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Liouville-type properties for embedded
minimal surfaces

William H. Meeks III
1
, Joaqúın Pérez and Antonio Ros

In this paper, we study conformal properties of complete embedded
minimal surfaces in flat three-manifolds. These properties include
recurrence, transience and the existence/nonexistence of noncon-
stant bounded and/or positive harmonic functions. We also apply
these results to study the question of existence of complete embed-
ded minimal surfaces which are a-stable for some a > 0.

1. Introduction

The classical Liouville theorem for the plane asserts that every positive
harmonic function on the complex plane is constant. The upper halfplane
H = {(x, y) ∈ R

2 | y > 0} does not satisfy the same property. The exis-
tence or nonexistence of nonconstant positive harmonic functions can be
viewed as a tool for understanding the so called type problem of classifying
open Riemann surfaces. There are related properties useful for tackling this
problem on a noncompact Riemann surface M without boundary, among
which we emphasize the following ones:

1. M admits a nonconstant positive superharmonic function (equiva-
lently, M is transient for Brownian motion).

2. M admits a nonconstant positive harmonic function.

3. M admits a nonconstant bounded harmonic function.

A noncompact Riemann surface M without boundary is said to be recur-
rent for Brownian motion if it does not satisfy property (1) (see, e.g.,
Grigor’yan [6] for a detailed study of these properties and for general pro-
perties of Brownian motion on manifolds). Clearly (3) ⇒ (2) ⇒ (1).

1This material is based upon work for the NSF under Award No. DMS-
0405836. Any opinions, findings and conclusions or recommendations expressed
in this publication are those of the authors and do not necessarily reflect the views
of the NSF.
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These three conditions are known to be equivalent if M has finite genus,
or even almost-finite genus (see [23] for the definition and result).

The Liouville conjecture for properly embedded minimal surfaces states
that positive harmonic functions on properly embedded minimal surfaces in
R

3 are constant [11]. In relation with the above properties and the Liou-
ville conjecture, we note that in a previous paper [14], we proved that every
properly embedded minimal surface with finite genus in R

3 is recurrent
for Brownian motion, and so, the Liouville conjecture holds for these sur-
faces. We conjectured in [13] that properly embedded minimal surfaces
of almost-finite genus in complete flat three-manifolds are recurrent. Note
that embeddedness in this conjecture is essential since there exists a properly
immersed minimal disk in R

3 [20]. Since every complete Riemann manifold
with quadratic volume growth is recurrent [6], each of the classical Scherk
singly periodic minimal surfaces in R

3 is recurrent. Another class of prop-
erly embedded minimal surfaces in R

3 which are known to be recurrent are
those with two limit ends [2].

Recent research demonstrates that certain complete embedded minimal
surfaces in a complete flat three-manifold N are in fact properly embed-
ded. For example, the minimal lamination closure theorem [16] implies that
complete embedded nonflat minimal surfaces M ⊂ N are properly embed-
ded provided that the injectivity radius of M is positive, for instance if
M has bounded curvature. Since complete embedded minimal surfaces of
finite topology in N always have positive injectivity radius, one recovers
the result of Colding and Minicozzi [1] that complete embedded minimal
surfaces of finite topology in R

3 are proper. More generally, we proved [13]
that complete embedded minimal surfaces in R

3 with finite genus and a
countable number of ends are properly embedded. Because of these results,
we will always assume properness for the minimal surfaces in the proofs of
our results.

In this paper, we shall determine which of the above three properties
are satisfied by a complete embedded minimal surface M ⊂ R

3, in terms
of its topology and geometry. Let G be a group of orientation preserving
isometries acting properly and discontinuously on R

3, which leaves M invari-
ant. Since the properties we are interested in — recurrence, transience and
existence of unbounded positive harmonic functions — hold simultaneously
for the base and the total space of a finitely sheeted covering space, and
bounded harmonic functions lift to arbitrary covers, we will assume that G
is either {identity} or it is generated by two or three independent transla-
tions, or by a translation or screw motion symmetry. We will say that M is
k-periodic if G has rank k = 0, 1, 2, 3. Next, we summarize the main results.
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Theorem 1.1. A complete embedded 1-periodic minimal surface with
bounded curvature in R

3 does not admit nonconstant bounded harmonic
functions, and its quotient surface is recurrent.

Theorem 1.2. A properly immersed 2-periodic minimal surface in R
3 does

not admit nonconstant bounded harmonic functions, and its quotient surface
is recurrent.

Theorem 1.3. Let M ⊂ R
3 be a nonflat k-periodic complete embedded

minimal surface such that M/G ⊂ R
3/G has finite topology. Then, M is

recurrent if and only if k = 0 or 1.

Theorem 1.4. Let M ⊂ R
3 be a complete embedded minimal surface such

that M/G has finite topology. Then, every positive harmonic function on M
is constant.

The study of complete stable minimal surfaces in complete flat three-
manifolds is closely related to some of the above conformal questions, as we
next explain. Let M ⊂ N be a minimal surface in a complete flat three-
manifold N . Given a > 0, we say that M is a-stable if for any compactly
supported smooth function u ∈ C∞

0 (M), we have

(1.1)
∫

M
(|∇u|2 + aKu2)dA ≥ 0,

where ∇u stands for the gradient of u and K, dA are the Gaussian curvature
and the area element on M , respectively (the usual stability condition for the
area functional corresponds to the case a = 2). The key connection between
a-stability and transience is based on the following fact.

