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Geometry of moduli spaces of Higgs bundles
Indranil Biswas and Georg Schumacher

We construct a Petersson–Weil-type Kähler form on the moduli
spaces of Higgs bundles over a compact Kähler manifold. A fiber
integral formula for this form is proved, from which it follows that
the Petersson–Weil form is the curvature of a certain determinant
line bundle, equipped with a Quillen metric, on the moduli space
of Higgs bundles over a projective manifold. The curvature of
the Petersson–Weil Kähler form is computed. We also show that,
under certain assumptions, a moduli space of Higgs bundles sup-
ports of natural hyper-Kähler structure.

1. Introduction

A Higgs bundle over a compact Kähler manifold X is a pair of the form
(E, ϕ), where E is a holomorphic vector bundle over X and ϕ a holomorphic
section of End(E) ⊗ Ω1

X satisfying the integrability condition ϕ ∧ ϕ = 0.
Higgs bundles over a compact Riemann surface were introduced by Hitchin
in [1], where he constructed their moduli and investigated the global, as
well as the local, structures of the moduli space. One of the main results of
[1] was that a stable Higgs bundle admits a unique Hermitian–Yang–Mills
connection. Simpson, initiating the study of Higgs bundles over compact
Kähler manifolds of arbitrary dimension, proved that a stable Higgs bundle
admits a unique Hermitian–Yang–Mills connection [2]. He also constructed
the moduli space of Higgs bundles over a complex projective manifold [3].

The aim in this article is to study the local geometry of a moduli space
of Higgs bundles from the point of view of the generalized Petersson–Weil
geometry, which has been carried out for the moduli spaces of stable vector
bundles [4, 5]. Here, a moduli space is by definition a reduced complex space.
With additional effort, also non-reduced moduli spaces can be investigated.

For any Higgs bundle (E, ϕ) over a compact Kähler manifold X, there
is an associated complex of OX -modules

D• : D0 := End(E) −→ D1 := End(E) ⊗ Ω1
X −→ · · · −→

Di := End(E) ⊗ Ωi
X −→ · · ·
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with the homomorphisms defined by s �→ [s, ϕ]. The global endomorphisms
and the infinitesimal deformations of (E, ϕ) are given by the hypercoho-
mologies H

0(D•) and H
1(D•), respectively. Similarly, the obstructions for

deformations of (E, ϕ) are guided by H
2(D•). We consider the Dolbeault

resolution of the above complex D•. So the hypercohomologies of D• get
identified, with the cohomologies associated to the resulting double complex.

Now, the existence of Hermitian–Yang–Mills connections on stable Higgs
bundles allows us to introduce a natural inner product on the terms of the
above mentioned double complex, and the general Hodge theory provides
the space of hypercohomologies with a Hermitian structure. In other words,
it is possible to identify harmonic representatives of the hypercohomologies,
and the Hermitian structure on hypercohomologies is given by the Hermi-
tian structure on the harmonic representatives. In particular, the space of
infinitesimal deformations of a stable Higgs bundle (E, ϕ) is equipped with a
natural Hermitian structure. In this way, any moduli space of Higgs bundles
over X is provided with a natural Hermitian metric.

This Hermitian structure on a moduli space of Higgs bundles is actually
a Kähler structure (Proposition 4.2); we call this Kähler form the generalized
Petersson–Weil form. We compute the curvature tensor of this generalized
Petersson–Weil form (Theorem 5.1). For a moduli space Higgs bundles over
a compact Riemann surface, the holomorphic sectional curvature turns out
to be non-negative (Corollary 5.3).

Furthermore, we prove a fiber integral formula for the generalized
Petersson–Weil form (see Proposition 6.1 and Theorem 6.2). The fiber inte-
gral formula implies the Kähler property also for families parameterized by
singular base spaces. Finally, the generalized Riemann–Roch theorem of Bis-
mut, Gillet and Soulé provides a certain determinant line bundle equipped
with a Quillen metric over the moduli space of Higgs bundles whose curva-
ture form coincides with the generalized Petersson–Weil form on the moduli
space (Theorem 6.3).

In Section 7, we construct a distinguished locally exact holomorphic
2-form π on the moduli space of Higgs bundles. In order to show non-
degeneracy of π, we need an involution ι, on the first hypercohomology,
defined in terms of harmonic representatives. To construct ι, we need two
assumptions on (E, ϕ): (1) the rational characteristic classes of the projec-
tive bundle P(E) vanish and (2) dim H

2(D•) = 1.
We note that, in general, dim H

2(D•) ≥ 1. Hence, by semi-continuity,
the condition dim H

2(D•) = 1 defines a Zariski open subset of any moduli
space of Higgs bundles. We also note that, in general, dim H

1(D•) may
be odd.
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As an application, we construct a hyper-Kähler structure on the moduli
space using ι, the generalized Petersson–Weil form and π (Theorem 8.6).

2. Basic definitions

Let X be a compact, connected Kähler manifold of dimension n equipped
with a Kähler form ωX . We will write ωX =

√
−1gαβ dzα ∧ dzβ with respect

to local holomorphic coordinates (z1, . . . , zn), and we will always use the
summation convention.

If F is a coherent OX -module, then the degree of F with respect to ωX

is defined as

deg F :=
∫

X
c1(F) ∧ ωn−1.

We denote by E a holomorphic vector bundle over X of rank r.

Definition 2.1. (i) A Higgs field on a vector bundle E over X is a holo-
morphic section

ϕ ∈ H0(X, End(E) ⊗OX
Ω1

X)

such that

(2.1) ϕ ∧ ϕ = 0,

i.e., [ϕα, ϕγ ] = 0 for all α, γ, where ϕ =
∑n

α=1 ϕα dzα.

(ii) A Higgs bundle is a pair (E, ϕ), where ϕ is a Higgs field on E.

The definition of stability in this context is the following:

Definition 2.2. (i) A Higgs bundle (E, ϕ) is called stable, if

deg F
rkF <

deg E

rkE

for all OX -coherent subsheaves F of E satisfying the conditions ϕ(F) ⊂
F ⊗OX

Ω1
X and 0 < rkF < rkE.

(ii) A polystable Higgs bundle is a direct sum of stable Higgs bundles
(Eν , ϕν) with the same quotient deg Eν

rkEν .

Polystable Higgs bundles (E, ϕ) are known to carry a unique Hermitian–
Yang–Mills connection by results of Hitchin and Simpson [1, 2]; see also [11].
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Definition 2.3. Let (E, ϕ) be a Higgs bundle. A Hermitian–Yang–Mills
connection on (E, ϕ) is a Hermitian connection θE on E with curvature form
ΩE such that

(2.2) Λ(ΩE + ϕ ∧ ϕ∗) = λ · idE

for some λ ∈ R, where Λ = ΛX is the adjoint to the exterior multiplication
of a form with ωX . In local holomorphic coordinates zα, this equation reads

gβα
(
Rαβ + [ϕα, ϕ∗

β
]
)

= λ · idE ,

where ΩE = Rαβ dzα ∧ dzβ.

