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Changing sign solutions of a conformally invariant
fourth-order equation in the Euclidean space

Nicolas Saintier

We prove the existence of infinitely many solutions for the critical
equation ∆2u = |u|2�−2u in R

n, where ∆2 denotes the bilaplacian
for the euclidean metric. These solutions are non-equivalent in the
sense that we cannot pass from one to another by translation and
rescaling. Moreover, infinitely many of them must change sign.

Fourth-order equations of critical Sobolev growth have been an intensive
target of investigations in the last years, particularly because of the applica-
tions of the fourth-order Paneitz operator to conformal geometry and also
because of the parallel that exists between fourth-order equations of critical
growth and their second-order analogues. References for the Paneitz opera-
tor are Branson [2] and Paneitz [7]. We consider in this paper the following
fourth-order equation

(1) ∆2u = |u|2�−2u

on R
n, n ≥ 5, where 2� = 2n/(n − 4) is the critical exponent for the Sobolev

embedding of H2
2 -spaces (consisting of functions in L2 with two derivatives

in L2) into Lp-spaces, and ∆2 = ∆2
ξ is the bilaplacian operator with respect

to the Euclidean metric ξ. In [6], Lin proved that the only smooth positive
solutions of (1) are the functions given by

(2) uλ,a(x) = αn

(
λ

1 + λ2|x − a|2

)(n−4)/2

,

where αn = (n(n − 4)(n2 − 4))(n−4)/8, λ > 0 and a ∈ R
n. The result extends

to non-trivial non-negative solutions of (1) when they belong to the Beppo–
Levi space D2

2(R
n). Following standard terminology, we say that two
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solutions u and v of an equation such as (1) are equivalent if they are related
by an equation such as

(3) v(x) = λ−(n−4)/2u

(
x − a

λ

)

for some λ > 0 and a ∈ R
n. Thanks to the above mentioned result of Lin [6],

two smooth positive solutions of (1) are always equivalent. Indeed,

uλ,a(x) = λ(n−4)/2u1,0(λ(x − a)).

Moreover, it is easily checked that equivalent solutions have the same energy
in the sense that ∫

Rn

(∆v)2 dx =
∫

Rn

(∆u)2 dx

if u and v are related by (3). The energy of the uλ,a’s in (2) is precisely the
quantum of energy of a bubble in the blow-up study of positive solutions of
Paneitz-type equations. We refer to Hebey and Robert [4] for more details.

The purpose of this paper is to prove the following theorem. Such a the-
orem is the analogue of Ding’s result [3] when passing from the second-order
critical equation ∆u = |u|4/(n−2)u to the fourth-order critical Equation (1)
we consider in this paper.

Theorem. There exists a sequence (uk)∞
k=1 of solutions of (1) whose energy

tends to +∞ as k → +∞, namely such that∫
Rn

(∆uk)2 dx −→ +∞

as k → +∞. In particular, there exist infinitely many non-equivalent solu-
tions of equation (1). These solutions uk necessarily change sign when k
is large.

We prove the theorem in the rest of the paper following Ding’s approach
[3] when proving the existence of infinitely many non-equivalent solutions
of the second order critical equation ∆u = |u|4/(n−2)u. Specific technical
difficulties are attached to the fourth-order case.

Proof of the theorem. The Paneitz operator Pn
h on the unit n-sphere (Sn, h)

reads as
Pn

h u = ∆2
hu + cn∆hu + dnu,

where cn = (n2 − 2n − 4)/2 and dn = (n(n − 4)(n2 − 4))/16 (see Paneitz [7]
and Branson [2] for the definition of Pn

h ). We let Φ : Sn\{N} → R
n be the
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stereographic projection of north pole N in Sn. Then, as is well known,

(4) (Φ−1)∗h = φ4/(n−4)ξ,

where

(5) φ(x) = 4(n−4)/4(1 + |x|2)−(n−4)/2.

We let u ∈ C2(Rn) be a solution of (1) and let û: Sn → R be given by

(6) û = (uφ−1) ◦ Φ.

