + 2σ−1ωc)n−1 ∧ 2σ−2dσ ∧ dcσ
> 0.

Hence,

2σ−2Hu(σ, σ) ≤ 1
1 + fb

∫ 1

0

dt

t/C + (1 − t)

≤ C lnC

C − 1
≡ C1.

Let

Kr =
r(r + 1)

2
C1 +

nr

2
C1 > 0;

therefore, we have

(3.13) sup
M

cu,r ≤ Kr − 1.
�
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Secondly, we have the following two lemmas:

Lemma 3.2. LK ≡ Lu,r − Kr : Ck+2,α(M) → Ck,α(M) is a linear homeo-
morphism.

Proof of Lemma 3.2. This proof is similar to Cheng–Yau’s in [8]. The injec-
tivity of LK follows immediately from Yau’s generalized maximum principle
[8, p. 516]. The surjectivity can be proved as follows. Since (M, ω) is a
complete manifold, we can choose a sequence of relatively compact domains
{Bj}∞

j=1 to exhaust M . The standard Schauder theory (see, for example,
Gilbarg and Trudinger [17, p. 107].) implies the following Direchlet problem,

LKv = f, on Bj ,

v = 0, on ∂Bj ,

has a unique solution vj ∈ Ck+2,α(Bj). It follows from (3.13) and the usual
maximum principle that

sup
Bj

|vj | ≤ sup
M

|f |, for all j ∈ N.

Then the standard interior Schauder estimates (see, for example, [17, p. 93])
applied to the local quasi-coordinates show that a subsequence of {vj}
converges to v ∈ Ck+2,α(M), which satisfies

LKv = f on M,

‖v‖k+2,α ≤ C‖f‖k,α,

where C is a constant independent of v. This proves Lemma 3.2. �

Lemma 3.3. Let Lu,r be defined as in (3.7). Then either

(1) the homogeneous problem

Lu,rv = 0

has non-trivial solutions, which form a finite dimensional subspace of
Ck+2,α(M), or

(2) the inhomogeneous problem

Lu,rv = f

has a unique Ck+2,α(M) solution for all f ∈ Ck,α(M).
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For a proof of Lemma 3.3, we are going to make use of the standard
Fredholm alternative for compact linear mapping.

Theorem 3.4 (Fredholm alternative for compact linear mapping).
Let V be a normed linear space and let T : V → V be a compact linear map-
ping. Then either

(1) ker(I − T ) �= {0}, and dim ker(I − T ) < ∞; or

(2) I − T : V → V is a linear isomorphism.

See, for example, [17, p. 76], for a proof.

Proof of Lemma 3.3. By definition

Lu,r = LK + Kr.

It follows from Lemma 3.2 that LK has a bounded inverse

L−1
K : Ck,α(M) −→ Ck+2,α(M).

Now for any f ∈ Ck,α(M), Lu,rv = f is equivalent to

(3.14) v + KrL
−1
K v = L−1

K f.

We claim that L−1
K : Ck,α(M) → Ck,α(M) is a bounded compact linear oper-

ator. Indeed, this follows from the Ascoli–Arzelà theorem and the following
commutative diagram:

Ck,α(M) Ck+2,α(M)

Ck+2(M)

Ck,α(M)

�L−1
K

≈
�

�
�

�
�

�
�

�
���

L−1
K

�

i

�

i

Therefore, by the above theorem of Fredholm alternative, either

(3.15) v + KrL
−1
K v = 0
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has non-trivial solutions which form a finite dimensional subspace of
Ck,α(M) or, for each f̃ ∈ Ck,α(M), there exists a unique v ∈ Ck,α(M) such
that

(3.16) v + KrL
−1
K v = f̃ .

Note that in the first case, (3.15) implies that v = −KrL
−1
K v ∈ Ck+2,α(M),

and so

ker Lu,r = ker(I + KrL
−1
K ).

If kerLu,r = {0}, then for each f ∈Ck,α(M), L−1
K f ∈ Ck+2,α(M) ⊂ Ck,α(M),

there is a unique v ∈ Ck,α(M) that satisfies (3.14), which in turn implies that
v ∈ Ck+2,α(M) and that Lu,rv = f . This finishes the proof of Lemma 3.3.

Finally, note that (3.8) implies kerLu,r = {0}. This together with
Lemma 3.3 shows that Lu,r is a continuous linear isomorphism and
hence, a linear homeomorphism. Therefore, the proof of Theorem 3.1 is
completed. �

Similarly we also have the following linear version of the isomorphism
theorem.

Theorem 3.5. Assume that for some v ∈ R(M), ωv ≡ ω + ddcv satisfies
1/Cω ≤ ωv ≤ Cω for some C > 0. Then for each r ∈ R+, k ≥ 0 and α ∈
(0, 1), we have the following commutative diagram:

σ−rCk+2,α(M) σ−rCk,α(M)

Ck+2,α(M) Ck,α(M),

�∆ωv −1

≈

�
i

�
i

�∆ωv −1

≈

where ∆ωv
is the negative Laplacian with respect to the metric ωv, and ≈

stands for the homeomorphism of the Banach spaces.

The proof is similar but easier. So we omit it here.
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3.2. Characterization of the solution of Monge–Ampère
equations

Recall the weighted Cheng–Yau Hölder rings Rr(M), r ≥ 0, introduced in
Section 2:

R(M) :=
⋂

k≥0, 0<α<1

Ck,α(M)

is the Cheng–Yau Hölder ring. For each r ∈ R+,

Rr(M) := σ−rR(M)

is the weight r Cheng–Yau Hölder ring, which is an ideal in R(M). Then any
sequence of non-decreasing numbers {rj}∞

j=1 ⊂ R+ gives rise to a filtration
of R(M):

Rr1(M) ⊃ Rr2(M) ⊃ Rr3(M) ⊃ · · · .

Now before carrying out the asymptotic expansion, we give a precise char-
acterization of the solution by the aid of Theorem 3.1.

Theorem 3.6. If D ⊂ M is a smooth divisor, then one can choose a canon-
ical metric on D such that the solution of

Mω(u) = J(Ω)−1,(3.17)
1
C

ω ≤ ωu ≤ Cω, C > 0.(3.18)

is in R1(M).

Proof of Theorem 3.6. It suffices to construct an initial volume form Ω on
M such that

log J(Ω) ∈ R1(M).

Given any volume Ṽ on M and a metric h on the line bundle [D], Ṽ /h
give rise to a metric on KM + [D]. Without loss of generality, suppose the
curvature form

ω̃ ≡ Ric

(
Ṽ

h

)
> 0.

Then, by the adjunction formula, the pull back

c1(KD) � i∗(ω̃) > 0.