Proposition 1.5. If M is a complete nonflat a-stable minimal surface in
a complete flat three-manifold N , then M is transient for Brownian motion.

Do Carmo and Peng [3], Fischer-Colbrie and Schoen [5] and Pogorelov [21]
proved independently that if M ⊂ R

3 is a complete, orientable a-stable
minimal surface, for a ≥ 1, then M is a plane. This result was improved
by Kawai [7] to a > 1/4, see also Ros [22]. In this article, we will use
Proposition 1.5 to obtain flatness of complete embedded a-stable minimal
surfaces in complete flat three-manifolds, under the additional topological
assumptions of finite genus.
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Theorem 1.6. Let N be a complete flat three-manifold and let a > 0.
Then, any complete embedded a-stable minimal surface M ⊂ N with finite
genus is totally geodesic (flat).

Based on the above results, we make the following conjecture.

Conjecture 1.7 (Meeks, Pérez, Ros). A complete embedded a-stable
minimal surface in a complete flat three-manifold is totally geodesic (flat).

We will apply our recent Local Picture Theorem on the Scale of Curva-
ture and Dynamics Theorem [12] for properly embedded minimal surfaces
to reduce the solution of Conjecture 1.7 to the particular case given in the
next theorem.

Theorem 1.8. If there exists a complete embedded nonflat a-stable mini-
mal surface in a complete flat three-manifold, then there exists a properly
embedded nonflat a-stable minimal surface Σ ⊂ R

3 which has infinite genus,
bounded curvature and is quasi-dilation-periodic. On the other hand, no
such Σ can be 1-periodic.

For the reader’s convenience, we include in this manuscript a number of
standard facts about harmonic functions.

2. Conformal questions and coverings

A central result in Riemann surface theory is the uniformization theorem,
which reduces the list of simply-connected Riemann surfaces to the Riemann
sphere S

2, the complex plane C and the upper halfplane H = {(x, y) ∈
R

2 | y > 0}. Since these model spaces have complete constant curvature
metrics which are invariant under any group of conformal maps that acts
properly discontinuously, it follows that every Riemann surface has a con-
formally related complete metric of constant curvature 1, −1 or 0. The
so-called type problem consists of classifying Riemann surfaces which are
not simply-connected. Assume the surface in question arises as the under-
lying Riemann surface of a complete embedded minimal surface M ⊂ R

3

(so the universal covering M̂ of M cannot be S
2). Recently, Meeks and

Rosenberg [19] proved that the case M̂ = C can only occur when M is the
plane, catenoid or helicoid. Thus, from now on, we will assume that the
universal covering of M is H.

A useful approach to study the type problem for such an M once one
is given a group G of proper discontinuous isometries of M , is to consider
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relations between Liouville-type results on M and on M/G and to deduce
conformal properties of M from the behavior of the covering M → M/G
and the quotient surface M/G. Of course, M/G could be recurrent and M
being transient or admitting nonconstant positive and/or bounded harmonic
functions. As a first example of the kind of results we are interested in, we
state the following particular case of a theorem of Lyons ad Sullivan [8].

Proposition 2.1. Every properly immersed triply periodic minimal sur-
face (k = 3) is transient and does not admit nonconstant positive harmonic
functions.

Proof. Let M be a properly immersed triply periodic minimal surface in R
3,

and G be the group generated by three independent translations leaving M
invariant. Then, the corresponding covering π : M → M/G is abelian and
M/G is compact. By Theorem 1 in [8], M does not admit nonconstant
positive harmonic functions and is transient (M/G is compact and G = Z

3

is a nilpotent group). This proves the proposition. �

3. Bounded harmonic functions

We now study the existence of nonconstant bounded harmonic functions on
properly embedded minimal surfaces in R

3.

Proof of Theorems 1.1 and 1.2. Let M ⊂ R
3 be a properly immersed mini-

mal surface and let G be a subgroup of orientation preserving isometries of
R

3 of rank 1 or 2 acting discontinuously on M . The group G is either cyclic
with generator a screw motion symmetry (possibly a translation) or G is
generated by two independent translations. In any case, the corresponding
covering M → M/G is abelian. By Theorem 2 in [8], to obtain nonexistence
of nonconstant bounded harmonic functions on M , it suffices to check that
M/G is recurrent.

First assume that M is doubly periodic, so G is generated by two inde-
pendent translations. We do not lose generality by assuming these trans-
lations are horizontal. Then, the third coordinate function on M descends
to M/G and defines a proper harmonic function. Since (M/G) ∩ x−1

3 [0,∞)
admits a proper positive harmonic function, it is a parabolic surface with
boundary2, and similarly for (M/G) ∩ x−1

3 (−∞, 0]. As (M/G) ∩ x−1
3 (0) is

compact, we deduce that M/G is recurrent.