By the conformal properties of Pn
h

φ2�−1(Pn
h û) ◦ Φ−1 = Pn

ξ u = ∆2
ξu = |u|2�−2u = φ2�−1(|û|2�−2û) ◦ Φ−1.

Therefore, û is a solution of

(7) Pn
h û = |û|2�−2û.

Moreover, it is easily checked that

(8)
∫

Rn

|u|2�

dx =
∫

Sn

|û|2�

dvh.

Conversely, if û is a solution of (7), then u: R
n → R given by u = (û ◦ Φ−1)φ

is a solution of (1) satisfying (8). As a remark, if û ∈ H2
2 (Sn) is a solution

of (7), then û ∈ Lp(Sn) for all p, and û is actually in C4(Sn). We claim now
that

(9)
∫

Rn

(∆ξu)2 dx < +∞

In order to prove (9), we let ξ̃ be the Riemannian metric on R
n given by

ξ̃ = φ4/(n−4)ξ. Then, if g is a Riemannian metric on R
n, we let Lg be the

conformal Laplacian with respect to g given by

Lgu = ∆gu +
n − 2

4(n − 1)
Sgu,
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where Sg is the scalar curvature of g. By the conformal properties of Lg,

∆ξu = Lξu

= φ(n+2)/(n−4)Lξ̃

(
uφ−(n−2)/(n−4)

)

= φ(n+2)/(n−4)
(

∆ξ̃(uφ−(n−2)/(n−4)) +
n(n − 2)

4
uφ−(n−2)/(n−4)

)
.

Therefore, we have that

∫
Rn

(∆ξu)2 dvξ =
∫

Rn

φ4/(n−4)
(

∆ξ̃(uφ−(n−2)/(n−4))

+
n(n − 2)

4
uφ−(n−2)/(n−4)

)2

dvξ̃,

and we can also write that

∆ξ̃(uφ−(n−2)/(n−4)) = ∆ξ̃

(
(û ◦ Φ−1)φ−2/(n−4)

)
= ∆ξ̃(û ◦ Φ−1)φ−2/(n−4) + ∆ξ̃(φ

−2/(n−4))(û ◦ Φ−1)

− 2〈∇(û ◦ Φ−1); ∇φ−2/(n−4)〉ξ̃,

where 〈·; ·〉ξ̃ is the scalar product with respect to ξ̃. It follows that

∫
Rn

(∆ξu)2 dvξ ≤ 4
∫

Sn

(∆hû)2 dvh + C1(I1 + I2 + I3)

≤ C2 + C1(I1 + I2 + I3),

where C1, C2 > 0 are positive constants, and

I1 =
∫

Sn

(
∆h(φ−2/(n−4) ◦ Φ)

)2
(φ4/(n−4) ◦ Φ) dvh

I2 =
∫

Sn

(
φ4/(n−4) ◦ Φ

) ∣∣∣∇ (
φ−2/(n−4) ◦ Φ

)∣∣∣2
h

dvh

I3 =
∫

Sn

(φ−2 ◦ Φ)(u ◦ Φ)2 dvh.
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Thanks once again to the conformal invariance of the conformal Laplacian,
we can write that

I1 =
∫

Rn

(
∆ξ̃(φ

−2/(n−4))
)2

φ4/(n−4) dvξ̃

=
∫

Rn

φ(2n+4)/(n−4)
(

φ−(n+2)/(n−4)∆ξφ − n(n − 2)
4

φ−2/(n−4)
)2

dx

≤ C3

∫
Rn

(∆ξφ)2 dx + C4

∫
Rn

φ2�

dx < +∞,

where C3, C4 > 0 are positive constants. In a similar way, we can write that

I2 =
∫

Rn

φ4/(n−4)
∣∣∣∇φ−2/(n−4)

∣∣∣2
ξ̃

dvξ̃

=
∫

Rn

φ2�
∣∣∣∇φ−2/(n−4)

∣∣∣2
ξ

dx < +∞.

