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We develop the theory of harmonic maps from a flat admissible 2-
complex into a metric space of non-positive curvature. As an ap-
plication, we give a harmonic maps analysis of the Morgan-Shalen
compactification of SL(2, C) representations of a finitely generated

group.

1. Introduction.

Let Isom, (H?) denote the Lie group of orientation-preserving isometries of
H? and I be a discrete group. Any discrete and faithful representation p :
I' — Isom (H?) gives rise to a hyperbolic manifold H?/p(T") and an isomor-
phism I' ~ m1(H3/p(T')) that is well defined up to conjugation. The space
H3(T) of conjugacy classes of discrete and faithful representations p : I' —
Isom (H?) can be compactified by projective limits of length functions as-
sociated to the representations where the length function I, : ' — RT of
pr : T — Isom, (H?) is

lpi9) = nf dus (2, pi(9)2).

These limits turn out to be projectively equivalent to the length functions of
isometric actions of I on R-trees. Called the Morgan-Shalen compactification,
this is the "tree-theoretic” approach to Thurston’s Bounded Image Theorem,
apart of the Thurston hyperbolization program, developed in [CuSh] [MoSh1]
[Mo] [MoSh2]| [MoSh3]. See also the expositions in [Ka] and [Ot]. The anal-
ogous two dimensional theory is equivalent to Thurston’s compactification of
the Teichmiiller space of a surface.
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In [DDW1] and [DDW?2], harmonic maps is used to study the Morgan-
Shalen compactification using equivariant harmonic maps from Riemannian
manifolds into H3. In particular, for any unbounded sequence of irreducible
SL(2,C) representations of the fundamental group I'" of a compact Rie-
mannian manifold M without boundary, they produce an R-tree T' along with
an equivariant harmonic map v : M — T. The method in [DDW1] and
[DDW?2] is based on the theory of harmonic maps from Riemannian mani-
folds into singular spaces of nonpositive curvature (NPC spaces) developed by
Gromov-Schoen [GS], Korevaar-Schoen [KS1] [KS2] [KS3] and Jost [Jo]. How-
ever, from the point of view of combinatorial group theory and three dimen-
sional topology, one would like to understand finitely generated group from
their actions on R-trees. In many cases, these actions are ”geometric” which
means that the corresponding trees are associated to leaf spaces of measured
foliations (or laminations) on two dimensional complexes. This is a general-
ization of the familiar picture of measured foliations on surfaces studied in the
Thurston theory. For more details from the topological viewpoint, we refer to
[BesF|, [Kal, [LePa] [Ot] for example. The motivation for this paper and its se-
quel is to bring harmonic map theory and holomorphic quadratic differentials
into the study of finitely generated groups.

Let I' be a finitely generated group acting on 7T, i.e. there is a homomor-
phism p : I' — Isom(7"). We then consider a finite 2-complex X and a normal
covering p : X — X with transformation group I'. If I is finitely presented,
then we may take X so that 71(X) = I'and p : X — X the universal cover,
but in general, X may fail to be simply connected. We may assume that X is
an admissible finite 2-complex without boundary (see Section 2.2). Moreover,
we assign Riemannian metrics on faces of X so that X is a flat admissible fi-
nite 2-complex without boundary as in Section 3. (See Sections 2.1 and 2.2 for
precise definitions.) We study the existence, regularity and compactness prop-
erties of equivariant harmonic map f from a flat admissible finite 2-complex
into R-trees. Here, equivariant means that the map honors the action of I on
Isom(T), i.e f(yx) = p(7)(f(x)). We then apply this to study the Morgan-
Shalen compactification of the SL(2, C) character variety of any finitely gen-
erated group. More precisely, our main results are as follows.

Theorem 1.1 (Regularity). Let f : X — Y be a harmonic map from a flat
admissible 2-complex without boundary to a NPC space. Then f is locally Lip-
schitz continuous away from the vertices of X with Lipschitz constant dependent
only on the total energy of f and the distance away from the vertices. Further-
more, f is globally Hélder continuous with Hélder constant and exponent only
dependent on the total energy of f.
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Theorem 1.2 (Compactness). If fr : X — (Y, di) is a sequence of
equivariant harmonic maps into NPC spaces with bounded energies, then there
exists a subsequence which converges to an equivariant harmonic map foo :
X — (Yoo, do) (in the sense of [KS1]).

The compactness theorem allows us to repeat the construction of [DDW1]
and [DDW?2] in the case I is any finitely generated group. We obtain:

Theorem 1.3 (The Morgan-Shalen compactification). Let {py}r=12,..
be a sequence of unbounded irreducible SL(2, C) representations of I' and p :
X — X a covering of a flat admissible 2-complex X without boundary with T
as its transformation group. Letuy : X — H3, k = 1,2, ..., be a sequence of
pr-equivariant harmonic maps and fi, : X — Y}, be a sequence of maps ob-
tained by rescaling the target of ug so that the energy of fi is equal to 1. Then
there exists a subsequence of fi, which converges (in the sense of [KS1]) to a non-
constant equivariant harmonic map foo : X — T where T is a minimal R-tree.
The length function of the action is in the projective class of the Morgan-Shalen
limit of the sequence {py}.

We briefly outline our approach. For Theorem 1.1, we take advantage of
the fact that the domain of our harmonic map is of dimension 2. Since the
regularity of harmonic maps in the interior of a face (i.e. a 2-simplex) is already
known, it is enough to consider a neighborhood of an edge (i.e. a 1-simplex)
point away from the vertices (i.e. O-simplices) of X. Thus, without the loss of
generality, we consider a harmonic map f from a union of IV upper half disks
D7 with the z-axis identified to each other. We call this space X;. Using the
standard theory of harmonic maps from a surface, we know that f defines a
Hopf differential

on the interior of each half disk. Here, the norm squared and the dot product
of the partial derivatives are interpreted in the sense of [KS1] since we allow
the target space Y to be non-smooth. Furthermore, it is crucial that we fix the
complex structure on each half disk so that each half disk induces the same ori-
entation on the z-axis that it shares with the other half disks. For convenience,
we will refer to the complex function
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To motivate the use of the Hopf functions in our paper, we will first examine
the simple case when N = 2 and the R-tree is the real number line. Thus,
we are considering the case of a harmonic function from the unit disk. This
defines the usual Hopf function ¢ on the unit disk. Now label the upper half
disk as Df and the lower half disk as D; and consider the Hopf functions ¢
and ¢o with respect to the complex structures on Df and D;r which induces the
same orientation on the x-axis. In particular, this means we use the complex
coordinates (z,y) € Dt + (z,—y) € Dy on the lower half disk. Thus the
Hopf functions are given by

Now note that this means

Im(¢1(z,0) + d2(2,0)) = Im(¢(,0) + ¢(z,0)) = 0.

