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1. Introduction.

Since its discovery, Hamilton’s Li–Yau–Hamilton (LYH) estimate has proven
its importance in many different works (for example [7], [9], [10], [6]), and
as a result, similar inequalities have subsequently appeared in the study of
numerous other geometric flows – the mean curvature flow [11], the Kähler–
Ricci flow [1], and the Gauss curvature flow [2], among others.

The importance of LYH-type estimates is underscored by the fact that
the discovery of an LYH estimate without curvature assumption is a large
step in Hamilton’s program for Geometrization. Traditionally, positivity of
curvature in some form has always been needed for the existence of an LYH
estimate. However, work of Hamilton [10] and Ivey [13] in three dimensions
indicate that because the curvature operator becomes (in a sense) close to
positive near singularities, and because there is an LYH estimate for positive
curvature operator, there should be an LYH estimate without any curvature
assumptions. Because of this, one approach towards finding an inequality
on spaces of arbitrary curvature is to perturb the LYH estimates that are
found when there is positive curvature. In fact, using this point of view,
an LYH estimate was discovered on surfaces where some negative curvature
was allowed [12]. This provides great motivation to find and understand the
LYH estimates that do exist when positivity is assumed, and to discover the
deeper reasons why such inequalities exist.

One very interesting approach towards understanding LYH estimates
attempts to view these inequalities in a geometric setting. This was first
accomplished in the work of Chow and Chu [3], where a degenerate metric
and a space-time connection is place on the flow. In this setting, Hamil-
ton’s original LYH quantity appears very naturally and geometrically, being
closely related to the curvature of this conenction. In subsequent papers,
Chow and Chu [4], as well as Chow and Knopf [5] have since gained more
understanding of this point of view. They have been able to refine it, clarify-
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ing the correspondence between Hamilton’s LYH quantity and the curvature
of the chosen connection. In fact, many of the ideas and expressions found
in Hamilton’s original paper appear quite naturally in terms of the geome-
try of the chosen metric and connection. Moreover, by examining different
space-time connections, new and different LYH estimates are discovered.

We also note that though Perelman’s recent work on the Geometrization
conjecture [14] does not involve LYH estimates with no sign assumption, it
does use ideas inspired from the space-time point of view.

Here, we generalize Chow and Knopf’s work to obtain a new LYH esti-
mate for the Ricci flow. We prove the following Theorem.

Theorem 1.1. Let ∂
∂tg = −2Rc. Let A be a closed 2-form solving

∂

∂t
A = ∆dA,

and h a symmetric 2-tensor solving

∂

∂t
h = ∆Lh + ∇∇ |A|2 .

Then, the inequality

Φ = RijklUijUlk + 2WjDjAklUlk + (gpqAjpAlq + hjl)WjWl ≥ 0,

is preserved for t > 0. Here, ∆d is the Hodge-deRham Laplacian on two-
forms, and ∆L is the Lichnerowicz Laplacian on symmetric tensors.

In the first three parts of this paper, we discuss Hamilton’s original estimate,
the space-time viewpoint of Chow and Chu, and then the new expression
discovered by Chow and Knopf. We then state our generalization of Chow
and Knopf’s theorem; discuss briefly the orthonormal frame bundle - which
aids us greatly in keeping computations clean - as well as noting the flows
of some of our important quantities. Finally, we prove our theorem.

2. Hamilton’s Original Estimate.

In 1991, Hamilton discovered a differential Harnack estimate for the Ricci
flow. His theorem states that:

Theorem 2.1. If (Mn, g) has weakly positive curvature operator, then for
any two-form Uij and any one-form Wi, we have

MijWiWj + 2PijkUijWk + RijklUijUlk ≥ 0,
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where
Mij = ∆Rij − 1

2
DiDjR + 2RikljRkl − RikRjk +

1
2t

Rij

and
Pijk = DiRjk − DjRik.

By weakly positive curvature operator, we mean that for any two-form
U , the curvature tensor satisfies

RijklUijUlk ≥ 0.