General theory provides a semi-universal deformation of pairs (E, ϕ),
where ϕ is a End(E)-valued holomorphic 1-form. The integrability condition
ϕ ∧ ϕ = 0 defines a complex analytic subspace of the parameter space and
thus yields a semi-universal deformation for Higgs bundles. It follows like
in the classical case that stable Higgs bundles are simple in the sense

(2.3) H0(X, End(E, ϕ)) = C · idE ,

where

(2.4) End(E, ϕ) ⊂ End(E)

is the subsheaf that commutes with ϕ. A holomorphic family (Es, ϕs)s∈S of
Higgs bundles, parameterized by a complex space S, consists of a holomor-
phic vector bundle E on X × S and a holomorphic section Φ of End(E) ⊗
ρ∗Ω1

X , where ρ : X × S → X is the canonical projection, such that E|X ×
{s} = Es, and Φ|X × {s} = ϕs for all s ∈ S.

Observe that Φ defines an End(E)-valued, holomorphic 1-form on X ×
S, as ρ∗Ω1

X ⊂ Ω1
X×S .

Let (E, ϕ) be any stable Higgs bundle. In a local holomorphic family of
Higgs bundles over a pointed space (S, s0) with (E, ϕ) as the central fiber
(the Higgs bundle over s0), any isomorphism of the central fiber can be
extended to the restriction of the family over a neighborhood of s0. So,
stable Higgs bundles possess universal deformations by general deformation
theory [6].

As the uniquely determined Hermitian–Yang–Mills connections on stable
Higgs bundles depend in a C∞ way on the parameter of a holomorphic family
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of such bundles, again by general results (even in the non-reduced category)
a coarse moduli space exists [6].

We will denote by MH a moduli space of stable Higgs bundles over X.
We will use the following conventions. The Kähler form ωX gives rise

to a connection on X, which we will extend in a flat way to X × S. As
above, we will denote by zα, zγ , . . . local coordinates on X together with
the conjugates zβ, zδ, . . . and by si, sk, . . . and sj, s�, . . . , respectively, similar
coordinates on S. We use the semi-colon notation for covariant derivatives of
sections and differential forms or tensors with values in the respective vector
bundles induced by the Kähler metric on X and the Hermitian connection
on the bundle. Let the Hermitian connection θE on E be given locally by
End(E)-valued (1, 0)-forms {θα}n

α=1 with respect to some local trivialization
of E. Let σ be a locally defined section of End(E), which is a matrix-valued
function with respect to the trivialization of E. We use

∂σ

∂zα
= ∂ασ = σ|α

and set
∇ασ = σ;α = σ|α + [σ, θα],

and
σ;β = σ|β.

Hence,
σ;αβ = σ;βα + [σ, Rαβ],

where Rαβ denote the components of the curvature form Ωαβ = θα|β. For
tensors with values in the endomorphism bundle, we also have the contri-
butions that arise from the Kähler connection on the base. We denote by
g dV the volume element ωn

X/n! of the given Kähler form.

3. Infinitesimal deformations of Higgs bundles

Let (E, ϕ) be any Higgs bundle over the compact Kähler manifold X. For
any integer i ≥ 0, the Higgs field ϕ gives a OX -linear homomorphism

fϕ(i) : End(E) ⊗ Ωi
X −→ End(E) ⊗ Ωi+1

X

defined by s �−→ [s, ϕ]. From the given condition that ϕ ∧ ϕ = 0, it follows
immediately that

fϕ(i + 1) ◦ fϕ(i) = 0
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for all i. In other words, there is a complex of OX -coherent modules

D• : 0 → D0 := End(E)
fϕ(0)−→ End(E) ⊗ Ω1

X
fϕ(1)−→ · · · fϕ(i−1)−→

Di := End(E) ⊗ Ωi
X

fϕ(i)−→ End(E) ⊗ Ωi+1
X

fϕ(i+1)−→ · · · fϕ(n−1)−→
× End(E) ⊗ Ωn

X −→ 0

over X. We note that H0(X, End(E, ϕ)) = H
0(D•) (see (2.4)). The space of

all infinitesimal deformations of (E, ϕ) is parameterized by the first hyperco-
homology H

1(D•), and the obstructions to deformations of (E, ϕ) are guided
by H

2(D•); see [7] for the details.
For computational convenience, we will work with the Dolbeault resolu-

tion of the above complex D•.
Consider the spaces

Cp,q := Ap,q(X, End(E))

of differentiable (p, q)-forms over X, with values in End(E) equipped with
the Dolbeault operator

d′′ : Cp,q → Cp,q+1,

which is the ∂-operator on End(E)-valued forms. We also have an operator

d′ : Cp,q → Cp+1,q

which is defined by
d′(χ) = [χ, ϕ].

Here, the Lie bracket operation sends

χγδ dzγ ∧ dzδ = χγ1,...,γp,δ1,...,δq
dzγ1 ∧ · · · ∧ dzγp ∧ dzδ1 ∧ · · · ∧ dzδq

to
[χ, ϕ] = [χγδ, ϕα]dzγ ∧ dzδ ∧ dzα.

Since the section ϕ is holomorphic with ϕ ∧ ϕ = 0, it follows that (C••, d′, d′′)
is actually a double complex. This double complex gives rise to a degen-
erating spectral sequence, which converges to the hypercohomology of the
complex D• defined earlier.

For the induced single complex (C•, d) with

(3.1) Cr :=
⊕

p+q=r

Cp,q,
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we use the homomorphism

d := d′′ + (−1)q+1d′.

The groups H
q(C••) := Hq(C•), for q = 0, 1, are computed from the trun-

cated complex

(3.2) 0 −→ C0,0 d0

−→ C1,0 ⊕ C0,1 d1

−→ C2,0 ⊕ C1,1 ⊕ C0,2,

where

(3.3) d0(f) = (−[f, ϕ], ∂f)

and

(3.4) d1(a, b) = (−[a, ϕ], ∂a + [b, ϕ], ∂b)

are defined above.

Lemma 3.1. Assume that (E, ϕ) is equipped with a Hermitian–Yang–Mills
connection (see Definition 2.3). Then, any holomorphic section of End(E, ϕ)
(defined in (2.4)) is parallel with respect to the induced connection.

Proof. Let σ be a holomorphic section of End(E, ϕ). From (2.2),

gβα([σ, Rαβ] + [σ, [ϕα, ϕ∗
β
]]) = 0.