At last, by (6), we also have that

|I3| ≤ C5

∫
Rn

dvξ̃

= C5

∫
Rn

φ2�

dx < +∞,

where C5 > 0 is a positive constant. Hence, (9) is true. In a similar way, we
claim that we also have that

(10)
∫

Rn

|∇u|2�

dx < +∞,

where 2� = 2n/(n − 2) is the critical Sobolev exponent for the embedding
of H2

1 -spaces (consisting of functions in L2 with one derivative in L2) into
Lp-spaces. Another possible equation for 2∗ is 2∗ = 2 × 1�. In order to prove
(10), we note that, by (6),

∣∣∇(û ◦ Φ−1)
∣∣
ξ

= φ2/(n−4) |∇û|h .

Then, we write that∫
Rn

|∇u|2�

dx ≤ C6

∫
Rn

∣∣∇(û ◦ Φ−1)
∣∣2�

ξ
φ2�

dx + C7

∫
Rn

|∇φ|2
�

ξ dx

≤ C8

∫
Rn

φ2�

dx + C6

∫
Rn

|∇φ|2
�

ξ dx < +∞,

where C6, C7, C8 > 0 are positive constants. This proves (10).
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Now we consider η ∈ C∞
c (Rn) be such that 0 ≤ η ≤ 1, η ≡ 1 in B0(1)

and η ≡ 0 in R
n\B0(2), where B0(r) stands for the open Euclidean ball of

centre 0 and radius r in R
n. For R > 0, we set

ηR(x) = η
( x

R

)

and let u be a solution of (1). Multiplying (1) by ηru and integrating by
parts over R

n, we get that

(11)
∫

Rn

ηR|u|2�

dx =
∫

Rn

∆ξ(ηRu)∆u dx = I1(R) + I2(R) − 2I3(R),

where

I1(R) =
∫

B0(2R)
ηR(∆ξu)2 dx

I2(R) =
∫

AR

(∆ξηR)u(∆ξu) dx

I3(R) =
∫

AR

〈∇ηR; ∇u〉ξ(∆ξu) dx,

and where AR is the annulus AR = B0(2R)\B0(R). Clearly, thanks to (9),
we have that

I1(R) −→
∫

Rn

(∆ξu)2 dx,

as R → +∞. We also have that

∫
Rn

ηR|u|2�

dx −→
∫

Rn

|u|2�

dx,

as R → +∞. Independently, letting V (R) = Volξ(AR), by help of Hölder’s
inequality, and noting that V (R) ≤ CRn, we can write that

|I2(R)| =
∣∣∣∣
∫

AR

(∆ξηR)u(∆ξu) dx

∣∣∣∣
≤ CR−2‖u‖2�

(∫
AR

(∆ξu)2n/(n+4) dx

)(n+4)/2n
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≤ CR−2‖u‖2�

(∫
AR

(∆ξu)2dx

)1/2

V (R)2/n

≤ C‖u‖2�

(∫
AR

(∆ξu)2 dx

)1/2

.

Hence, I2(R) → 0 as R → +∞. In a similar way, by (10), we can write that

|I3(R)| ≤ CR−1‖∇u‖2�

(∫
AR

|∆ξu|2n/(n+2) dx

)(n+2)/2n

≤ CR−1‖∇u‖2�

(∫
AR

(∆ξu)2 dx

)1/2

V (R)1/n

≤ C‖∇u‖2�

(∫
AR

(∆u)2 dx

)1/2

.

Hence, we also have that I3(R) → 0 as R → +∞. Passing to the limit as
R → +∞ in (11), we get that if û is a solution of (7), then u: R

n → R given
by u = (û ◦ Φ−1)φ is a solution of (1) such that

∫
Rn

(∆ξu)2 dx =
∫

Rn

|u|2�

dx

=
∫

Sn

|û|2�

dvh < +∞.

In view of this result, and in order to prove the theorem, it suffices to prove
that there exists a sequence (ûk)k of solution of (7) such that

∫
Sn

|ûk|2
�

dvh −→ +∞,

as k → +∞. Let J be the functional associated to (7) given by

J(u) =
1
2

∫
Sn

(
(∆hu)2 + cn|∇u|2h + dnu2)dvh − 1

2�

∫
Sn

|u|2�

dvh.

