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An explicit formula for the Webster pseudo-Ricci
curvature on real hypersurfaces and its application

for characterizing balls in Cn

Song-Ying Li and Hing-Sun Luk

In the paper, we provide an explicit formula for computing the
Webster pseudo Ricci curvature, we also apply this formula to
obtain a theorem on characterizing balls by using area and pseudo
scalar curvature.

1. Introduction and main results

Let M be a (2n + 1)-dimensional CR manifold with CR dimension n. We
say that (M, θ) is a strictly pseudo-convex pseudo-Hermitian manifold in
the sense of Webster [29] if θ is a real one-form (contact form) on M , and
at each point of M , there is a neighborhood with a local basis θ1, . . . , θn for
the holomorphic cotangent space T 1,0 so that

(1.1) dθ = i hαβθα ∧ θβ,

where [hαβ] is a positive definite n × n matrix, determined by the Levi-form
Lθ on M . Here,

(1.2) Lθ(w, v) = −i dθ(w, v), w, v ∈ T1,0(M).

Let Rαβ be the Webster pseudo-Ricci curvature and let R = hαβRαβ be
the pseudo-scalar curvature. It is known that the contact form θ is neither
unique nor CR invariant, but lies in a conformal class (θf = efθ for some
smooth function f). There are many fundamental works done on CR man-
ifolds by different authors. We refer to the book of Baouendi et al. [1],
Beals et al. [2], Chang and Li [5], Chen and Shaw [6], Folland and Stein [10],
Huang [14], Webster [28, 29] and several papers of Jerison and Lee which
will be mentioned later on. Here, we will address a few major problems on
the Webster pseudo-Ricci curvature, which are related to the problems we
are interested in this paper.
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The CR Yamabe problem

Find a contact form θf so that the Webster pseudo-scalar curvature Rθf

with respect to θf is a given constant. The problem can be solved if the
variational equation

(1.3) λ(M) = inf
θ

λ(θ) = inf
θ

∫
M Rθ θ ∧ (dθ)n

(
∫
M θ ∧ (dθ)n)n/(n+1) ,

has a minimum. Much fundamental work has been done on the problem by
Jerison and Lee in [16, 17, 18], Gamara and Yacoub [11, 12]. In [16], Jerison
and Lee proved that λ(M) ≤ λ(S2n+1) and solved the CR Yamabe problem
for those M with λ(M) < λ(S2n+1) = n(n + 1). In particular, they proved
in [16] that if λ(M) = λ(S2n+1), then M is locally spherical. It suffices to
consider M = ∂D, where D is a smoothly bounded strictly pseudo-convex
domain in Cn+1. In addition, it was proved by Chern and Ji [8] that if D
is simply connected and local spherical then D must global spherical, or D
is biholomorphical to the unit ball in Cn+1. In this case, one can easily
construct a contact form θ with constant pseudo-scalar curvature (see for-
mula in Theorem 1.1 below). It was proved by Huang and Ji in [15] that if
M = ∂D is locally spherical, then D is biholomorphically equivalent to the
unit ball when M is algebraic; and a counterexample was constructed by
Burns and Schnider [3] that the algebraic condition cannot be replaced by
real analyticity. For the general case when λ(M) = λ(S2n+1), the CR Yam-
abe problem was solved by Gamara and Yacoub [12] and Gamara [11]. When
M = S2n+1, the contact form θ with λ(θ) = n(n + 1) was characterized by
Jerison and Lee [17].

The existence of pseudo-Hermitian Einstein metric

(M, θ) is said to be pseudo-Einstein if

(1.4) Rαβ =
(

1
n

)

R hαβ.

This problem was solved by Lee in his series of excellent works [20, 21], where
he gave a few characterizations for such manifolds. In particular, if there is a
non-vanishing holomorphic (n + 1)-form on M , then M is pseudo-Einstein,
which includes the boundary of strictly pseudo-convex domain in Cn+1.
In fact, the last result was obtained earlier by Luk in [27]. He showed
that the boundary of any smoothly bounded strictly pseudo-convex domain
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D = {ρ(z) < 0} with the contact form θ = (−i/2)(∂ρ − ∂ρ) generated by
the potential function ρ of the Fefferman metric is pseudo-Einstein.

Let u ∈ C2(D), and let H(u) denote the complex hessian matrix of u.
For any positive function f(z) ∈ C∞(D). The boundary value problem for
the Fefferman equation:

(1.5) J(ρ) = − det
[

ρ ρj

ρi ρij

]

≡ f(z) inD, ρ = 0 on ∂D,

and with U = − log(−ρ) being strictly plurisubharmonic in D has been
studied by many mathematicians. When D is a smoothly bounded strictly
pseudo-convex domain in Cn, the formal existence of such a solution was
first given by Fefferman in [9] when f ≡ 1 on D; existence and uniqueness
was proved by Cheng and Yau in [7] with ρ ∈ Cn+1+3/2(D) for f ∈ C∞(D).
Lee and Melrose in [22] gave an asymptotic expansion for ρ; in particular,
they showed ρ ∈ Cn+3−ε(D) for any ε > 0.

Main results

The best lower bound for the first positive eigenvalue of the sub-Laplace
∆b = Re (�b) where �b, is Kohn’s Laplacian acting on functions, was given
by Greenleaf [13] and Li and Luk in [26]. In the study of the eigenvalue prob-
lems, computability of the Webster pseudo-Ricci curvature is very impor-
tant. This leads us to one of the main purposes of the present paper: to
give an explicit formula for the Webster pseudo-Ricci curvatures and pseudo-
scalar curvature of ∂D for a major class of contact forms. In other words,
we will prove the following theorem.

Theorem 1.1. Let M be a smooth strictly pseudo-convex hypersurface in
Cn+1. Let U be a neighborhood of M , and let θ = (−i/2)(∂ρ − ∂ρ), where
ρ ∈ C3(U) is a defining function for M with J(ρ) > 0 in U . Then, for any
w, v ∈ T1,0(M), the Webster pseudo-Ricci curvature is given by the formula:

(1.6) Ric(w, v) = −
n+1∑

k,j=1

∂2 log J(ρ)
∂zk∂zj

wkvj + (n + 1)
det H(ρ)

J(ρ)
Lθ(w, v).

In particular, if log J(ρ) is pluriharmonic near ∂D, then

Ric(w, v) = (n + 1)
det H(ρ)

J(ρ)
Lθ(w, v) and R = n(n + 1)

det H(ρ)
J(ρ)

.