Hence,
∫

X
gβα trσ;ασ∗

;βg dV = −
∫

X
gβα trσ;αβσ∗g dV

= −
∫

X
gβα tr [σ, Rαβ]σ∗g dV.

Now [σ, ϕα] = 0 implies that the above integral equals

−
∫

X
gβα tr [ϕα, [ϕ∗

β
, σ]]σ∗g dV = −

∫
X

gβα trσ∗[ϕα, [ϕ∗
β
, σ]]g dV

= −
∫

X
gβα tr [σ∗, ϕα][ϕ∗

β
, σ]g dV.

≤ 0.

So the integral vanishes, and σ;α = 0. �
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From now on, we assume that the given Higgs bundle (E, ϕ) is stable.
Therefore, it carries a Hermitian metric satisfying the Hermitian–Yang–Mills
equation (see Definition 2.3). This metric is unique up to a dilation by a
globally constant scalar.

Obviously, the space H0(C•) consists of those holomorphic sections of
End(E) which commute with ϕ. The stability condition of (E, ϕ) implies
that any such section is a constant scalar multiple of the identity automor-
phism of E (see (2.3)).

As mentioned earlier, the hypercohomology H
1(D•) = H

1(C••) =
H1(C•) is the space of all infinitesimal deformations of (E, ϕ). We denote
the Kodaira–Spencer map by

(3.5) ρ : Ts0S → H
1(C••).

Now (C•, d) becomes an elliptic complex, when equipped with the inner
products induced by the Hermitian metric on E and the Kähler metric ωX

on X. In particular, the formal adjoint operators to dr are in fact adjoint.
More precisely, let σ, τ ∈ C0,0, then

〈σ, τ〉 =
∫

X
tr (στ∗)g dV,

where τ∗ denotes the adjoint section with respect to the Hermitian metric
on E. For End(E)-valued (1, 0)-forms ϕ = ϕα dzα and ψ = ψα dzα, we get

〈ϕ, ψ〉 =
∫

X
gβα trϕαψ∗

β
g dV.

As usual, Λ denotes the operator that is adjoint to the exterior multiplication
of a form with ωX . We mention we have [a, b]∗ = −[a∗, b∗] for any forms
a, b ∈ Cp,q.

For the computation of adjoint derivatives, we need the following nota-
tion. For v ∈ C1,1, we consider [v, ϕ∗] as a tensor rather than as an
alternating form. Then,

Λ̃[vαβ, ϕ∗
δ
] := −gδα[vαβ, ϕ∗

δ
]dzβ.

So the contraction Λ̃[v, ϕ∗] stands for the contraction of v and ϕ∗, and it
does not comprise Λv.
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Lemma 3.2. For (a, b) ∈ C1,0 ⊕ C0,1 and (u, v, w) ∈ C2,0 ⊕ C1,1 ⊕ C0,2,
the following hold:

d0∗(a, b) = −Λ[a, ϕ∗] + ∂
∗
b(3.6)

d1∗(u, v, w) = (Λ[u, ϕ∗] + ∂
∗
v, Λ̃[v, ϕ∗] + ∂

∗
w),(3.7)

where d0 and d1 are defined in (3.3) and (3.4), respectively.

Proof. The first equation follows from 〈(a, b), df〉 = −〈a, [f, ϕ]〉 + 〈∂∗
b, f〉

and

−〈a, [f, ϕ]〉 = 〈a, [f, ϕ]〉 = −〈Λ[a, ϕ∗], f〉,

whereas for (3.7), we have

〈(u, v, w), (−[a, ϕ], ∂a + [b, ϕ], ∂b)〉
= 〈−Λ[u, ϕ∗], a〉 + 〈∂∗

v, a〉 + 〈−Λ̃[v, ϕ∗], b〉 + 〈∂∗
v, a〉

finishing the proof of the lemma. �

Let (E , Φ) be a holomorphic family of Higgs bundles over a complex
space S, and denote by {hs} any C∞ family of Hermitian metrics on Es,
i.e., a Hermitian metric h on E over X × S. Let (s1, . . . , sk) be holomorphic
coordinates on S, if S is smooth, or holomorphic coordinates on an ambient
smooth space into which a neighborhood of s0 ∈ S is minimally embedded.

Let Ω be the curvature form of the Hermitian connection for h on E over
X × S. The curvature tensor for this connection will be denoted by R. So
the contraction

Ω � ∂

∂si

equals

Riβ dzβ.

Following the construction in [4], one can see that the global tensors Ω
and ϕ over X × S already describe the infinitesimal deformations. In other
words, we have the following lemma:
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Lemma 3.3. The Kodaira–Spencer class

ρ

(
∂

∂si

∣∣∣∣
s0

)
∈ H

1(C••)

(the homomorphism ρ is defined in (3.5)) is represented by

(3.8) ηi = (ϕα;i dzα, Riβ dzβ)|X×{s0}.

The Kähler form ωX and the Hermitian metric h together provide the
above double complex C•• with a natural inner product such that the adjoint
operators dj∗ are the formal adjoint operators.

Now assume that for each point s ∈ S, the Higgs bundle (Es, Φs) over
X is stable. The Hermitian–Yang–Mills connections on this family of sta-
ble Higgs bundles (E , Φ) are induced by a Hermitian metric h on E , whose
curvature form Ω is unique up to a differential form of type idE ⊗ f∗ω′,
where ω′ is some (1, 1)-form on the base S and f : X × S → S is the natu-
ral projection. Indeed, this follows immediately from the fact that any two
Hermitian–Yang–Mills metrics on a stable Higgs bundle differ by multipli-
cation with a constant scalar.

Therefore, the components Riβ of the curvature tensor in Lemma 3.3 are
uniquely determined by the family of Hermitian–Yang–Mills connections on
the Higgs bundles (Es, ϕs).

Proposition 3.4. The End(E)-valued 1-forms

ηi = ϕα;i dzα + Riβ dzβ

are the harmonic representatives of the Kodaira–Spencer classes ρ(∂/∂si|s0).

Proof. Following Lemma 3.2, we find

d∗(ϕα;i dzα, Riβ dzβ) = −Λ[ϕ;i, ϕ
∗] + ∂

∗(Riβ dzβ)

= gβα(−[ϕα;i, ϕ
∗
β
] − Rαβ;i) = 0

because of the Hermitian–Yang–Mills condition (2.2) for Higgs bundles. �

For applications in Section 8, we introduce a decomposition of the com-
plex D•.
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Let

ad(E) ⊂ End(E)

be the subbundle of trace zero endomorphisms, and let

pr: End(E) −→ ad(E)

defined by pr(χ) := χ − (1/rk(E))tr(χ)idE be the projection onto the trace-
free part. We extend the homomorphism pr to the complex D• and its
resolution. Now the complex of OX -coherent modules

D•
0 : 0 −→ D0

0 := ad(E)
fϕ(0)−→ ad(E) ⊗ Ω1

X
fϕ(1)−→ · · · fϕ(i−1)−→ Di

0

:= ad(E) ⊗ Ωi
X

fϕ(i)−→ ad(E) ⊗ Ωi+1
X

fϕ(i+1)−→ · · · fϕ(n−1)−→
× ad(E) ⊗ Ωn

X −→ 0

over X is a subcomplex of the complex D•.
We identify Ωk

X with idE ⊗ Ωi
X ⊂ Di.

