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An explicit formula for the Webster pseudo-Ricci
curvature on real hypersurfaces and its application
for characterizing balls in C"

SONG-YING L1 AND HING-SuUN LUK

In the paper, we provide an explicit formula for computing the
Webster pseudo Ricci curvature, we also apply this formula to
obtain a theorem on characterizing balls by using area and pseudo
scalar curvature.

1. Introduction and main results

Let M be a (2n + 1)-dimensional CR manifold with CR dimension n. We
say that (M,0) is a strictly pseudo-convex pseudo-Hermitian manifold in
the sense of Webster [29] if 6 is a real one-form (contact form) on M, and
at each point of M, there is a neighborhood with a local basis ', ..., 6" for
the holomorphic cotangent space 719 so that

_ih _gangB
(1.1) df =i h,50° A 0P,

where [h 3] is a positive definite n x n matrix, determined by the Levi-form
Ly on M. Here,

(1.2) Lo(w,v) = —idf(w,v), w,ve Tio(M).

Let Raﬁ be the Webster pseudo-Ricci curvature and let R = haﬁRaB be
the pseudo-scalar curvature. It is known that the contact form 6 is neither
unique nor CR invariant, but lies in a conformal class (05 = ef§ for some
smooth function f). There are many fundamental works done on CR man-
ifolds by different authors. We refer to the book of Baouendi et al. [1],
Beals et al. [2], Chang and Li [5], Chen and Shaw [6], Folland and Stein [10],
Huang [14], Webster [28,29] and several papers of Jerison and Lee which
will be mentioned later on. Here, we will address a few major problems on
the Webster pseudo-Ricci curvature, which are related to the problems we
are interested in this paper.
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The CR Yamabe problem

Find a contact form €y so that the Webster pseudo-scalar curvature Ry,
with respect to 0y is a given constant. The problem can be solved if the
variational equation

B o Jy RO A(dO)"
(13) M) =8 XO) =gt o gy

has a minimum. Much fundamental work has been done on the problem by
Jerison and Lee in [16, 17, 18], Gamara and Yacoub [11,12]. In [16], Jerison
and Lee proved that A\(M) < A(S?"*1) and solved the CR Yamabe problem
for those M with A(M) < A(S?"™1) = n(n + 1). In particular, they proved
in [16] that if A(M) = A(S?"™1), then M is locally spherical. It suffices to
consider M = 0D, where D is a smoothly bounded strictly pseudo-convex
domain in C"*!. In addition, it was proved by Chern and Ji [8] that if D
is simply connected and local spherical then D must global spherical, or D
is biholomorphical to the unit ball in C"*!. In this case, one can easily
construct a contact form 6 with constant pseudo-scalar curvature (see for-
mula in Theorem 1.1 below). It was proved by Huang and Ji in [15] that if
M = 9D is locally spherical, then D is biholomorphically equivalent to the
unit ball when M is algebraic; and a counterexample was constructed by
Burns and Schnider [3] that the algebraic condition cannot be replaced by
real analyticity. For the general case when A\(M) = A(S?"*1), the CR Yam-
abe problem was solved by Gamara and Yacoub [12] and Gamara [11]. When
M = S?"*1 the contact form 6 with A(#) = n(n + 1) was characterized by
Jerison and Lee [17].

The existence of pseudo-Hermitian Einstein metric

(M, 0) is said to be pseudo-Einstein if

(1.4) R = (;) Rh

This problem was solved by Lee in his series of excellent works [20, 21], where
he gave a few characterizations for such manifolds. In particular, if there is a
non-vanishing holomorphic (n + 1)-form on M, then M is pseudo-Einstein,
which includes the boundary of strictly pseudo-convex domain in C"*!.
In fact, the last result was obtained earlier by Luk in [27]. He showed
that the boundary of any smoothly bounded strictly pseudo-convex domain
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D = {p(z) < 0} with the contact form 6 = (—i/2)(0p — Jp) generated by
the potential function p of the Fefferman metric is pseudo-Einstein.

Let u € C%(D), and let H(u) denote the complex hessian matrix of u.
For any positive function f(z) € C*(D). The boundary value problem for
the Fefferman equation:

PPy

(1.5) J(p) = — det LZ o

] = f(z) inD, p=0on 9D,

and with U = —log(—p) being strictly plurisubharmonic in D has been
studied by many mathematicians. When D is a smoothly bounded strictly
pseudo-convex domain in C", the formal existence of such a solution was
first given by Fefferman in [9] when f =1 on D; existence and uniqueness
was proved by Cheng and Yau in [7] with p € C"*1*3/2(D) for f € C>°(D).
Lee and Melrose in [22] gave an asymptotic expansion for p; in particular,
they showed p € C"37¢(D) for any € > 0.

Main results

The best lower bound for the first positive eigenvalue of the sub-Laplace
Ay = Re (Op) where Oy, is Kohn’s Laplacian acting on functions, was given
by Greenleaf [13] and Li and Luk in [26]. In the study of the eigenvalue prob-
lems, computability of the Webster pseudo-Ricci curvature is very impor-
tant. This leads us to one of the main purposes of the present paper: to
give an explicit formula for the Webster pseudo-Ricci curvatures and pseudo-
scalar curvature of 9D for a major class of contact forms. In other words,
we will prove the following theorem.