2A Riemann surface Σ with boundary is parabolic if its boundary has full har-
monic measure, or equivalently, if bounded harmonic functions on Σ are determined
by their boundary values.
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Now assume M is embedded, invariant by a translation or screw motion
T of R

3 and has bounded curvature. Then, M has an open regular neighbor-
hood of positive radius (see [15] or [24]). Since the volume growth of R

3/T
is quadratic and M has bounded second fundamental form, the area growth
of M/G is at most quadratic. This condition implies M/G is recurrent (see,
e.g., Grigor’yan [6]). This finishes the proof. �

4. Recurrence and transience

Our next goal is to prove Theorem 1.3. To do this, we shall need a result due
to Epstein [4], which describes when a covering of a finitely punctured com-
pact Riemann surface is either transient or recurrent, in terms of the group
of deck transformations of the covering. Every Riemann surface Σ of genus
g with n + 1 > 0 punctures has the upper halfplane H = {z = (x, y) | y > 0}
as its universal covering (except in the cases g = 0 with n = 0, 1). The first
homology group H1(Σ) is given by Hc × He, where Hc = Z

2g is the first
homology group of the compactification of Σ after attaching its ends and
He = Z

n is generated by small loops around all the ends of Σ except one.
Now suppose Σ̃ → Σ is a conformal covering with deck transformation group
G = Z

k. Since G is abelian, G can be viewed as a subgroup of H1(Σ). Let
p be the rank of the projection of G over the factor He. In this setting,
Epstein [4] proved the following result.

(4.1) Σ̃ is transient for Brownian motion if and only if k + p ≥ 3.

Proof of Theorem 1.3. Suppose M ⊂ R
3 is a nonflat, k-periodic, properly

embedded minimal surface such that M/G ⊂ R
3/G has finite topology. If

k = 3, then M is transient by Proposition 2.1. If k = 0, then M is recurrent
by the main result in [14], since it has finite genus. Now assume k = 1.
By Theorem 1 in [18], M/G is conformally a finitely punctured compact
Riemann surface. Let g ≥ 0 and n + 1 ≥ 2 be, respectively, the genus of
the compactification of M/G and the number of ends, respectively. We can
assume the universal covering of M/G is H (otherwise M is simply con-
nected, which implies it is a plane or helicoid, both of which are conformally
C). Since the transformation group of the covering M → M/G is Z, we have
p ≤ 1. Using (4.1), we deduce that M is recurrent.

Now suppose k = 2. By the description of the asymptotic geometry of
any doubly periodic properly embedded minimal surface with finite topology
quotient in Meeks and Rosenberg [17], the ends of M/G divide into two
families of parallel ends, all asymptotic to flat annuli (Scherk-type ends).
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Since the transformation group of the covering M → M/G is Z ⊕ Z, we
have k = 2 and p ≤ 2. When all the ends of M are parallel, then p = 1.
Otherwise, p = 2. Hence, k + p ≥ 3 and M is again transient by (4.1). Now
Theorem 1.3 is proved. �

Remark 4.1. In the proof of Theorems 1.1 and 1.2, we used Theorem 2
in [8], to reduce the nonexistence of nonconstant bounded harmonic func-
tions on M , to the fact that M/G is recurrent. In [8], Lyons and Sullivan
give a similar result (Theorem 1) in order to deduce the nonexistence of
nonconstant positive harmonic functions on M , which needs compactness of
M/G. The hypotheses in their theorem cannot be weakened to recurrence,
since there exist Z-covers π : M̃ → M , where M is a recurrent Riemann sur-
face and M̃ does admit nonconstant positive harmonic functions. There is a
simple example of these covers which is specially appropriate for this article
since it is based on a complete embedded minimal surface in space. Con-
sider a doubly periodic Scherk minimal surface M ⊂ R

3. By Theorem 1.3,
M is transient for Brownian motion. Let p : M → M/T be the Z-covering
obtained modulo one of the translations T that leave M invariant, and let
x be a point in M/T . Since M/T has bounded curvature and R

3/T has
quadratic volume growth, we deduce that M/T has quadratic area growth.
Hence, M/T is recurrent and the same holds for Σ = (M/T ) − {x}. Then,
the restricted covering Σ̃ = M − p−1(x) → Σ has transformation group Z,
and Σ̃ admits as a positive harmonic function the restriction of the Green
function of M with pole at an arbitrary point of p−1(x).

5. Positive harmonic functions

Our main goal in this section is to prove Theorem 1.4, for which we will
use some well-known results about positive harmonic functions (see, for
instance, [9] and [10]). The first step in the study of the existence of non-
constant positive harmonic functions on a Riemann surface is to reduce to
a particular case of such functions.

Definition 5.1. Let M be a Riemann surface. A harmonic function h:
M → R

+ is called minimal if the only harmonic functions u : M → R
+ below

any constant multiple of h are multiples of h.

Proposition 5.2. If a Riemann surface M admits a positive nonconstant
harmonic function, then it admits a minimal nonconstant positive harmonic
function.
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Proof. Fix a point p ∈ M and consider the set H of all positive harmonic
functions having the value 1 at p. Clearly H is nonvoid (1 ∈ H) and convex.
A direct application of the Harnack inequality gives that H is compact in the
uniform topology on compact subsets of M . By the Krein–Milman theorem,
H equals the convex hull of the set of its extremal elements (recall that an
element h ∈ H is called extremal if whenever h = θh1 + (1 − θ)h2 for some
θ ∈ [0, 1] and h1, h2 ∈ H, then θ = 0 or θ = 1). By assumption, H does not
reduce to {1}, and hence there exists an extremal element h ∈ H, with h �= 1
(in particular, h is not constant). It remains to prove that h is a minimal
harmonic function. To see this, let u be a positive harmonic function with
u ≤ ch for some c > 0. After exchanging the constant c, we can assume
u ∈ H, and so the minimality of h reduces to checking that u = h. Since
ch − u is harmonic and nonnegative, the maximum principle implies that
either u = ch (hence c = 1 and u = h) or ch − u > 0 in M . Arguing by
contradiction, assume the last inequality holds. Evaluating at p, we have
c > 1. Now consider the functions u, (ch − u)/(c − 1), both in H. Since
1/c ∈ (0, 1) and