Kähler–Einstein metrics on quasi-projective manifolds 815

It follows from Yau’s solution of Calabi conjecture ([39], see also [1]) that
there exists a function ϕD on D unique up to a constant such that

ωK−E,D ≡ i∗(ω̃) + ddcϕD

is the Kähler–Einstein metric on D with the Einstein constant −1.
We claim that ϕD can be extended to a smooth function ϕ on M such

that
ϕ|D = ϕD

and
ω̃ + ddcϕ > 0 on M.

We can choose a large constant CD depending only on D such that

ω̃ + ddc(ϕD + CD|s|2) = ω̃ + ddcϕD + CDhdz1 ∧ dz̄1 > 0

at every point of D. Then there exists a small constant δ > 0 such that

ω̃ + ddc(ϕD + CD|s|2) > 0 on {|s|2 < δ}.

Let χ ∈ C∞(R) be a non-negative cut-off function with χ ≡ 1 on [−1, 1] and
vanishes outside [−2, 2], and let

ϕχ = χ
(
|s|2/δ

)
(ϕD + CD|s|2).

Let
ϕ =

1
m

log
(
emϕχ + C|s|6

)
,

where m ∈ N and C > 1 are constants to be determined. Then we have
ϕ ∈ C∞(M), ϕ|D = ϕD, and

(3.19) ω̃ + ddcϕ = ω̃ + ddc(ϕD + CD|s|2) > 0

at every point of D. On M = M\D, we have

(3.20) ω̃ + ddcϕ ≥ emϕχ(ω̃ + ddcϕχ)
emϕχ + C|s|6 +

(C/m)|s|6
(
mω̃ + 3ddc log h

)

emϕχ + C|s|6 .

Since ω̃ > 0, we can choose m sufficiently large such that

mω̃ + 3ddc log h > 0.

On the region {|s|2 ≥ δ/2}, for a fixed m, we can choose the constant C =
C(δ, m) sufficiently large such that the second term in (3.20) dominates the
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first term, while on {0 < |s|2 < δ}, both two terms in (3.20) are positive
definite. Therefore, ω̃ + ddcϕ is positive definite on the whole M . This
together with (3.19) proves the claim.

Now by adding a constant to ϕ, we get that

(3.21)
(eϕγ̃/h)

∣∣
{z1=0}

det(gD,ij̄)
=

1
2n!

,

where we write

Ṽ ≡ γ̃

n∏

j=1

(√
−1
2π

dzj ∧ dz̄j

)

and

ωK−E,D ≡
∑

2≤i,j≤n

gD,ij̄

(√
−1
2π

dzi ∧ dz̄j

)
.

Let V = eϕṼ . Then we define the initial volume form Ω as in (3.1).
Recall that

ω = ωK + 2σ−1ωc + 2σ−2dσ ∧ dcσ.

Then,

ωn =

(
1 +

n−1∑

k=1

σ−kfk

)
(1 + fb) · nωn−1

K ∧ σ−22dσ ∧ dcσ,

where

fk =
2k
(
n−1

k

)
ωn−k−1

K ∧ ωk
c ∧ 2σ−2dσ ∧ dcσ

ωn−1
K ∧ 2σ−2dσ ∧ dcσ

, k = 1, . . . , n − 1

nd fb is defined in (3.12). Then,

J(Ω) ≡ (Ric Ω)n

Ω

=
ωn|s|2 log2 |s|2

V

= f0

(
1 +

n−1∑

k=1

σ−kfk

)
(1 + fb),

where

f0 =
2nωn−1

K ∧ |s|2d log |s|2 ∧ dc log |s|2
V

> 0.
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So, it suffices to show that

(3.22) f0 − 1 ∈ Rr(M), for all r ≥ 1.

In local coordinate {U, (z1, . . . , zn)}, set D ∩ U = {z1 = 0}. Write

|s|2 = |z1|2ew, w ∈ C∞(U);

V = γ

n∏

j=1

√
−1
2π

dzj ∧ dz̄j , γ = γ̃eϕ > 0.

ωK =
∑

Rij̄

√
−1
2π

dzi ∧ dz̄j .

Then, straightforward computations show that

f0 =
2n!

γe−u
(R11̄ + z1R1̄iwi + z̄1R1j̄wj̄ + |z1|2Rij̄wiwj̄),

where Rij̄Rkj̄ = δij det(Rpq) and wk ≡ (∂w/∂zk). Denote

H = γe−w.

It follows that

R11̄ = det

((
∂2

∂zi∂z̄j
log H

)

i,j≥2

)
.

= det

((
∂2

∂zi∂z̄j
log H|{z1=0}

)

i,j≥2

)
+ z1B + z̄1B + O(|z1|2),

where B ∈ C∞(U). Therefore, to prove (3.22), it suffices to prove that for
each r ≥ 1, the Ck,α(U) norm of

(log |z1|2)r ·

⎛

⎝
2n! det

((
(∂2/∂zi∂z̄j) log H|{z1=0}

)
i,j≥2

)

H|{z1=0}
− 1

⎞

⎠

is uniformly bounded. This, however, follows immediately from the above
construction (3.21). We have also shown that the conclusion u ∈ R1(M) is
independent of the extension of ωn−1

K−E,D to M . �

Remark 3.7. The reader is referred to Theorem 4.8 in Section 4.2 for
constructing the initial volume form in a general setting.
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3.3. Asymptotic expansions

Recall that the graded Cheng–Yau Hölder ring RG(M) associated to the
log-filtration {Rj(M)}∞

j=0 is given by

RG(M) =
{

u ∈ R(M) | there exist a sequence {ψj}∞
j=0, where

not all ψj are zero, such that for each N ∈ N,

u −
N∑

j=0

ψjσ
−j ∈ RN+1(M).

}(3.23)

Note that σ−α ∈ RG(M), but |s|β, |s|λ(− log |s|2)µ /∈ RG(M), where α, β,
λ and µ ∈ R+. Let

RG
j (M) = RG(M) ∩ Rj(M), j ∈ N.

Denote Lj = L0,j in (3.7), i.e.,

(3.24) Lj(v) = ∆ω(v) − 2jσ−1Hω(σ, v) + cjv, j ∈ N,

where ∆ω is the negative Laplacian with respect to the metric ω,

Hω(f, g) =
nωn−1 ∧ df ∧ dcg

ωn
, f, g ∈ C1(M);

cj = jσ−1∆ω(−σ) + j(j + 1)σ−2Hω(σ, σ) − 1.

Now we derive the desired asymptotic expansion in the following
theorem.

Theorem 3.8. With the assumptions in Theorem 3.6, the solution u of
(3.17) is in RG

1 (M). More precisely, there exists a sequence {ψj}∞
j=1 ⊂

R(M) such that for any N ∈ N,

u −
N∑

j=1

ψjσ
−j ∈ RN+1(M),

where each ψj satisfies

(3.25) Lj(ψj) = Fj , j ∈ N,
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in which

F1 = −2n(n − 1)ωn−2
k ∧ ωc ∧ (2dσ ∧ dcσ/σ2)

V

and Fj ∈ R(M), j ≥ 2, are given by induction.