Theorem 1.1. Let M be a smooth strictly pseudo-convex hypersurface in
C™". Let U be a neighborhood of M, and let 6 = (—i/2)(0p — dp), where
p € C3(U) is a defining function for M with J(p) > 0 in U. Then, for any
w,v € T1 (M), the Webster pseudo-Ricci curvature is given by the formula:

n+l 49
, _ 0°log J(p) 1. det H(p) _
1. =Y TP 4 (n 1)L _
(1.6)  Ric(w,?) 2 ks WU (n+1) 700) o(w,D)

In particular, if log J(p) is pluriharmonic near 0D, then

det H(p)

det H(p)
J(p) '

Ric(w,?) = (n + 1) J(p)

(1.7)

Ly(w,v) and R=n(n+1)
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The characterization for balls in C"™! is always an interesting subject
[8,15,19,23,29]. Formula (1.7) in Theorem 1.1 and the main theorem in
[23] on characterizing D to be a ball in C"*! lead us to the second main
purpose of this paper by using the pseudo-scalar curvature to characterize
a strictly pseudo-convex domain to be a ball. In order to state our result,
we let pg be the unique plurisubharmoic solution of

(1.8) det H(po) = J(p) in D, po(z) =0 on 9D,

and let 0y = 1/2i(0po — Opo). The existence and uinqueness of such a smooth
po was given by Caffarelli et al. in [4]. We denote the areas of 0D with
respect to 6 and 6y as Areag(dD) (:= [,,0 A (df)") and Areay, (9D)
(:= [5p 00 A (dbp)"). Let us first look at the case when D is biholomor-
phic to a ball. If ¢ : D — B, 41 is a biholomorphic mapping, then p(z) =
|¢(2)|? — 1 solves the boundary value problem (1.5) with J(p) = | det ¢/(z)|?
and log J(p) being pluriharmonic in D. In this case, the solution pg of (1.8)
agrees with p. Moreover, using formula (1.6), one can compute easily that
the pseudo-scalar curvature Ry = n(n + 1), where 8 = 1/2i(0p — dp). Thus,
we have

Ry _ n(n+1)
Areag(OD)  Areag, (OD)’

(1.9)

Conversely, we have the following theorem.

Theorem 1.2. Let D be a bounded strictly pseudo-convex domain in C"1
with smooth boundary. Let p € C3(D) be a defining function for D with
J(p) € C%(D) being positive and log J(p) being pluriharmonic in D. Let
M = 0D and 0 = (—i/2)(0p — Op). Let 0y = 1/2i(0po — Opo), with py being
the unique plurisubharmonic solution for (1.8). Then

(i) If the Webster pseudo-scalar curvature Ry satisfies

Ry S n(n+1)

(1.10) Areag(0D) ~ Areag, (0D)’

then D must be biholomorphically equivalent to the unit ball in C"H1.

(ii) If J(p) =1 on D and the Webster pseudo-scalar curvature Ry satisfies
(1.10), then D must be biholomorphically equivalent to the unit ball in
C™*! under a constant Jacobian biholomorphic map.
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The paper is organized as follows. In Section 2, we will prove Theo-
rem 1.1. Moreover, we provide some details for computing quantities related
to the Webster pseudo-Ricci curvature of a general contact form. The proof
of Theorem 1.2 will be given in Section 3.

2. Pseudo-Ricci curvatures on hypersurfaces

Let M be a smooth hypersurface (of real dimension (2n + 1)) in C*!. Let
p € C2(C™) be a defining function for M: M = {p =10} and dp # 0 on
M. Let D ={z € C"": p(2) <0}. Let u be a C? function on D, and we
let H(u) = [0%u/02'077](;41)x (n+1) De the complex Hessian matrix of u. We
use some notations in [24] and [25]. If H(u) is invertible, then we let [u*/]
be the inverse of H(u)! so that

n+l n+l
kj, _ _ Lk —
(2.1) E uHu,s = E U Uy = Ogp-
j=1 k=1

Let uy, = Ou/0z", uz = Ou/07z) and
n+1 n+1

(2.2)  |Oul? = ukjuku]f, u = Z qu“E and W = Z uFiuy.
k=1 k=1

Lemma 2.1. Let D be a strictly pseudo-convex domain in C" 1 with smooth
boundary M. Let p be a smooth defining function for D so that H(p) is
positive definite on M. Let

k
(2.3) 0= 2%,[8/) — dp), ok = dzk — P dp = d=F — hFap.