We will show that in general, the imaginary part of the Hopf functions sums to
0 on the z-axis. Thus, by the reflection principle, the sum of the Hopf functions

2 2
extends to the whole disk D. From this, we will show that ‘%‘ and ‘g—g‘ are

bounded with bounds only dependent on the total energy of f and the distance
to the boundary. Thus, if f : X — Y is a harmonic map, then f is Lipschitz
continuous away from the vertices of X with Lipschitz constant dependent only
on the total energy and the distance to the vertices. Using thisregularity result
and some analysis near the vertices, it is not too hard to prove the global Hélder
regularity of f with the Holder constant and exponent dependent only on the
total energy.

The corresponding compactness result of Theorem 1.2 for smooth domains
is shown in [KS1]. The main difficulty in extending their result to our situation
is, apriori, there is a possibility that the energies of f; will concentrate at the
vertices and the edges of X, and this can lead to the limit map being a constant
map (on the fundamental domain). The Lipschitz regularity of fy, allows us to
eliminate this scenario away from the vertices. To do likewise at a vertex, we
use the Holder continuity as well as prove a monotone property of energy. More
specifically, we show that Ej(r), the energy of fi in a ball of radius r about a
vertex, essentially decays like 72* where « is the Holder exponent. This allows
us to prove the general compactness result of Theorem 1.2.

The energies of the sequence of pg-equivariant harmonic maps uy of
Theorem 1.2 go to infinity because the sequence py is unbounded. To prove
Theorem 1.3, we apply Theorem 1.2 to the rescaled maps fi. The intuitive
idea of why the target of the limit map is a tree is that a large geodesic triangle
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in a hyperbolic space looks like a tripod (three line segments joined at a com-
mon origin). If one rescales a hyperbolic space by a large constant (i.e. the
energy of fi), we get a tree in the limit.

We would like to end this introduction by mentioning some closely related
work. Harmonic maps from polyhedral domains were first considered in [Ch].
Under suitable assumptions on the metric, the Holder continuity of the map
was obtained. Later [EF] proved the pointwise Holder continuity for a gen-
eral polyhedral domain. Here, pointwise Holder continuity indicates that the
Holder constants and exponents depended on the each point of the domain. [F]
has improved [EF] to show that a harmonic map is locally uniformly Hélder
continuous, but did not give a dependence to the local Hélder constant and
exponent. In Theorem 1.1, we obtain a local Lipschitz continuity as well as
a global Holder continuity with the Holder constant and exponent explicitly
dependent only the energy of the map.

2. Definitions.
2.1. Admissible Riemannian simplicial complex.

A simplicial complex of dimension n is referred to as a n-complex. A connected
locally finite n-complex is called admissible (cf. [Ch] and [EF]) if the following
two conditions hold:

(i) X is dimensionally homogeneous, i.e., every simplex is contained in a n-
simplex, and

(ii) X is (n —1)-chainable, i.e., every two n-simplices A and B can be joined by
a sequence A = Fy,eq, F1,e1,..., Fy_1,e._1, F), = B where F; is a n-simplex
and e; is a (n — 1)-simplex contained in F; and Fj ;.

The boundary d.X of X is the union of all simplices of dimension n—1 which
is contained in only one n dimensional simplex. Here and henceforth, we use
the convention that simplices are closed. A locally finite simplicial complex is
called a Riemannian simplicial complex if a smooth Riemannian metric is de-
fined on each top dimensional simplex. This set of Riemannian metrics induces
a distance function on X which we will denote by dx (-, ).

For pg € X, we will denote the ball of radius ¢ centered around a point
po by Bs(po) = {q € X : dx(po,q) < o} and the union of the simplices that
contain pg as st(pg). Also let o(po) = sup{r : By (po) C st(po)}.
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2.2. The two dimensional case.

For simplicity, we will refer to a two dimensional simplex as a face, a one di-
mensional simplex as an edge, and a zero dimensional simplex as a vertex. A
point in the interior of a face (resp. an edge) is referred to as a face (resp. edge)
point. We will denote the set of vertices by V.

Lemma 2.1. Let X' be a connected finite 2-complex. There exists an admis-
sible finite 2-complex X with the property that 90X = () and m(X) = m1(X’).

Proof. We construct X from X1 = X following the steps below:

Step 1 (Dimensionally homogeneous). Let eq, €9, ..., e, be the edges of X
not contained in a face. For each 7, add a new face to X() and identify one
of its edges to ;. Call the new 2-complex X (. By construction, X® is a
dimensionally homogeneous and 7 (X ®) = 7 (X)) = 7 (X").

Step 2 ((n — 1)-chainable). Let V be the set of vertices v with the property
that st(v) — {v} has more than one components. Let vy, vg, ..., v; be the ele-
ments of V' and for each 7, let e; 1 and e; 2 be two of the edges of X (2) containing
v;, add anew face to X@ and identify two edges of the new face to e; 1 and e; 2
respectively. Call the new 2-complex X (). Note that if v is any vertex on a
new face, then st(v) — {v} is connected since e; 1 and e; o is contained in two
different faces of X, Thus, X®) is admissible and 7(X®)) = 7(X®?)) =
T (XMW) = 7 (X).

Step 3 (Without boundary). Let ey, ea, ..., €, be edges of X3) that is con-
tained in only one face of X. For each i, add a 2-skeleton of a 3-simplex to X (3)
and identify an edge of the 2-skeleton to e;. Call this new 2-complex X. By
construction, X is admissible, without boundary and m(X) = m(X®)) =
7T1(X(2)):7T1(X(1)):7T1(X/). O

Let A be an equilateral triangle with coordinates given by, say,
A ={(r,y) eR?:y < VBx+V3,y < —V3z+V3,y >0} (2.1)

and gy = dz? +dy?. We will say that a two dimensional Riemannian simplicial
complex X isflatif, for each face F' of X and metric gr on F', (F, gr) isisometric
to (A, go) and if F} and F, are adjacent faces sharing an edge e, the metrics
gr, and g, induce the same distance function on e.

