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A remark on lower bound of Milnor number and
characterization of homogeneous hypersurface

singularities
Ke-Pao Lin, Xi Wu, Stephen S.-T. Yau and Hing-Sun Luk

Let f : (Cn+1, 0) → (C, 0) be a holomorphic germ defining an iso-
lated hypersurface singularity V at the origin. Let µ and ν and pg

be the Milnor number, multiplicity and geometric genus of (V, 0),
respectively. We conjecture that µ ≥ (ν − 1)n+1 and the equality
holds if and only if f is a semi-homogeneous function. We prove
that this inequality holds for n = 1, and also for n = 2 or 3 with
additional assumption that f is a quasihomogeneous function. For
n = 1, if V has at most two irreducible branches at the origin,
or if f is a quasi-homogeneous function, then µ = (ν − 1)2 if and
only if f is a homogeneous polynomial. For n = 2, if f is a quasi-
homogeneous function, then µ = (ν − 1)3 iff 6pg = ν(ν − 1)(ν − 2)
iff f is a homogeneous polynomial after biholomorphic change
of variables. For n = 3, if f is a quasi-homogeneous function,
then µ = (ν − 1)4 iff 24pg = ν(ν − 1)(ν − 2)(ν − 3) iff f is a homo-
geneous polynomial after biholomorphic change of variables.

1. Introduction

Since the fundamental work of Milnor [1] on isolated hypersurface singular-
ities, a principal tool in the study of topology of isolated singularities has
been the Milnor fibration of the singularity. Let f : (Cn+1, 0) → (C, 0) be
a holomorphic germ defining an isolated hypersurface singularity so that
for local coordinates (z0, z1, . . . , zn) the partials ∂f/∂zi do not simultane-
ously vanish in a punctured neighborhood of zero. Milnor associates to f a
fibration, defined for ε > 0 and δ > 0 sufficiently small,

f−1(D∗
δ ) ∩ Bε −→ D∗

δ ,

where Bε denotes a ball of radius ε about 0 in C
n+1, Dδ denotes the

disk with radius δ about 0 in C and D∗
δ = Dδ\{0}. This fibration has
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fiber Vt = f−1(t) ∩ Bε, which is the Milnor fiber of the singularity V0 =
{z ∈ C

n+1 : f(z) = 0}. Then, Milnor proves:

Theorem 1.1 [1]. If f has an isolated singularity at 0, then for ε > 0 and
δ > |t| > 0 sufficiently small:

(1) The Milnor fibration is a smooth fiber bundle, with the diffeomorphism
type of the fiber Vt independent of ε and t.

(2) The Milnor fiber Vt is homotopy equivalent to the bouquet of spheres of
real dimension n, in particular, the Milnor fiber is (n − 1)-connected.

(3) The number of such spheres (which are the “vanishing cycles”) is called
the Milnor number and can be computed by the formula

µ(f) = µ(V0) =
dim C{z0, . . . , zn}

(∂f/∂z0, ∂f/∂z1, . . . , ∂f/∂zn)
.

Milnor number is an important tool to study the topology of singularity.
For example, Lê and Ramanujam [2] have proved the following important
theorem.

Theorem 1.2 [2, 3]. Let ft : (Cn+1, 0) → (C, 0) be a family of germs of
holomorphic maps, smoothly depending on the parameter t ∈ R

p. Suppose
that for any t, the Milnor number µt of the germs ft is finite and µt does not
depend on t. Suppose also that n �= 2. Then all the germs ft are topologically
equivalent.

Let G(i) be the Grassmannian of i-planes in C
n+1. Teissier [4] proves that

there exists a Zariski-open dense U (i) ⊆ G(i) such that µ(f/H) = µ(i)(f) for
all H ∈ U (i). Notice that µ(n+1)(f) = µ(f), µ(1)(f) = ν − 1, where ν is the
multiplicity of f at 0, and µ(0(f) = 1. Set µ∗(f) = (µ(n+1)(f), . . . , µ(1)(f),
µ(0)(f)).

Let λ : V → T be the germ of a flat deformation of the two-dimension
isolated hypersurface singularity (V, 0). We take T to be reduced. In [5],
Teissier introduced, for all dimensions, various notions of simultaneous res-
olution of λ. Namely, let Vt denote λ−1(t), the fiber above t in T .

Definition 1.3. The map germ
∏

: M → V is a very weak simultaneous
resolution of λ if for all sufficiently small representatives of λ, the germ

∏

has a representative, also denoted
∏

, such that

(i)
∏

is a proper modification map;
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(ii) λ ◦
∏

: M → T is a flat map;

(iii)
∏

t : Mt → Vt is a resolution of Vt for all t.