0p3
Then,
n+1 B
(2.4) 0 =—idp=1idp, do=iY p0° N6
k=1

Proof. Since

; % +1
p,hj:pjp’:pjp]kpﬁﬂ nz:pkﬂkzap—ap:() on M.
T oelz ool T &=
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Notice that since dp = 0 on dD, we have dp = —0p and § = —idp = idp on
M. Therefore,

df = i00p(z)
n+1 '
=1 Z Pij dzF A d7
Jik=1
n+1 A n+1 A
=iy p0 AdF +i Y pzhFop A dF
jk=1 jk=1
n+1 _ n+1 _ B n+1 _
=iy p 0 NG i > phI 0 NDp+i > pshFOpne.
k=1 Jik=1 jik=1
Then on M
n+1n+1 n+1n+1 n+1
kE_ Gk
D) DURTLEET 9 S L
k=1 j=1 k=1 j=1
n+1n+l
| |2 Z Z Orepet”
P =1 =
Zn—i—l pkek
~on2
=0.
We have proved that
n+1 B
— _pk j
(2.5) Ao =iY  pz 0" N0
jk=1
and the proof of the lemma follows. O

Let My ={z€ M : pp+1(2) # 0}. Since

n+1

(2.6) > pit? =0
j=1

we can write
n

en—i-l - _ Pk ek
e Pntl
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Then,
n
. Pn+15 Pk Prnt1P7 PEPT | ok 7
do =i [p-— - +o, | 0N
j;1 & Pn+1 Pr+1 n+1n+1\ﬂn+1|2
n
27) =i Y h50"A6°
a,f=1
Let
o pj 0 e B,
2.8 V= — — -2 Y =i W— —-hWW—
(2:8) 702 ppyr 0201 Z; 027 0z
Then,
. s PtipPs  Ppntilp P3Py
h *hﬁ: |:P __ Pn+lp . n+1Mp +p L D :|hp
pZ:; ” p=1 P b Pri P oy g |2
n+1
S NS S N PriingTPsh™"
0pf2 TP B Pt
n
Pl ps ] 7
+3y |- + i —— | pph?
; I: 1 n+1n+1 ’pn+1‘2 P
- PriingiPsh™
Bn+1 Pntl
PantiPs Ps ] nFT
|- s | (L= ™
[ p— pn+1n+1‘pn+1|2 ( nt1 )
_ _Pent1 PR P
;n+1 n+1n+1 |Pn+1 |2
= —Yplogppi

Moreover, for any f € C'(M), a standard computation [29] shows that

n+1 n

(29)  df =D fide + f;dZ = (V07 + Y5 07) + Y (£)0.

Jj=1 Jj=1
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Notice that 0% = dz® — th®8. We have

d0* = —idh™* N0 — ih® df
— i dhQ _ 8
= —idh /\<9+hah%8¢9“’/\9

n

- zn: o A (e zn: h0” = iV3ho0) + 0 (3 iV sho67)
y=1 B=1

B=1
(2.10) => 0TA+ONT
y=1
where
(2.11) W =0 h 07 —iY,he0, =i Y5hoo?
B=1 =1
and
(2.12) To =hag™) = =i Y Y haz¥ph10% = Aqg6”
p=1~v=1 p=1
with
(2.13) Aag = (1)) haz¥5h7.
y=1

The torsion of M with respect to 6 (see (1.20) in Webster [28]) is defined as
follows:

(2.14) Tor(2*Ya, w?Yp) = i(A52"0° — Agpzow?).

Using the fact df = ihagﬁa A 68 on M, one has

0= ddf
= dhy5 A0 A O7 + b5 d0° A0 — b, 50 A dOP
— dho5 NG AOP + hyg[(07 AW + 07 AP — 0% A (67 AWD + 0 A7)
= (dhyg — ho50'% = hase'T)0% A 07 +0 N5 NO7 — O NTo N O,

This implies that

(2.15) Ta NO* =0 or Aop = Aga
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and

(216) dh_— — w’f - WL = dhozﬁ — hwawlg - hoﬁw’l =A = §7 + BamQW,

« af Ba B aBy
where
Aapy = Agar Bapy = Agay-
Then,
2
waB o h’Yﬁw‘J
= hg (WD hogtF = iYah0)
k=1
k
(217) = hg haEQ - ’Lh,ygyah 0
k=1
and
(2.18) Aam =Y h,5 — hahﬁ.
If we let
(2.19) = (nyhag — hahyﬁ)m + hﬁhoﬁm — thBYahVG
and
(2.20) wgo = (Yah,g — hgha)07 + hah 507 + ihasY5h 70,
then
(2.21) dh,z — h, 5w — h@wg =0
and
(2.22) Y h,5 — hah. 5 =Yah 53— hyh, 3.

Note. We should note that the purpose of changing w.’ in (2.16) to wh in

(2.21) is to modify the connection so that it is compatible with the metric
induced by the Levi form (1.2).
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Let
(2.23) 5 =dwi — wg ANwS —ibg AT + it A O
Then,
Qg = hgtls
= h,5ldwy, —wk Aw] —i0o AT +iTo N O]
dh /\w +dw wk/\wkgfwa/\75+i7'a/\9§
:—[hﬁw +h,ykw]/\w7+dw w’;/\wkg—i%/\rgv%m/\@ﬁ
=—[wztws ] Awd +dw,5— wk Awyg — 0o A T5+iTa A b3
(224) =dw,z —wgz, Aw] —iba ATz +iTa A5
We compute
dw ,5(mod 8, 6% A 67, o7 A 07)
= [-YY h 5 + Yy(hah 5) + (hﬁhae)]eme’f (Yo h
+ highasdd? + hzYahih 507 A 0F
= [<YYyh 5+ Yi(hah ) + Y, (hghyg) + bgh 5Yah?]07 A 6°