Lemma 3.5. The restrictions of the chain morphisms dk to Ωk
X are iden-

tically zero. Moreover,

D• = D•
0 ⊕ Ω•

X

is an orthogonal decomposition. The resolution of C•• also decomposes in
an orthogonal way

C•• = C••
0 ⊕ A••

X ,

where A••
X corresponds to the Dolbeault resolution of Ω•

X . In particular, the
following holds.

The subcomplex C••
0 ⊂ C•• is preserved by both d0 and d∗

0. Let d0 and
d∗

0 be the restrictions of d and d∗, respectively, to C••
0 . Then,

pr ◦ d = d0 ◦ pr and pr ◦ d∗ = d∗
0 ◦ pr.

Proof. The proof follows from tr [χ, ϕ] = 0 for any χ ∈ Dk and the simple
fact that covariant derivatives commute with taking traces. �

Concerning the second cohomology, we note

Lemma 3.6. There is a natural embedding

C · ωX · idE ↪→ H
2(C••).
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Proof. We have to consider

ε = (0, ωX · idE , 0) ∈ C2,0 ⊕ C1,1 ⊕ C0,2.

Then, dε = (0, [ωX · idE , ϕ], ∂(ωX · idE), 0) = 0, and from (3.7),

d∗ε = (∂∗(ωX · idE), Λ̃[ωX · idE , ϕ∗]) = 0.

So ε is harmonic, and it is different from zero, since
∫
X tr εn �= 0. �

We will need the following proposition.

Proposition 3.7. The obstructions for deformations of a Higgs bundle
(E, ϕ) are already contained in the second hypercohomology H

2(D•
0). If

dim H
2(D•) = 1, then we have H

2(D•
0) = 0.

Proof. Note that the deformations of any Higgs line bundle are unobstructed
(as the deformations of a line bundle are so). Therefore, setting
G = PGL(r, C) in Theorem 3.1 of [8], where r = rank(E), we conclude that
if the image of H

2(D•) in H
2(D•

0) is zero, then all deformations of (E, ϕ)
are unobstructed.

If dim H
2(D•) = 1, then H

2(D•) must be generated by the image of the
non-zero homomorphism in Lemma 3.6, and hence H

2(D•
0) vanishes. �

4. Generalized Petersson–Weil metric

Now, we are in a position to introduce a generalized Petersson–Weil met-
ric on the parameter space S for a family of stable Higgs bundles. The
generalized Petersson–Weil metric is an inner product GPW on the tangent
spaces TsS of the bases of holomorphic families, which is positive definite
for effective families, and it is defined in terms of the tensors ηi represent-
ing the Kodaira–Spencer classes. This is possible, also in the case where
S is singular, because the family of Higgs forms, and the curvature form
for the connection on vector bundles, still exists on the first infinitesimal
neighborhood. The latter fact follows from the approach that is based on
the implicit function theorem.

We call this Hermitian structure the generalized Petersson–Weil metric
and use the following notation:

GPW

(
∂

∂si

∣∣∣∣
s0

,
∂

∂sj

∣∣∣∣
s0

)
:= GPW

ij := 〈ηi, ηj〉

=
∫

X
tr (gβαϕα;iϕ

∗
β,j

)g dV +
∫

X
tr (gβαRiβRαj)g dV.(4.1)
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We set
ωPW =

√
−1 GPW

ij dsi ∧ dsj.

In order to compute the induced connection, we need certain identities.

Lemma 4.1. Let ηi = (ϕα;i dzα, Riβ dzβ). Then,

ηi;k = ηk;i(4.2)

dηi;k + ηi ∧ ηk = 0(4.3)

d∗ηi;k = 0(4.4)

ηi;j = dRij(4.5)

�Rij = d∗dRij = d∗ηi;j(4.6)

d∗ηi;j = gβα([ϕα;i, ϕ
∗
β,j

] + [Riβ, Rαj]).(4.7)

Proof. The symmetry (4.2) of ηi;k follows immediately from

ηi;k = (ϕα;ik dzα, Riβ;k dzβ),

which is symmetric in i and k.
We show (4.3):

dηi;k = (−[ϕα;ik, ϕγ ]dzα ∧ dzγ , ϕα;ikβ dzβ ∧ dzα

+ [Riβ;k dzβ, ϕα dzα], Riβ;kδ dzδ ∧ dzβ)

= ([ϕ;i, ϕ;k],−[ϕ;i, Rkβ dzβ] − [ϕ;k, Riβ dzβ],−[Riβ dzβ, Rkδ dzδ]).

This gives the formula (with the given sign convention for C••).
Concerning (4.4), we have

d∗ηi;k = −gβα[ϕα;ik, ϕ
∗
β
] − gβαRiβ;kα.

We use (2.2) in

−gβαRiβ;kα = −gβαRαβ;ik = gβα[ϕα, ϕ∗
β
];ik

= gβα[ϕα;i, ϕ
∗
β
];k = gβα[ϕα;ik, ϕ

∗
β
].

Next, we show (4.5),

ηi;j = (ϕα;i dzα, Riβ dzβ);j = ((ϕα;ji + [ϕα, Rij]) dzα, Rij;β dzβ)

= (−[Rij, ϕ], ∂Rij) = dRij.
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Formula (4.6) is immediate. For the last formula (4.7), we consider

d∗ηi;j = gβα([ϕα;ij, ϕ
∗
β
] − Riβ;jα)

= −gβα([ϕα;ji + [ϕα, Rij], ϕ∗
β
] + (Riβ;αj − [Riβ, Rαj])).

Using the Hermitian–Yang–Mills equation, we get

gβα(−[[ϕα, Rij], ϕ∗
β
] + [ϕα;ij, ϕ

∗
β
] + [ϕα;i, ϕ

∗
β;j] + [Riβ, Rαj])

= gβα([ϕα;i, ϕ
∗
β;j] + [Riβ, Rαj])

completing the proof of the lemma. �
As a consequence of Proposition 3.4 and (4.5), we note that

(4.8) 〈ηi, ηj;k〉 = 〈ηi, dRjk〉 = 〈d∗ηi, Rjk〉 = 0.

Using the above notation, we set

GPW
ij|k = ∂sk

GPW
ij .