(1.7)
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The characterization for balls in Cn+1 is always an interesting subject
[8, 15, 19, 23, 29]. Formula (1.7) in Theorem 1.1 and the main theorem in
[23] on characterizing D to be a ball in Cn+1 lead us to the second main
purpose of this paper by using the pseudo-scalar curvature to characterize
a strictly pseudo-convex domain to be a ball. In order to state our result,
we let ρ0 be the unique plurisubharmoic solution of

(1.8) det H(ρ0) = J(ρ) in D, ρ0(z) = 0 on ∂D,

and let θ0 = 1/2i(∂ρ0 − ∂ρ0). The existence and uinqueness of such a smooth
ρ0 was given by Caffarelli et al. in [4]. We denote the areas of ∂D with
respect to θ and θ0 as Areaθ(∂D) (:=

∫
∂D θ ∧ (dθ)n) and Areaθ0(∂D)

(:=
∫
∂D θ0 ∧ (dθ0)n). Let us first look at the case when D is biholomor-

phic to a ball. If φ : D → Bn+1 is a biholomorphic mapping, then ρ(z) =
|φ(z)|2 − 1 solves the boundary value problem (1.5) with J(ρ) = | det φ′(z)|2
and log J(ρ) being pluriharmonic in D. In this case, the solution ρ0 of (1.8)
agrees with ρ. Moreover, using formula (1.6), one can compute easily that
the pseudo-scalar curvature Rθ = n(n + 1), where θ = 1/2i(∂ρ − ∂ρ). Thus,
we have

(1.9)
Rθ

Areaθ(∂D)
=

n(n + 1)
Areaθ0(∂D)

.

Conversely, we have the following theorem.

Theorem 1.2. Let D be a bounded strictly pseudo-convex domain in Cn+1

with smooth boundary. Let ρ ∈ C3(D) be a defining function for D with
J(ρ) ∈ C2(D) being positive and log J(ρ) being pluriharmonic in D. Let
M = ∂D and θ = (−i/2)(∂ρ − ∂ρ). Let θ0 = 1/2i(∂ρ0 − ∂ρ0), with ρ0 being
the unique plurisubharmonic solution for (1.8). Then

(i) If the Webster pseudo-scalar curvature Rθ satisfies

(1.10)
Rθ

Areaθ(∂D)
≥ n(n + 1)

Areaθ0(∂D)
,

then D must be biholomorphically equivalent to the unit ball in Cn+1.

(ii) If J(ρ) ≡ 1 on D and the Webster pseudo-scalar curvature Rθ satisfies
(1.10), then D must be biholomorphically equivalent to the unit ball in
Cn+1 under a constant Jacobian biholomorphic map.
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The paper is organized as follows. In Section 2, we will prove Theo-
rem 1.1. Moreover, we provide some details for computing quantities related
to the Webster pseudo-Ricci curvature of a general contact form. The proof
of Theorem 1.2 will be given in Section 3.

2. Pseudo-Ricci curvatures on hypersurfaces

Let M be a smooth hypersurface (of real dimension (2n + 1)) in Cn+1. Let
ρ ∈ C2(Cn+1) be a defining function for M : M = {ρ = 0} and ∂ρ �= 0 on
M . Let D = {z ∈ Cn+1 : ρ(z) < 0}. Let u be a C2 function on D, and we
let H(u) = [∂2u/∂zi∂zj ](n+1)×(n+1) be the complex Hessian matrix of u. We

use some notations in [24] and [25]. If H(u) is invertible, then we let [ukj ]
be the inverse of H(u)t so that

(2.1)
n+1∑

j=1

ukjupj =
n+1∑

k=1

u�ku�p = δkp.

Let uk = ∂u/∂zk, uj = ∂u/∂zj and

(2.2) |∂u|2u = ukjukuj , uj =
n+1∑

k=1

ujkuk and uj =
n+1∑

k=1

ukjuk.

Lemma 2.1. Let D be a strictly pseudo-convex domain in Cn+1with smooth
boundary M . Let ρ be a smooth defining function for D so that H(ρ) is
positive definite on M . Let

(2.3) θ =
1
2i

[∂ρ − ∂ρ], θk = dzk − ρk

|∂ρ|2ρ
∂ρ = dzk − hk∂ρ.

Then,

(2.4) θ = −i∂ρ = i∂ρ, dθ = i

n+1∑

k,�=1

ρk�θ
k ∧ θ�.

Proof. Since

ρjh
j =

ρjρ
j

|∂ρ|2ρ
=

ρjρ
jkρk

|∂ρ|2ρ
= 1,

n+1∑

k=1

ρkθ
k = ∂ρ − ∂ρ = 0 on M.
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Notice that since dρ = 0 on ∂D, we have ∂ρ = −∂ρ and θ = −i∂ρ = i∂ρ on
M . Therefore,

dθ = i∂∂ρ(z)

= i

n+1∑

j,k=1

ρkj dzk ∧ dzj

= i

n+1∑

j,k=1

ρkj θk ∧ dzj + i

n+1∑

j,k=1

ρkjh
k∂ρ ∧ dzj

= i

n+1∑

j,k=1

ρkj θk ∧ θj + i

n+1∑

j,k=1

ρkj hj θk ∧ ∂ρ + i

n+1∑

j,k=1

ρkj hk ∂ρ ∧ θj .

Then on M

n+1∑

k=1

n+1∑

j=1

ρkjh
jθk =

1
|∂ρ|2

n+1∑

k=1

n+1∑

j=1

ρkj

n+1∑

�=1

ρ�jρ�θ
k

=
1

|∂ρ|2
n+1∑

k=1

n+1∑

�=1

δk�ρ�θ
k

=
∑n+1

k=1 ρkθ
k

|∂ρ|2ρ
= 0.

We have proved that

(2.5) dθ = i

n+1∑

j,k=1

ρkj θk ∧ θj

and the proof of the lemma follows. �
Let M1 = {z ∈ M : ρn+1(z) �= 0}. Since

(2.6)
n+1∑

j=1

ρjθ
j = 0

we can write

θn+1 = −
n∑

k=1

ρk

ρn+1
θk.
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Then,

dθ = i

n∑

j,k=1

[

ρkj −
ρn+1 j ρk

ρn+1
−

ρkn+1 ρj

ρn+1
+ ρn+1n+1

ρkρj

|ρn+1|2

]

θk ∧ θj

:= i

n∑

α,β=1

hαβ θα ∧ θβ.(2.7)

Let

(2.8) Yj =
∂

∂zj
− ρj

ρn+1

∂

∂zn+1 , Y = i

n+1∑

j=1

(

hj ∂

∂zj
− hj ∂

∂zj

)

.