o5 — hah.5) 67

i A pk N J A pk
+ (Yyh5 — hah g)h” Z higt? A OF + hghahT Z hyz6" A0

[ VoY, h - +Y(hh 2+ (hﬁhae)—Fhwh]ﬂYh

+ (Vihog = hahg)hh g — hghgh"h |07 A 6°
— | = Yi¥ohg + Yilhaho5) + Yy (hghog) + hogh 5Yah?
+ B ghiYhog — 2hghah |07 A 6°
and

w) = hw of

= W (Yh,5 — hah )07 + B hsh,367 mod 0
= (W*Yjh 5 — ha8jy)07 + h7h, 567 mod 6.
v (2.20), we have

(2.25) wg, = (Yph,5 — hghyz)0F + hyh 567 mod 6.
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Thus,

wg., Awjmodf, 67 A9, N
= [(Yh.5 — hghyp)0 + hyh50°) A [(BYYh g — hadjs)07 + h7h,567)
= hyh 5h h56P A 6T — (Yh 5 — hahap) (WY5h,g — hadj,)07 A 07
= [hyhhghys — (Yih 5 — hgh ) (W Yph g — hadp))]6P A 67
= |hyh"h ghys — WYk 5Yoh g+ hadpy Yih 5
+ hgh W Yoh g — hishah, 56,67 A 67

_ Y Vo - o WY b — BB - 7
= [hyh Vb ghes — WY¥5h 5Yoh g + haYih 5 + hgYyh,s — hghah 5107 A 67

pB "oy
= [h; hi hﬁhaz - hﬁYzhﬁYvho@ + hoYzh 5t hEY’Yh o7 hBhah ’YZ] AN
Therefore,
— D _ ¢ _
(2.26) Qaﬁ = Rawm NO 4+ 0 A )\aﬁ
where

R, 5.7 = —YiYoh g+ Yi(hah g) + Yy (hghg) + hogh gYeh?

' ' yeiB
+ h'yzhjy}haﬁ - QhBhah,yz - hjhj h,yghaz
(227) + h]q}%hjﬁyyhag — hayvzh,yﬁ — hEYVhaZ + hﬁhah'y@
Let
(2.28) 9(z) =log det(h,5), =z € M.

Then, for 1 < ~,¢ < n, we have

Rop =R o5
= —hYYsh 5 + Yolha) + WYe(h 5) + Ys (hy) + Yy (hyg)
+h g Yah® + h gh?Yig — 2%hah g — hihh g+ W W IY5h 5V, hog
— WYh 5 — h*Yyh g+ b hah g
= —hPY3Y h 5 + P hTYsh 5Ys hag + Yo(hy) + Yy ()

+ [Yah® + W Yjg — 2h%ho]h g
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= —Y3Y,9(2) + Y(hy) + Yo (hy) + [Yah® + W Yjg — 2h%halh g
= —Y;¥,9(2) — Yg¥s(log prg) — Yy Y(log pn1)

+ [Yah® + WY;g — 2h%holh.;
= _YZYWQ(Z) - YZYW(IOg |pn+1’2) + [YZa Y, (log pnt1)

+ [Yah® + WY — 2h%halh ;.

Since

p Pz 8r an—l—l
e :_Yé< X )6"+1+Y” <pé>afm:hv€[ - _] :

Pn+1 | pm P
(2.29)
we get
(2.30) (Y5, Y,](log pni1) = (Pn+1n+1 _ Pn+1n+1> b
. , N _ .
o pn+1/? ,0721_’_1 e

Lemma 2.2. With the notation above, one has the following identity

g(2) + log | pns1]? = log det[h,5] + log \pnt1|? = log[J(p) + pdet H(p)].
(2.31)

Proof. Let 0p = (d7p, . .. , Ogggp) be viewed as a 1 x (n + 1) matrix. With
the notation lﬁplﬁ = Z?;r:ll pijpipj, we have

10 =~det[gf i)
= —p det <H (p) — ;(ap)*ap)

1
= —p det H(p) (1 - plé’pﬁ) :

Therefore,
J(p) + pdet H(p) = det H(p)[dpl>.

For 2° € M, we discuss it in two cases:
(a) if p;(2°) = 0 for all 1 < j < n, then
det H(p)|9pl3(20) = |pn+1]* det[p,5](20) = |pn+1]? det[h,g5](20),

and (2.31) holds.
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(b) if p;(2°) # 0 for some 1 < j < n, then we let

n+1

(=) Zpﬂ

. p
zj=wj, 1<j7<n Zngl = Wptl — Zpa
+1(

and let r(w) = p(z(w)) and 2° = z(w"). Since det(dz/0w)(w’) =1
and Or /0w, (w®) = 0 for all 1 < o < n, one can easily see by the pre-
vious case that

det H(p)|0pl3(=°) = det H(r)|or[}(w") = [rai1(w®)[? det[r 5] (w®).