1
c
u +

(
1 − 1

c

)
ch − u

c − 1
= h,

we have written h as a nontrivial convex linear combination of u,
(ch − u)/(c − 1), which contradicts the extremality of h. �

Next, we give the outline of the proof of Theorem 1.4. Reasoning by con-
tradiction, we assume that our properly embedded minimal surface M ⊂ R

3

admits a nonconstant positive harmonic function and, therefore, a minimal
nonconstant positive harmonic function h. Recall that we are assuming
that M/G has finite topology. Note that G cannot reduce to the identity
map (otherwise M has finite topology and so, it is recurrent by Theorem 1
in [14]), and neither can it have rank 1 (in such a case, M is again recurrent,
now by Theorem 1.3) nor have rank 3 (by Proposition 2.1). Hence, we can
assume M is doubly periodic.

If the harmonic function h descended to M/G, we would obtain a con-
tradiction, since M/G has finite total curvature [17], and so, it is recur-
rent. The condition for h to descend is that h ◦ φ = h for every isometry
φ ∈ G. Instead of proving this equality, we will show a weaker condition,
namely

(5.1) h ◦ φ = c h in M,

where c is a positive number depending on φ ∈ G. This equality will imply
that the sum of log h with a certain coordinate function of M descends to
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M/G, and we will show that such condition implies h is constant, which is
the desired contradiction. The proof of Equation (5.1) follows by applying
the minimality of h, provided one has proved that for any φ ∈ G, there exists
c1 = c1(φ) > 0 such that

(5.2) h ◦ φ ≤ c1 h in M.

This inequality (5.2) will be proved in two steps: first on a compact set
W ⊂ M such that the closure of any component E of M − W is conformally
a halfspace. Secondly, we will work on any such component E, propagating
the inequality (5.2) from ∂E to the whole end E. Next, we enter into the
details of what we have briefly explained.

Lemma 5.3. Let φ : Σ → Σ be a holomorphic map on a Riemann surface Σ
that admits a hyperbolic metric. Suppose that there exists c = c(φ) > 0 such
that d−1(φ(x), x) ≤ c for all x ∈ Σ (here d−1 denotes hyperbolic distance).
Then, every positive minimal harmonic function h on Σ satisfies that h ◦ φ
is a multiple of h.

Proof. Given x ∈ Σ, fix a compact set K ⊂ Σ such that x, φ(x) ∈ K. By
the Harnack inequality, we have

h(φ(x)) ≤ sup
K

h ≤ c1 inf
K

h ≤ c1 h(x),

where c1 > 0 depends only on d−1(φ(x), x). Since d−1(φ(x), x) is bounded
for x ∈ Σ, we obtain a number c2 > 0 such that h ◦ φ ≤ c2h. Now the lemma
follows from the fact that h ◦ φ is positive harmonic and h is minimal. �

The main hypothesis in Lemma 5.3 is to have a control on the hyperbolic
distance in Σ. When Σ is the underlying Riemann surface of a complete
minimal surface of bounded Gaussian curvature in a complete flat three-
manifold, then it will be enough to bound the intrinsic distance on the
surface, as stated in the next result due to Yau [25].

Lemma 5.4. Let ds2 be a complete metric on a surface Σ, being conformal
to the hyperbolic metric ds2

−1. Assume the Gauss curvature of ds2 satisf ies
K ≥ −c for some c > 0. Then,

ds2
−1 ≤ c ds2.

Lemma 5.5 (Representation formula). Let Σ be a parabolic Riemann
surface with boundary and let u ≥ 0 be a continuous function on Σ, harmonic
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in Σ − ∂Σ. Let µp, p ∈ Σ − ∂Σ, be the harmonic measure on ∂Σ. Then,
there exists a continuous function v : Σ → [0,∞), harmonic on Σ − ∂Σ such
that v = 0 on ∂Σ and

u(p) =
∫

∂Σ
u dµp + v(p) ∀p ∈ Σ − ∂Σ.

Proof. Let ϕ : Σ → [0, 1] be a smooth cut-off function (i.e., ϕ = 1 on a com-
pact set Ω and has compact support) and let uϕ be the bounded continuous
function on Σ, harmonic on Σ − ∂Σ, given by

uϕ(p) =
∫

∂Σ
ϕu dµp.

Take an exhaustion of Σ by smooth relatively compact domains Ωk ↗ Σ.
Let uk be the solution of the Dirichlet problem

⎧⎪⎪⎨
⎪⎪⎩

∆uk = 0 in Ωk

uk = ϕu in ∂Ωk ∩ ∂Σ

uk = 0 in ∂Ωk − ∂Σ.

Then, uk ≤ uϕ (which is bounded). Since u ≥ 0, then {uk}k is monotonically
nondecreasing. Hence, the limit limk uk exists and is a bounded harmonic
function. Since Σ is parabolic, then limk uk is determined by its boundary
values, which coincide with those of uϕ. As uϕ is also bounded, we have
limk uk = uϕ. As uk ≤ u, taking limits, we have uϕ ≤ u, i.e.,

∫
∂Σ

ϕu dµp ≤ u(p), for all p ∈ Σ − ∂Σ.