Remark 3.9. The coefficients ψj of the asymptotics are required to satisfy
the Elliptic linear second-order PDE (3.25), in contrast to the ODE in the
case of pseudoconvex domain [24].

Proof of Theorem 3.8. As in the proof of Theorem 3.6,

J(Ω) = f0

(
1 +

n−1∑

k=1

σ−kfk

)
(1 + fb)

= 1 −
n−1∑

k=1

fkσ
−k + Fb,

in which

Fb = [(f0 − 1) + fbf0]

(
1 +

n−1∑

k=1

σ−kfk

)
∈
⋂

r≥0

Rr(M).

Let F1 = −f1, and let ψ1 ∈ R(M) be the unique solution of

L1(ψ1) = F1.

Then u1 ≡ ψ1σ
−1 satisfies that

(∆ω − 1)(u1) = F1σ
−1.

We want to show

(3.26) u − u1 ∈ R2(M).

Let h1 = u1 − u. By Theorem 3.6 we have u ∈ R1(M), so h1 ∈ R1(M).
Observe that by construction

R2(M) � J(eu1Ω) − J(euΩ)
= Mωu

(h1) − 1

= (1 + ∆ωu
h1 + Gu

2(h2) + · · · + Gu
n(h1))e−h1 − 1,
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where

Gu
i (h1) =

(
n
i

)
ωn−i

u ∧ (ddch1)i

ωn
u

∈ Ri(M), i = 2, . . . , n.

Hence,
(∆ωu

− 1)h1 ∈ R2(M).

Therefore, it follows from Theorem 3.5 that h1 ∈ R2(M). This proves (3.26).
Now assume that by induction, we have

uN−1 =
N−1∑

i=1

ψiσ
−i

such that

u − uN−1 ∈ RN (M).(3.27)

J(euN−1Ω) = 1 − FNσ−N , FN ∈ R(M).(3.28)

Then, there exist a ψN ∈ R(M) such that LNψN = FN . Let

uN = uN−1 + ψNσ−N .

Thus, we have
J(euN Ω) = 1 + FN+1σ

−(N+1)

for some FN+1 ∈ R(M). Let hN = uN − u. Then, hN ∈ RN (M). Further-
more,

RN+1(M) � J(euN Ω) − J(euΩ)
= Mωu

(hN ) − 1

= (1 + ∆ωu
hN + Gu

2(hN ) + · · · + Gu
n(hN ))e−hN − 1,

which implies that
(∆ωu

− 1)hN ∈ RN+1(M),

Hence, hN ∈ RN+1(M) by Theorem 3.5. This completes the induction. �

4. Simple normal crossing case

In this section, the isomorphism theorems are stated and proved in a much
general form. We also derive a theorem on the extension of Hermitian met-
rics with positive curvature. By combining these results with the iteration
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formula, we obtain the asymptotics of Kähler–Einstein volume form near
the complete intersections of the irreducible components of the divisor. Fur-
thermore, the obtained asymptotics is canonical in the sense that it is unique
up to infinite weight, provided the metrics of the restricted normal bundles
are fixed.

4.1. Isomorphism theorems

We first generalize Theorems 3.1, 3.5, and 3.8 to the case that D has simple
normal crossing. In this case, let D =

∑p
i=1 Di, where the irreducible com-

ponents Di are smooth and intersect transversely. Let si ∈ H0(M, O[Di])
define Di and denote by σi = − log |si|2. Choose a volume form V on M
such that

(4.1) Ω ≡ V∏p
i=1 |si|2(log |si|2)2

is the initial volume form on M satisfying the properties (2.2) and (2.2) in
Section 2. Recall that

ω = Ric Ω

= ωK + 2
p∑

i=1

σ−1
i ωci

+ 2
p∑

i=1

σ−2
i dσi ∧ dcσi,

where

ωK = Ric
(

V∏p
i=1 |si|2

)
,

ωci
= −ddcσi.

For any subset I = {i1, . . . , ik} ⊂ {1, . . . , p}, denote by

σ−rI = σ
−ri1
i1

· · ·σ−rik

ik
, for all rI = (ri1 , . . . , rik

) ∈ R
|I|
+ .

Denote σ−r = σ−rI if I = {1, . . . , p}. Note that we implicitly assume
rI ∈ Z

|I|
+ when we write |rI | = l ∈ Z+ in the follows.

The weighted Cheng–Yau Hölder spaces σ−rCk,α(M) are the Banach
spaces defined as usual. For each l ∈ N,

∑
|rI |=l σ

−rI Ck,α(M) is defined to
be the Cheng–Yau Hölder space of homogeneous weight l associated to the
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index set I. Recall that

RI,l(M) = τ l
IR(M)

=
∑

|rI |=l

σ−rI R(M), l ∈ N.

in which

τI ≡
(
∑

i∈I

σ−2
i

)1/2

.

Now we state and prove the following simple normal crossing version of the
isomorphism theorem.

Theorem 4.1. Fix an arbitrary r ∈ R
p
+, k ≥ 0 and α ∈ (0, 1). Let

ωϕ ≡ ω + ddcϕ, ϕ ∈ R(M),

satisfy ω/C1 < ωϕ < C1ω, C1 > 0. For each F ∈ σ−rCk,α(M), let u ∈
Ck+2,α(M) be the unique solution of

Mωϕ
(u) ≡ (ωϕ + ddcu)n

ωϕ
e−u = eF ,

1
C

ωϕ ≤ ωϕ + ddcu ≤ Cωϕ, C > 0.

Then, u ∈ σ−rCk+2,α(M). Furthermore, for any subset I ⊂ {1, . . . , p}, if

F ∈
∑

|rI |=l, rI∈Z
|I|
+

σ−rI Ck,α(M), l ∈ N,

then

u ∈
∑

|rI |=l, rI∈Z
|I|
+

σ−rI Ck+2,α(M).

Proof of Theorem 4.1. Firstly, observe that

σrdσ−r = −
p∑

i=1

ri

σi
dσi,
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and

σrddc(σ−r) =
p∑

i=1

[
− ri

σi
ddcσi +

ri(ri + 1)
σ2

i

dσi ∧ dcσi

+
∑

j �=i

rirj

σiσj
dσj ∧ dcσi

⎤

⎦ .