Then,

n∑

p=1

hβph
p =

n∑

p=1

[

ρβp − ρn+1pρβ

ρn+1
−

ρβn+1ρp

ρn+1
+ ρn+1n+1

ρβρp

|ρn+1|2

]

hp

=
ρβ

|∂ρ|2ρ
− ρβn+1h

n+1 − ρβ

|∂ρ|2ρ
+

ρn+1n+1ρβhn+1

ρn+1

+
n∑

p=1

[

−
ρβn+1

ρn+1
+ ρn+1n+1

ρβ

|ρn+1|2

]

ρph
p

= −ρβn+1h
n+1 +

ρn+1n+1ρβhn+1

ρn+1

+
[

−
ρβn+1ρβ

ρn+1
+ ρn+1n+1

ρβ

|ρn+1|2

]

(1 − ρn+1h
n+1)

= −
ρβn+1

ρn+1
+ ρn+1n+1

ρβ

|ρn+1|2

= −Yβ log ρn+1.

Moreover, for any f ∈ C1(M1), a standard computation [29] shows that

(2.9) df =
n+1∑

j=1

fj dzj + fj dzj =
n∑

j=1

(Yjf θj + Yjf θj) + Y (f)θ.
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Notice that θα = dzα − ihαθ. We have

dθα = −i dhα ∧ θ − ihα dθ

= −i dhα ∧ θ + hαhγβθγ ∧ θβ

=
n∑

γ=1

θγ ∧
(
hα

n∑

β=1

hγβθβ − iYγhαθ
)

+ θ ∧
( n∑

β=1

iY βhαθβ
)

=
n∑

γ=1

θγ ∧ ω′α
γ + θ ∧ τα,(2.10)

where

(2.11) ω′α
γ = hα

n∑

β=1

hγβθβ − i Yγhαθ, τα = i

n∑

β=1

Yβhαθβ

and

(2.12) τα = hαγτγ = −i

n∑

β=1

n∑

γ=1

hαγYβhγθβ =
n∑

β=1

Aαβθβ

with

(2.13) Aαβ = (−i)
n∑

γ=1

hαγYβ hγ .

The torsion of M with respect to θ (see (1.20) in Webster [28]) is defined as
follows:

(2.14) Tor(zαYα, wβYβ) = i(Aαβzαwβ − Aαβzαwβ).

Using the fact dθ = ihαβθα ∧ θβ on M1, one has

0 = ddθ

= dhαβ ∧ θα ∧ θβ + hαβ dθα ∧ θβ − hαβθα ∧ dθβ

= dhαβ ∧ θα ∧ θβ + hαβ[(θγ ∧ ω′α
γ + θτα) ∧ θβ − θα ∧ (θγ ∧ ω′β

γ + θ ∧ τβ)]

= (dhαβ − hγβω′γ
α − hαγω′γ

β
)θα ∧ θβ + θ ∧ τβ ∧ θβ − θ ∧ τα ∧ θα.

This implies that

(2.15) τα ∧ θα = 0 or Aαβ = Aβα
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and

(2.16) dhαβ − ω′
αβ

− ω′
βα

= dhαβ − hγβω′γ
α − hαγω′γ

β
= Aαβγθγ + Bαβγθγ ,

where

Aαβγ = Aγβα, Bαβγ = Aβαγ .

Then,

ω′
αβ

= hγβω′γ
α

= hγβ

(
hγ

n∑

k=1

hαkθ
k − iYαhγθ

)

= hβ

n∑

k=1

hαkθ
k − ihγβYαhγ θ(2.17)

and

(2.18) Aαβγ = Yγhαβ − hαhγβ.

If we let

ωαβ = ω′
αβ

+ (Yγhαβ − hαhγβ)θγ

= (Yγhαβ − hαhγβ)θγ + hβhαγθγ − ihγβYαhγθ(2.19)

and

(2.20) ωβα = (Yγhαβ − hβhαγ)θγ + hαhγβθγ + ihαγYβhγθ,

then

(2.21) dhαβ − hγβωγ
α − hαγωγ

β
= 0

and

(2.22) Yγhαβ − hαhγβ = Yαhγβ − hγhαβ.

Note. We should note that the purpose of changing ω
′β
α in (2.16) to ωβ

α in
(2.21) is to modify the connection so that it is compatible with the metric
induced by the Levi form (1.2).
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Let

(2.23) Ωα
β = dωα

β − ωγ
β ∧ ωα

γ − iθβ ∧ τα + iτβ ∧ θα.

Then,

Ωαβ = hγβΩγ
α

= hγβ[dωγ
α − ωk

α ∧ ωγ
k − iθα ∧ τγ + iτα ∧ θγ ]

= −dhγβ ∧ ωγ
α + dωαβ − ωk

α ∧ ωkβ − iθα ∧ τβ + iτα ∧ θβ

= −[hkβωk
γ + hγkω

k
β
] ∧ ωγ

α + dωαβ − ωk
α ∧ ωkβ − iθα ∧ τβ + iτα ∧ θβ

= −[ωγβ + ωβγ ] ∧ ωγ
α + dωαβ − ωk

α ∧ ωkβ − iθα ∧ τβ + iτα ∧ θβ

= dωαβ − ωβγ ∧ ωγ
α − iθα ∧ τβ + iτα ∧ θβ.(2.24)

We compute

dωαβ(mod θ, θp ∧ θq, θp ∧ θq)

= [−Y�Yγhαβ + Y�(hαhγβ) + Yγ(hβhα�)]θ
γ ∧ θ� + (Yγhαβ − hαhγβ) dθγ

+ hβhαγdθγ + hjβYαhjhγ�θ
γ ∧ θ�

= [−Y�Yγhαβ + Y�(hαhγβ) + Yγ(hβhα�) + hγ�hjβYαhj ]θγ ∧ θ�

+ (Yγhαβ − hαhγβ)hγ
n∑

k=1

hjkθ
j ∧ θk + hβhαγhγ

n∑

k=1

hkjθ
j ∧ θk

=
[

− Y�Yγhαβ + Y�(hαhγβ) + Yγ(hβhα�) + hγ�hjβYαhj

+ (Yjhαβ − hαhjβ)hjhγ� − hβhαkh
khγ�

]
θγ ∧ θ�

=
[

− Y�Yγhαβ + Y�(hαhγβ) + Yγ(hβhα�) + hγ�hjβYαhj

+ hγ�h
jYjhαβ − 2hβhαhγ�

]
θγ ∧ θ�

and

ωγ
α = hγ�ωα�

= hγ�(Yjhα� − hαhj�)θ
j + hγ�h�hαjθ

j mod θ

= (hγ�Yjhα� − hαδjγ)θj + hγhαjθ
j mod θ.