Now let ϕ → 1, and note that Fatou’s lemma implies u is µp-integrable in
∂Σ and

u1(p) :=
∫

∂Σ
u dµp

is a harmonic function that coincides with u on ∂Σ, and u1 ≤ u. Now our
lemma follows by taking v = u − u1. �

Lemma 5.6. In the situation of Lemma 5.5, assume that Σ is conformally
{(x, y) | y ≥ 0}. Then, the function v in the representation formula is a
multiple of y.



Liouville-type properties 713

Proof. Let v : Σ → [0,∞) be a continuous function, harmonic on {y > 0} and
vanishing at {y = 0}. By the boundary maximum principle, the positivity of
v implies ∂v/∂y > 0 along the boundary. Let v∗ be its harmonic conjugate
function. So f = v + iv∗ is holomorphic and can be extended by Schwarz
reflection to the entire complex plane. Furthermore, f maps monotonically
the real axis into the the imaginary axis, and no points of C − R can be
mapped by f into iR. Therefore, f is linear and v is linear as well. �

Question 5.7. Is Lemma 5.6 true for the intersection of a properly
immersed minimal surface in R

3 with a closed halfspace and the harmonic
function v in the representation formula being a multiple of the height func-
tion over its boundary? By Theorem 3.1 in [2], such an intersection is
parabolic.

Proof of Theorem 1.4. The only case that remains open is when M ⊂ R
3

is a properly embedded doubly periodic minimal surface, invariant by the
group G generated by two independent translations, which we can assume
horizontal. Suppose M admits a nonconstant positive harmonic function h.
By Proposition 5.2, we can assume h is minimal.

Claim. For every φ ∈ G, there exists c = c(φ) > 0 such that h ◦ φ = c h
in M .

Proof of the claim. Fix φ ∈ G. Since h is positive, minimal and har-
monic, the claim follows if we prove that h ◦ φ ≤ c1 h in M , for some c1 > 0.

Consider a closed horizontal slab W ⊂ R
3 of finite width. Since M ∩

W is invariant by φ and W/G is compact, the function x ∈ M ∩ W �→
dM (φ(x), x) is bounded (here dM denotes intrinsic distance on M). Since
M/G has finite topology, it has finite total curvature, and so, it has bounded
curvature. Since M also has bounded curvature, Lemma 5.4 implies that
the hyperbolic metric on M is bounded from above by a multiple of the
induced metric on M (i.e., the restriction to M of the usual inner product
in R

3). Thus, the function x ∈ M ∩ W �→ d−1(φ(x), x) is bounded, where
d−1 denotes hyperbolic distance. In this situation, the proof of Lemma 5.3
gives that

(5.3) (h ◦ φ)(x) ≤ c1 h(x) for all x ∈ M ∩ W

for some c1 > 0.
We next show that we can propagate the inequality (5.3) to the ends

of M . Let E be the representative of an end of M , obtained after intersection
of M with the closed upper halfspace {x3 ≥ a} such that {x3 = a} ⊂ ∂W
(for the lower halfspace in the complement of W , the argument is the same).
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Note that E is parabolic and conformally a halfspace. Applying Lemmas 5.5
and 5.6, we find c2 ≥ 0 such that

(5.4) h(p) =
∫

∂E
h dµp + c2(x3(p) − a), for all p ∈ E − ∂E,

where dµp stands for the harmonic measure on ∂E associated to p ∈ E − ∂E.
If c2 > 0, then consider the nonnegative subharmonic function H : M →

[0,∞] equal to c2(x3(p) − a) on E and 0 elsewhere on M . Note that H ≤ h
on M and H is invariant under the translation τ ∈ G which leaves E invari-
ant. Consider the collection H of all nonnegative subharmonic functions on
M that lie below h and which are invariant under τ . Next, we check that
the Perron method can be applied to H. Take h1 ∈ H and a small disk D
in the interior of a fundamental domain of τ in M . Let Dτ be the τ -orbit of
D. Let h2 be the harmonic function on Dτ with the same boundary values
as h1|∂Dτ

. Note that h2 ≥ h1 on the interior of Dτ and h2 is τ -invariant. By
the maximum principle, h2 lies below h|Dτ

since the boundary values of h2
lie below those of h and each component of Dτ is compact. Therefore, the
function h3 on M , which is equal to h1 on M − Dτ and equal to h2 on Dτ ,
lies in H, and so, the Perron method is applicable to H. Thus, the supre-
mum of H is a positive harmonic function v on M such that v ◦ τ = v and
H < v ≤ h. Since v descends to a nonconstant positive harmonic function
on M/〈τ〉 ⊂ R

3/〈τ〉, we contradict that M/〈τ〉 is recurrent by Theorem 1.1.
Thus, we may assume that c2 = 0. This means that

(5.5) h(p) =
∫

∂E
h dµp, for all p ∈ E − ∂E.