If X is a flat admissible 2-complex, we can model B, (pg), 7 < o(po) =
sup{r : Br(po) C st(po)}, by the three cases below:
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(i) If pg is a face point, we isometrically identify B,.(pg) with a disk D, of
radius 7 centered at the origin in R? and let z(p) = (z, y) be this identification.
(ii) If pg is an edge point, we isometrically identify B,.(pg) with X, defined
as follows: Let n be the number of faces contained in st(pg) and take n copies
of the upper half disk D;F = {(z,y) € R?|2? + y? < r,y > 0}. We would
like to distinguish these copies so we label them D;fl, s D;fn and use (z;, ;)

to denote the point corresponding to (z,y) € D, on the ith copy D: ;- Let
X, = U?ZlD:Z-/ ~ where ~ is defined by

(24,0) ~ (2;,0) forz € R. (2.2)

In other words, ~ identifies the z-axis of D: ; to the z-axis of D: ; for all 7 and
j so that B,.(0) is isometric to X,.. Let z(p) = (x;,y;) be this identification.
We will refer to X, as an edge piece.

(iii) If po is a vertex, we isometrically identify B, (pg) with X defined as
follows: Let W, = {(z,y) € R? : 22 + y?> < 7,0 < tan~! (%) < 5wy > 0}.
Let n be the number of faces contained in st(pg), take n copies of W, label
them W, 1, ..., Wy, , to distinguish these copies and use (x;, ;) to denote the
point corresponding to (z,y) € W, on the ith copy W,.;. Let X| = U W,/ ~
where ~ is an equivalence relations defined so that X/ is isometric to B, (po).
Let z(p) = (24, y;) be this identification. We will refer to X/ as a vertex piece.

2.3. Metric spaces of curvature bounded from above.

A complete metric space (Y, d) is said to have curvature bounded from above
by k if the following conditions are satisfied:

(i) The space (Y, d) is a length space. That is, for any two points P and @
in Y, there exists a rectifiable curve ypg so that the length of yp¢ is equal to
d(P, Q) (which we will sometimes denote by dpg for simplicity). We call such
distance realizing curves geodesics.

(ii) Leta = \/m . Every point Py € Y hasaneighborhood U C Y sothat given
P,Q,R € U (assume dpg + dgor + drp < % for k > 0) with Q; defined to be
the point on the geodesic ygr satisfying dgg, = tdor and dg,r = (1 —t)dgr,
we have

sinh((1 — t)adQR)
sinh(adQR)

sinh(tadgr)
sinh(adQR)

cosh(adpq,) coshadpg + coshadpp

for k < 0,
dpg, < (1—t)dpg + tdpr — t(L — t)dgg
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for k =0, and
sin((1 — t)adgr)
sin(adgr)

sin(tadgr)
sin(adgr)

cos(adpq,) > cosadpg + cosadpr

for k > 0.

We will say that Y is NPC (non-positively curved) if it has curvature bounded
from above by 0. A simply connected space of curvature bounded from above
by k < 0 is commonly referred to as a C AT (k) space in literature. If a metric
space (T, d) is a C AT (k) space for any &, then (T, d) a C AT (c0) space.

A R-tree is a metric space (T, d) so that for any t,s € T, there exists a
path v : [a,b] — T joining  to s so that length(y) = d(¢, s) and y is the unique
embedded path from z to y. Here,

length(y) = inf z”: d(y(ri—1),7(73)),
i=1
where inf is taken over all partitionsa = 79 < 71 < ... < Tp—1 < T, = bof|a, b].
It is known that (7, d) is a R-tree if and only if (T, d) is a CAT(c0) space.
2.4. Harmonic maps.
A map from X into Y is called harmonic if it is locally energy minimizing.

Recall that, when (X™,¢) and (Y™, h) are Riemannian manifolds, then the
energy of f : X — Y is

Ef = V£|*d
/X\ fPdu
where
- aft ofi
VIP@) = 3 g @) ol 5L
a,B=1

with () and (f?) the local coordinate systems around x € X and f(z) € Y
respectively.

If X is a Riemannian manifold but Y is only assumed to be a metric space,
then we use the Korevaar-Schoen definition of energy: E7 is defined as above
with |V f|2du the weak limit of e-approximate energy density measures which
are measures derived from the appropriate average difference quotients. More
specifically, define e : X — R by

dz(f(x)vf( )) dam,e
ee(z) = fyeS(ac,e) SR T forz € X,
0 forze X — X,
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where o, is the induced measure on the e-sphere S(z,€) centered at x and
Xe = {r € X : d(z,0X) > €}. We define a family of functionals El -
C.(X) — R by setting

El(p) = / pecdp.
X
We say f has finite energy (or that f € Wh2(X,Y)) if

Ef = sup lim sup Eg(w) < 0.
PEC(X),0<p<1 €0

It can be shown that if f has finite energy, the measures e.(x)dx converge
weakly to a measure which is absolutely continuous with respect to the
Lebesgue measure. Therefore, there exists a function e(x), which we call the
energy density, so that e.(z)du — e(x)du. In analogy to the case of real valued
functions, we write |V f|?(x) in place of e(z). In particular,

Ef:/ IV f .
X

For V € T'X where I'X is the set of Lipschitz vector fields on X, |f.(V)|?
is similarly defined. The real valued L! function | f.(V)|? generalizes the norm
squared on the directional derivative of f. The generalization of the pull-back
metric is

mr(V,W)=TX xI'X — L'(X,R)

where

Rp (VW) = SIF(V WP = LAV = W)

We refer to [KS1] for more details.

Finally, the Korevaar-Schoen definition of energy (cf. [Ch] and [EF]) can be
extended to the case when X is an admissible Riemannian simplicial complex.
Here, the energy E7 is

/ IV 2y = / Vi 2du
X Uk Fy

i=1

where { F; }r—1, .. 1 are the top-dimensional simplices of X. The functions |V f 2
and |f.(V)|? are defined for almost every point in X.
For a flat admissible 2-complex X and coordinate functions z,y defined

2
on a face of X, we will write ‘%‘ to denote ‘f*(a%)f and % : 2—5 to denote

o0 0
Wf(%aa—y)-
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3. Regularity results.

We derive some regularity results for a harmonic map f : X — Y assuming
that X is a flat admissible finite 2-complex without boundary and that Y is a
NPC space as defined in Section 2. We start by proving a series of propositions
which are the singular analogues of results in [GS]. These results are crucial in
our arguments later. The following is a restatement of Proposition 2.2 in [GS].

Proposition 3.1. Let X andY as above and Q € Y. If f : X — Y isa
harmonic map, then Ad?(f(x), Q) — 2|V f|? > 0 weakly, i.e.