By (2.20), we have

(2.25) ωβγ = (Yphγβ − hβhpγ)θp + hγhpβθp mod θ.
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Thus,

ωβγ ∧ ωγ
α mod θ, θp ∧ θq, θp ∧ θq

= [(Yphγβ − hβhγp)θp + hγhpβθp] ∧ [(hγ�Yjhα� − hαδjγ)θj + hγhαjθ
j ]

= hγhpβhγhαjθ
p ∧ θj − (Yphγβ − hβhγp)(hγ�Yjhα� − hαδjγ)θj ∧ θp

= [hγhγhpβhαj − (Yjhγβ − hβhγj)(h
γ�Yphα� − hαδpγ)]θp ∧ θj

=
[
hγhγhpβhαj − hγ�YjhγβYphα� + hαδpγYjhγβ

+ hβhγjh
γ�Yphα� − hβhαhγjδpγ

]
θp ∧ θj

= [hγhγhpβhαj − hγ�YjhγβYphα� + hαYjhpβ + hβYphαj − hβhαhpj ]θ
p ∧ θj

= [hjh
jhγβhα� − hjqY�hjβYγhαq + hαY�hγβ + hβYγhα� − hβhαhγ�]θ

γ ∧ θ�.

Therefore,

(2.26) Ωαβ = Rαβγ�θ
γ ∧ θ� + θ ∧ λαβ

where

Rαβγ� = −Y�Yγhαβ + Y�(hαhγβ) + Yγ(hβhα�) + hγ�hjβYαhj

+ hγ�h
jYjhαβ − 2hβhαhγ� − hjh

jhγβhα�

+ hjqY�hjβYγhαq − hαY�hγβ − hβYγhα� + hβhαhγ�.(2.27)

Let

(2.28) g(z) = log det(hαβ), z ∈ M1.

Then, for 1 ≤ γ, � ≤ n, we have

Rγ� = hαβRαβγ�

= −hαβY�Yγhαβ + Y�(hγ) + hβY�(hγβ) + Yγ(h�) + hαYγ(hα�)

+ hγ�Yαhα + hγ�h
jYjg − 2hαhαhγ� − hjh

jhγ� + hαβhjqY�hjβYγhαq

− hβY�hγβ − hαYγhα� + hαhαhγ�

= −hαβY�Yγhαβ + hαβhjqY�hjβYγhαq + Y�(hγ) + Yγ(h�)

+ [Yαhα + hjYjg − 2hαhα]hγ�
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= −Y�Yγg(z) + Y�(hγ) + Yγ(h�) + [Yαhα + hjYjg − 2hαhα]hγ�

= −Y�Yγg(z) − Y�Yγ(log ρn+1) − YγY�(log ρn+1)

+ [Yαhα + hjYjg − 2hαhα]hγ�

= −Y�Yγg(z) − Y�Yγ(log |ρn+1|2) + [Y�, Yγ ](log ρn+1)

+ [Yαhα + hjYjg − 2hαhα]hγ�.

Since

[Y�, Yγ ] = −Y�

(
ργ

ρn+1

)

∂n+1 + Yγ

(
ρ�

ρn+1

)

∂n+1 = hγ�

[
∂n+1

ρn+1
− ∂n+1

ρn+1

]

,

(2.29)

we get

(2.30) [Y�, Yγ ](log ρn+1) =
(

ρn+1 n+1

|ρn+1|2
− ρn+1 n+1

ρ2
n+1

)

hγ�.

Lemma 2.2. With the notation above, one has the following identity

g(z) + log |ρn+1|2 = log det[hαβ] + log |ρn+1|2 = log[J(ρ) + ρ det H(ρ)].

(2.31)

Proof. Let ∂ρ = (∂1ρ, . . . , ∂n+1ρ) be viewed as a 1 × (n + 1) matrix. With
the notation |∂ρ|2ρ =

∑n+1
i,j=1 ρijρiρj , we have

J(ρ) = − det
[

ρ ∂ρ

(∂ρ)∗ H(ρ)

]

= −ρ det
(

H(ρ) − 1
ρ
(∂ρ)∗∂ρ

)

= −ρ det H(ρ)
(

1 − 1
ρ
|∂ρ|2ρ

)

.

Therefore,
J(ρ) + ρ det H(ρ) = detH(ρ)|∂ρ|2ρ.

For z0 ∈ M1, we discuss it in two cases:

(a) if ρj(z0) = 0 for all 1 ≤ j ≤ n, then

det H(ρ)|∂ρ|2ρ(z0) = |ρn+1|2 det[ραβ](z0) = |ρn+1|2 det[hαβ](z0),

and (2.31) holds.
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(b) if ρj(z0) �= 0 for some 1 ≤ j ≤ n, then we let

zj = wj , 1 ≤ j ≤ n; zn+1 = wn+1 −
n∑

α=1

ρα(z0)
ρn+1(z0)

n+1∑

j=1

ρj(z0)wj

and let r(w) = ρ(z(w)) and z0 = z(w0). Since det(∂z/∂w)(w0) = 1
and ∂r/∂wα(w0) = 0 for all 1 ≤ α ≤ n, one can easily see by the pre-
vious case that

det H(ρ)|∂ρ|2ρ(z0) = det H(r)|∂r|2r(w0) = |rn+1(w0)|2 det[rαβ](w0).

A simple computation shows that |rn+1(w0)|2 = |ρn+1(z0)|2 and for 1 ≤ α,
β ≤ n

∂2r

∂wα∂wβ
(w0) = ραβ(z0) −

ρn+1 βρα

ρn+1
−

ρα n+1

ρn+1
ρβ + ρn+1 n+1

ραρβ

|ρn+1|2
(z0) = hαβ(z0).