This condition is preserved under the Ricci flow.

Remark 2.2. In dimension three, weakly positive curvature operator is
equivalent to weakly positive sectional curvature.

Remark 2.3. Here, we are using the convention gmlR
m
ijk = Rijkl whereas

in Hamilton’s original paper [8], gmlR
m
ijk = Rijlk.

Remark 2.4. We call this estimate a Li–Yau–Hamilton (LYH) estimate.
The quantity

MijWiWj + 2PijkUijWk + RijklUijUlk,

we call a Li–Yau–Hamilton (LYH) quantity.

Proof. We give a brief description of the proof. The main idea is to compute
the evolution equation of the LYH quantity. We assume we are at the first
time where there is a point x ∈ M , a two-form U , and a one-form W such
that

MijWiWj + 2PijkUijWk + RijklUijUlk = 0.

The evolution equation of this quantity then computed. Careful examination
of this evolution equation shows it to be essentially the sum of two squares.
The maximum principle then prevents the quantity from ever becoming
negative.

We note that in the LYH expression, no derivatives of U or W appear.
However, the evolution equation of the LYH expression does contain deriva-
tives of U and W in both space and time. Thus, values for these derivatives
may be prescribed, making the evolution equation of the LYH expression
more manageable. We will use this same idea in the proof of the main
theorem.

This LYH quantity was originally derived by considering the behavior of
certain quantities on translating Ricci solitons – steady state solutions of the
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Ricci flow which move via diffeomorphisms. In fact, for the correct choice
of U and W , the LYH quantity (without the time term in M) is identically
zero on a translating soliton. However, there is another way to view the
LYH quantity. �

3. Space-Time Formulation.

In 1995, Chow and Chu [3] discovered a new way of looking at the LYH
quantity

Z = M0
ijWiWj − 2PijkUijWk + RijklUijUlk,

where M0
ij is just Mij without the time term:

M0
ij = ∆Rij − 1

2
DiDjR + 2RikljRkl − RikRjk.

Hamilton’s proof of the LYH estimate works to show that if Z is weakly
positive for any U and W initially, then it remains so. We use this expression
instead of the full LYH expression to make this exposition more simple.

Remark 3.1. In this, as well as the next section, we will be working with
a degenerate metric, so we will be more careful about raised and lowered
indices when necessary.

Here, we consider a degenerate metric g̃αβ on the space-time M̃ = Mn×
[0, T ) defined by

g̃αβ =
{

gij if 1 ≤ α, β ≤ n,
0 if α = 0 or β = 0.

For this metric, we can define a connection ∇̃ by

Γ̃k
ij = Γk

ij,

Γ̃k
0j = −Rk

j ,

Γ̃k
00 = −1

2
∇kR,

Γ̃0
00 = Γ̃0

ij = Γ̃0
0j = 0,

where i, j, k ≥ 1.
Now, the curvature for this connection may be defined in the usual way:

R̃(X,Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z.
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We have all the usual symmetries, and may compute, explicitly, the
curvature:

R̃l
jkl = Rl

ijk,

R̃l
ij0 = ∇jR

l
i −∇iR

l
j ,

R̃l
i0k = ∇kR

l
i −∇lRik,

R̃l
i00 = ∆Rl

i −
1
2
∇i∇lR + 2glmRq

pimRp
q − Rl

mRm
i ,

R̃0
jkl = R̃0

i0k = 0.

Now, we can lower the indices on our space-time curvature:

R̃αβµν =

⎧⎪⎨
⎪⎩

R̃γ
αβµgγν if ν ≥ 1,

−R̃γ
αβ0gγµ if ν = 0 and µ ≥ 1,

0 if µ = ν = 0.

and then, we see that we have exactly

R̃ijkl = Rijkl,

R̃0jkl = Pljk,

R̃i00l = Mil.