Similar to the proof of Theorem 3.1, we define

Lu,r(v) ≡ σr(∆u − 1)(σ−rv)

= ∆uv − 2
p∑

i=1

riσ
−1
i Hu(σi, v) + cu,r v,

where ∆u and Hu are defined by the same form of (3.4) and (3.10) with ωt

replaced by ωϕ,t ≡ ωϕ + tddcu, respectively; and

cu,r ≡ σr∆u(σ−r) − 1,

=
p∑

i=1

⎡

⎣ ri

σi
∆u(−σi) +

ri(ri + 1)
σ2

i

Hu(σi, σi) +
∑

j �=i

rirj

σiσj
Hu(σj , σi)

⎤

⎦− 1.

Similarly, ∆u, σ−1
i Hu(σi, ·) and cu,r are well defined in each local quasi-

coordinate chart. These follows from the well-definedness of σ−1
i dσi for

i = 1, . . . , p: Without loss of generality, we assume that locally D ∩ U =
{z1 · · · zk = 0} and that

|sj |2 = |zj |2ewj , wj ∈ C∞(U), j = 1, . . . , k.

Let {(Vη, φη) | η ∈ (0, 1)k} be a family of local quasi-coordinates which
covers U . Then for each (Vη, φη) in the family, we have

zi = e(1+ηi)/(1−ηi) · (vi+1)/(vi−1), i = 1, . . . , k,

zj = vj , j = k + 1, . . . , n,

on Vη = ∆k
3/4 × ∆n−k. These imply that

dzi

zi log |zi|2 =
v̄i − 1
vi − 1

· dvi

1 − |vi|2 ,
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which is independent of η, for 0 ≤ |vi| ≤ 3/4, i = 1, . . . , k. Therefore, we
have shown that Lu,r is uniformly elliptic in each local quasi-coordinate
chart and satisfies (3.8).

Next, we will derive the following estimate

(4.2) sup
M

cu,r ≤ Kr − 1,

where

Kr =
1
2
nC2

p∑

i=1

ri + 2nC2

p∑

i=1

ri(2ri + 1) > 0

in which

(4.3) C2 =
C1C lnC

(C − 1)
.

There exists a constant Λ > 0 such that

−ΛωK < ωci
< ΛωK .

Also, we can choose the norm | · | of s sufficiently small such that

Λ
p∑

i=1

2
σi

<
1
2
.

Note that for all t ∈ [0, 1],

[
t

C
+ (1 − t)

]
ω

C1
≤ ωt = ωϕ + tddcu ≤ C1[Ct + (1 − t)]ω,

Then it follows from the same estimate in (3.11) that

(4.4)
p∑

i=1

ri
∆u(−σi)

σi
≤ n

2
|r|C2,

where C2 > 0 is given by (4.3). Moreover, we have

∑

i�=j

(
ridσi

σi
∧ rjd

cσj

σj

)
≤

p∑

k=1

r2
kdσk ∧ dcσk

σ2
k

,
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and hence,

(4.5)
∑

j �=i

rirj

σiσj
Hu(σj , σi) ≤ r2

i

σ2
i

Hu(σi, σi).

It remains to control
∑

ri(ri + 1)σ−2
i Hu(σi, σi): fix an arbitrary i = 1, . . . , p,

nωn−1
t ∧ 2σ−2

i dσi ∧ dcσi

ωn
t

≤ C1

t/C + (1 − t)
· nωn−1 ∧ 2σ−2

i dσi ∧ dcσi

ωn
.

Write

ωn = (2σ−2
i dσi ∧ dcσi) ∧ ωn−1

+

⎛

⎝ωK + 2
p∑

i=1

σ−1
i ωci

+ 2
∑

j �=i

σ−2
i dσi ∧ dcσi

⎞

⎠ ∧ ωn−1.

Then,
ωn−1 ∧ 2σ−2

i dσi ∧ dcσi

ωn
=

1
1 + fbi

,

in which

fbi ≡
(ωK + 2

∑p
i=1 σ−1

i ωci
+ 2

∑
j �=i σ

−2
i dσi ∧ dcσi) ∧ ωn−1

(2σ−2
i dσi ∧ dcσi) ∧ ωn−1

> 0.

Hence,

(4.6)
p∑

i=1

ri(ri + 1)σ−2
i Hu(σi, σi) ≤ nC2

p∑

i=1

ri(ri + 1).

Therefore, (4.2) follows from (4.4), (4.5) and (4.6).

Then, by going through the same process in the proof of Theorem 3.1, we
show that Lu,r : Ck+2,α(M) → Ck,α(M) is a linear homeomorphism. This
proves the first part of the theorem.

For the second part, we write

F =
∑

|rI |=l

FrI
, FrI

∈ σ−rI Ck,α(M).

Denote by u ∈ Ck+2,α(M) the corresponding solution for F . Each rI ∈ Z
|I|
+

can be viewed as an element in R
p
+ via the natural embedding
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I ↪→ {1, . . . , p}; hence, by the argument above, we know that

∆u − 1 : σ−rI Ck+2,α(M) → σ−rI Ck,α(M)

is a linear homeomorphism for each rI ∈ Z
|I|
+ . Then, there exists a urI

∈
σ−rI Ck+2,α(M) such that

(∆u − 1)(urI
) = FrI

, for all |rI | = l.

Hence, by linearity,

(∆u − 1)

⎛

⎝
∑

|rI |=l

urI

⎞

⎠ = F.

Therefore, it follows from the injectivity of (∆u − 1) : Ck+2,α(M) → Ck,α(M)
that

u =
∑

|rI |=l

urI
.

This proves the second part. �

Theorem 4.1 also has a similar linear version, which can be stated in the
following:

Theorem 4.2. Let ωv ≡ ω + ddcv satisfy (1/C)ω ≤ ωv ≤ Cω for some C >
0, where v ∈ R(M). Then, for each r ∈ R

p
+, k ≥ 0 and α ∈ (0, 1), we have

the following commutative diagram:

σ−rCk+2,α(M) σ−rCk,α(M)

Ck+2,α(M) Ck,α(M) ,

�∆v−1
≈

�
i

�
i

�∆v−1
≈

where ∆ωv
is the negative Laplacian with respect to the metric ωv, and ≈

stands for the linear isomorphism of the Banach spaces. Consequently, for
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any I ⊂ {1, . . . , p}, let rI ∈ Z
|I|
+ , l ∈ N; we have

∑

|rI |=l

σ−rI Ck+2,α(M)
∑

|rI |=l

σ−rI Ck,α(M)

Ck+2,α(M) Ck,α(M) ,

�∆ωv −1

≈

�
i

�
i

�∆ωv −1

≈

4.2. Canonical initial volume forms and the metric
extension theorem

Based on these two isomorphism theorems, we can derive the asymptotics
of the Kähler–Einstein metric near each connected component of the non-
empty complete intersection DI , where I ∈ I. (I is defined in Section 2.2.)
Without loss of generality, assume that the index set I = {1, . . . , q}. Let

DI = D{1,...,q} =
∑

ν

Dν
I ,

where each Dν
I is a connected component.