Therefore, det H(ρ)(z0)|∂ρ|2ρ(z0) = |ρn+1(z0)|2 det[hαβ(z0)], and the proof
is complete. �

Combining all the above, particularly (2.31) and that Y�, Yγ are tangen-
tial to M1, we have, on M1

Rγ� = −Y�Yγ(g + log |ρn+1|2) +
(

Yα(hα) + hαYα(g) − 2hαhα

+
ρn+1n+1

|ρn+1|2
− ρn+1 n+1

ρ2
n+1

)

hγ�

= −Y�Yγ(log J(ρ)) +
(

Yα(hα) + hαYαg(z) − 2hαhα

+
ρn+1n+1

|ρn+1|2
− ρn+1 n+1

ρ2
n+1

)

hγ�,(2.32)

where α is summing from 1 to n.
The main result for this section is the following proof of Theorem 1.1.
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The proof of Theorem 1.1. We first assume that H(ρ) is positive definite on
M . Since

(2.33)
n∑

α=1

n+1∑

k=1

ραkYα(ρk) =
n∑

α=1

n+1∑

k=1

ραk

(

ραk − ρα

ρn+1
ρn+1k

)

= n,

and

(2.34) Yγ(ραk) = −
n+1∑

p,q=1

ραqρpkYγ(ρpq),

we have, by hα = ρα/|∂ρ|2ρ,

|∂ρ|2ρ
n∑

α=1

Yα(hα) = ραkYα(ρk) + ρkYα(ραk) − hαYα(|∂ρ|2ρ)

= n − ρkρ
αqρpkYα(ρpq) − hαYα(|∂ρ|2ρ)

= n − |∂ρ|2ρραqhpYα(ρpq) − hαYα(|∂ρ|2ρ).(2.35)

Since J(ρ) = det H(ρ)(|∂ρ|2ρ − ρ), we have

ραqhpYα(ρpq) = ραqhpραpq − ραqhp ρα

ρn+1
ρn+1pq

= hp∂p log det H(ρ) − ρn+1qhpρn+1pq − ραqρα

ρn+1
hpρn+1pq

= hp∂p log det H(ρ) − hp ρn+1pq

ρn+1
(ρn+1qρn+1 + ραqρα)

= hp∂p log det H(ρ) − hp ρn+1pq

ρn+1
ρq

= hp∂p log J(ρ) − hp∂p log(|∂ρ|2ρ − ρ) − hp ρn+1pq

ρn+1
ρq,

where we sum p and q from 1 to n + 1 and α from 1 to n. Since
∑n+1

k=1 ρkh
k =

1, Yα log |∂ρ|2ρ = Yα log(|∂ρ|2ρ − ρ) and

1
ρn+1

∂n+1 log(|∂ρ|2ρ − ρ) =
1

ρn+1

∂

∂zn+1
log |∂ρ|2ρ − 1

|∂ρ|2ρ
on M1,
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we have

n∑

α=1

Yα(hα) =
n

|∂ρ|2ρ
− hp∂p log J(ρ) + hp∂p log(|∂ρ|2ρ − ρ) +

hpρqρn+1p q

ρn+1

− hαYα(log |∂ρ|2ρ)

=
n

|∂ρ|2ρ
− hp∂p log J(ρ) + hn+1∂n+1 log(|∂ρ|2ρ − ρ) +

hpρqρn+1p q

ρn+1

+
hαρα

ρn+1
∂n+1 log(|∂ρ|2ρ − ρ)

=
n

|∂ρ|2ρ
− hp∂p log J(ρ) +

∑n+1
p=1 ρph

p

ρn+1
∂n+1 log(|∂ρ|2ρ) − 1

|∂ρ|2ρ

+
∂n+1(ρpρqρp q)

|∂ρ|2ρ ρn+1
− ∂n+1(ρp) ρqρp q

|∂ρ|2ρρn+1
− ρp∂n+1(ρq)ρp q

|∂ρ|2ρ ρn+1

=
n − 1
|∂ρ|2ρ

− hp∂p log J(ρ) +
2

ρn+1
∂n+1 log(|∂ρ|2ρ) − ∂n+1(ρp) ρp

|∂ρ|2ρ ρn+1

− ρq∂n+1(ρq)
|∂ρ|2ρ ρn+1

=
n − 1
|∂ρ|2ρ

− hp∂p log J(ρ) +
2

ρn+1
∂n+1 log(|∂ρ|2ρ)

− ∂n+1(ρpρp) − ρpρn+1p

|∂ρ|2ρ ρn+1
− ∂n+1(ρqρ

q) − ρqρn+1q

|∂ρ|2ρ ρn+1

=
n − 1
|∂ρ|2ρ

− hp∂p log J(ρ) +
2

ρn+1
∂n+1 log(|∂ρ|2ρ) − 2

∂n+1 log |∂ρ|2ρ
ρn+1

+
ρpρn+1p + ρqρn+1q

|∂ρ|2ρ ρn+1

=
n − 1
|∂ρ|2ρ

− hp∂p log J(ρ) +
hp∂n+1(ρp) + hq∂n+1(ρq)

ρn+1

Since

hαYαg = hαYα(− log |ρn+1|2 + log J(ρ))

= −hα ραn+1

ρn+1
− hα ραn+1

ρn+1
+

hαρα

ρn+1

(
ρn+1n+1

ρn+1
+

ρn+1n+1

ρn+1

)

+ hαYα log J(ρ)
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and

(2.36) −hp∂p log J(ρ) +
n∑

α=1

hαYα log J(ρ) = − 1
ρn+1

∂n+1 log J(ρ),

we have

n∑

α=1

Yα(hα) + hαYαg(z) +
ρn+1n+1

|ρn+1|2
− ρn+1n+1

ρ2
n+1

=
n − 1
|∂ρ|2ρ

− 1
ρn+1

∂n+1 log J(ρ) +
hp∂n+1(ρp) + hq∂n+1(ρq)

ρn+1
− hα ραn+1

ρn+1

− hα ραn+1

ρn+1
+

hαρα

ρn+1

(
ρn+1n+1

ρn+1
+

ρn+1n+1

ρn+1

)

+
ρn+1n+1

|ρn+1|2
− ρn+1n+1

ρ2
n+1

=
n − 1
|∂ρ|2ρ

− 1
ρn+1

∂n+1 log J(ρ) +
hn+1ρn+1n+1

ρn+1
+

hn+1ρn+1n+1

ρn+1

+
(

− hα

ρn+1
ραn+1 +

hα

ρn+1
ρn+1α

)

+
hαρα

ρn+1

(
ρn+1n+1

ρn+1
+

ρn+1n+1

ρn+1

)

+
ρn+1n+1

|ρn+1|2
− ρn+1n+1

ρ2
n+1

=
n − 1
|∂ρ|2ρ

− 1
ρn+1

∂n+1 log J(ρ) +
ρn+1n+1

ρ2
n+1

+
ρn+1h

n+1ρn+1n+1

|ρn+1|2

+
(

− hα

ρn+1
ραn+1 +

hα

ρn+1
ρn+1α

)

+
hαρα

ρn+1

(
ρn+1n+1

ρn+1

)

+
ρn+1n+1

|ρn+1|2

− ρn+1n+1

ρ2
n+1

=
n − 1
|∂ρ|2ρ

− 1
ρn+1

∂n+1 log J(ρ) + 2
ρn+1n+1

|ρn+1|2
+ E(ρ),

where

E(ρ) :=
n∑

α=1

(

− hα

ρn+1
ραn+1 +

hα

ρn+1
ρn+1α

)

+ (hαρα − hαρα)
ρn+1n+1

|ρn+1|2

(2.37)

is a pure imaginary number.
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For 1 ≤ p, q ≤ n + 1, we let

Bpq :=
n∑

α,β=1

hαβραqρpβ.