A simple computation shows that |r,1(w?)|? = |pne1(2Y)|? and for 1 < a,
B<n

or 0 0y Pnt18Pa Panit

m(w )= pasle) Pnil Pt CARLET
_— =h =(z").
o) = )

Therefore, det H(p)(z°)|0p[5(z") = ]pn+1(zo)\2det[haﬁ(zo)], and the proof
is complete. ]

Combining all the above, particularly (2.31) and that Y7,Y,, are tangen-
tial to My, we have, on M,

Ry = Y g+ 1og i)+ (Yalh®) + 1Y) — 20,

+ i
|prni1]? P%Jrl

pn+1n+1 Pn+1n+1 > h -

—4ﬁW%ﬂMH<nw%+Wnﬂd—%%a

Pptinti Pn+1n+1
(2.32) + — )h 7
|Pns1|? P%+1 s

where « is summing from 1 to n.
The main result for this section is the following proof of Theorem 1.1.
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The proof of Theorem 1.1. We first assume that H(p) is positive definite on
M. Since

n n+l n n+l
P
23 S5l =33 7 (b ) =
it it Pn+1
and
_ ntl
(2.34) Y, (0™ == D 00" Y (o),
P,q=1

we have, by h® = pa/|8p\3,

0017 ZY (h*) = p™ Ya(pg) + ppYa(p"F) — h*Ya(|0p]2)

Wpaqppk Yo (ppg) — haYa(|aP’;2:)
(2.35) = 1~ 00207 Ya(ppa) — WYl |02,

Since J(p) = det H(p)(|8p\% — p), we have

q q q1p P
P hPY o (ppg) = p*IhP papg — pathp il Fn+lpg
n
_ aq
= hP9ylogdet H(p) — Pn+1thpn+1p6 ~ £ fa hP prt1pg
Pn+1
= WOy logdet H(p) — W2 (prtidp, o o0 )
Pn+1
= hPd,logdet H(p) — hpMpq
Pn+1
Pritpi g
= hPdylog J(p) — hP8,log(|0pl; — p) — hp;ifﬂq,
n

where we sum p and ¢ from 1 ton + 1 and « from 1 to n. Since ZZI% pph* =
1, Y, log |8p|/2) =Y, log(\ﬁp\% — p) and

1
Ont11og(|0pl5 — p) = log |0pl? —

Pn+1 Pn+1 aZn—&—l

1
o2 " M
P



we have

Sy i)
a=1

Since
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hPpip,iipa
— W28, log J(p) + hPd, log(|0p|2 — p) + —LLrt1ed

‘8 |2 Pn+1
— h*Y,(log |0pl3)
R 09 py1pe
5 — BP0y log J(p) + 10,41 log(|0p]% — p) + —L-Lrt1ed
|8 | Pn+1
hO{
o 011 10g(10p]2 — p)
n+1
n Z 1pph 9 1
— hPOylog J(p) + —F————0,11log(|0 - —
|8 |2 g ( ) Pl +1 g(| p|p) |8p|/2)
In+1(P" P Ppg) B Int1(P") P'Ppg _ PP On11(p?) ppg
|(9p|2 Pn+1 10pl2pn+1 0p12 pnt1
_n- 2 In1(") p
— hPd,log J O log(|0p[?) — 2P
‘a |2 g ( ) Pl +1 g(’ p’p) ‘ap|%pn+1
_ P7On+1(p?)
fap\%PnH
~n—1

2
=19, |2 — hPoplog J(p) + g +18n+1 log(lap],%)

On1(PP0p) = PPPut1p  Ons1(pgp?) — Plput1g

lap‘%)ﬂn—l-l - ’8,0‘,2;Pn+1
n—1 2 On+1log |0p|?

— P9, log J Ont1log(|0p)?) — 2—— 2
|8 |2 8J(p)+ Pn+1 +1 log(| p!p) Pn+1

PP Prt1p + Pl pntig
|8p|2pn+1
hpé?n hio,

‘8 | Pn+1

h*Yag = h®Yo(—10g |pns1|* + log J (p))
— _po Pan+1 _he Pan+1 + hapa <pn+1n+1 + pn+1n+1)

P41 Pny1 Pntl
+ Y, log J (p)

Pn+1 PrFi
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and
~ 1
(2.36) —hP0ylog J(p) + Z h*Y,log J(p) = — e Ont1log J(p),
a=1 n
we have

n PR
Z Ya(ha) + haYag(z) + pn+1n-i-21 . pnganrl
o—1 |prt1] Pn+1

n-1 1 hPOn11(pp) + h90n11(pq) Pant1
- \3p’,2; - 7/)71—5—1 On+1log J(p) + P — hpe -
_ hapam + h® pa <pn+1"+1 + pn+1n+1) + Pptinfl  Pntlntl
PrtT  Pntl \ Pntl PrFT |pn+1]? P
1 1 pntl hm -
_n —_ Bt log J(p) + Prn+1n+1 i Pp+in+l
|3P|p Pn+1 Pn+1 Pn+1
ha ha hcx 1 1 P -
+ <_pom+1+ pn—i—la) 4l (p”+ nt o4 ”*1”“>
Pry1 Pn+1 Pn+1 Pn+1 P
Prtingi  Pntintl
Pn+1 Pn+1 o
n—-1_ 1 priintt | Pagtl" Pt
:W_T&H—llogj(p)—'_ n2n = | r;n
P n+1 Pr+1 Pn+1
ha hE ha P - 0 R
+ <_pan+1 + pn+1a> + e < "*1”“) + ottt
Pr¥1 Pn+1 Pn+1 Prti |Pns1]
_ Pndlintl
972z+1
n—1 1 Prt1nF1
D logJ(p) + 2L p(p),
\8p]/2) Pn+1 " lpnt1]?