Let also G be a closed subgroup of the isometry group Isomh(Sn) of (Sn, h).
For q = 1, 2, and p > 1, we let

Hp
q,G(Sn) =

{
u ∈ Hp

q (Sn) s.t. u(g · x) = u(x)

for all g ∈ G and a.a.x ∈ Sn
}
,
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where Hp
q (Sn) is the Sobolev space of functions in Lp with q derivatives in

Lp. We denote by Ox
G = {g · x/g ∈ G} the orbit of x under G and let

k = min
x∈Sn

dim Ox
G.

The composition of a continuous embedding and of a compact embedding is
compact. Moreover, we know from the general result in Hebey and Vaugon
[5] that if k ≥ 1, then the embedding Hp

1,G(Sn) ⊂ Lq(Sn) is continuous for
all 1 < q ≤ p�

G and compact for all 1 < q < p�
G, where p�

G = +∞ if n − k ≤ p,
and p�

G = (n − k)p/(n − k − p) if n − k > p. Noting that (2�)�
G > 2� when

k ≥ 1, the sequence

H2
2,G(Sn) ⊂ H2�

1,G(Sn) ⊂ L(2�)�
G(Sn)

then gives that the embedding H2
2,G(Sn) ⊂ L2�

(Sn) is compact when k ≥ 1.
In what follows, we let G be such that k ≥ 1 and such that H2

2,G(Sn) is
infinite dimensional. For instance, as in Ding [3], we can let G = O(n1) ×
O(n2), where n1, n2 are such that n1 + n2 = n + 1 and n1, n2 ≥ 2. In this
example, k = min(n1, n2) − 1. We claim now that there exists a sequence
(ûm)m of critical points of J restricted to H2

2,G(Sn) such that

(12)
∫

Sn

û2�

m dvh −→ +∞,

as m → +∞. In order to prove this claim, we first let ‖ · ‖ be the norm on
H2

2 (Sn) be given by

‖u‖2 =
∫

Sn

(
(∆hu)2 + cn|∇u|2h + dnu2) dvh.

For J as above, it is easily seen that J is even, that J(0) = 0 and that
(A1) there exist ρ, α > 0 such that J > 0 in B0(ρ)\{0} and J ≥ α on

S0(ρ), and
(A2) J satisfies the Palais–Smale condition,

where B0(ρ) is the ball of centre 0 and radius ρ in H2
2 (Sn), and S0(ρ) is the

sphere of centre 0 and radius ρ in H2
2 (Sn). We can also prove that for any

finite dimensional subspace E ⊂ H2
2,G(Sn),

(A3) E
⋂

{J ≥ 0} is bounded.
Indeed, since E is finite dimensional, there exists C > 0 such that for any
u ∈ E, ‖u‖ ≤ C‖u‖2� . Let E = span{f1, . . . , fN}, where the fi’s are an
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orthonormal basis for E, and u =
∑N

i=1 αifi be such that ‖u‖ = 1. Then,
for R > 0,

J(Ru) =
R2

2
− R2�

2�
‖u‖2�

2�

≤ R2

2

(
1 − 2R2�−2

2�C2�

)

and (A3) follows. Now, by (A1)–(A3) we can apply Theorem 2.13 of
Ambrosetti and Rabinowitz [1] and we get the existence of an increasing
sequence (αm)m of critical values for J given by

(13) αm = sup
h∈Γ�

inf
u∈S∩E⊥

m−1

J
(
h(u)

)
,

where S = S0(1), Em = span
{
f1, . . . , fm

}
, E⊥

m is the orthogonal complement
of Em, (fi)i≥1 is an orthonormal basis of H2

2,G(Sn) and Γ� is the space of
odd homeomorphisms of H2

2,G(Sn) onto H2
2,G(Sn) such that J(h(B)) ≥ 0,

where B is the ball of centre 0 and radius 1 in H2
2,G(Sn). Then, in order to

prove that there exists a sequence (ûm)m of critical points of J restricted to
H2

2,G(Sn) such that (12) is true, it suffices to prove that

(14) αm −→ +∞

as m → +∞. We define

T =
{
u ∈ H2

2,G(Sn) s.t. 2�‖u‖2 = 2‖u‖2�

2�

}

and let
βm = inf

u∈T∩E⊥
m

‖u‖.