Then,

Bpq =
n∑

α,β=1

(

ραβ −
ραρn+1β

ρn+1
−

ραn+1ρβ

ρn+1
+

ρn+1n+1

|ρn+1|2
ραρβ

)

ραqρpβ

=
n∑

β=1

ρpβ(δqβ − ρn+1βρn+1q) −
n∑

α=1

ρα

ρn+1
(δpn+1 − ρn+1n+1ρ

pn+1)ραq

−
n∑

β=1

ρβ

ρn+1
(δn+1q − ρn+1qρn+1n+1)ρ

pβ +
ρn+1n+1

|ρn+1|2
ραρβραqρpβ

and
n∑

α=1

hαhα|∂ρ|4ρ =
n∑

α,β=1

hαβhαhβ|∂ρ|4ρ

=
n+1∑

p,q=1

Bpqρpρq

=
n+1∑

p,q=1

ρpρq

n∑

β=1

ρpβ(δqβ − ρn+1βρn+1q)

−
n+1∑

p,q=1

ρpρq

n∑

α=1

ρα

ρn+1
(δpn+1 − ρn+1n+1ρ

pn+1)ραq

−
n+1∑

p,q=1

ρpρq

n∑

β=1

ρβ

ρn+1
(δn+1q − ρn+1qρn+1n+1)ρ

pβ

+
n+1∑

p,q=1

ρpρq
ρn+1n+1

|ρn+1|2
ραρβραqρpβ

=
n∑

β=1

ρβρβ − ρn+1ρn+1 + ρn+1n+1ρ
n+1ρn+1

−
n∑

α=1

ραρα +
n∑

α=1

ραρα
ρn+1

ρn+1
ρn+1n+1 −

n∑

β=1

ρβρβ

+
n∑

β=1

ρβρβ

ρn+1

ρn+1
ρn+1n+1 +

n∑

α,β=1

ραραρβρβ

ρn+1n+1

|ρn+1|2
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= −|∂ρ|2ρ +
ρn+1n+1

|ρn+1|2
ρn+1ρ

n+1ρn+1ρ
n+1

+

⎡

⎣
n∑

α=1

ραραρn+1ρn+1 +
n∑

β=1

ρβρβρn+1ρn+1

⎤

⎦ ρn+1n+1

|ρn+1|2

+
n∑

α,β=1

ραραρβρβ

ρn+1n+1

|ρn+1|2

= −|∂ρ|2ρ + |∂ρ|4
ρn+1n+1

|ρn+1|2
.

Therefore,

Y α(hα) + hαYαg(z) − 2hαhα +
ρn+1n+1

|ρn+1|2
− ρn+1n+1

ρ2
n+1

=
n − 1
|∂ρ|2ρ

− 1
ρn+1

∂n+1 log J(ρ) + 2
ρn+1n+1

|ρn+1|2
+

2
|∂ρ|2ρ

− 2
ρn+1n+1

|ρn+1|2
+ E(ρ)

=
n + 1
|∂ρ|2ρ

− 1
ρn+1

∂n+1 log J(ρ) + E(ρ).

Notice that Rαβ = Rβα, hαβ = hβα and E(ρ) = −E(ρ) (by (2.37), E(ρ) is
pure imaginary). By (2.32), we have

Rγ� =
1
2
(Rγ� + R�γ)(2.38)

= −1
2
(Y�Yγ + YγY�) log J(ρ)

+
(

n + 1
|∂ρ|2ρ

− 1
2

(
1

ρn+1
∂n+1 +

1
ρn+1

∂n+1

)

log J(ρ)
)

hγ�.

Since

Y�Yγ =
∂2

∂z�∂zγ
− ∂

∂z�

(
ργ

ρn+1
∂n+1

)

−
ρ�

ρn+1

∂2

∂zn+1∂zγ

+
ρ�

ρn+1
∂n+1

(
ργ

ρn+1
∂n+1

)
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=
∂2

∂z�∂zγ
+

[

−
ργ�

ρn+1
+

ργ

ρ2
n+1

ρn+1�

]

∂n+1 − ργ

ρn+1

∂2

∂zn+1∂z�

−
ρ�

ρn+1

∂2

∂zn+1∂zγ
+

ρ�

ρn+1

ργ n+1

ρn+1
∂n+1 −

ρ�

ρn+1

ργ ρn+1 n+1

ρ2
n+1

∂n+1

+
ρ�

ρn+1

ργ

ρn+1

∂2

∂zn+1∂zn+1

= −
hγ�

ρn+1
∂n+1 +

∂2

∂z�∂zγ
− ργ

ρn+1

∂2

∂zn+1∂z�
−

ρ�

ρn+1

∂2

∂zn+1∂zγ

+
ργρ�

|ρn+1|2
∂2

∂zn+1∂zn+1

we have

(2.39) Y�Yγ = −
hγ�

ρn+1
∂n+1 + Dρ

γ�
,

where

Dρ

γ�
=

∂2

∂z�∂zγ
− ργ

ρn+1

∂2

∂zn+1∂z�
−

ρ�

ρn+1

∂2

∂zn+1∂zγ
+

ργρ�

|ρn+1|2
∂2

∂zn+1∂zn+1 .

(2.40)

Then,

(2.41) hαβ = Dρ

αβ
(ρ), Dρ

βα = Dρ

αβ

and

(2.42) YβYα + YαYβ = −
hαβ

ρn+1
∂n+1 −

hαβ

ρn+1
∂n+1 + 2Dρ

αβ
.

By (2.38) and (2.42), we have

(2.43) Rαβ = −Dρ

αβ
log J(ρ) + (n + 1)

det H(ρ)
J(ρ)

Dρ

αβ
(ρ)

since J(ρ) = |∂ρ|2ρ(det H(ρ) − ρ).
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In order to prove (1.6), for any z0 ∈ M1, we let

w =
n+1∑

j=1

wj ∂

∂zj
, v =

n+1∑

j=1

vj ∂

∂zj
∈ (T1,0)z0(M).

Then,

(2.44)
n+1∑

j=1

wjρj(z0) =
n+1∑

j=1

vjρj(z0) = 0.