Consider, R̃m as a symmetric quadratic form on
∧2 T ∗M̃ with

R̃m
(
S̃, T̃

)
=

n∑
α,β,µ,ν=0

R̃αβµν S̃αβT̃ νµ.

Now, identify
∧2 T ∗M̃ ∼= ∧2 T ∗M ⊕ ∧1 T ∗M by identifying the space-time

tensor T̃ with U ⊕ W , where U is a two-form and W is a one-form. More
precisely, we have

T̃ ij = U ij ,

T̃ 0j = −T̃ j0 = W j.

Then, the LYH quantity corresponds precisely to the curvature of our space-
time metric:

R̃m
(
T̃ , T̃

)
= M0

ijWiWj + 2PijkUijWk + RijklUijUlk.
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Remark 3.2. Our degenerate metric (as well as associated Levi–Civita con-
nection, and curvature) may be thought of as a limit of “stretched” metrics
defined by:

g̃N,K(x, t) = g(x, t) +
(

R +
N

2(t + K)

)
dt2.

Let ∇̃N,K be the Levi–Civita connection of g̃N,K . When N → ∞, and then
K → ∞, we obtain ∇̃N,K → ∇̃.

In fact, if we use N → ∞, and K → 0, we get the full LYH quantity,
with the time term:

R̃mN,K(U ⊕ W,U ⊕ W ) −→ Z +
1
2t

RijWiWj .

4. New LYH Estimate From Space-Time Approach.

In 2001, B. Chow and D. Knopf [5] used the space-time point of view to
derive a new Li–Yau–Hamilton estimate. They consider a very large class of
connections on space-time generalizing the one used above. Essentially, they
consider adding arbitrary two-forms to the Γk

0j term, one-forms to the Γk
00

term, and functions to the Γ0
00 term. Certain desirable, as well as natural,

conditions are then put on these connections. As in above, the curvatures of
these connections (satisfying the desirable conditions) give LYH quantities.

This, leads Chow and Knopf to the following theorem.

Theorem 4.1. If (Mn, g) satisfies the Ricci flow, A0 is a closed two-form,
E0 is a closed one-form, then there exist A(t) and E(t) such that A(0) = A0,
E(0) = E0, and

∂

∂t
A = ∆dA,

and
∂

∂t
E = ∆dE − d |A|2g ,

where ∆d is the Hodge Laplacian. Now if

RijklU
ijU lk + 2∇jAklW

jUkl + (gpqAjpAlq −∇jEl)W jW l ≥ 0

for all two-forms U and one-forms W at time t = 0, then it remains positive
as long as the Ricci flow exists.

Proof. We briefly describe the proof here. The LYH quantity is essentially
the curvature of these space-times. It is shown that the space-time curvature
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satisfies a reaction-diffusion equation. A maximum principle (which must
first be shown to hold) is then applied to this equation. �

5. A New Li–Yau–Hamilton Estimate.

We now generalize Chow and Knopf’s LYH estimate. By our conditions
on E, we have that the two-tensor ∇iEj is symmetric, and also that its
evolution equation is

∂

∂t
∇E = ∆L∇E + ∇∇ |A|2 ,

where ∆L is the Lichnerowicz Laplacian

∆LTij = ∆Tij + 2RkijlTkl − RikTjk − RjkTik.

In place of ∇E, we now consider a general (0, 2)-tensor h. ∇E is symmetric,
so we assume h is as well. Similarly, we assume

∂

∂t
h = ∆Lh + ∇∇ |A|2 .

With such h, we obtain the following theorem.

Theorem 5.1. Let ∂
∂tg = −2Rc. Let A be a closed 2-form solving

∂

∂t
A = ∆dA,

and h a symmetric two-tensor solving

∂

∂t
h = ∆Lh + ∇∇ |A|2 .

Then, the inequality

Φ = RijklUijUlk + 2WjDjAklUlk + (gpqAjpAlq + hjl)WjWl ≥ 0

is preserved. Here, ∆d is the Hodge-deRham Laplacian, and ∆L is the
Lichnerowicz Laplacian.