Proposition 4.2. The generalized Petersson–Weil metric is Kähler. More
precisely, we have

(4.9) GPW
ij|k = 〈ηi;k, ηj〉.

Proof. We use GPW
ij|k = 〈ηi;k, ηj〉 + 〈ηi, ηj;k〉 and (4.8). �

Corollary 4.3. Let s0 be some point of the base S of a universal deforma-
tion of a Higgs-bundle. Consider normal coordinates {si} for the Petersson–
Weil metric at the base point s0. Then, for all i, k, the harmonic projections
H(ηi;k|s=s0) vanish.

Proof. This follows immediately from the fact that the ηi are harmonic and
span the whole space H1(C•). �

5. Curvature of the generalized Petersson–Weil metric

Let S = {(s1, . . . , sN )} be the smooth base of a universal deformation
of a Higgs bundle equipped with a family of Hermitian–Yang–Mills metrics.
Let ηi = (ϕα;i dzα, Riβ dzβ) be the harmonic representative of the Kodaira–
Spencer class ρ(∂/∂si|s) ∈ H

1(C••). We consider the associated single
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complex C• as an elliptic complex equipped with the Laplacians � = d∗d +
dd∗ acting on End(E)-valued forms in all degrees. This elliptic complex
possesses harmonic projections H and Green’s operators G.

Theorem 5.1. Let ηi = (ϕα;i dzα, Riβ dzβ) be the elements of a basis of the
harmonic Kodaira–Spencer forms, depending on s ∈ S. Then, the curvature
tensor of the generalized Petersson–Weil metric equals

RPW
ijk�

=
∫

X
tr (G(Λ(ηi ∧ η∗

j ))Λ(ηk ∧ η∗
�
))g dV

+
∫

X
tr (G(Λ(ηi ∧ η∗

�
))Λ(ηk ∧ η∗

j ))g dV

+
∫

X
tr ([ηi ∧ ηk] ∧ G([η∗

j ∧ η∗
�
]))

ωn−1
X

(n − 1)!
.(5.1)

Explicitly, we have

RPW
ijk�

= +
∫

X
tr (Rij�Rk� + Ri��Rkj)g dV

+
∫

X
tr ([ηi ∧ ηk] ∧ G([η∗

j ∧ η∗
�
]))

ωn−1
X

(n − 1)!
.(5.2)

Here, [ηi ∧ ηk] and [ηi ∧ ηj] stand for the exterior product of forms, with
values in an endomorphism bundle combined with the Lie product.

Remark 5.2. The first two terms in (5.1) and the first term in (5.2), respec-
tively, are semi-positive. Because of the different order of non-conjugate and
conjugate terms in the first and second part of the curvature formula, the
last terms of (5.1) and (5.2), respectively, yield semi-negativity.

Proof of Theorem 5.1. We use normal coordinates at a given point of S.
Then,

(5.3) −RPW
ijk�

= GPW
ij|k�

= 〈ηi;k�, ηj〉 + 〈ηi;k, ηj;�〉 =: A + B.

We compute A.

ηi;k� = (ϕα;ik� dzα, Riβ;k� dzβ) ∈ C1,1.
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First, we need

ϕα;ik� = ϕα;i�k + [ϕα;i, Rk�]

= ϕα;�ik + [ϕα, Ri�];k + [ϕα;i, Rk�]

= [ϕα;k, Ri�] + [ϕα;i, Rk�] + [ϕα, Ri�;k]

so that

〈ϕα;ik�, ϕγ;j〉 =
∫

X
gβα tr (([ϕα;k, Ri�] + [ϕα;i, Rk�] + [ϕα, Ri�;k])ϕ

∗
β;j)g dV

and

Riβ;k� = Ri�,kβ − [Ri�, Rkβ] + [Riβ, Rk�]

so that
∫

X
gβα tr (Ri�;kβRαj)g dV = −

∫
X

gβα tr (Ri�;kRαβ;j)g dV

=
∫

X
gβα tr (Ri�;k[ϕα, ϕ∗

βj
])g dV

=
∫

X
gβα tr ([Ri�;k, ϕα]ϕ∗

βj
)g dV,

which is inserted into the expression for

〈Riβ;k� dzβ, Rjδ dzδ〉.

So far, we have

A =
∫

X
gβα tr (Ri�([Rαj, Rkβ] − [ϕα;k, ϕ

∗
β;j])

+ Rk�([Rαj, Riβ] − [ϕα;i, ϕ
∗
β;j]))g dV,

where A is defined in (5.3).
Now, we compute the (1, 1)-component of ηk ∧ η∗

j :

−(ηk ∧ η∗
j )(1,1) = ([Rαj, Rkβ] − [ϕα;k, ϕ

∗
β,j

])dzα ∧ dzβ

so that with (4.6) and (4.7),

(5.4) Λ(ηi ∧ η∗
j ) = d∗ηi;j = �Rij.
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Hence,

A = −
∫

X
tr (Rij�Rk� + Ri��Rkj)g dV

= −
∫

X
tr (G(Λ(ηi ∧ η∗

j ))Λ(ηk ∧ η∗
�
) + G(Λ(ηi ∧ η∗

�
))Λ(ηk ∧ η∗

j ))g dV.

We compute B defined in (5.3). Since d∗ηi;k = 0, and H(ηi;k) = 0 by
(4.4) and Corollary 4.3, we have

ηi;k = Gd∗ dηi;k = d∗G dηi;k,

and
B = 〈dηi;k, G dηj;�〉

so that we get the third term of (5.1) using (4.3). This completes the proof
of the theorem. �

We estimate the holomorphic sectional curvature for dimX = 1:

RPW
iiii

= 2〈dRii, dRii〉 ≥ 0.

with d = d0 (see (3.3)). Equality holds only if dRij = 0, that is, Rii is a
holomorphic section of End(E, ϕ); see (2.4) for the definition of End(E, ϕ).
Since (E, ϕ) is stable, any holomorphic section of End(E, ϕ) is a constant
multiple of the identity automorphism of E (see (2.3)).

Therefore, we have the following corollary:

Corollary 5.3. When dim X = 1, the holomorphic sectional curvature of
the Petersson–Weil metric is non-negative.

6. Fiber integral formula

We will show the existence of a local ∂∂-potential for the generalized
Petersson–Weil metric on a base space S of a universal deformation. We
note that this implies the Kähler condition of the Petersson–Weil metric.