Definition 1.4. With the notation in Definition 1.3, consider V to have
dimension 2. Let A denote the exceptional set in M.

∏
is a weak simultane-

ous resolution if additionally the map induced by restriction λ̃ ◦
∏

: A → T
is simple, i.e., a locally trivial deformation.

Definition 1.5. With the notations in Definition 1.3 and Definition 1.4, let
L denote the singular locus of V. Consider

∏−1(L) as nonreduced analytic
space (with A as its underlying reduced space).

∏
is a strong simultaneous

resolution if in addition to (i), (ii) and (iii) in Definition 1.3, the map induced
by restriction λ̃ ◦

∏
:
∏−1(L) → T is simple.

The following beautiful theorem was proved by Laufer [6].

Theorem 1.6 [6]. Let λ : V → T, with T reduced, be a (flat) family of
isolated hypersurface two-dimensional singularities. Suppose that µ∗(Vt) is
constant as a function of t. Then λ has a strong simultaneous resolution.

It is clear that Milnor number is an important numerical invariant which
measures the complexity of the singularity. Therefore, it is desirable to give
a lower bound of the Milnor number.

Conjecture 1.7. Let f : (Cn+1, 0) → (C, 0) be a holomorphic germ defining
an isolated hypersurface singularity V = {z ∈ C

n+1 : f(z) = 0} at the origin.
Let µ and ν be the Milnor number and multiplicity of (V, 0), respectively.
Then

(1.1) µ ≥ (ν − 1)n+1,

and the equality in (1.1) holds if and only if f is a semi-homogeneous func-
tion (i.e., f = fν + g, where fν is a nondegenerate homogeneous polynomial
of degree ν and g consists of terms of degree at least ν + 1). Suppose that f
is a quasihomogeneous function, i.e., f ∈ (∂f/∂z0, . . . , ∂f/∂zn). Then the
equality in (1.1) holds if and only if f is a homogeneous polynomial (after a
biholomorphic change of coordinates).

The purpose of this paper is to prove the following theorems.
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Theorem 1.8. Let f : (C2, 0) → (C, 0) be a holomorphic germ defining an
isolated plane curve singularity V = {z ∈ C

2 : f(z) = 0} at the origin. Let
µ and ν be the Milnor number and multiplicity of (V, 0), respectively. Then

(1.2) µ ≥ (ν − 1)2.

Furthermore, if V has at most two irreducible branches at the origin, or if
f is a quasi-homogeneous function, then the equality in (1.2) holds if and
only if f is a homogeneous polynomial (after a biholomorphic change of
coordinates).

Theorem 1.9. Let f : (Cn+1, 0) → (C, 0) be a holomorphic germ defining
an isolated hypersurface singularity V = {z ∈ C

n+1 : f(z) = 0} at the origin.
Let µ, ν and τ = dim C{z0, . . . , zn}/(f, ∂f/∂z0, . . . , ∂f/∂zn) be the Milnor
number, multiplicity and Tjurina number of (V, 0), respectively. Suppose
µ = τ and n is either 2 or 3. Then

(1.3) µ ≥ (ν − 1)n+1,

and the equality in (1.3) holds if and only if f is a homogeneous polynomial
(after a biholomorphic change of coordinates).

2. Plane curve singularities

The purpose of this section is to prove Theorem 1.8 in the previous section
for plane curve singularities. Let (V, 0) ⊆ (C2, 0) be a singularity with r
irreducible components. It is well known that (see p. 574 of [7])

(2.1) µ =
∑

νi(νi − 1) − r + 1,

where νi runs through the multiplicities of the strict preimages of V at all
infinitely near points of 0 ∈ V . In particular,

(2.2) µ ≥ ν(ν − 1) − r + 1 = (ν − 1)2 + ν − r.

Since multiplicity of the singularity is bigger than or equal to the number
of irreducible components of the singularity (i.e., ν − r ≥ 0), (2.2) implies

(2.3) µ ≥ (ν − 1)2,

and the equality in (2.3) occurs if and only if (V, 0) can be resolved by one
quadratic transformation and ν = r. Observe that ν = r means that each
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irreducible component of (V, 0) is smooth. These irreducible components
intersect transversely because (V, 0) can be resolved by one quadratic trans-
formation. Therefore, by the hypothesis of Theorem 1.8, equality of (2.3)
occurs if and only if f is a homogeneous polynomial after a biholomorphic
change of coordinates.