Observe that by repeatedly using the adjunction formula, we have

(4.7) (KM + [D])|Dν
I

= KDν
I

for each component Dν
I . Then, it follows from the positivity condition (1.2)

and Yau’s solution of Calabi conjecture that there exists a unique Kähler–
Einstein metric ωK−E,ν of Ricci curvature −1 on Dν

I , when |I| = q < n. In
the case q = n, each Dν

I is just a point in M ; we set ωK−E,ν = 1.
Note that the holomorphic defining section of a divisor on M is unique

only up to a constant function on M . Let us first fix one of them. Let

SI = {si ∈ H0(M, O([Di]) | (si) = Di for i ∈ I = {1, . . . , q}}

be a set of given defining sections, and let

HI = {hI,i | i ∈ I = {1, . . . , q}},
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where each hI,i is an arbitrary given metric on the restriction of the normal
bundle NDi

|DI
= [Di]|DI

. Since Dj ∩ DI = ∅ for j /∈ I, we have
⎛

⎝
p∏

j=q+1

σ2
i

⎞

⎠
−1

∈ C∞(DI).

In order to derive an asymptotic expansion near DI with certain canonicity,
we introduce the family, MI;SI ,HI

, of initial volume forms

Ω =
V∏p

i=1 |si|2(log |si|2)2
,

satisfy the following constraints:

(1) For each connected component Dν
I ,

(4.8)
γ∏

i∈I hi
∏

j /∈I |sj |2σ2
j

∣∣∣∣
Dν

I

=

{
2qn! det(gij̄,ν), if 1 ≤ |I| < n;
2nn!, if |I| = n.

(2) si ∈ SI for i ∈ I. (For j /∈ I, sj is unique only up to a constant.)

(3) Each hi|DI
= hI,i , for any i ∈ I = {1, . . . , q}, where locally Dν

I is given
by {z1 · · · zq = 0} and denote

V = γ

n∏

j=1

(√
−1
2π

dzj ∧ dz̄j

)
,

ωK−E,ν =
∑

q+1≤i,j≤n

gij̄,ν

(√
−1
2π

dzi ∧ dz̄j

)
,

and hi is the metric on [Di] such that |si|2 = hi|zi|2, i = 1, . . . , q. Given
an index set I, we say that two families MI;SI ,HI

and MI;S′
I ,H′

I
are

canonically compatible if

(4.9)
hI,i

h′
I,i

=
∣∣∣∣
s′
i

si

∣∣∣∣
2

≡ constant,

where hI,i ∈ HI , h′
I,i ∈ H ′

I , si ∈ SI and s′
i ∈ S′

I , for each i ∈ I. Note
that (4.9) is nothing but

|si|2
|s′

i|′2

∣∣∣∣
DI

≡ 1 for each i ∈ I,

where | · |′ is the metric on [Di] locally given by h′
i.
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It is easy to see that the canonical compatibility is an equivalence rela-
tion. In particular, MI;SI ,HI

is canonically compatible with itself. Let
MI,HI

be the union of all the families MI;S′
I ,H′

I
which are canonically com-

patible with a given MI;SI ,HI
. Finally, for convenience, we denote by MI

the family of initial volume forms which satisfies condition (4.2) only. Before
actually constructing such a family, we make the following remark.

Remark 4.3. The initial volume form together with property (4.2) only
enable us to obtain an asymptotics whose coefficients are all given by the
solutions of certain second-order linear elliptic PDE (see the proof of
Theorem 4.12), similar to Theorem 3.8. The additional compatibility con-
dition, however, will assure that the obtained asymptotics, with respect to
RG(M), is canonical in the sense of the following two propositions:

Proposition 4.4. Let Ω, Ω′ ∈ MI,HI
, and ω = Ric (Ω), ω′ = Ric (Ω′). Let

u and u′ be the solution of

Mω(u) = J(Ω)−1,
1
C

ω < ω + ddcu < Cω, C > 0;

Mω′(u′) = J(Ω′)−1,
1
C ′ ω

′ < ω′ + ddcu < C ′ω′, C ′ > 0,

respectively. Then, u − u′ ∈ RI,∞.

Proof of Proposition 4.4. By definition, we have

J(euΩ) = 1 = J(eu′
Ω′).

By the uniqueness of Kähler–Einstein volume form on M ,

euΩ = eu′
Ω′ = ΩK−E,M .

Observe that
Ω′

Ω
= G

q∏

i=1

(
log |si|2
log |s′

i|′2

)2

,

where

G =

⎛

⎝V ′

V

p∏

i=1

|si|2
|s′

i|′2
p∏

j=q+1

log |si|2
log |s′

i|′2

⎞

⎠ ∈ R(M).

Also, G is smooth near each Dν
I ; furthermore, by condition (1), we have

G|Dν
I

= 1
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for each ν. Hence, G ∈ 1 + RI,∞(M). On the other hand,

− log |si|2 = σi = σ′
i + log βi = σ′

i(1 + σ′−1
i log βi),

where βi = |si|2/|s′
i|′2 ∈C∞(M). Since βi|DI

= 1, we have βi ∈ 1 + RI,∞(M)
and σ′−1

i log βi ∈ RI,∞(M). Therefore,

u − u′ = log
Ω′

Ω
∈ RI,∞(M).

�
Our asymptotics will be derived by the following linear operator Lr

associated with ω:

(4.10) Lr(v) ≡ ∆ωv − 2
q∑

i=1

riσ
−1
i H(σi, v) + crv = −fr,

where ∆ω is the negative Laplacian with respect to ω, and

H(v, w) =
nωn−1 ∧ dw ∧ dcv

ωn
,

cr =
q∑

i=1

⎡

⎣ ri

σi
∆ω(−σi) +

ri(ri + 1)
σ2

i

H(σi, σi) +
∑

j �=i

rirj

σiσj
H(σj , σi)

⎤

⎦− 1.

Proposition 4.5. Let Ω, Ω′ ∈ MI,HI
, and ω = Ric (Ω), ω′ = Ric (Ω′).

Consider the the following two equations:

Lrv = f,

L′
rv

′ = f ′,

where v, v′ ∈ R(M). If f − f ′ ∈ RI,∞(M), then v − v′ ∈ RI,∞(M).

To prove this proposition, we first observe the following isomorphic
property of the operator Lr:

Lemma 4.6. Let v ∈ Ck+2,α(M) satisfy Lr(v) = f . If

f ∈ τm
I Ck,α(M), m ∈ N,

then
v ∈ τm

I Ck+2,α(M).