We consider a moduli space of stable Higgs bundles MH. Although,
in general, there is no universal holomorphic vector bundle E globally on
X × MH, the bundle End(E) exists in the orbifold sense over all of X × MH,
since the non-zero scalars act trivially on End(E). We will furthermore need
the highest exterior power ΛrE , a tensor power of which also descends to
X × MH.
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Representing a point p ∈ MH by the isomorphism class of a Higgs bundle
(E, ϕ), we find the existence of a global holomorphic 1-form Φ ∈ H0(X ×
MH, Ω1

MH
(End(E))). Hence, the function on MH defined by

s �→ χ(s) =
∫

X×{s}
gβα tr (ϕαϕ∗

β
)g dV

is a function of class C∞ on MH.
In a similar way, the curvature form Ω of the Hermitian–Yang–Mills

connections is a well-defined End(E)-valued (1, 1)-form over X × MH.
For the results of this section, the base space S can be a complex space

(even non-reduced, if necessary). However, in order to simplify the exposi-
tion, we assume smoothness.

Given the projection X × S → S, where S is also smooth, the push-
forward of a (n + 1, n + 1)-form Ψ (defined on X × S) is a (1, 1)-form on S
given by a fiber integral

∫
X×S/S

Ψ, which we also write as
∫

X×{s}
Ψ or simply

∫
X

Ψ.

The reader may consult [12] for fiber integral.

Proposition 6.1. Let Ω be the curvature form of (E , h). Then the following
fiber integral formula holds:

ωPW =
1
2

∫
X

tr (Ω ∧ Ω) ∧ ωn−1
X

(n − 1)!

+ λ

∫
X

tr (
√

−1Ω) ∧ ωn
X

n!
+

√
−1∂∂

1
2

∫
X

tr (ϕ ∧ ϕ∗) ∧ ωn−1
X

(n − 1)!
.(6.1)

Here λ is determined by
∫

X
tr (

√
−1Ω) ∧ ωn−1

X

(n − 1)!
= λ

∫
X

ωn
X

n!

is independently of s ∈ S over any connected component of S.

Before we prove the proposition, we recall some standard facts. Con-
cerning Chern character forms, we will use the description as

ch(E , h) =
n∑

k=0

1
k!

tr

⎛
⎜⎝

√
−1
2π

Ω ∧ · · · ∧
√

−1
2π

Ω︸ ︷︷ ︸
k

⎞
⎟⎠
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with
ch2(E , h) =

1
2
(c2

1(E , h) − 2c2(E , h)).

In terms of Chern character forms and Chern forms, formula (6.1) reads

1
4π2 ωPW = −

∫
X

ch2(E , h) ∧ ωn−1
X

(n − 1)!

+
λ

2π

∫
X

c1(E , h) ∧ ωn
X

n!
+

√
−1

8π2 ∂∂

∫
X

tr (ϕ ∧ ϕ∗) ∧ ωn−1
X

(n − 1)!
.(6.2)

Now we will prove the proposition.

Proof. By definition

ωPW =
(∫

tr (RiβRαj)gβαg dV +
∫

tr (ϕα;iϕ
∗
β;j)g dV

)√
−1 dsi ∧ dsj.

Now

1
2

∫
X

tr (Ω ∧ Ω) ∧ ωn−1
X

(n − 1)!

= −1
2

∫
X

tr (
√

−1Ω ∧
√

−1Ω) ∧ ωn−1
X

(n − 1)!

=
∫

tr (Rαj · Riβ − Rαβ · Rij)gβαg dV
√

−1 dsi ∧ dsj,

and from (2.2), we have

− tr (gβαRαβ · Rij) = tr (gβα[ϕα, ϕ∗
β
] · Rij) − λ trRij.

On the other hand,

gβα(ϕα;iϕ
∗
β;j) = gβα(ϕαϕ∗

β
)ij − (ϕα;ij · ϕ∗

β
),

and
ϕα;ij = − tr [Rij, ϕα],

from which the claim follows. �
From now on, we assume that X is a Kähler manifold whose Kähler

form is the Chern form
ωX = c1(L, hL)

of a positive Hermitian line bundle (L, hL). Note that this implies that X
is a complex projective manifold.
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Given a proper, smooth holomorphic map f : X → S and a locally free
sheaf F on X , the determinant line bundle of F on S is by definition
det Rf∗F .

The generalized Riemann–Roch theorem by Bismut et al. [9] applies to
Hermitian vector bundles (F , h) on X . It states that the determinant line
bundle of F on S carries a Quillen metric, whose Chern form equals the
fiber integral ∫

X/S
ch(F , h)td

(
X
S

, ωX

)
s,

where ch and td denote, respectively, the Chern character form and the
Todd form (for smooth, proper holomorphic maps over singular base spaces,
cf. [10, Appendix]).

We first mention

(6.3) ch(End(E)) = r2 + 2r ch2(E) − c2
1(E) + · · ·

so that for the virtual bundle End(E) − Or2

ch(End(E) − Or2
) = 2r ch2(E) − c2

1(E) + · · ·

holds. We use these formulas for Hermitian bundles now.

ch(((End(E), h) − Or2
) ⊗ ((L, hL) − (L−1, h−1

L ))⊗(n−1))

= ch2

(
(End(E), h) − Or2

)
· 2n−1ωn−1

X + · · ·

=

(
2r

(
1
2

tr
(√

−1
2π

Ω ∧
√

−1
2π

Ω
))

−
(

tr
√

−1
2π

Ω
)2

)
2n−1ωn−1

X + · · ·

= 2n−1

(
r tr

(√
−1
2π

Ω ∧
√

−1
2π

Ω
)

−
(

tr
√

−1
2π

Ω
)2

)
ωn−1

X + · · ·

The highest exterior power ΛrE carries the induced Hermitian metric ĥ, for
which the following identity holds:

ch(((ΛrE , ĥ) − (ΛrE , ĥ)−1)⊗2 · ((L, hL) − (L−1, h−1))⊗(n−1))

= 2n+1c2
1(E , h) · c1(L, hL)n−1 + · · ·

= 2n+1c2
1(E , h) · ωn−1

X + · · ·

= 2n+1
(

tr
√

−1
2π

Ω
)2

ωn−1
X + · · ·

Hence, we have the following theorem:
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Theorem 6.2. The generalized Petersson–Weil form can be expressed in
terms of Chern character forms of Hermitian bundles:

1
4π2 ωPW = − 1

2nr(n − 1)!

∫
ch((End(E) − Or2

) ⊗ (L − L−1)⊗(n−1))

− 1
2n+2r(n − 1)!

∫
ch((ΛrE − (ΛrE)−1)⊗2 ⊗ (L − L−1)⊗(n−1))

+
λ

2π

1
2n+1n!

∫
ch((ΛrE − (ΛrE)−1) ⊗ (L − L−1)⊗n)

+
1

8π2

√
−1∂∂

∫
tr (ϕ ∧ ϕ∗) ∧ ωn−1

X

(n − 1)!
.

Let q : X × MH → MH be the canonical projection. We introduce the
following determinant line bundles δj , equipped with Quillen metrics hQ

j .