/Vd2 V¢>2/|Vf|g0

for any p € W3 (X, R).

Proof. The computation for the proof of this inequality can be found in the
proof of [EF] Lemma 10.2 which is based on the proof of [GS] Proposition 2.2.
O

Choosing ¢ to approximate the characteristic function of a small geodesic
ball B, (po), we get

2 Vv f2d —d? 3.
/B PR /aBg(pO) 22 (s, Qs (3.1)

Proposition 3.2. Let X andY as above and f : X — Y be a harmonic map.
Forpy € X, define

B(r) = / Vi 2du
Br(po)

and
_ 2 s
- [ o U S0
Then FE(r)
r— Ord(p,r) = 0

is a non-decreasing function forr < o(po) = sup{r : Br(po) C st(po)} and
hence

exists.
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Remark 3.3. Thedifficulty in working with harmonic maps from a simplicial
complex is that the monotonicity property for r — TIE—S’) does not necessarily
hold for r > . We illustrate this by the following example. Let X; be the
space consisting of three upper half disks Df, D; , and D; identified along

the x-axis and consider the harmonic function f : X; — R with f; = f|+
J

defined by fi(z,9) = y, fo(e,y) = y and fa(z,y) = 0. Fix py = (z0,90) €
DF C X;. Now identify D;r (for j = 1,2) and D5 to the upper and lower
half disk of the unit disk D respectively by the embedding defined by (z,y) €
D;f — (z,y) € D and (z,y) € D — (z,—y) € D. We let (r,7) be the
polar coordinates of D centered at (xg, —yo). (Note that (z, —yg) is the image
of po = (xo,y0) € D;r under the embedding.) The set 9B, (po) N D;r (=1
or 2) can be parameterized by the angular coordinate v. More specifically, if
we let § = cos™! (yr—o), then v +— (r,7) for —0 <~ < 6 gives us the portion on
0B, (po) in D;-r. For (z,y) € 0B, (po) N D;-r ( = 1,2), y is given in terms of
by

Yy =71cosy —rcosf

by elementary geometry. Since f is identically constant on D; , we have

dZ(f(xuy)7f($07y0)) = y2
= (rcosy —rcosf)?
= r2%(cos®y — 2cosycosf + cos? )

1 2
= r2(2 00827—2005700804-00529).

Therefore,

I(r) = / P (f(x.y). f (z0,y0))ds
OBy (po)

= Z/{?Br(po nDf (@), F(@o,40))ds

0

1 2

_ 27“3/ <§+COSQ7—2cos’ycosﬁ+60829)d’y
—0

= 2r3(20 — g sin 260 + (cos 26)8).
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Furthermore, |V f|? = 1in D{” and D; and [V f|? = 0in DJ, so

E(r) = /B V1P
rpO

- Z / V5P
T(po ﬂDJr

= Area(Br(po) N D;r)
sin 26

= 2r%(h - 5 ).

Now note that

. ’I"E(T‘) 2?” (9 _ sm29)
lim lim =
royd I(r) 050+ 2r3(20 — 3sin 260 + (cos 20)0)

and this shows that 7 — Tﬁg) is not a non-decreasing function for r > o(po).

Proof. (Proposition 3.2) Let ¢ : X — R4 U {0} be a continuous function
which is smooth on each face of X. For pg € X, r < o(pg) and any p € B, (pp),
a geodesic from pg to p can be uniquely extended beyond p to a geodesic of
length r. Thus, for sufficiently small ¢ so that (1 + t{(p))dx (p,po) < o(po),
we can define (1 + t¢(p))p as the point on this extension that is distance (1 +
t¢(p))dx (p, po) away from py. For ¢ with spt(¢) C B,(po) and t sufficiently
small, we define F; : X — X as

[ (1+&p)p for p € B (po)
F(p) = { identity forp € X — B, (po).

With that, we can now follow the usual calculation to prove Proposition 3.2.
In other words, the standard computation (see [GS], Section 2 for example)
done on each face of X gives

_ o¢ (Of\*  9¢ (9f\® ,9¢ afof  9¢ ofof
o= oo aﬂ(ax) tau(5) 2085 25, 5r oy O

Taking ¢ to be an approximation of the characteristic function of the ball

BT (p0)> we get
2
E(r) =2 /
aBr(pO)

01" 4s (3.3)

or
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for a.e. r < o(pg) = sup{r : By(po) C st(po)}. Again, for a.e. r < o(po),
standard computation on each face of X gives,

o [ D 10
Vo= [ el s S

The above two equations along with (3.1), the Schwarz inequality,

2
(/ ﬂﬁﬂmngdujm»u%
Br(po) i
2 2
S </Br(p0)d (f7f(p0))d8> (Ar(po) <8T (f f( ))) 7 (34)

and the inequality,

sratr. 1) < | | (35)
imply
d, (10
drl & <7"E(7“)>
~ o1z
I(r) E(r)
< B B0 [ S o)
_ afl*,
2167 ( [ |2 )]
2
< meﬂwwll(/ ﬂﬁﬂm»gdUJw»m>
0Br(po) r
_ 2 s of [ s
( Lo <f,f<po))d) ( Lo Jor @ )]
< 0.
for a.e. v < o(po)- O

Remark 3.4. For a general Riemannian simplicial complex X, the variation
F;; defined in the proof of Proposition 3.2 does not make sense. Specifically, we
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must be able to uniquely extend a geodesic from p to pg to a geodesic emanating
from point pg of length (1+¢{(p))d(po, p). Therefore, a necessary condition to
define F} is a positive injectivity radius at pg. A Riemannian simplicial com-
plex does not have this condition generally. For example, take two copies of
the (flat) unit disk and identify the upper half of the unit circle of each disk to
another. Then any two points of the upper half circle can be connected by two
geodesics, one contained in each copy of the disk. Thus, the injectivity radius
of those points is 0.

Corollary 3.5. If

. rE(r) B rE(r)
a0 = limy 7y ander = s

d [ I(o)
g <m> lo=s >0

d <E(U)> loms > 0

do \ o2or

for0 < r < o(po),

then

and

forr < s < o(po)-

Proof. Proposition 3.2 implies that
a.I(o) <oFE(c) for r <o < o(po)-

Furthermore, inequality (3.1) implies that

2B(0) < /8 . DE(f f@)s = T'0)~ 10).  (36)

g

Combining the two inequalities,

al(o) <

(0I'(0) = I(0))

N —

which implies

and hence

I(o)
0< <022T11> forr < o < o(po).-
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Again, by Proposition 3.2,

2a+1 _ I'(o0)
o = I(0)

which implies

0.2ar

0< <E(U)>/ forr < o < o(po).