Consequently, if f ∈ RI,∞(M), then v ∈ RI,∞(M).
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Proof of Lemma 4.6. Recall that

τI =

(
∑

i∈I

σ−2
i

)1/2

=
∑

i∈I

(
σi

τI

)
σi ∈

∑

i∈I

σiR(M).

Then,

τm
I C l,β(M) =

∑

|rI |=m

σ−rI C l,β(M), for all l ∈ Z+, β ∈ (0, 1).

Let f =
∑

|rI |=m σ−rI frI
, frI

∈ Ck,α(M). Then,

(∆ω − 1)(vσ−r) =
∑

|rI |=m

σ−rσ−rI fI .

On the other hand, it follows from Theorem 4.2 that for each rI , there exists
a vrI

∈ Ck+2,α(M) such that

(∆ω − 1)(vrI
σrI σ−r) = frI

σ−rI σ−r.

Thus, by the uniqueness of ∆ω − 1, we have

v =
∑

|rI |=m

σ−rI vrI
∈ τm

I Ck+2,α(M).
�

Next, we derive the following lemma:

Lemma 4.7. Let Ω, Ω′ ∈ MI,HI
, and Lr and L′

r be the corresponding linear
operators with respect to Ω and Ω′, respectively. Then

(Lr − L′
r)(v) ∈ RI,∞(M), for all v ∈ R(M).

Proof of Lemma 4.7. We want to show that

(∆ω − ∆ω′)v ∈ RI,∞(M), for all v ∈ R(M),
σ′−1

i H(σ′
i, v) − σ−1

i H(σi, v) ∈ RI,∞(M), for all v ∈ R(M),
cr − c′

r ∈ RI,∞(M).
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It suffices to check the following:

dRm
I,l(M) ⊂ Rm+1

I,l (M), for all l, m ≥ 0,(4.11)

ωk − ω′k ∈ Rk,k
I,∞(M), for all k ≥ 1,(4.12)

σ−1
i dσi − σ′−1

i dσ′
i ∈ R1

I,∞(M).(4.13)

Recall that
Rm

I,l(M) = τ l
IRm(M) =

∑

|rI |=l

σ−rI Rm(M).

For ϕ ∈ Rm(M), we have

σrI d(σ−rI ϕ) = dϕ +
∑

i∈I

ri
dσi

−σi
∧ ϕ ∈ Rm+1(M).

This proves (4.11). Similarly, we have

(4.14) dcRm
I,l(M) ⊂ Rm+1

I,l (M).

Next, it follows from (4.11), (4.14) and the proof of Proposition 4.4 that

ω − ω′ = ddc log
Ω
Ω′ ∈ R1,1

I,∞(M).

Since ω ∈ R1,1(M), we get

ωk − ω′k ∈
k∑

i=1

ωi ∧
(
R1,1

I,∞(M)
)k−i

⊂ Rk,k
I,∞(M).

Finally, as in the proof of Proposition 4.4,

σi

σ′
i

∈ 1 + RI,∞(M);

therefore, by (4.11),

σ−1
i dσi − σ′−1

i dσ′
i = d log

σi

σ′
i

∈ R1
I,∞(M).

This completes the proof. �
Proof of Proposition 4.5. By the assumption and Lemma 4.7, we have

Lr(v − v′) = (f − f ′) − (Lr − L′
r)v

′ ∈ RI,∞(M).

Hence, it follows from Lemma 4.6 that v − v′ ∈ RI,∞(M). �
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Now given I = {1, . . . , q}, we will construct a family MI;SI ,HI
with cer-

tain canonicity on the HI : Fix a Kähler metric ωM on M . Write

ωn
M

= γ̃

n∏

j=1

(√
−1
2π

dzj ∧ dz̄j

)

(ι∗i ωM )n−1 = γ̃i

∏

j �=i

(√
−1
2π

dzj ∧ dz̄j

)
,

where ιi : Di ↪→ M is the inclusion. Then it follows from the usual adjunc-
tion formula that M induces a metric hDi

on the normal bundle NDi
=

[Di]|Di
:

hDi
=

γ̃|Di

γ̃i
, i = 1, . . . , q.

Now set
hI,i = εihDi

|DI
, i = 1, . . . , q.

where each εi is a small constant. Let

HI = {hI,i | i ∈ I}

This implies that HI is canonical in terms of ωM up to a constant. Extend
each hI,i to a smooth metric on [Di] → M , which is denoted by hi.

For each j /∈ I, [Dj ]|DI
is a trivial line bundle on DI since Dj ∩ DI = ∅.

Hence, we can choose a trivial metric on [Dj ]|DI
and extend it to a smooth

metric hj on [Dj ] → M . By this construction, |sj |2 is a constant on DI for
each j /∈ I.

Note that

(4.15) [ddc log
γ̃

h1 · · ·hp
] = c1(KM + [D]).

We claim that there exists a function ρ ∈ C∞(M) such that

eργ̃∏q
i=1 hi

∏p
j=q+1 |sj |2σ2

j

∣∣∣∣
Dν

I

=

{
2qn! det(gij̄,ν), if 1 ≤ q < n;

2nn!, if q = n.
(4.16)

ddc log
eργ̃

h1 · · ·hp
> 0, on M.(4.17)

Indeed, (4.15) and (1.2) imply that there exists a ρ̃ ∈ C∞(M) such that

ddc log
eρ̃γ̃

h1 · · ·hp
> 0.
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If q < n, then by (4.7), there exists a ϕI,ν ∈ C∞(Dν
I ) such that

ddc log
eρ̃γ̃

h1 · · ·hp

∣∣∣∣∣
Dν

I

+ ddc log

⎛

⎝
∏

j /∈I

σ−2
j

⎞

⎠

∣∣∣∣∣∣
Dν

I

+ ddcϕI,ν = ωK−E,ν .

Then, by adding a constant to ϕI,ν , we get

eρ̃γ̃∏q
i=1 hi

∏p
j=q+1 |sj |2σ2

j

∣∣∣∣
Dν

I

· eϕI,ν = 2qn! det(gij̄,ν).

As for q = n, each Dν
I is a point in M . Let ϕI,ν be the constant such that

eρ̃γ̃∏q
i=1 hi

∏p
j=q+1 |sj |2σ2

j

∣∣∣∣
Dν

I

· eϕI,ν = 2qn!.

Take si ∈ SI for each i ∈ I. Let χ ∈ C∞(R) be a cut-off function such that
χ = 1 on (−∞, 1] and χ = 0 on [2, +∞). Denote by

ϕ =
1
m

log

⎡

⎣exp

(
mχ

(
∑

i∈I

|si|2
δ

)(
ϕI + CI

∑

i∈I

|si|2
))

+ C

(
∑

i∈I

|si|2
)3
⎤

⎦ ,

where ϕI ∈ C∞(DI) is defined by ϕI = ϕI,ν on each Dν
I , CI > 0 is a large

constant depending only on DI , δ > 0 is a small number and m ∈ N and
C = C(δ, m) > 1 are sufficiently large numbers. It follows from either direct
calculations, or the following general theorem on metric extension, that

ρ ≡ ρ̃ + ϕ

satisfies both (4.16) and (4.17). Therefore, let V = eρωn
M

, and Ω be the
volume form given by (4.1); then, Ω ∈ MI;SI ,HI

by the above construction.
Finally, let MI,HI

be the union of all the families MI;S′
I ,H′

I
which are canon-

ically compatible with MI;SI ,HI
.