Remark 5.2. If we let hij be ∇iEj from Chow and Knopf’s Theorem, then
we recover their Theorem.
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6. The Orthonormal Frame Bundle.

To make computations cleaner, we take a point of view that Hamilton uses
to prove his LYH estimate.

We consider the frame bundle F (M) of M . Points on the space F (M)
consist of a point x on M , and a frame of vectors {Y1, Y2, . . . , Yn} on TxM .
We think of (k, 0)-tensors as multi-valued functions on F (M). For ex-
ample, if V is a covecter, then it takes {Y1, Y2, . . . , Yn} to the n values
{V (Y1), V (Y2), . . . , V (Yn)}. We will abbreviate this by V = {Va}, where
Va = V (Ya). Similarly, if V were a (2, 0)-tensor, it takes {Y1, Y2, . . . , Yn} to
the n2 values {Vab}, where Vab = V (Ya, Yb).

Now, covariant differentiation takes a tensor and gives us a new one.
Vector fields take functions to functions, so in this setting, we can think of
covariant differentiation, Da, in the direction Ya as a vector field where if
V = {Vb}, then DaV is a (2, 0)-tensor {DaVb}.

In fact, if we have coordinates {xi} on M and we write Y = {yi
a}, where

Ya = yi
a

∂
∂xi (so that {xi, yj

a} are local coordinates for F (M)), then we can
write Da as the vector field

Da = yi
a

(
∂

∂xi
− Γk

ij(x)yj
b

∂

∂yk
b

)
.

The Da give us the vectors horizontal to the fibers of the frame bundle (we
use the connection Γ on the tangent bundle).

In addition, there are also the vector fields

∇a
b = yi

b

∂

∂yi
a

corresponding to transforming the a-axis into the b-axis. The ∇a
b form a

basis for the vectors tangent to the fibers of the frame bundle. Together,
the Da and ∇a

b give us a basis for the tangent vectors for the whole frame
bundle.

Now, we wish to work with orthonormal frames only. This means, we
want to consider the orthonormal frame bundle OF (M). These are the
frames {Ya} which satisfy g(Ya, Yb) = Iab, where Iab is

Iab =
{

1 if a = b,
0 if a 	= b.

By compatibility of the Levi–Civita connection, we have that Dagbc = {0},
so that the vectors Da live on OF (M). The ∇a

b do not. However, the
vectors, representing infinitesimal rotation, defined by
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δab = gac∇c
b − gbc∇c

a,

do satisfy δabgcd = {0}. In fact, the Da and the δab are a basis for the
tangent vectors on the orthonormal frame bundle.

Under the Ricci flow, we also have to deal with the vector field ∂
∂t . We

decompose ∂
∂t into

∂

∂t
= Dt − Rabg

bc∇a
c ,

where Dt is the part which is tangent to the orthonormal frame bundle, and
−Rabg

bc∇a
c is orthogonal to it. (The equation ∂

∂tgab = −2Rab is used here).
Again, as we wish to stay on the orthonormal frame bundle, Dt is the vector
field that we will work with.

We now work exclusively with orthonormal frames. All our indicies will
be lowered and, as usual, repeated indices are summed.

Because, all our vector fields Da, δab, and Dt take gcd to zero, many
computations are cleaner, particularly when we need to take the trace of
an equation. With this setup, we now write the various evolution equations
that we need. As a shorthand, we let

� = Dt − ∆,

where ∆ = DeDe. The curvature tensor Rabcd flows like

�Rabcd = −2 (Babcd − Babdc + Bacbd − Badbc) ,

where Babcd = RaebfRcedf . We trace this to obtain

�Rab = 2RacdbRcd,

and trace again to get

�R = 2RabRab = 2 |Rc|2 .

Our commutation equations are

DtDa − DaDt = RabDb + DbRacδbc,

DaDb − DbDa =
1
2
Rabcdδdc,

∆Da − Da∆ = RabDb + DbRacδbc − RabcdDbδdc,

�Da − Da� = RabcdDbδdc.
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7. Proof of the Theorem.