0

Let p be an edge point or a vertex with st(p) containing n faces and let
o < o(p) = sup{r : B.(po) C st(po)}. Then 0B,(p) can be considered a
graph with n edges where, for each face F', 0B, (p) N F'is an edge and, for each
edge e, 0B, (p) Ne are two vertices. The metric on each edge is inherited from
the metric on the face of X containing that edge. Thus, each edge has length
mo if pisan edge point or - if pis a vertex. Let ds be the corresponding volume
form on the edges and let f, € Y be the point in Y so that

d*(f, f,)ds = inf d*(f,Q)ds.
/ch,@) (fs fo)ds éIéY/BBU(p) (f,Q)ds

The existence of f, is guaranteed by Lemma 2.5.1 of [KS1].

Proposition 3.6. There exists a constant ¢ depending only onn so that

/ P (f, ,)ds < co® / of
9Bs(p) 0B (p)

s

Proof. Assume p is a vertex. The case when p is an edge point follows by an
analogous argument. The universal covering space of 9B, (p) is a simplicial
tree T and we denote a fundamental domain in this universal cover space by
T. The finite tree T' has n edges and its diameter D is < 73%. Let f:T—Y
be the lift of f|yp, () to the universal cover.

For pg,p1 € T,let t — p; for t € [0,1] be the constant speed parame-
trization of the unique geodesic between pg and p;. The tangent vector p; has
length < D. For a.e. (po,p1) € T x T, we have

2
ds. (3.7)

1

E(f (o), Fm)) < / o) [2dt
0

~12

< DQ/1
N 0

(pt)dt.
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For a fixed pg and ¢ € T, there are at most n! points py so that d(pg,q) = ¢
and d(q,p1) = 1 — t. It then follows that

12 "
0
L] woasten <t [ |5} asta
and
[ @G iase) < [ @) fesen)
T T
LAzl
< 0 [ [ wodrasten
1 8f~2
= 07 [ ]I woasea
) "
< D2n!/0 /T % (q)ds(q)dt
B w2n2nlo? 8f2
= 732 \/TE ds
and we have shown inequality (3.7). O

The local Holder continuity for a harmonic map f from an admissible Rie-
mannian simplicial complex to a NPC space has been claimed in [Ch] and [EF].
We note the proof of [Ch] is disputed in [EF]. On the other hand, the idea of
[Ch] is valid as long as the following additional assumption is imposed: for
every p € X and ¢ € By, (p) where 9 = p(p), the geodesic between p and ¢
can be uniquely extended to a geodesic of length rg. This is certainly true for
X as above.

Our arguments above immediately yield a proof of the local Holder conti-
nuity which we present for the sake of completeness.

Theorem 3.7. Let X andY as above. If f : X — Y is a harmonic map, then
f is locally Holder continuous. More specifically, for every pg € X, there exist
constants A and o depending only onro = o(p), EY andn, the number of faces
intersection By, (po), so that

d(f(p), f(q)) < Ad%(p,q) for allp,q € B,,/2(p).
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Proof. Let p € B,,/2(po) and E(o fB |Vf|2du for o < rg. By inequal-
ity (3.1) and the fact that -2 sd(f, fc, < ‘%‘, we have

1
Bo) < 5[ ()Ecﬂ(f Jo)ds

- /830( A(S. o) (T )i
< (f,fa) —f‘

BBO—

1/2
é (aBg 1) ([,

Thus, by inequality (3.7
9 1/2
ds /
9B:(p)

E(J)<\/Ea</aB()

By equality (3.3),

of

or

9 1/2
ds)

5 N\ 1/2
ds) . (3.8)

of

0s

of

or

2 2
/ O s = / |Vf|2ds—/ OF " 4s
9B (p) | 05 9B (p) 6Ba(p) or
= o)~ / orf
5+ (1) or
/ orf (3.9)
o8,() | "
Combining (3.8) and (3.9), we obtain
2
B(o) < ca/ I s < \Jeo ' (o)
oB4(p) | 0
or
2a _ F'(0)
= o
o ~ E(o)
where 2a = % Integrating this inequality from r to rg, we have
f
By < Z (272)#0‘ < B (3.10)

0 0
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Now we apply Morrey’s energy decay argument to prove Holder continuity.
Let p,q € B, /2(p) with d(p, q) = 7 and let p;, 0 <t < 1, be the point which is
fraction ¢ along the geodesic from p to q. For any p’ € B% (p1),letps, 0 <t <1,

2

be an arclength parameterized geodesic from p top’. Sinced(p,p’) < d(p,p1)+
2
d(p1,p’) < r, we have that the tangent vector p; has length < r. Therefore,
2

1
d(F ), 1) = /0 ()] (pe)dt

1
r /O I £|(pr)dt

) and we obtain

IN

Integrate this inequality over p’ € Br (

b1
2

/B d(f ), F))dp(p)

5y)
( / 1 V1)) )

b
e [ 19 S a

PL)
2 2

1
T‘/O t_Q/BTt(p) |V fldu(w) dt
) 1/2
1/2 2
r / 1 Vol(Bou(p)) ( /B i du) dt
/ C 'rt

. / 24«
7o 0
Cv Ef T2+a

a
Qarg

IN

(P1)

l\)\»—l

IN

IN

IN

IN

('rt)adt

)

where C'is a constant dependent on n, by applying inequality (3.10). Similarly,

/ . d(f(P/%f(Q))du(p’)z@rﬂa,
By (#y) ar§

r(P1
22
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By the triangle inequality,

/ A, @)

< [ e @)+ [ ). @)
Bg(p%) Br(p1)
2CVET , .,
argy "
and thus
2CVETr?
d(f(p)> f(Q)) < OKT(?VOI(BKT(‘ﬁl )) re
and this is the desired result. O

Because of the assumption on X, we can prove a much stronger regular-
ity result for harmonic maps than the local Holder continuity derived above.
First, we prove that a harmonic map is locally Lipschitz away from the ver-
tices. Because this is a local theory, we restrict our attention to a local model
X1 defined in Section 2.2. Before we proceed with the proof of the regularity
result, we show the following mean value inequality and maximum principle
for a distance function between two harmonic maps.