where

n _
B(p) = 3 [~ poer + o psim ) + (0 pa — W) 22T
p) = n+1pom+1 pn+1pn+1a Pa Pa |Pn+1|2

a=1

(2.37)

is a pure imaginary number.
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For1<p,g<n+1, welet

= i haﬁpaappﬁ.

a,f=1
Then,
n
PoaPpni13  PontiP3  Ppiinsi
By =) (paﬁ_ Py O L
a.f=1 Pn+1 Pyt Pry1]
n _ B n p - B
= 0765 = Py ) = D = (Gpntt = Ppyanrr?” )P
— Pn+1
B=1 a=1
7 Int1
3" Gnrq = 2"y )P %pawﬁ“qﬁ”ﬁ
B=1 Fn+41
and
n n _
4
S Hhaloplt = 3 o0
= a,B=1
n+1
= Z Bpappprg
P,q=1
n+1
-
= Z pp/ypr 08 — pn+1ﬁpn+ )
P,q=1
n+1 7 B
- Z PPWZ (Opnt1 — pn-s-lnT-lpanrl)Paq
pg=1
n+1 B -
- Z Pp[fz n+1q - pn+1qpn+1m)ppﬁ
p.g=1 _ n+l
n+1 p -
Int1
+ ) Zaay et "2 papgp™ o’
pq 1

= Z 0’05 = 0" it + g™ o

_Zp pcx"‘zp Pa pn+1n+1 Zp
Pn+

3 Prt1n¥l

—i—zp ,0/3 PanH + Z P%pap PBW
7/3 1
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Pn+in¥l 1l
= —[0pl; + %Pnﬂp v

p -
Z” T N e
5=1 |on+1]
ﬁ pn+1n+1
+ P pap’pz
ﬂzl ¢ ‘,0 —{-1|2
— _|9p|2 + |9p| EnctInFT
g ‘pn+1|2
Therefore,
Ya(ha) + haYag( ) 2hC¥h + pn+1n+1 pn+1n+1
|pn1]? P2y
i : PrtindT 2 Pnt1ntl
= -——5 — —Opt1log J(p) +2 ntlntl | _oPntindl | gy
o0ls pra ™ ol T Towl
n+1
- — ——0Op+1logJ + F .
0pl2  pnt1 ni110gJ(p) (p)

Notice that R,3 = Rga, h,g = hpa and E(p) = —E(p) (by (2.37), E(p) is
pure imaginary). By (2.32), we have

1 _
(2.38) sz = §<R72 + Rﬁy)
1
= —5 (7Y, + YY) log J (p)
n+1 1 1 1
- = On ——0—=)logJ 5
" ( 0pl2 2 (Pn+1 +F ) n“) o8 (p)) o
Since
0? 0 p 07 0?
Y= i 5 (7‘9n+1> -
Z'0z Z" \ Pn+1 Pt 027027
07
+ e%( Py 8n+1>
n+1 Pn+1
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0 Pt | Py p 0
- _ - _ + -1 = =
9zt 07 Pntl  PEiq Prtiz| Ot Prt1 02197
_ P 0’ Pz p’Yma_H_ Pz p7pn+1ma+1
. n n
P 0Z"1027  prgy ot PRl P
Pe_ Py 0’
,Ompn+1 8zn+1azn+1
_—LVZ On+1 + o P o _ o
Pn+1 mr 0zto2Y Pn+1 Ozn+197z¢ Pryi oz t1927
el 0’
|Pn+1|2 Hznt+lozn+l
we have
h«/Z
(2.39) Y;Y, = — On+1 + D",
Pn+1
where
D — > p * _m 0 Nl 02
e 0zt0z7 Pn+1 9z +19z¢ PrtT 9z t19z7 |pn+1 ’2 QznHlgzn+l’
(2.40)
Then,
(2.41) hys =D0(0). Dl =D
and
(2.42) YZY, +YY72—@8 1—237—1—22)”7
. gta atpg Pt n+ — n+1 aﬁ'