3. Surface singularities

In this section, we shall prove Theorem 1.9 for surface singularities. Since
µ(f) = τ(f), by a theorem of Saito [8], f is a weighted homogeneous poly-
nomial after a biholomorphic change of coordinates. Xu–Yau’s theorem [9]
asserts that

(3.1) µ ≥ 6pg + ν − 1,

and the equality in (3.1) holds if and only if f is a homogeneous polynomial.
Observe that (3.1) can be rewritten as

(3.2) µ ≥ 6pg − ν(ν − 1)(ν − 2) + (ν − 1)3.

We claim that 6pg ≥ ν(ν − 1)(ν − 2). To see this, let us recall a beau-
tiful theorem of Merle and Teissier [10]. Let f(z0, . . . , zn) be a germ of
analytic functions at the origin such that f(0) = 0. Suppose f has an iso-
lated critical point at the origin. f can be developed in a convergent Taylor
series f(z0, . . . , zn) =

∑
aλzλ, where zλ = zλ0

0 · · · zλn
n . Recall that Newton

boundary Γ(f) is the union of the compact faces of Γ+(f), where Γ+(f) is
the convex hull of the union of the subsets {λ + (R+)n+1} for λ such that
aλ �= 0. Finally, let Γ−(f), the Newton polyhedron of f , be the cone over
Γ(f) with cone point at 0. For any closed face ∆ of Γ(f), we associate the
polynomial f∆(x) =

∑
λ∈∆ aλxλ. We say that f is nondegenerate if f∆ has

no critical point in (C∗)n+1 for any ∆ ∈ Γ(f), where C∗ = C − {0}. We
say that a point p of the integral lattice Z

n+1 in R
n+1 is positive if all the

coordinates of p are positive.

Theorem 3.1 [10]. Let (V, 0) be a isolated hypersurface singularity defined
by a nondegenerate holomorphic function f : (Cn+1, 0) → (C, 0). Then the
geometric genus pg = #{p ∈ Z

n+1
+ ∩ Γ (f) : p is positive}.

Now the claim 6pg ≥ ν(ν − 1)(ν − 2) follows from Merle–Teissier theo-
rem because Γ (f) contains the tetrahedron with vertices (0, 0, 0), (ν, 0, 0),
(0, ν, 0) and (0, 0, ν) which contains 1

6ν(ν − 1)(ν − 2) positive integral points.
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It is also clear that 6pg = ν(ν − 1)(ν − 2) if and only if Γ (f) coincide with
this tetrahedron, i.e., f is a homogeneous polynomial. Therefore, (3.2)
implies

(3.3) µ ≥ (ν − 1)3,

and equality in (3.3) holds if and only if 6pg = ν(ν − 1)(ν − 2), which holds
if and only if f is a homogeneous polynomial.

Corollary 3.2. Let f : (C3, 0) → (C, 0) be a holomorphic germ defining
on isolated hypersurface singularity V = {z ∈ C

3 : f(z) = 0} at the origin.
Let µ, ν and τ be the Milnor number, multiplicity and Tjurina number of
(V, 0), respectively. Suppose µ = τ . Then

µ ≥ (ν − 1)3,(3.4)
6pg ≥ ν(ν − 1)(ν − 2),(3.5)

and equality in (3.4) holds if and only if equality in (3.5) holds, which holds
if and only if f is a homogeneous polynomial after biholomorphic change of
coordinates.

4. Three-dimensional singularities

The same method in the previous section can be used to prove Theorem 1.9
for three-dimensional singularities. Instead of using Xu–Yau’s theorem, we
use Lin–Yau’s theorem [11, 12] which asserts that

µ ≥ 4!pg + 2ν3 − 5ν2 + 2ν + 1

= 4!pg + (ν − 1)4 − ν(ν − 1)(ν − 2)(ν − 3).(4.1)

Corollary 4.1. Let f : (C4, 0) → (C, 0) be a holomorphic germ defining an
isolated hypersurface singularity V = {z ∈ C

4 : f(z) = 0} at the origin. Let
µ, ν and τ be the Milnor number, multiplicity and Tjurina number of (V, 0),
respectively. Suppose µ = τ . Then

µ ≥ (ν − 1)4,(4.2)
24pg ≥ ν(ν − 1)(ν − 2)(ν − 3),(4.3)

and equality in (4.2) holds if and only if equality in (4.3) holds, which holds
if and only if f is a homogeneous polynomial after biholomorphic change of
coordinates.
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