As mentioned above, we can finish the construction of MI,HI
by direct

calculations without using the following theorem. However, since the theo-
rem on metric extensions may have interests of its own, we include it here.

Theorem 4.8. Let X be an n-dimensional compact complex manifold, and
L an ample line bundle over X. Let E ⊂ X be a subvariety of complete
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intersection, i.e.,

E =
k⋂

i=1

Di, 1 ≤ k ≤ n,

where Di ⊂ X are smooth irreducible hypersurfaces that meet transversally
at each point of intersection. Let hE be a smooth metric on L|E, with positive
curvature form on E. Then, hE can be extended to a smooth metric h on
L, with positive curvature form on X.

A similar result, which works for codimension 1, i.e., E = D1 as above,
was obtained by Schumacher (see Theorem 4 in [32]). His extended metric,
however, is not globally smooth, since it contains a term as |sE |2/m, where
sE is the holomorphic section defining the divisor E [32, p. 634]. This
difficulity can be overcome by increasing the multiplicity of the line bundle.
Furthermore, by patching a cut-off function with the global defining sections
instead of local ones (see also the proof of Theorem 3.6 in Section 3.2), and
applying Schumacher’s lemma (see below or Lemma 3 in [32]) enables us to
generalize the result to any higher codimension.

Lemma 4.9 (Schumacher). Given an open set U in a complex manifold,
let

F(f) = fddc log f,

for any smooth positive function f on U . Then, for any two such functions
f and g,

F(f + g) ≥ F(f) + F(g) on U.

Proof.

F(f + g) − F(f) − F(g) =
g3

f(f + g)
d

(
f

g

)
∧ dc

(
f

g

)
≥ 0 �

Corollary 4.10. For any finitely many smooth positive functions f1, . . . , fN

on U,

F
(

N∑

k=1

fk

)
≥

N∑

k=1

F(fk) on U.

Lemma 4.11. Assume that there exists an open neighborhood U of E and
a smooth metric hU on L|U such that hU |E = hE , and the curvature form of
hU is positive on U . Then, the metric hE can be extended to a metric h on
L with positive curvature form on X.
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Proof of Lemma 4.11. Extend hU (with some shrinking of U , if necessary)
to a smooth metric h1 of L over X, without any curvature assumptions on
X\U . On the other hand, since L is ample, there exists a metric hp on L
with positive curvature form on X. Let si ∈ H0(X, O([Di])) be the defining
section of Di and locally |si|2 = |zi|2hDi

for each i = 1, . . . , k. Let

1
h

=

⎛

⎝ 1
hm

1
+

C

hm
p

(
k∑

i=1

|si|2
)3⎞

⎠
1/m

,

where m is a sufficiently large integer such that hm
p h−3

Di
is a metric on

mL − 3[Di] with positive curvature form on X for i = 1, . . . , k, and C > 1 is
a large constant depending only on m and U . We claim that h is the desired
extension metric.

Applying Schumacher’s lemma, we get

(4.18) F
(

1
hm

)
≥ F

(
1

hm
1

)
+ C · F

⎛

⎝ 1
hm

p

(
k∑

i=1

|si|2
)3⎞

⎠ on X\E.

We want to show that F(1/hm
p (
∑k

i=1 |si|2)3) is positive definite on X\E. In
fact, on X\D, where D := D1 + · · · + Dk, applying Corollary 4.10 yields

F

⎛

⎝ 1
hm

p

(
k∑

i=1

|si|2
)3⎞

⎠ ≥ 3

h
2m/3
p

(
k∑

i=1

|si|2
)2 k∑

i=1

F
(

|si|2

h
m/3
p

)

≥ 1
hm

p

(
k∑

i=1

|si|2
)2 k∑

i=1

|si|2ddc log
h3

Di

hm
p

> 0.

For an arbitrary point P ∈ (X\E) ∩ D, without loss of generality, assume
that s1, . . . , sl pass through P while sl+1, . . . sk do not, 1 < l < k. Note that

ddc log

(
k∑

i=1

|si|2
)

=
∑l

i=1 hDi
dz ∧ dz̄i

∑k
j=l+1 |si|2

+ ddc log

⎛

⎝
k∑

j=l+1

|si|2
⎞

⎠

> ddc log

⎛

⎝
k∑

j=l+1

|si|2
⎞

⎠ at P.
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Hence, applying Corollary 4.10 again, we have

F

⎛

⎝ 1
hm

p

(
k∑

i=1

|si|2
)3⎞

⎠ > F

⎛

⎝ 1
hm

p

(
k∑

i=l+1

|si|2
)3⎞

⎠ > 0 at P.

Therefore, F(1/hm
p (
∑k

i=1 |si|2)3) is positive definite on X\E.
Let U ′ ⊂ U be a relatively compact open neighborhood of E. On X\U ′,

for a fixed m, we can choose C = C(U ′, m) > 0 sufficiently large such that
the right hand side of (4.18) is positive definite, which implies that the curva-
ture form of h is positive on X\U ′. On U\E, by the assumption of hU , apply-
ing (4.18) again, we know that the curvature form of h is positive on U\E.
Finally, by direct calculation, we have that the curvature forms of h and h1
coincide at every point of the subvariety E. This completes the proof. �

Proof of Theorem 4.8. By Lemma 4.11, it suffices to extend hE to a metric
whose curvature form is positive on a neighborhood of E. It follows from
positivity of L that there exists a metric hp with positive curvature form Θp

on X. Note that [Θp|E ] = c1(L|E). Hence, there is a ϕE ∈ C∞(E) such that

eϕE

hp

∣∣
E

=
1

hE
.

We can choose a large constant CE depending only on E such that

(4.19) Θp + ddc

(
ϕE + CE

k∑

i=1

|si|2
)

> 0

at every point of E. Then, there exists a small constant δ > 0 such that
(4.19) holds on {

∑k
i=1 |si|2 < δ}. Let

ϕ = χ

(
k∑

i=1

|si|2
δ

)(
ϕE + CE

k∑

i=1

|si|2
)

,

where χ ∈ C∞(R) is a non-negative cut-off function with value 1 on (−∞, 1)
and value 0 on (2, +∞). Now let

1
h1

=
eϕ

hp
.
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Then, h1 is a smooth metric of L whose curvature form is positive on
{
∑k

i=1 |si|2 < δ}. Hence, by (the proof of) Lemma 4.11, the metric

1
h

=
1
hp

⎛

⎝emϕ + C

(
k∑

i=1

|si|2
)3⎞

⎠
1/m

,

where m ∈ N and C = C(δ, m) > 1 are sufficiently large constants, is the
desired extension metric on X. �

4.3. Higher canonical asymptotics of Kähler–Einstein metrics

Finally, we will state and prove the asymptotics theorem in the case of
complement of a simple normal crossing divisor.