δ1 = det Rq∗((End(E) − Or2
) ⊗ (L − L−1)⊗(n−1))

δ2 = det Rq∗((ΛrE − (ΛrE)−1)⊗2 ⊗ (L − L−1)⊗(n−1))

δ3 = det Rq∗((ΛrE − (ΛrE)−1) ⊗ (L − L−1)⊗n).

Setting

χ =
∫

tr (ϕ ∧ ϕ∗) ∧ ωn
X

(n − 1)!
,

we equip the trivial bundle OMH with the Hermitian metric eχ.

Theorem 6.3. The generalized Petersson–Weil Kähler form is a linear
combination of the (1, 1)-forms c1(δj , h

Q
j ), j = 1, 2, 3, and c1(OMH , eχ).

7. A holomorphic closed 2-form on a moduli space
of Higgs bundles

Let (E , ϕ) be a universal family of stable Higgs bundles on a Kähler man-
ifold (X, ωX) over a complex analytic space S carrying the unique family
of Hermitian–Yang–Mills connections {θs}s∈S . Using the previous notation,
we introduce a holomorphic 2-form π on S with dπ = 0.

Let ∂
∂si

∣∣
s=s0

be a tangent vector, and

ρ

(
∂

∂si

∣∣∣∣
s=s0

)
= ϕα;i dzα + Riβ dzβ(7.1)

∈ C1,0(X × S, End(Es)) ⊕ C0,1(X × S, End(Es)).
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Definition 7.1. A 2-form

π = πik(s)dsi ∧ dsk

on S is given by

πik =
∫

X×{s}
tr (gβα(ϕα;i · Rkβ − ϕα;k · Riβ))g dV.

Lemma 7.2. The 2-form π is holomorphic, and furthermore, it is of the
form π = dν for a certain holomorphic 1-form ν on S. The forms ν and π
descend to the moduli space of Higgs bundles as holomorphic forms.

Proof. We define ν = νi dsi through

νi = 2
∫

X×{s}
tr gβαϕαRiβg dV.

Then, dν = π follows immediately, and

∂νi

∂s�
=

∫
tr gβαϕαRiβ;�g dV = −

∫
tr gβαϕα;βRi�g dV = 0

completing the proof of the lemma. �
Denote by M the moduli space of stable vector bundles on X. As

any stable vector bundle E defines a Higgs bundle (E, ϕ) with Higgs field
ϕ = 0. The Hermite–Einstein connection on the stable vector bundle E
coincides with the Hermitian–Yang–Mills connection on (E, 0). We have
an embedding i : M ↪→ MH into the corresponding moduli space of stable
Higgs bundles. Let Ms

H ⊂ MH denote the Zariski open subset defined by
all Higgs bundles (E, ϕ) with E stable. Therefore, we have a retraction
f : Ms

H → M that sends any (E, ϕ) to E.

Proposition 7.3. The forms ν and π vanish on the fibers of f .

Proof. On the level of base spaces of universal deformations, f is a submer-
sion of the form pr1 : S = S′ × S′′ → S′. Let s = (s′, s′′) ∈ S. Let v = ∂

∂si ∈
TsS be a tangent vector with

ρ(v) = ϕα;i dzα + Riβ dzβ

in the sense of (7.1). Then pr1(v) is represented by Riβ dzβ, and if v ∈
TsS

′′ ↪→ TsS, the form Riβ dzβ is ∂-exact. Conversely, let Rkβ = E;β for
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some section E of End(E|X × S′′). Then,

νk(s) =
∫

tr gβαϕαE;βg dV = 0,

proving the proposition. �

If the form ν is non-zero on Ms
H, then it does not descend under f .

8. Non-Abelian Hodge symmetry, symplectic
and hyper-Kähler structure

Let (E, ϕ) be a stable Higgs bundle over X, equipped with a Hermitian–
Yang–Mills connection. We first provide the space of infinitesimal defor-
mations of (E, ϕ), namely H

1(C••), with a quaternionic structure under an
assumption on H

2(C••).

Assumption 8.1. For the rest of this section, we restrict ourselves to stable
Higgs bundles (E, ϕ) satisfying the following two conditions:

A: The rational characteristic classes of the projective bundle P(E) over
X are assumed to be zero. This is equivalent to the condition that the
Hermitian–Yang–Mills connection on (E, ϕ) is projectively flat, i.e.,

(8.1) Rαβ + [ϕα, ϕ∗
β
] = λ · gαβ · idE

for some λ ∈ C.

B: dim H
2(C••) = 1.

In view of Lemma 3.6, this is equivalent to the condition that

(8.2) H
2(C••) = C · ωX · idE .

The above condition A can be replaced by the following condition:

A′: The Higgs field ϕ is ∂θ-closed with respect to the Hermitian–Yang–
Mills connection, i.e.,

(8.3) ϕα;γ = ϕγ;α.
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Involution 8.2. We have an involution of the space of End(E)-valued
1-forms defined by

ι : C1 −→ C1

(a, b) �−→ (−b∗, a∗),(8.4)

where C1 is defined in (3.1). Obviously ι2 = −idC1 . We shall see this invo-
lution descends to the space of infinitesimal deformations of (E, ϕ).

Proposition 8.3. Let η ∈ C1 be harmonic (so η gives an infinitesimal
deformation of (E, ϕ)). Then ι(η) is harmonic.

Proof. Let η �= 0. Since deformations are not obstructed, we can assume
that there is a coordinate system on the base S of a universal deformation
so that η is of the form ηi in the sense of (3.8), i.e.,

ιηi = (−Rαı dzα, ϕ∗
β;ı dzβ).

Claim 1.

d(ιηi) = ξ;ı,

where

ξ = (ϕα;γ dzα ∧ dzγ , (Rαβ + [ϕα, ϕ∗
β
])dzα ∧ dzβ,−ϕ∗

β;δ dzβ ∧ dzδ).

Proof of Claim 1. Let d(ιηi) = (d(ιηi)1, d(ιηi)2, d(ιηi)3). Then,

d(ιηi)1 = [Rαı dzα, ϕγ dzγ ] = ϕα;γı dzα ∧ dzγ .

Next,

d(ιηi)2 = ∂(−Rαı dzα) + [ϕ∗
β;ı dzβ, ϕα dzα]

= (Rαβ + [ϕα, ϕ∗
β;ı]);ı dzα ∧ dzβ,

and

d(ιηi)3 = ∂(ϕ∗
β;ı dzβ) = −ϕβ;δı dzβ ∧ dzδ

proving Claim 1.
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Claim 2.

d∗(ιηi) = 0.

Proof of Claim 2.

d∗(ιηi) = +Λ[Rαı dzα, ϕ∗
β

dzβ] + ∂
∗(ϕ∗

β;ı dzβ)

= gβα([Rαı, ϕ
∗
β
] − ϕ∗

β;ıα) = 0.