It is easy to see that

(2.45) w =
n∑

j=1

wjYj , v =
n∑

j=1

vjYj .

Thus,

Ric(w, v)(z0) =
n∑

α,β=1

Rαβwαvβ

= −
n∑

α,β=1

wαvβDρ

αβ
log J(ρ) + (n + 1)

det H(ρ)
J(ρ)

n∑

α,β=1

hαβwαvβ.(2.46)

Applying (2.45), we have

n∑

α,β=1

wαvβDρ

αβ
=

n∑

α,β=1

wαvβ ∂2

∂zα∂zβ
−

n∑

α,β=1

ρβ

ρn+1
wαvβ ∂2

∂zα∂zn+1

−
n∑

α,β=1

ρα

ρn+1
wαvβ ∂2

∂zn+1∂zβ

+
n∑

α,β=1

ραρβ

|ρn+1|2
wαvβ ∂2

∂zn+1∂zn+1

=
n∑

α,β=1

wαvβ ∂2

∂zα∂zβ
+

n∑

α=1

wαvn+1 ∂2

∂zα∂zn+1

+
n∑

β=1

wn+1vβ ∂2

∂zn+1∂zβ
+ wn+1vn+1 ∂2

∂zn+1∂zn+1

=
n+1∑

k,j=1

wkvj ∂2

∂zk∂zj
.(2.47)
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Similarly,

(2.48)
n∑

α,β=1

hαβwαvβ =
n+1∑

k,j=1

∂2ρ(z0)
∂zk∂zj

wkvj .

Combining (2.46), (2.47) and (2.48), we have proved formula (1.6).
In particular, if log J(ρ) is pluriharmonic near ∂D, then Dρ

αβ
log J(ρ) = 0,

and

(2.49) Rγ�(z0) = (n + 1)
det H(ρ)

J(ρ)
hγ�(z0).

This with (2.46) and (2.48) gives the formula (1.7). Therefore, Theorem 1.1
is proved when H(ρ) is positive definite at z0 ∈ M1.

Next, we consider the case when H(ρ) may not be positive definite.
Instead of ρ, we use r(z) = ρ + cρ2 with c > 0 being chosen so that H(r) is
positive definite on M . Moreover, the contact form θ remains the same if we
use r replacing ρ. Then (1.6) holds by replacing ρ by r. We will show the
right side is the same for ρ and for r. We know J(r) = J(ρ) on M . However,
J(r) will be different in D. Notice that

J(r) = |rn+1|2 det(hαβ(r)) − r(z) det(H(r))

and

hαβ(r) = rαβ −
rαn+1

rn+1
rβ −

rn+1β

rn+1
rα + rn+1n+1

rαrβ

|rn+1|2

= (1 + 2cρ)ραβ + 2cραρβ −
(1 + 2cρ)ραn+1 + 2cραρn+1

(1 + 2cρ)ρn+1
(1 + 2cρ)ρβ

−
(1 + 2cρ)ρn+1β + 2cρn+1ρβ

(1 + 2cρ)ρn+1
(1 + 2cρ)ρα

+ ((1 + 2cρ)ρn+1n+1 + 2c|ρn+1|2)
(1 + 2cρ)2ραρβ

(1 + 2cρ)2|ρn+1|2

= (1 + 2cρ)ραβ + 2cραρβ −
(1 + 2cρ)ραn+1 + 2cραρn+1

ρn+1
ρβ

−
(1 + 2cρ)ρn+1β + 2cρn+1ρβ

ρn+1
ρα

+ ((1 + 2cρ)ρn+1n+1 + 2c|ρn+1|2)
ραρβ

|ρn+1|2
= (1 + 2cρ)hαβ(ρ).
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Thus,

J(r) = (1 + 2cρ)n+2|ρn+1|2 det(hαβ(ρ)) − ρ(1 + cρ) det H(ρ + cρ2)

= (1 + 2cρ)n+2J(ρ) + (1 + 2cρ)n+2ρ(z) det(H(ρ))

− ρ(1 + cρ) det H(ρ + cρ2)

= (1 + 2cρ)n+2J(ρ) + ρ[det H(ρ) − det H(ρ + cρ2)] + O(ρ2)

= J(ρ) + ρ[2(n + 2)cJ(ρ) + det H(ρ) − det H(ρ + cρ2)] + O(ρ2).

It is easy to see from the definition that on M we have

Dr
αβ

= Dρ

αβ

and

Dr
αβ

log J(r) = Dρ

αβ
log J(ρ)

+
(

2(n + 2)c +
det H(ρ) − det H(ρ + cρ2)

J(ρ)

)

Dρ

αβ
(ρ)

Rαβ(r)(z0) = −Dr
αβ

log J(r) + (n + 1)
det H(r)

J(r)
(z)hαβ

= −Dρ

αβ
log J(ρ) − 2(n + 2)chαβ +

det H(r) − det H(ρ)
J(ρ)(z0)

hαβ(z)

+ (n + 1)
det H(r)

J(ρ)
hαβ(z)

= −Dρ

αβ
log J(ρ) + (n + 1)

det H(ρ)
J(ρ)

hαβ(z)

+
(n + 2)
J(ρ)

[det H(r) − det H(ρ) − 2c J(ρ)(z0)]hαβ(z0)

= −Dρ

αβ
log J(ρ) + (n + 1)

det H(ρ)
J(ρ)

hαβ(z0),

provided

(2.50) φ(c) = detH(ρ + cρ2) − det H(ρ) − 2cJ(ρ) ≡ 0.

Let z0 ∈ M1. Then, we will prove that (2.50) holds in the following two
cases:

(a) If detH(ρ)(z0) �= 0, then

det H(r)(z0) = det(H(ρ) + 2c∂ρ ⊗ ∂ρ) = detH(ρ)(1 + 2c|∂ρ|2ρ),
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where |∂ρ|2ρ = ρijρiρj(z0) (it may not be positive). Thus,

φ′(c) = detH(ρ)(z0)2|∂ρ|2ρ − 2J(ρ) = 2(J(ρ) − J(ρ)) = 0.

Thus,
φ(c) = φ(0) = 0

(b) If detH(ρ)(z0) = 0, then detH(ρ + ερ2)(z0) �= 0 for any ε > 0. Thus,

φ(c) = detH(ρ + ερ2 + (c − ε)ρ2) − 2cJ(ρ) − det H(ρ).

Thus,
φ′(c) = 2J(ρ + ερ2) − 2J(ρ), for any small ε > 0.