Theorem 4.12. Suppose I = {1, . . . , q} ∈ I. Let Ω ∈ MI . Then the solu-
tion u of

Mω(u) = J(Ω)−1,(4.20)
1
C

ω ≤ ωu ≤ Cω, C > 0,(4.21)

is in RG
I,1(M). More precisely, u ∈ RI,1(M); furthermore, there is a multiple

sequence {ψr}r∈(Zq
+×0) ⊂ R(M) such that for any N ∈ N,

(4.22) u −
N∑

|r|=1

ψrσ
−r ∈ RI,N+1(M).

Moreover, assume that Ω ∈ MI,HI
; if we start from another Ω′ ∈ MI,HI

and
get

u′ −
N∑

|r|=1

ψ′
rσ

′−r ∈ RI,N+1(M), for all N ∈ N,

then

u′ − u ∈ C + RI,∞(M);(4.23)

ψ′
r − ψr ∈ RI,∞(M), for all r ∈ Z

q
+ × 0.(4.24)
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Consequently, the Kähler–Einstein volume form ΩK−E = euΩ on M has
the following canonical asymptotic expansion near the smooth subvariety DI :

(4.25) ΩK−E ∼

⎛

⎝1 +
∞∑

|r|=1

φr

σr

⎞

⎠Ω,

where φr ∈ R(M) for each r ∈ (Zq
+ × 0). The asymptotics is canonical in

the following sense: if (4.25) is derived in terms of another Ω′ ∈ MI,HI
and

coefficients {φ′
r}r∈Z

q
+×0, then

φ′
r − φr ∈ RI,∞(M), for all r ∈ Z

q
+ × 0.

Proof of Theorem 4.12. For simplicity, we identify the index set Z
q
+ × 0

with Z
q
+; namely, in the following proof, r = rI = (r1, . . . , rq) ∈ Z

q
+ and

σ−r = σ−rI = σ−r1
1 · · ·σ−rq

q . Write

J(Ω) =
ωn

Ω

= f0

⎛

⎝1 +
n−q∑

|r|=1

σ−rfr

⎞

⎠ (1 + fb),

where

f0 =
2qn! ωn−q

K,I ∧
∏q

i=1 |si|2dσi ∧ dcσi

(n − q)! V

p∏

j=q+1

|si|2σ2
i ,

fb =

∑q−1
j=0

(
n
j

)
(ωK,I +

∑q
i=1 2σ−1

i ωci
)n−j ∧ (

∑q
i=1 2σ−2

i dσi ∧ dcσi)j

q!
(
n
q

)
(ωK,I +

∑q
i=1 2σ−1

i ωci
)n−q ∧

∏q
i=1 2σ−2

i dσi ∧ dcσi

,

fr =
|r|!2|r|(n−q

|r|
)
ω

n−q−|r|
K,I ∧

∏q
i=1 ωri

ci
∧
∏q

i=1 2σ−2
i dσi ∧ dcσi

r!
(
n
q

)
ωn−q

K,I ∧
∏q

i=1 2σ−2
i dσi ∧ dcσi

,

in which 1 ≤ |r| ≤ n − q, and

ωK,I = Ric

(
V∏p

i=1 |si|2
∏

j /∈I σ2
j

)
= ωK − 2ddc log

⎛

⎝
p∏

j=q+1

σj

⎞

⎠ .

By definition, we know that fr ∈ C∞(M) ⊂ R(M), fb ∈ RI,∞(M), fb > 0
on M , and that f0 ∈ R(M), is smooth near DI , and f0 > 0 on M . Since
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Ω ∈ MI , by (4.8) of condition (4.2), we have

f0|DI
= 1.

Hence, f0 − 1 ∈ RI,∞(M). Moreover,

∑

|r|=k

σ−rfr ∈ RI,k(M), k ≥ 1.

These imply that

log J(Ω) ∈ RI,1(M).

Then, applying Theorem 4.1 yields that the solution

u ∈ RI,1(M).

Next, to derive (4.22), for each r ∈ Z
q
+ and |r| = 1, let ψr ∈ R(M) be the

unique solution of

Lr(ψr) ≡ ∆ωψr − 2
q∑

i=1

riσ
−1
i H(σi, ψr) + crψr = −fr.

Denote by

u1 =
∑

|r|=1

ψrσ
−r.

Then, we have

(∆ω − 1)(u1) = −
∑

|r|=1

frσ
−r.

Also,

J(eu1Ω) = Mω(u1)J(Ω)
= (1 + ∆ωu1 + G2(u1) + · · · + Gn(u1))e−u1J(Ω)

∈ 1 +
∑

|r|=2

Rr(M) ⊂ 1 + RI,2(M),

in which

(4.26) Gi(v) ≡
(
n
i

)
ωn−i ∧ (ddcv)i

ω
, for all v ∈ R(M), i ≥ 2.
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By the same argument in the proof of Theorem 3.8, and applying Theo-
rem 4.2, we have that

u −
∑

|r|=1

ψrσ
−r ∈ RI,2(M).

Then, similar to the proof of Theorem 3.8, by induction and Theorem 4.2,
we prove that there exists a sequence {ψr}r∈Z

q
+

such that for each N ∈ N,

J

⎛

⎝exp

⎛

⎝
N∑

|r|=1

ψrσ
−r

⎞

⎠ · Ω

⎞

⎠− 1 ∈
∑

|r|=N+1

Rr(M) ⊂ RI,N+1(M),

u −
N∑

|r|=1

ψrσ
−r ∈ RI,N+1(M).

Therefore, this completes the proof of (4.22).
As for the canonicity, (4.23) follows from Proposition 4.4. It remains to

prove (4.24). In fact, by construction

(4.27) f ′
r − fr ∈ RI,∞(M), for all 1 ≤ |r| ≤ n − q.

Furthermore, it follows from (4.11) and (4.12), in the proof of Lemma 4.7,
that

(4.28) G′
i(v

′) − Gi(v) ∈ RI,∞(M), for all v′ − v ∈ RI,∞(M),

where G′
i(M) is given by (4.26) with ω′ replaced by ω. Then, (4.24) follows

immediately from (4.27), Proposition 4.5, (4.28) and induction. �
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