Then,

(15) βm −→ +∞

as m → +∞. Indeed, if it is not the case, there exists (um)m such that
um ∈ E⊥

m for all m, um ∈ T for all m, the um’s are bounded in H2
2 (Sn) and

um ⇀ 0 in H2
2,G(Sn) since um ∈ E⊥

m. The compactness of the embedding
H2

2,G(Sn) ⊂ L2�

(Sn) then implies that (up to a subsequence) um → 0 in
L2�

(Sn). It follows that um → 0 in H2
2 (Sn) since um ∈ T for all m. On

the other hand, by the Sobolev inequality corresponding to the embedding
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H2
2 (Sn) ⊂ L2�

(Sn), and still since um ∈ T for all m, there exists C > 0 such
that ‖um‖ ≥ C for all m. A contradiction, and (15), is proved. For u ∈ E⊥

m,
we let

hm(u) =
1
2
βmu.

Following Ambrosetti and Rabinowitz [1], it is easily seen that hm extends to
h̃m ∈ Γ�. Given u ∈ H2

2,G(Sn)\{0}, we let β(u) ∈ R be such that β(u)u ∈ T .
Then, if u ∈ S ∩ E⊥

m,

J
(
hm(u)

)
=

1
2

(
βm

2

)2
(

1 −
(

βm

2β(u)

)2�−2
)

≥ 1
2

(
βm

2

)2
(

1 −
(

1
2

)2�−2
)

and we get with (13) and (15) that (14) holds. In particular, there exists
a sequence (ûm)m of critical points of J restricted to H2

2,G(Sn) such that
(12) holds. The ûm’s are solutions of (7) when restricted to H2

2,G(Sn) in the
sense that for any m and any ϕ ∈ H2

2,G(Sn),

∫
Sn

((∆hûm)(∆hϕ) + cn〈∇ûm,∇ϕ〉h + dnûmϕ) dvh

=
∫

Sn

|ûm|2�−2ûmϕ dvh

Let ϕ be any smooth function on Sn or any function in H2
2 (Sn). Let also

ϕG be given by the equation

ϕG(x) =
∫

G
ϕ (σ(x)) dµ(σ),

where dµ is the Haar measure on G. Clearly, ϕG is smooth and G-invariant
if ϕ is smooth or ϕG ∈ H2

2,G(Sn) if ϕ ∈ H2
2 (Sn). Then we can write that

∫
Sn

((∆hûm)(∆hϕG) + cn〈∇ûm,∇ϕG〉h + dnûmϕG) dvh
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=
∫

G

(∫
Sn

(
(∆hûm) (∆h(ϕ ◦ σ))

+ cn〈∇ûm,∇(ϕ ◦ σ)〉h + dnûm(ϕ ◦ σ)
)
dvh

)
dµ(σ)

= |G|
∫

Sn

((∆hûm)(∆hϕ) + cn〈∇ûm,∇ϕ〉h + dnûmϕ) dvh,

where |G| is the volume of G with respect to dµ, and that

∫
Sn

|ûm|2�−2ûmϕG dvh

=
∫

G

(∫
Sn

|ûm|2�−2ûm(ϕ ◦ σ)dvh

)
dµ(σ)

= |G|
∫

Sn

|ûm|2�−2ûmϕ dvh.

It follows that
∫

Sn

((∆hûm)(∆hϕ) + cn〈∇ûm,∇ϕ〉h + dnûmϕ) dvh =
∫

Sn

|ûm|2�−2ûmϕ dvh,

for all ϕ ∈ H2
2 (Sn) and all m. In particular, for any m, ûm is a solution

of (7). The um’s associated to the ûm’s have to change sign for m � 1
according to the remark on equivalent solutions as given earlier and the fact
that ∫

R

(∆um)2dx =
∫

Sn

|ûm|2�

dvh −→ +∞.

This ends the proof of the theorem. �
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