By (2.38) and

(2.43) R

(2.42), we have

det H(p) .,

=-D’_log J(p)+ (n+1) () ag(ﬂ)

afB af

since J(p) = [0pl3(det H (p) — p).
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In order to prove (1.6), for any zy € M, we let

n+1 8 n+1 .
w—z — U:ZUJ—E(TLO)ZO(M)
027 , 027
7j=1 7j=1
Then,
n+1 n+1
(2.44) ijpg (20) ZUJPJ(ZO) =
It is easy to see that
. w = wY;, wv= v!Y;.
2.45 'Y 'Y
j=1 J=1
Thus,
Ric(w, ) Z Raﬁw ik
7ﬂ 1
n n
detH
- _ a=BmPe
(2.46) =— > w7 D log J(p) + (n + 1)~ Z hozw”.
a,f=1 a,f=1
Applying (2.45), we have
n n
05 oy O
wo‘vBDp w® AL —
a,ﬁZ=1 ;1 ﬁzaﬁﬁ ,ﬁZ=1 PrTT 9zo9zn !
2
S
ofy Pt dz"+19zP
n
82
’ aﬁzl W 7 g
2
_ o= n+1
Q;IM aza(yﬁ + Z w oza9zn+1
n Z W0 0 4 gt 0
Zn+1azﬁ azn+la§n+1
n+1
(2.47) => w zkazJ

k,j=1
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Similarly,

; 5 N Pol0)
(2.48) > hoguwt’ = Z o VT
a,B=1 k,j=1
Combining (2.46), (2.47) and (2.48), we have proved formula (1.6).
In particular, if log J(p) is pluriharmonic near 9D, then DZB log J(p) =0,

and
det H(p)
J(p)

This with (2.46) and (2.48) gives the formula (1.7). Therefore, Theorem 1.1
is proved when H(p) is positive definite at zg € M;.

Next, we consider the case when H(p) may not be positive definite.
Instead of p, we use r(z) = p + cp? with ¢ > 0 being chosen so that H(r) is
positive definite on M. Moreover, the contact form 6 remains the same if we
use 7 replacing p. Then (1.6) holds by replacing p by r. We will show the
right side is the same for p and for r. We know J(r) = J(p) on M. However,
J(r) will be different in D. Notice that

(2.49) R 4(z0) = (n +1)

J(r) = |rag|? det(h,5(r)) — r(z) det(H(r))

and

ro— T 15 Tals
hog(r) =145 — QLH "5~ o + Tninti Bz
L) T'n+1 ‘Tn—i-l’

(1 + QCp)paTH + 26'00‘ n+1
(1+2cp)pyig

= (1+2¢p)p,5 + 2cpaps — (14 2cp)pz

(L4 2¢p)p, 115 + 2cpn+1p5
(1 + 2Cp)pn+1

(14 2¢p)pa

(1+ QCP)2PapB
+ (14 2¢p)pyy iz + 2¢lpna [°) (14 2¢p)?|pns1]?

(14 2¢p)ponst + 2¢pappst

= (1+2cp)pa3+20papg— Pz

PnF1
(L +2ep)p, 15+ 20pn+1pgp
(07
Pn+1
PaPg
+ (14 2¢p)py ygr + 2€lon i1 )
‘pn+1|

— (14 2ep)h,5(0)-
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Thus,

J(r) = (14 2¢p)" | 1| det(h,5(p)) — p(1 + cp) det H(p + cp?)
= (1426027 () + (1 + 2ep)"™2p(2) det (H ()
— p(1 + ¢cp)det H(p + cp?)
= (14 2¢p)"*2J(p) + pldet H(p) — det H(p + cp*)] + O(p”)
= J(p) + p[2(n + 2)cJ (p) + det H(p) — det H(p + cp?)] + O(p?).

It is easy to see from the definition that on M we have

T_ _— TP
’DQB = Daﬁ

and

D’ 5log J(r) = DZB log J(p)

€ — ae C 2
. <2(n+2)6+ det H(p) f(:)H(p+ P )) ()
R 5(r)(20) = —DZB log J(r) + (n + 1)W(z)haﬁ
= _DZB log J(p) —2(n+2)ch,5 + det Hg()p;(jj)t H(p) ho5(%)
+(n+ 1)%11&5(2)
= D’ log J(p) + (n + 1)‘163(%”)%(2)
+ 8 Do (1) — et H(p) — 26 J(p) ol
— D2 log J(p) + (0 + DI T ),
provided
(2.50) d(c) = det H(p + cp?®) — det H(p) — 2¢J(p) = 0.

Let z9 € Mj. Then, we will prove that (2.50) holds in the following two
cases:

(a) If det H(p)(z0) # 0, then

det H(r)(z0) = det(H (p) + 2cdp ® dp) = det H(p)(1 + 20\6p|/2,),
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where |9p|2 = pﬁpip]f(zo) (it may not be positive). Thus,

¢'(c) = det H(p)(20)2|0p[5 — 2 (p) = 2(J(p) — J(p)) = 0.

Thus,
¢(c) = ¢(0) =0
(b) If det H(p)(z0) = 0, then det H(p + €p?)(29) # 0 for any e > 0. Thus,

d(c) = det H(p + ep® 4 (c — €)p*) — 2¢J (p) — det H(p).

Thus,
¢ (c) =2J(p+ep®) —2J(p), for any small € > 0.
Let € — 07, we have ¢/(c) = 0. Thus, ¢(c) = ¢(0) = 0. The proof of the

theorem is complete. ]

Furthermore, we will show that the pseudo-scalar curvatures are the
same for those p with J(p) = 1 on M and for p° with J(p°) =1 in a neigh-
borhood of M.