Proposition 3.8. Let f,g: X — (Y, d) be harmonic maps into a NPC space.
Forany0 < ro < r <1, there exists ¢ > 0 (dependent only onrg andr) so that
for any po € X withr < o(po) = sup{r : By(po) C st(po)},

max  d*(f,9)(p) < ¢ / & (f. g)du (3.11)
PGBTO (pO) B (pO)

and
max  d%(f,q)(p) < c / (1, g)dp. (3.12)
pEBTo(pO) 6Br(p0)

Furthermore, for anypy € X, we have

max d(f,g) = max d(f,g). 3.13
&%)Ug)a&m)ﬁg) (3.13)

Proof. If pg is a face point, then the existence of a sufficiently large ¢ to satisfy
inequality (3.11) follows from [KS1] Lemma 2.4.2. We must also find a suffi-
ciently large ¢ so that inequality (3.11) holds when py is a edge point or when
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po is a vertex. It is sufficient to consider harmonic maps f, g : X, — (Y, d) (to
handle the case when py is an edge point) or f,g: X, — (Y,d) (to handle the
case when pg is a vertex), 0 < rg < r < 1 and pg = 0. (Refer to Section 2.2 for
the definitions of X, and X/.)

For the case when the domain of f and g is X, = U?:lD:Z./ ~, let Q. =
Ul D, ;/ =~ where the equivalence relation ~ identifies the z-axis of one disk
to that of another, i.e. (2;,0) ~ (x;,0). (Here, we again use the convention
that the point with coordinates (z, y) on the ith disk D, ; is denoted by (x4, v;).)
Define ¢; : D,; — D:Z. by setting ¢;(z;, yi) = (x4, |yi|) and let F,G : Q, —
(Y.d) be defined by F(z;,y;) = f o ¢(i,y:), and G(z,9:) = g © ¢(xi,Ys)
respectively.

For n € C*(D,), define Fy,, Fi_,, : Q, — (Y, d) by setting

Fy(@i,yi) = (1= (@i, yi) ) F (@i, yi) + n(@i, 4:) G2, yi)
and
Frp(wi,yi) = (@i, y) F (i, yi) + (1 =024, 9:)) G (i, yi).-
where (1 — )P 4 tQ denotes the point which is fraction ¢ of the way along the

geodesic from P to Q in Y. These maps are well-defined with respect to the
equivalence relation = since

Fy(z:,0) = (1 —mn(z;,0

= (1_77:6]'70) foq)(.l'j,())—|—77(.1'j,0)gO¢’(£Cj,0)
= (1 -n ZC],O) F(:CWO) +"7(55j70)G(33j>0)
= Fy(z;,0)

By Lemma 2.4.1 of [KS1] and by Lemma 2.4.2 of [KS1] applied to the re-
striction of F}, and Fj_, to D:Z- for each i, we see that F, Fi_, € Wh2(Q,,Y)
and

/\VFU\%F/ IVE_,?
Q, Qp

s(/|vm”+/ NGF—2/'VnNM%RGw+ Qn, V),
T QT QT QT

where Q(n, Vn) consists of integrable terms which are quadratic in n and V.
Let f,, fi—, bedefined by F,,0®~1, Fy_, 0®~! respectively, where ®~1 : X, —
Q. is defined (x4, ;) — (4, ;). Since ®~! is a really just the identify map,

/\VFP=2/ Wﬂ2§2/\VhF=/)WE#
Qr X, X, Q
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|over =2 [ jvop <2 waop= [ WAL
Q. X, X, Q-

Therefore,

and

P . 2
2/Qrw vd (F,G)+/£2TQ(?77V?7)>0

and replacing n by tn, dividing by ¢ and letting t — 0, we get

— | vp-vs>0
D,

for any n € C2°(D,) and where

n
S(x,y) =D d*(F (i, 1), Glwi, 4i).
i=1
By the mean value inequality for subharmonic functions,

1
d(z,y) < —2/ ) (3.14)
Y Dﬂ(xzy)
for any p < r — /22 4+ y? where D,(x,y) is the disk of radius p centered at
(x,y). (As before, D, is the disk of radius r centered at the origin.)
Recall that rg < r < 1. Let (z;,vy;) € X,, and p =1 — ry.

&*(f (i, i), 9(xi, y2)) d*(F (i, y:), G2, i)

< (z,y)
1

< — o
7Tp Dp(xvy)
1

< — )

- 7 p,
1

= — | &FG
7 ). EEG)
2

= — [ d(f9)
2 ) (f:9)

This proves inequality (3.11).

For the case when the domain of f and g is X] = U, W;/ ~, let ¢; :
D:‘;ﬂ. — W, be defined by z — 5. Let 0,3 = U D,s;/ ~ where ~ is defined
as before. Let ¢; : D,s ; — D:;’Z. be the map ¢;(z;,y;) = (x;, |y;|) and define
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U Q.3 — X/ by setting ¥ (z;,y;) = ¥; 0 ¢;(x;,y;) and let F,G : Q3 — (Y, d)
be defined by f o ¥, and g o ¥ respectively. Arguing analogously as above, we
also get inequality (3.14). Here, we note that

/ VF[ =2 / VP <2 / V52 = / VE,?
Q3 X! X7 Q3
/ VG =2 / Vl? <2 / V12 = / V[
Q3 X! X, Q3

follows from the conformal invariance of energy.
Again suppose 7o < 0y < r < 1. Let (z;,9;) € X, and p = 63 — r§. Using
the notation z = x + 4y and 23 = £ + in,

& (f(i,yi), 9(wi ) = d*(F(&mi), G(&,mi))

and

< 6(&n)
1

< - 0
P Dy (€m)
1

= — 5
TP JD 3
1

= — d*(F,G).
T~ JQ, s
2

= — d*(F,G).
TP™ J{(2i,y:)€EQ,.3:9: >0}

By a change of variables R = 13 and © = 36 (i.e. z = re’? — 2% = Re'®),

s 7‘3
/ d*(F,G) = / / d*(F,G)RARdO
Dt 0o Jo
% r

r3i

= 9 d*(f, g)r°drd

z r

d*(f, g)rdrdf

S— S—

=9
W;

d*(f,9)

IN
\cﬁ%

and hence
2 18 2
T JXx!
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for any (z;,v;) € Xy,. This proves inequality (3.11). Inequality (3.12) follows
from a similar argument.

To prove the maximum principle (equality (3.13)), suppose the maximum
of d(f,g) in X, or X is achieved at 0. Since 6(0) = nd(f(0),g(0)), then the
maximum of § in D, is also achieved at 0. Inequality 3.14, implies that J is iden-
tically equal to 6(0) and this is impossible unless d( f, ) is identically constant
on X,. O

To prove the Lipschitz regularity, we will use the following property of har-
monic maps along the edges. The example of when the domain was a disk was
examined in the introduction.