Let ε → 0+, we have φ′(c) = 0. Thus, φ(c) = φ(0) = 0. The proof of the
theorem is complete. �

Furthermore, we will show that the pseudo-scalar curvatures are the
same for those ρ with J(ρ) = 1 on M and for ρ0 with J(ρ0) = 1 in a neigh-
borhood of M .

Corollary 2.3. Let D be a strictly pseudo-convex domain in Cn+1 with
smooth boundary M . Let ρ0 be a defining function of D with J(ρ0) ≡ 1 in
a neighborhood U of M, and let ρ ∈ C3(D) be any defining function for D
with J(ρ) > 0 on D ∩ U and θ = (∂ρ − ∂ρ)/(2i). Then, for v, w ∈ T1,0(M),
we have two conclusions:

(a) If J(ρ) = 1 on M or J(ρ) = 1 + O(ρ0), then

(2.51) Ric(w, v) = (n + 1) det H(ρ0)Lθ(w, v).

(b) If log J(ρ) is pluriharmonic near M , then

(2.52) Ric(w, v) = (n + 1)
det H(ρ)

J(ρ)
Lθ(w, v).

Proof. We can write ρ = a(z)ρ0 with a �= 0 on M . Since 1 = J(ρ) =J(aρ0) =
an+2J(ρ0) on M , we have a ≡ 1 on M . Thus, we can write a(z) = 1 + bρ0(z)
and

(2.53) ρ(z) = ρ0(z) + b(z)ρ0(z)2.

It is not difficult to see that the last argument of the proof of the last theorem
remains true when c is a function (or since θ(ρ) = θ(ρ0) on M , they must
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have the same Ricci curvature). Therefore,

Rαβ(ρ) = (n + 1) det H(ρ0)hαβ.

This with (2.46) and (2.48) gives (2.51). Moreover, (2.52) follows directly
from (1.6) which we have proved. Therefore, the proof of the corollary is
complete. �

3. Proof of Theorem 1.2

In order to prove Theorem 1.2, we recall a theorem proved by Li (see The-
orem 1.1 in [23]). Let

(3.1) U(z) = − log(−ρ(z)), z ∈ D ⊂ Cn+1

be strictly plurisubharmonic in D. Let

(3.2) |∂U |2U =
n+1∑

i,j=1

U ijUiUj , H(U) = [Uij ]n×n, [U ij ] = (H(U)t)−1.

Then,

det H(ρ) = det H(−e−U )(3.3)

= e−(n+1)U det(H(U) − (∂U)∗(∂U))

= e−(n+1)U det(H(U))(1 − |∂U |2U )

and

(3.4) J(ρ)e(n+2)U = − det

[
−1 ∂U

(∂U)∗ H(U) − (∂U)∗(∂U)

]

= det H(U).

The following theorem is proved in [23]:

Theorem 3.1. Let D be a bounded strictly pseudo-convex domain in Cn+1

with smooth boundary. Let ρ ∈ C3(D) be a defining function for D with
J(ρ) > 0 and log J(ρ) being pluriharmonic in D. Then the following con-
clusions hold:

(i) The function det H(ρ)/J(ρ) attains its minimum over D at some point
in ∂D.



Webster pseudo-Ricci curvature 697

(ii) If

(3.5)
det H(ρ)

J(ρ)
≥ det H(ρ)(z0)

J(ρ)(z0)
, on ∂D,

for some z0 ∈ {z ∈ D : ρ(z) = min{ρ(w) : w ∈ D}}, then D is biholo-
morphically equivalent to the unit ball in Cn+1.

(iii) In addition to the condition (3.5), if we assume that J(ρ) ≡ 1 on D,
then D is biholomorphically equivalent to the unit ball in Cn+1 with a
constant Jacobian biholomorphic map.

We are ready to prove Theorem 1.2.

Proof. Let ρ0(z) be the plurisubharmonic solution of the Monge–Ampère
equation (given in [4]):

(3.6) detH(ρ0) = J(ρ) in D, ρ0 = 0 on ∂D.

Since log J(ρ) is pluriharmonic, by formula (2.43) or (1.6), we have

(3.7) Rθ = n(n + 1)
det H(ρ)

J(ρ)
, on ∂D.

Combining this with assumption (1.9) (Areaθ(∂D) =
∫
∂D θ ∧ (dθ)n), we have

(3.8)
det H(ρ)

J(ρ)
≥

∫
∂D θ ∧ (dθ)n

∫
∂D θ0 ∧ (dθ0)n

, on ∂D.

We claim that

(3.9)
det H(ρ)

J(ρ)
= constant on D.

In fact, since log J(ρ) is pluriharmonic, by main theorem in [23] stated in
Theorem 3.1, we have that det H(ρ)/J(ρ) attains its minimum over D at
some point in ∂D. Thus, (3.8) holds for all z ∈ D. Suppose that (3.9) fails,
then there exist z0 ∈ D and δ > 0 such that

(3.10)
det H(ρ)

J(ρ)
>

∫
∂D θ ∧ (dθ)n

∫
∂D θ0 ∧ (dθ0)n

in B(z0, δ).
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Let

(3.11) θs =
1
2i

n+1∑

j=1

(zj dzj − zj dzj).

Then, by Stokes’ theorem,

∫

∂D
θ0 ∧ (dθ0)n =

∫

D
(dθ0)n+1 =

∫

D
det H(ρ0)(dθs)n+1 =

∫

D
J(ρ)(dθs)n+1.

(3.12)

By the fact that (3.8) holds for all z ∈ D and Stokes theorem

C =
∫

∂D
θ ∧ (dθ)n

=
∫

D
(dθ)n+1

=
∫

D
det H(ρ)(dθs)n+1

=
∫

D

det H(ρ)
J(ρ)

J(ρ)(dθs)n+1

>
C

∫
∂D θ0 ∧ (dθ0)n

∫

D
J(ρ)(z)(dθs)n+1

=
C

∫
∂D θ0 ∧ (dθ0)n

∫

∂D
θ0 ∧ (dθ0)n

= C.

This is a contradiction. Therefore,

(3.13)
det H(ρ)

J(ρ)
= constant =

∫
∂D θ ∧ (dθ)n

∫
∂D θ0 ∧ (dθ0)n

.

By Theorem 3.1 and (3.13), there is a biholomorphic map φ from D onto
Bn+1, the unit ball in Cn+1.

In addition, J(ρ) ≡ 1, then Theorem 3.1 and (3.13) imply that there is
a biholomorphic map φ : D → Bn+1 so that det φ′(z) ≡ c, a constant. This
completes the proof of Theorem 1.2. �
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