For p ∈ E − ∂E, Equation (5.5) gives

h(φ(p)) =
∫

∂E
h dµφ(p) =

∫
φ(∂E)

h dµφ(p) =
∫

∂E
(h ◦ φ)φ∗ dµφ(p)

=
∫

∂E
(h ◦ φ)dµp

(5.3)
≤ c1

∫
∂E

h dµp
(5.5)
= c1 h(p),

and the claim is proved. Now Theorem 1.4 follows directly from the above
claim and Proposition 5.8. �

Proposition 5.8. Let M ⊂ R
3 be a properly immersed doubly periodic

minimal surface and h : M → R
+ a positive smooth superharmonic func-

tion. If for any translation φ that leaves M invariant, there exists c(φ) > 0
such that h ◦ φ = c(φ)h in M , then h is constant.
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Proof. Take two independent translations φ1, φ2 that leave M invariant.
By hypothesis, log(h ◦ φi) = log h + log ci for certain ci > 0, i = 1, 2. Since
the periods of M in the directions of φ1, φ2 are independent, elementary
linear algebra gives a linear combination x of the coordinate functions x1, x2
associated to such period vectors, such that the periods of x in φ1, φ2 coincide
with those of log h. Then the function v = log h − x descends to the quotient
of M by the group G generated by φ1, φ2. Since h = ev+x is superharmonic
on M , we have

∆v + |∇v + ∇x|2 ≤ 0 in M/G.

Take a smooth nonnegative compactly supported function ϕ on M/G. Then

∫
M/G

ϕ2|∇v + ∇x|2 ≤ −
∫

M/G
ϕ2∆v = −

∫
M/G

ϕ2∆(v + x)

= 2
∫

M/G
ϕ〈∇ϕ, ∇v + ∇x〉 ≤ 2

∫
M/G

ϕ|∇ϕ||∇v + ∇x|

≤ 2

(∫
M/G

ϕ2|∇v + ∇x|2
)1/2 (∫

M/G
|∇ϕ|2

)1/2

.

After simplifying, we have

(5.6)
∫

M/G
ϕ2|∇v + ∇x|2 ≤ 4

∫
M/G

|∇ϕ|2.

Given 0 < t < s, take the cut-off function ϕ on M/G so that

ϕ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 in {|x3| ≤ t}
s − |x3|
s − t

in {t ≤ |x3| ≤ s}

0 in {s ≤ |x3|}.

Then (5.6) gives

∫
{|x3|≤t}

|∇v + ∇x|2 ≤ 4
(s − t)2

∫
{t≤|x3|≤s}

|∇x3|2

=
4

(s − t)2

∫
{t≤|x3|≤s}

div(x3∇x3)
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=
4

(s − t)2

(
s

∫
{|x3|=s}

∂x3

∂η
− t

∫
{|x3|=t}

∂x3

∂η

)

=
4

(s − t)2
(s + t) Flux(x3),

where Flux(x3) is the scalar flux of x3 along (M/G) ∩ {|x3| = s} (which does
not depend on s by the divergence theorem). Taking s → ∞, we conclude
∇v + ∇x = 0 in (M/G) ∩ {|x3| ≤ t} (and then in all of M/G after taking
t → ∞). Thus, v + x is constant in M/G and the same holds for h in M . �

6. a-Stable minimal surfaces

We first recall a well-known characterization of a-stable minimal surfaces,
essentially due to Fischer-Colbrie and Schoen [5] (in fact, the following state-
ment generalizes directly to operators ∆ + q, where q is a smooth function
on M).

Lemma 6.1. Let M be a complete minimal surface in a complete flat three-
manifold N . Then, the following conditions are equivalent:

1. M is a-stable.

2. There exists a positive solution u of ∆u − aKu = 0 on M.

3. There exists a positive solution u of ∆u − aKu ≤ 0 on M.

Proof. The equivalence between 1 and 2 is stated in Theorem 1 in [5], and
clearly 2 implies 3. It then remains to prove that 3 implies 1. Let v be a
compactly supported smooth function on M . Since u > 0 on M , the function
ϕ = v/u is smooth with compact support, and integration by parts give
∫

M
(|∇v|2 + aKv2) =

∫
M

(|∇(ϕu)|2 + aKϕ2u2)

=
∫

M
(−ϕu∆(ϕu) + aKϕ2u2)

=
∫

M
(−ϕ2u∆u − 2〈∇ϕ, ∇u〉ϕu − u2ϕ∆ϕ + aKϕ2u2)

≥ −
∫

M

(
1
2
〈∇(ϕ2),∇(u2)〉 + u2ϕ∆ϕ

)

=
∫

M
|∇ϕ|2u2 ≥ 0,

thus M is a-stable. �
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Proof of Proposition 1.5. Let M be an a-stable minimal surface in a
complete flat three-manifold N . By Lemma 6.1, there exists a smooth
positive function u on M such that ∆u = aKu. Since N is flat, then K
is nonpositive and so, u is superharmonic. Since we are assuming that M
is not flat, then K is negative at some point, and so, u cannot be constant.
Since the existence of such a nonconstant positive superharmonic function
on M is equivalent to the property that M is transient for Brownian motion,
our proposition is proved. �

Proof of Theorem 1.6. Suppose M is a complete, non totally geodesic, a-
stable minimal surface with finite genus in a complete flat three-manifold N .