Theorem 3.9. Let f: X1 — Y be a harmonic map where X1 is an edge piece
(defined in Section 2.2) with N half disks labelled DY , ..., DY, andY is an NPC
space. Let fI = flp+ and fix a conformal structure on each DJ'-F so that the

J
orientation induced on the x-axis is the same for each j = 1,..., N. With this
conformal structure, define

of
5= o

L o|of

2 5 /27 Of
oy | 2<— —>

8x'8y

Then
N
Imz ©j(x,0) =0
j=1

forall—-1 <x < 1.

Proof. Let ®; : D™ — D™ be a diffeomorphism so that ®g =identity and ®; =
identity near 9D N D™T. Set % = (1, wy) and v = vy and w = wy. For &, with
compact support in DT, the standard variational computation for E(f7 o ®;)
using the fact that f7 is minimizing in Dt gives

dt

_ [ (]eF 2(@_@>
B /D Oz oy or 0Oy
afi afi\ (v  Ow

and we conclude ¢, is holomorphic in the interior of D.

d .
0 = —E(f"o®)li=0
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~ Now consider ®; with w; = Onear I' = {(z,y)|y = 0,—1 < 2 < 1}. Let
®; : X1 — X be defined by @E(xi,yi) = ®,(x,y). Using the fact that f is
energy minimizing and that f o ®; is a competitor of f, we obtain
d -
O = d—E(f (e} (I)t)|t:O
I

ij o Ow
Z/ ( o ><8__8_y>
afr afJ ov  Ow
+2<a7 | a—y> (G~ ) o

We now assume that w; = 0 and 4 a smooth function with support in

(—xo,xo) X [O,yo) C DT. Let
afif> | afi of
V- Z(‘ 1% ) dv‘22<8x ay>

Then, from the fact that w; = 0 and by integration by parts,

Yo Yo
0 = lim / —dxdy / / dyda:
6—0 —z0

= lim (UZ/(ZC(), y) — Uv(—xo,y) — / %Vdm) dy

6—0 Js —z0
@ v Jy
— lim <Vy(x,y0) —Vu(z,d) — / —l/dy> dx.
6—0J g, s 0y

Using that spt v C (—z,x0) X [0,70) and the Cauchy-Riemann equation

(%—g = %‘;) we obtain
@
0 = lim Vu(z,d)d.

6—0 —z0

Let 1) be a holomorphic function in D so that % =@=U+41tV. ThenV =
Im ¢ =Im dw =Im d¢ . Hence

. o oY ) T v
0 = lim Im —v(x,0)dxr = %13(1) Im/_ @Z)%(L&)d:c.

6—0 —go O

Since % = ¢ € LY(D*), ¢ € H"(D") and 4 has boundary values in L'.
Thus,

Zo

0=1Im w@x

o 83:( ,0)dz.
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Since v is an arbitrary function of I', we conclude Im ¢» = 0 on I'. By the
reflection principle, ¥ can be extended to a holomorphic function in the interior
of D, and in Thus, particular, 1 is smooth across I'.

To dl[) To
0= Im / d—l/(x,O)da: = Im wv(x,0)dz.

—zo A2 — 0

With this, we are ready to prove the main regularity theorem.
Theorem 3.10. If f : X1 — Y is a harmonic map into a NPC space, then

g <iEf and ‘8—

Ef

2
S2N—i2—2

ox 2 Yy

at (z;,y;) € X1 where2r is the distance of (Z;,Y;) to0X1 and N is the number of
faces of X1. (Here, X1 is the edge piece of diameter 1 as defined in Section 2.2.)

wr

2
Proof. We first prove an upper bound for ‘%‘ . We will use the notation

fi(x,y) = f(z4,y;). For e > 0 sufficiently small, let g : X,, — Y be defined by
g(z;,v:) = fi(x +¢€,y). By inequality (3.14) applied to f restricted to X, and
g, we see that

Zdeﬂxy)f%Hey WQ/ )Zdeﬂxy)f%Hey))dxdy
riEy

Thus,
off>, E(f(3,9), f (@ + )
‘% (T3, 7:) = lim 2
J J (7
< lim (f7(z,9), f1(Z +€,9)
e—0 4 €2
7=1
1 — 1 ,
< ) lm o / (F(@.9). F( + €.9))dedy
wr e—0 € Dy (Z,7)

IN
>1
S
l\D
\
Z
=
&
8
U
<

IN
i
[}
1
<
=
S
=
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2
Next, we prove an upper bound for ‘g—g‘ . Let ¢ = Zjvzl @ where ¢; is
as in Theorem 3.9. By Theorem 3.9 Im ¢ = 0 on I and ¢ can be extended

to a holomorphic function in the interior of D. Because Re ¢ is harmonic, the
mean value inequality gives

1
— / Re ¢ dzdy
T JDr(z.9)

for (z,y) € D and 2r =1 — /&2 + y2. Thus,

Re p(z,7) =

o 1
[Re p|(Z,9) < — [Re ¢| dzdy

mr r(Z,9)
1

< =5 [ IRepldady
mwr D
2

= — |Re @|dzdy.
mwr D+

Using the fact that
[Re | = U] < Y |VFIP,

=1
we have
Re ¢|(z y><ii/ ViR =25 [ 1es
Tt = p+ mr? Jx, '
Thus,
orf* . . |afi)?,
'8_y (xzvyz) - ‘8y (fC,y)
n 8f9 2 o
S a (xvy)
=0
"o o
= Z a. (.T,y)—RQQO(l‘,y)
= oz
n a j 2 o o
< 3122 .5) +Re @, 9)

IA
O S
’l

n -+ 2
' / VIE
wr X1

As a consequence of Theorem 3.10, we have the following.
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Theorem 3.11. Let X and Y as above and V be the set of vertices of X. If
f: X — Y is a harmonic map, then for everyp € X — V, there is a constant
c independent of p so that

C

VIR < 55 [ I9fPan
B;(p)

where § = min,ey dx (p,v) and f is locally Lipschitz continuous with the Lip-
schitz constant at p € X dependent only on EY and §.