We now prove our main theorem. Using orthonormal frames, we first rewrite
our theorem as:

Theorem 7.1. Let ∂
∂tg = −2Rc. Let A be a closed 2-form solving

�dA = (Dt − ∆d)A = RawAwb + AawRwb,

and h a symmetric two-tensor solving

�Lh = (Dt − ∆L)h = DaDb |A|2 + Rawhwb + Rwbhaw

Then, the inequality

Φ = RabcdUabUdc + 2WcDcAabUba + (AawAbw + hab)WaWb ≥ 0

is preserved.

Remark 7.2. We note that for two-forms Tab, we have that the Hodge
Laplacian looks like:

∆dTab = ∆Tab + 2RcabdTcd − RawTwb − RwbTaw,

so that
�dTab = �Tab − 2RcabdTcd + RawTwb + RwbTaw,

and thus our condition that

�dA = (Dt − ∆d)A = RawAwb + AawRwb

is equivalent to
�Aab = 2RcabdAcd.

Also, we have, by definition,

∆LTab = ∆Tab + 2RcabdTcd − RawTwb − RwbTaw,

giving
�LTab = �Tab − 2RcabdTcd + RawTwb + RwbTaw.

So that,

�Lh = (Dt − ∆L)h = DaDb |A|2 + Rawhwb + Rwbhaw

is the same as
�hab = DaDb|A|2 + 2Rcabdhcd.
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Remark 7.3. It is interesting to note that though our LYH quantity is
derived from space-time considerations, the proof that follows is more rem-
iniscent of Hamilton’s original proof of the LYH estimate.

Proof. We will use the maximum principle on the quantity Φ. The bulk of
the work here is to compute the evolution equation of Φ and to put it into
a form where we can apply the maximum principle. So, we compute

�Φ = (�Rabcd)UabUdc + Rabcd(�Uab)Udc

−4DwRabcd(DwUab)Udc − 2RabcdDwUabDwUdc

+2�Wc(DcAab)Uba + 2Wc(�DcAab)Uba + 2Wc(DcAab)�Uba

−4DwWc(DwDcAab)Uba − 4DwWc (DcAab) DwUba

−4Wc(DwDcAab)�Uba + 2(�Aaw)AbwWaWb + 2AawAbw(�Wa)Wb

−2(DzAaw)(DzAbw)WaWb − 2AawAbw(DzWa)(DzWb)
−4(DzAaw)Abw(DzWa)Wb − 4(DzAaw)AbwWa(DzWb)
+(�hab)WaWb + 2hab(�Wa)Wb

−4(Dwhab)(DwWa)Wb − 2hab(DwWa)(DwWb).

And then, regroup terms to get

�Φ = (�Rabcd)UabUdc

+2Wc(�DcAab)Uba + 2(�Aaw)AbwWaWb

−2(DzAaw)(DzAbw)WaWb + (�hab)WaWb + Rabcd(�Uab)Udc

−4DwRabcd(DwUab)Udc − 2RabcdDwUabDwUdc

+2�Wc(DcAab)Uba + 2Wc(DcAab)�Uba

−4DwWc(DwDcAab)Uba − 4DwWc (DcAab)DwUba

−4Wc(DwDcAab)�Uba + 2AawAbw(�Wa)Wb + 2hab(�Wa)Wb

−2AawAbw(DzWa)(DzWb) − 4(DzAaw)Abw(DzWa)Wb

−4(DzAaw)AbwWa(DzWb)
−4(Dwhab)(DwWa)Wb − 2hab(DwWa)(DwWb),

where the first five lines don’t involve any derivatives on Wa or on Uab, and
the others do. Now, using our various flow equations, we expand the first
five lines explicitly, concluding that they are equal to

− 4RambnRcmdnUabUdc − 4RamcnRbmdnUabUdc

+ 4Wc(DcRmabn)AmnUba + 4WcRmabn(DcAmn)Uba + 8RdcwaDdAwbUba

+ 4RmawnAmnAbwWaWb − 2(DzAaw)(DzAbw)WaWb

+ 2(DaDbAcd)AcdWaWb + 2(DaAcd)(DbAcd)WaWb + 2RmabnhmnWaWb.
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To deal with the terms involving the derivatives of Wa or on Uab, we first
prescribe

DaWb = 0, �Uab = 0, �Wa = 0.