Claim 3.

dξ = 0.

Proof of Claim 3. Let

dξ = (dξ1, . . . , dξ4),

where dξi is the i-th component of dξ in the decomposition in (3.1). Then,

dξ1 = [−ϕα;γ dzα ∧ dzγ , ϕσ dzσ] = 0

because of (2.1).
Next,

dξ2 = ∂(ϕα;γ dzα ∧ dzγ) + [(Rαβ + [ϕα, ϕ∗
β
])dzα ∧ dzβ, ϕγ dzγ ]

= (ϕα;γβ − [Rαβ, ϕγ ] − [[ϕα, ϕ∗
β
], ϕγ ])dzα ∧ dzγ ∧ dzβ

= ([ϕα, Rγβ] + [ϕγ , Rαβ] − [[ϕα, ϕ∗
β
], ϕγ ])dzα ∧ dzγ ∧ dzβ.

The first two terms together are symmetric in α and γ, also the third term
because of (2.1), so that dξ2 vanishes.

Finally,

dξ3 = −[−ϕ∗
β;δ, ϕα]dzβ ∧ dzδ ∧ dzα + ∂(Rαβ + [ϕα, ϕ∗

β
])dzα ∧ dzβ = 0,

and

dξ4 = ∂(−ϕ∗
β;δdzβ ∧ dzδ) = 0,

proving Claim 3.
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Claim 4.

d∗ξ = 0.

Proof of Claim 4. Let ξ = (u, v, w). Here projective flatness will be used.
According to (3.7), the first component of d∗ξ equals

d∗ξ1 = Λ([ϕα;γ dzα ∧ dzγ , ϕ∗
δ
dzδ]) + ∂

∗
v,

where d∗ξi is the i-th component of d∗ξ in the decomposition in (3.1).
Because of (8.1), we have ∂

∗
v = 0, and

d∗ξ1 =
1
2
gβγ [(ϕα;γ − ϕγ;α), ϕ∗

β
]dzα =

1
2
gβγ(Rαβ;γ − Rγβ;α)dzα = 0.

We compute d∗ξ2. By (8.1), the term Λ̃[v, ϕ∗] vanishes, and

∂
∗(−ϕ∗

β;δ dzβ ∧ dzδ) =
1
2
gδγ(ϕ∗

β;δγ
− ϕ∗

δ;βγ
)dzβ

=
1
2
gδγ(−[ϕ∗

β
, Rγδ] + [ϕ∗

δ
, Rγβ])dzβ

=
1
2
gδγ([[ϕ∗

β
, ϕγ ], ϕ∗

δ
] − [[ϕ∗

δ
, ϕγ ], ϕ∗

β
])dzβ.

This form vanishes because of the integrability condition (2.1), proving
Claim 4. The computation is the same with A replaced by A′.

Now, by assumption B, the harmonic form ξ is of the form c(s) · ωX idE .
From the definition of ξ and (8.1), we know that c(s) = λ is independent of
s ∈ S. Hence, d(ιηi) = 0. This completes the proof of the proposition. �

Corollary 8.4. The d-closed holomorphic two-form π is non-degenerate at
(E, ϕ). In particular, the dimension of H

1(C••) is even.

Proof. In the above notation,

πik = 〈ηk, ι(ηi)〉.

As ι takes harmonic elements of C1 to harmonic elements of C1, it induces
a bijective map of H

1 to itself. This shows the non-degeneracy. �

Remark 8.5. For X = CP
2, there are examples of stable Higgs bundles

where dim H
1(C••) is odd. (They do not satisfy the two assumptions.)
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We insert an observation about quaternions: Assume that (H, I, J, K)
is identified with C

2 = {(z, w)} in such a way that I(z, w) = (iz, iw), i =√
−1. Namely, we identify (z, w) = (x + iy, u + iv) with x + Iy + (u + Iv)J .

Then, J(z, w) = (−w, z), and K(z, w) = IJ(z, w) = (−iw, iz).
This suggests the following almost quaternionic structure on H

1(C••).
For η = (a, b) ∈ H

1(C••), we have ι(a, b) = (−b∗, a∗), and hence for a tangent
vector

I(η) =
√

−1 · η, J(η) = ι(η), K(η) =
√

−1 · ι(η).

By definition, the equations for an almost quaternionic structure are verified.
For complex tangent vectors η, ϑ of the base space have

〈Iη, ϑ〉 = ωPW(η, ϑ),
〈Jη, ϑ〉 = π(η, ϑ),
〈Kη, ϑ〉 = iπ(η, ϑ),

where π denotes the conjugate of π. The corresponding differential forms
are closed (and non-degenerate), so that together with [1, Lemma (6.8)] the
following holds:

Theorem 8.6. Consider the Zariski open subset W of the moduli of sta-
ble Higgs bundles over which the condition H

2 = C · ωX idE holds. Assume
that either the Hermitian–Yang–Mills connections are projectively flat or
that the Higgs fields are ∂θ-closed with respect to the Hermitian–Yang–Mills
connection. Then W carries a natural hyper-Kähler structure, related to the
Petersson–Weil structure ωPW and the holomorphic symplectic form π.

We note that our proof shows more. It gives the following proposition.

Proposition 8.7. Consider the moduli space of Higgs bundles of the form
(E, ϕ), where the determinant bundle of E is a fixed line bundle and where
trace(ϕ) = 0. This moduli space carries a natural hyper-Kähler structure,
related to the Petersson–Weil structure ωPW and the holomorphic symplectic
form π, provided condition A or condition A′ holds along with the following
weaker form of condition B:

B′:

H
2(D•

0) = 0,

where D•
0 is the complex in Lemma 3.5.
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[4] G. Schumacher and M. Toma, On the Petersson–Weil metric for the
moduli space of Hermite–Einstein bundles and its curvature, Math.
Ann., 293 (1992), 101–107.

[5] I. Biswas and G. Schumacher, Determinant bundle, Quillen metric, and
Petersson–Weil form on moduli spaces, Geom. Funct. Anal., 9 (1999),
226–256.

[6] G. Schumacher, Moduli as algebraic spaces. Complex analysis in several
variables—Memorial Conference of Kiyoshi Oka’s Centennial Birthday,
Adv. Stud. Pure Math., 42, Math. Soc. Japan, Tokyo, 2004, 283–288.

[7] I. Biswas, A remark on a deformation theory of Green and Lazarsfeld,
J. Reine Angew. Math., 449 (1994), 103–124.

[8] I. Biswas and S. Ramanan, An infinitesimal study of the moduli of
Hitchin pairs, J. Lond. Math. Soc., 49 (1994), 219–231.

[9] J.-M. Bismut, H. Gillet, and C. Soulé, Analytic torsion and holomor-
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