If M does not have bounded curvature, then the Local Picture Theo-
rem on the Scale of Curvature (Theorem 1.3 in [12]) produces a sequence
of rescaled compact subdomains of M obtained as components of the inter-
section of M with appropriately chosen small extrinsic balls of N , and that
sequence converges Ck on compact subsets of R

3 with multiplicity one to
a connected properly embedded minimal surface M∞ ⊂ R

3 with �0 ∈ M∞,
|KM∞ | ≤ 1 on M∞ and |KM∞ |(�0) = 1 (here |KM∞ | denotes the absolute
Gaussian curvature of M∞). So, after possibly replacing M by such a local
picture dilation limit on the Scale of Curvature, we can assume that M has
bounded curvature (the a-stability property is preserved under smooth dila-
tion limits). By Proposition 1.5, to obtain a contradiction, we just need to
prove that M is recurrent for Brownian motion.

Since M is a complete embedded minimal surface of bounded curvature
in a flat three-manifold N and M is not totally geodesic, then M is proper
(the closure of M is a minimal lamination L of bounded curvature of N ;
if M were not proper, then L would have a limit leaf L and both L and
L would lift to a similar nonflat minimal lamination of R

3 with bounded
curvature and a limit leaf, which contradicts Theorem 1.6 in [19]).

If N is R
3, then M is recurrent for Brownian motion because it is prop-

erly embedded with finite genus (see Theorem 1 in [14]). Assume now that
M has finite genus and bounded curvature and N is not R

3. After lift-
ing to a finite cover, we may assume that N is R

3/Sθ, R
2 × S

1 or T
2 × R,

where Sθ is a screw motion symmetry of infinite order and T
2 is a flat two-

torus. Since a properly embedded minimal surface of bounded curvature
in a complete flat three-manifold has a fixed size embedded regular neigh-
borhood whose intrinsic volume growth is comparable to the intrinsic area
growth of the surface (i.e., the ratio of both growths is bounded above and
below by positive constants), then the intrinsic area growth of M is at most
quadratic since the volume growth of R

3/Sθ, R
2 × S

1 and of T
2 × R is at

most quadratic; see the proof of Theorems 1.1 and 1.2 in Section 3. Since M
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has at most quadratic area growth, it is recurrent for Brownian motion [6].
This completes the proof of Theorem 1.6. �

Following the lines in former sections, we are interested in natural rela-
tions between covering maps and the notion of a-stability. Some of these
relations are contained in the following result.

Lemma 6.2 (a-stability lemma). Let M ⊂ N3 be a complete minimal
surface in a complete flat three-manifold.

1. If M is a-stable, then any covering space of M is also a-stable.

2. If M is a-unstable and M̃ is a covering space of M such that the com-
ponents of the inverse image of each compact subdomain of M have
subexponential area growth, then M̃ is also a-unstable (for example,
if M̃ is a finitely generated abelian cover, then it satisfies this sub-
exponential area growth property).

Proof. As a-stability is characterized by the existence of a positive solution
on M of ∆u − aKu = 0, then item (1) follows directly by lifting u to M̃ .

We now consider statement (2). First note that since M is a-unstable,
there exists a smooth compact subdomain Ω ⊂ M such that the first eigen-
value λ1 of the a-stability operator ∆ − aK is negative. Denote by v the first
eigenfunction of the a-stability operator for Ω with zero boundary values.
Therefore, ∆v − aKv + λ1v = 0, with λ1 < 0.

Let Ω̃ ⊂ M̃ be the pullback image of Ω by the covering map π : M̃ → M
and let u = v ◦ π be the lifted function of v on Ω̃. Thus,

(6.1) ∆u − aKu + λ1u = 0 in Ω̃, and u = 0 in ∂Ω̃.

Let ϕ be a compactly supported smooth function on M̃ . Arguing as in the
proof of Lemma 6.1, Equation (6.1) implies

∫
˜Ω
(|∇(ϕu)|2 + aKϕ2u2) =

∫
˜Ω
(λ1ϕ

2u2 + |∇ϕ|2u2).

Reasoning by contradiction, assume that M̃ is a-stable. Then, the last
integral is nonnegative, and we conclude that

(6.2) −λ1

∫
˜Ω

ϕ2u2 ≤
∫

˜Ω
|∇ϕ|2u2.

Denote by r : M̃ → [0,∞) the Riemannian distance to a fixed point q ∈ M̃
and B(R) = {r ≤ R} the corresponding intrinsic geodesic ball. Consider the
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cut-off Lipschitz function ϕR, defined by

ϕR =

⎧⎪⎪⎨
⎪⎪⎩

1 in B(R),

0 in M̃ − B(R + 1),

R + 1 − r in B(R + 1) − B(R).

By a standard density argument, we can take ϕ = ϕR in (6.2) and obtain,
for almost any R > 0,

−λ1

∫
˜Ω∩B(R)

u2 ≤
∫

˜Ω∩B(R+1)
u2 −

∫
˜Ω∩B(R)

u2,

which is impossible as the hypothesis implies that the function

R �−→
∫

˜Ω∩B(R)
u2.

has at least exponential growth. This fact together with the boundedness
of u and the subexponential growth of the area of Ω̃ ∩ B(R) lead to a con-
tradiction. This proves the lemma. �

Our next goal is to prove Theorem 1.8 stated in the introduction. To
do this, we first recall some definitions and results from [12]. A dilation
d : R