Corollary 2.3. Let D be a strictly pseudo-convex domain in C* 1 with
smooth boundary M. Let p° be a defining function of D with J(p°) =1 in
a neighborhood U of M, and let p € C3(D) be any defining function for D
with J(p) >0 on DNU and 6 = (0p — dp)/(2i). Then, for v,w € Ty o(M),

we have two conclusions:
(a) If J(p) =1 on M or J(p) =1+ O(p°), then
(2.51) Ric(w,?) = (n + 1) det H(p°) Lo (w, D).
(b) Iflog J(p) is pluriharmonic near M, then

det H(p)
J(p)

Proof. We can write p = a(z)p° witha # 0on M. Since 1 = J(p) =J(ap’) =
a"*2J(p°) on M, we have a = 1 on M. Thus, we can write a(z) = 1 4 bp%(z
and

(2.53) p(2) = (=) + b(2)p"()".

It is not difficult to see that the last argument of the proof of the last theorem
remains true when c is a function (or since 0(p) = 0(p°) on M, they must

(2.52) Ric(w,v) = (n+1) Ly(w, ).
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have the same Ricci curvature). Therefore,

R 5(p) = (n+1)det H(p")h, 5.

«

This with (2.46) and (2.48) gives (2.51). Moreover, (2.52) follows directly
from (1.6) which we have proved. Therefore, the proof of the corollary is
complete. O

3. Proof of Theorem 1.2

In order to prove Theorem 1.2, we recall a theorem proved by Li (see The-
orem 1.1 in [23]). Let

(3.1) U(z) = —log(—p(2)), zeDcCrt!

be strictly plurisubharmonic in D. Let

71+1 — s
(32) UG =Y UUU;  HU) = [Ugluxn, [UY] = (HU)) ™
i,j=1
Then,
(3.3) det H(p) = det H(—e*U)
= e~ (DU Qet (H(U) — (BU)*(0U))
= e MU det(H(U))(1 - |0U )
and

-1 ou

(34) T = —det | s ) @uy @)

The following theorem is proved in [23]:

Theorem 3.1. Let D be a bounded strictly pseudo-convex domain in C"1
with smooth boundary. Let p € C3(D) be a defining function for D with
J(p) >0 and log J(p) being pluriharmonic in D. Then the following con-
clusions hold:

(i) The function det H(p)/J(p) attains its minimum over D at some point
in 0D.
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det H(p) _ det H(p)(z0)

) S I o "o

for some 29 € {z € D : p(z) = min{p(w) : w € D}}, then D is biholo-
morphically equivalent to the unit ball in C™1.

(iii) In addition to the condition (3.5), if we assume that J(p) =1 on D,
then D is biholomorphically equivalent to the unit ball in C* ' with a
constant Jacobian biholomorphic map.

We are ready to prove Theorem 1.2.

Proof. Let po(z) be the plurisubharmonic solution of the Monge-Ampere
equation (given in [4]):

(3.6) det H(po) = J(p) in D, po=0 on dD.

Since log J(p) is pluriharmonic, by formula (2.43) or (1.6), we have

det H(p)
J(p)

Combining this with assumption (1.9) (Areag(9D) = [, 0 A (df)"), we have

(3.7) Ry =n(n+1) on 0D.

det H(p) - Jop 0 A (d6)"

, on 0D.
T0) = Jop o A (@)

(3.8)

We claim that

det H(p)

= constant on D.
J(p)

(3.9)

In fact, since log J(p) is pluriharmonic, by main theorem in [23] stated in
Theorem 3.1, we have that det H(p)/J(p) attains its minimum over D at
some point in D. Thus, (3.8) holds for all z € D. Suppose that (3.9) fails,
then there exist zp € D and é > 0 such that

det H(p) _ Jop 0 A (dO)"
J(p) Jop 00 A (do)"

(3.10) in B(z,0).
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Let
TR
(3.11) 0s = o ;(zj dzl — 27 d7).

Then, by Stokes’ theorem,

[ o () = /D (dfo)™+ = /D det, H (po) (df)" " = /D J(p)(d6s)™+
(3.12)

By the fact that (3.8) holds for all z € D and Stokes theorem

C=[ 0n(dO)"
oD

_ /D (do)"+!

= / det H(p)(dhs)" ™!
D

-/ det(H §”> J(p)(d8,)"+

J(p
faDao/\ (dbp)™ /D

0o N (db)
fap90/\ (dfo)™ /8D ¢ o)
=C.

n—l—l

This is a contradiction. Therefore,

(3.13) det H(p) = constant = M.
J(p) Jop 0o A (dfo)™
By Theorem 3.1 and (3.13), there is a biholomorphic map ¢ from D onto
By +1, the unit ball in (olany
In addition, J(p) = 1, then Theorem 3.1 and (3.13) imply that there is
a biholomorphic map ¢ : D — By, 11 so that det ¢/(z) = ¢, a constant. This
completes the proof of Theorem 1.2. O
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