As with Hamilton’s LYH quantity, ours does not involve any derivatives of
W or U , so we are allowed to prescribe values for these derivatives. This
kills all of these derivative terms except for

−4(DwRabcd)(DwUab)Udc−2Rabcd(DwUab)(DwUdc)−4Wc(DwDcAab)DwUba.

So that at this point, we have

�Φ = −4RambnRcmdnUabUdc − 4RamcnRbmdnUabUdc

+4Wc(DcRmabn)AmnUba + 4WcRmabn(DcAmn)Uba

+8RdcwaDdAwbUba + 4RmawnAmnAbwWaWb

−2(DzAaw)(DzAbw)WaWb + 2(DaDbAcd)AcdWaWb

+2(DaAcd)(DbAcd)WaWb + 2RmabnhmnWaWb

−4(DwRabcd)(DwUab)Udc − 2Rabcd(DwUab)(DwUdc)
−4Wc(DwDcAab)DwUba.

We have not yet prescribed values for DwUab. To further simplify our ex-
pression, we let

DwUab =
1
2
(WaAbw − WbAaw).

With this choice, we conclude that the evolution equation of the LYH quan-
tity Φ is

�Φ = −4RambnRcmdnUabUdc − 4RamcnRbmdnUabUdc

+4WcRmabn(DcAmn)Uba + 8WcRdcwa(DdAwb)Uba

−2(DzAaw)(DzAbw)WaWb

+2(DaAcd)(DbAcd)WaWb + 2RmabnhmnWaWb

+2WaWdRabcdAbwAcw.

After careful examination of the terms here, we discover that the evolution
equation of Φ may be written as the sum of four terms, plus a square:

�Φ = 4RamcnRbmdnUabUcd + 8WcRdcwa(DdAwb)Uba

−2(DdAac)(DcAbd)WaWb

+2Rmabn(hmn + AmwAnw)WaWb

+ [RabcdUcd + WcDcAab] [RabuvUuv + WuDuAab] .
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However, we also have that the sum of the first four terms are non-negative
when Φ is non-negative. To see this, we “diagonalize” Φ by writing

Φ = RabcdUabUdc + 2Wc(DcAab)Uba + (AawAbw + hab)WaWb

=
∑

(XN
a Wa + Y N

ab Uab)2

=
∑

XN
a XN

c WaWc + XN
a Y N

cd WaUcd + XN
c Y N

ab WcUab + Y N
ab Y N

cd UabUcd,

so that Φ is a sum of squares. This forces

Rabcd =
∑
N

Y N
ab Y N

dc , DcAab =
∑
N

Y N
ab XN

c , and (AawAbw+hab) =
∑
N

XN
a XN

b ,

where, the XN
a ’s are one-forms, and the Y N

ab ’s are two-forms for each N .
This makes

4RamcnRbmdnUabUcd + 8WcRdcwa(DdAwb)Uba

− 2(DdAac)(DcAbd)WaWb + 2Rmabn(hmn + AmwAnw)WaWb

=
∑
M, N

(Y M
ac XN

c Wa − Y N
ac XM

c Wa − 2Y M
ac Y N

bc Uab)2,

so that,

�Φ =
∑
M, N

(Y M
ac XN

c Wa − Y N
ac XM

c Wa − 2Y M
ac Y N

bc Uab)2

+ [RabcdUcd + WcDcAab] [RabuvUuv + WuDuAab]
≥ 0.

Now, the maximum principle is applied and we are done. �
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