3 → R
3 is a conformal diffeomorphism that can be expressed uniquely

by d(x) = λ(x − p) for some p ∈ R
3 and positive number λ. The space D(M)

of dilation limits of a properly embedded minimal surface M ⊂ R
3 is the set

of properly embedded nonflat minimal surfaces Σ ⊂ R
3 which are smooth

limits on compact sets in R
3 of a divergent sequence of dilations of M (a

sequence of dilations dn(x) = λn(x − pn) is divergent if pn → ∞ as n → ∞).
A surface Σ ∈ D(M) is a minimal element if D(Σ) is a minimal (smallest)
D-invariant subset of D(M) (a subset ∆ ⊂ D(M) is D invariant if D(Σ′) ⊂
∆ whenever Σ′ ∈ ∆). The Dynamics Theorem for embedded minimal
surfaces (Theorem 1.6 in [12]) states that if M does not have finite total
curvature and if no surface in D(M) has finite total curvature, then there
exists a minimal element Σ ∈ D(M) which has bounded curvature and
Σ ∈ D(Σ). In particular, for such a Σ, there exists a divergent sequence
of dilations dn such that the surfaces Σ(n) = dn(Σ) converge smoothly to Σ
on compact subsets of R

3 and so, we call such a Σ quasi-dilation-periodic.

Proof of Theorem 1.8. Let M be a complete embedded nonflat a-stable
minimal surface in a complete flat three-manifold. By Theorem 1.6, M must
have infinite genus. Since a-stability is preserved under homotheties, limits
and taking finitely generated abelian covers (by part (2) of Lemma 6.2), the



720 William H. Meeks III, Joaqúın Pérez & Antonio Ros

Local Picture Theorem on the Scale of Curvature implies that there exists
a nonflat properly embedded a-stable minimal surface M1 ⊂ R

3 of bounded
curvature. By Theorem 1.6, such a surface M1 must have infinite genus.
In particular, M1 cannot have finite total curvature. Now consider the set
D(M1) of dilation limits of M1. Since any surface in D(M1) is a-stable,
the above argument shows that no surface in D(M1) has finite total curva-
ture. By the Dynamics Theorem, there exists a minimal element Σ ∈ D(M1)
with bounded Gaussian curvature, which is quasi-dilation-periodic. Since
Σ ∈ D(M1), then Σ is a-stable (so it has infinite genus by Theorem 1.6). To
finish the proof, it only remains to check that no such Σ is 1-periodic.

Reasoning by contradiction, assume Σ is invariant by a translation or
screw motion symmetry T . Since the volume growth of R

3/T is quadratic
and the proper surface Σ/T ⊂ R

3/T admits a regular neighborhood of posi-
tive radius, then Σ/T has at most quadratic area growth, and thus, it is
recurrent for Brownian motion. In particular, Σ/T is a-unstable. By part
(2) of Lemma 6.2, we deduce that Σ is also a-unstable, a contradiction. Now
Theorem 1.8 is proved. �

If we do not assume embeddedness, then there are nonflat complete
a-stable surfaces in R

3. The following lemma gives us a way to obtain some
of these.

Lemma 6.3. If a complete orientable minimal surface M in R
3 is simply

connected and its Gauss map omits three spherical values, then M is a-stable
for some a > 0 depending only on the omitted values.

Proof. We can assume that M is not flat, hence M is conformally the unit
disk (since the Gauss map of M omits three values). So, we can consider
on M the complete hyperbolic metric ds2

h of constant curvature −1. It
is known that for any compactly supported smooth function u, we have∫
M |∇hu|2 dAh ≥ 1/4

∫
M u2 dAh, where the length |∇hu| of the gradient of u

and the measure dAh are taken with respect to the metric ds2
h. On the other

hand, as the Gauss map N omits three values, we have that |∇hN | ≤ c for
some constant c depending only on the omitted values, see [22]. Therefore,
we obtain that

∫
M |∇hu|2 dAh ≥ 1/(4c2)

∫
M |∇hN |2u2 dAh, which, due to

the conformal invariance of the Dirichlet integral and using that |∇N |2 =
−2K, implies that M is (4c2)−1-stable. �

For instance, by Lemma 6.3, the universal covering M̃ of any doubly peri-
odic Scherk minimal surface M ⊂ R

3 is a-stable for some a > 0. Neverthe-
less, M itself is a-unstable for all values a > 0. In fact, this property remains
valid for any doubly periodic minimal surface, as shown in the next result.
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Proposition 6.4. Let M ⊂ R
3 be a properly immersed doubly periodic

nonflat minimal surface. Then, M is a-unstable for any a > 0.

Proof. Let G be the rank 2 group of translations leaving M invariant. Then,
M/G is a properly immersed minimal surface in R

3/G = T
2 × R. Since

the natural height function h : T
2 × R → R restricts to a proper harmonic

function on the ends of M/G, we deduce that M/G is recurrent for Brownian
motion. By Proposition 1.5, M/G is a-unstable. Since the covering M →
M/G is finitely generated and abelian, part (2) of Lemma 6.2 implies that
M is also a-unstable. �

Remark 6.5. Any complete embedded doubly periodic nonflat minimal
surface M ⊂ R

3 with finite topology in the quotient T
2 × R is transient

(by Theorem 1.3), which implies that there exists a nonconstant positive
superharmonic function u on M , although such a u cannot satisfy ∆u −
aKu ≤ 0 by Lemma 6.1 and Proposition 6.4. Finally, although M is not
recurrent, it comes close to satisfying that condition, since positive harmonic
functions on it are constant (by Theorem 1.4).
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