Proof. Forp € X —V,let v be avertex so that § = dx (p,v). Furthermore, let ¢
be an edge point closest to p and let p = dx (q,v). If 8 is the angle between the
edge containing g and the line segment from p to v, then p = § cos > % since
6 < % by the assumption that the faces of X are isometric to an equilateral
triangle. Furthermore, the distance from ¢ to an edge not containing ¢ is equal
to psin § > %. Therefore, B s (¢) is isometric to the edge piece X7 modulo a
dilation. Now restricting f to B (q), noting that the energy of f isindependent
of a conformal change of Variabl2es on each face and applying Theorem 3.10, we
have

2 2

of of
2 _ |9 et
vt = [ o+ |5
4 / 9
< 5w IV [ dp
77(%)2 B%(Q)
c
< 5/ v
62 Bs(p)
The Lipschitz regularity of f follows immediately. U

We now improve the local Holder continuity result of Theorem 3.7 to prove
the uniform Holder continuity of harmonic maps. [F] has claimed that har-
monic map f : X — Y islocally uniformly Holder continuous; that is, there
exists constants A, «, § so that

d(f(p), f(q)) < Adk(p,q) whenever dx(p,q) <&

with A, a, 0 independent of p locally. We note that [F] considers more general
metrics that we are considering in this paper. On the other hand, we prove a
slightly stronger statement.
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Theorem 3.12. Let X andY as above. If f : X — Y is a harmonic map,
then f is globally Holder continuous. More specifically, there exist constants A
and o depending only on Ef and X so that

d(f(p), f(q)) < Adk(p, q) whenever dx (p,q) < 1.

Proof. Note that by definition of X, o(v) = v/3 forallv € V. By Theorem 3.7,
we know that for each v € V, there exists A, and a, depending on Ef and v
so that

d(f(p), f(v)) < Audy (p,v)
forallp € B s(v). Let

Ap = max A, and «ap = min q,,.
veV veV

Let p,q € X with dx(p,q) < 1,t — p, for t € [0, 1], be a constant speed
geodesic from p to ¢ in X and r = d(p, q).

CASEL {p; :t€[0,1]} N B.(v) =0 forallv e V.

Fix t € [0,1], let v9 € V be so that dx(p,v9) = minyey dx(pg, V) and
o = d(pt,vp). By Theorem 3.11,

C

Vi) < — V1T (3.16)
o Bd(pt)
c
< = ik (3.17)
BQU(UO)
4c / 9
= — IV fl°. (3.18)
(20)? /By, (w0)
If o > \/r then by inequality (3.16),
2 ¢ 2 - Cnf
ViPe)<S [ vsr<fE, (3.19)
r BU(Pt) r
Now assume o < /r and let E(r) = fBr(UO) IVf2dp and I(r) =
/. OB, (v0) d*(f, f(v))ds. We consider the following two possibilities:
Q) 20F(20) -1

I(20) —
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Then by Corollary 3.5,
E(20) < E(1) <5
(20)? 1

and thus by inequality (3.18)

VP (pr) < 4cE7. (3.20)

Since d2(/(p), f(vo)) < A3(20)2%0 for p € DBas (vy),

I(20) _ A3 (20)20F!
200 20

E(20) < < AZ400 5200,

Thus, inequality (3.17) and the fact that r < o < /r,

|Vf|2(pt) < CA(2)4a002a0—2
< cARgo0pa0—l (3.21)

From inequalities (3.19), (3.20) and (3.21),
‘vf‘Q(pt) < Cl’l”*l +Cy + 037.01071

where C1, Cy, C3 depends only on Ef, Ay and ag. Therefore,

d*(f(p). f(q))

IN

1
2 / V£ 2 (pe)dt
< Cl’l” + CQT‘2 + Cg’l”aOJrl.

CASEII: p; € B, (v) for some t € [0,1] and v € V.

By repeated use of the triangle inequality, we have

d(f(p), f(q)) d(f(p), f(v)) +d(f(v), f(q))

Apd (p,v) + Aody (v, q)

Ao(dx (p,pe) + dx (pe,v))™ + Ao(dx (v, pe) + dx (pe; q))™
Ag(2r)* 4 Ag(2r)

21+O&0A0,r,0(0

VAN VAN VAN VAN VAN

Choosing A = Cy + Cy + C5 4 21720 4 and o = min{3, ag}, we have the
desired result. O
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4. Existence Results.

We first start with the existence of the Dirichlet solution.

Proposition 4.1. Fiz By = Dy or By = X3 or By = X (¢f. Section 2.2)
and let (Y,d) be a NPC space. Given ¢ : WY2(By,Y), define

W2 = {ue WE(B,Y)tr(u) = tr(0)}.
Then there exists a unique harmonic map f € W(;’Q and

Ef = inf E“
uEW;’2

Here tr(u) € L*(0B,Y) is the trace of the map u as defined in [KS1].

Proof. Follows exactly as in [KS1] Theorem 2.2. O

We prove the following boundary regularity for the Dirichlet solution.

Lemmad4.2. Let B; = {z = (x;,y;) € B1 : |z| = yJo?+y? < 7} and
(Y,d) be a NPC space. Given ¢ : By — Y which is uniformly continuous up
to the boundary, the Dirichlet solutionu : By — Y withulsp. = ¢|ap, is also
uniformly continuous up to the boundary.

Proof. For z € B, astraight forward modification of the proof of the Courant-
Lebesgue lemma implies that for all o < 1, there exist r € (0,+/0) and a
constant C' > 0 so that

d(u(z1), u(z)) < Clog G)_m

for all 21, z9 € 0B, (z) N B;. This combined with the uniform continuity of ¢
implies that for all € > 0, there exists § > 0 sufficiently small so that

u((0Bs(z) N B;) U (0B; N Bs(2))) C Be(u(z)).

Since the image of a harmonic map is always contained in a convex hull of its
boundary, this implies

U(B(;(Z) N BT) - Be(u(z))

and this shows the uniform continuity of u. (|
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Let I" be a finitely generated group. Then there exists a finite 2-complex
X and a normal covering p : X — X with transformation group I. If I is
finitely presented, then we may take X so that m(X) = Tandp : X — X
the universal cover, but in general, X may fail to be simply connected. By the
construction in Lemma 2.1, we may assume that X is an admissible finite 2-
complex without boundary. Moreover, we assign metrics on faces of X so that
X is a flat admissible finite 2-complex without boundary as in Section 3.

Let 71, ...,7n be the generators of I'. An isometric action on Y by I' is a
homomorphism p : I' — Isom(Y’) (sometimes also called a representation of
I'). Amap f: X — Y is called p-equivariant if

f(yp) = p(7)f(p) forallp € X and for all v € T.

Here, and subsequently, we write p(v) f (p) for p(7)(f(p)). The energy of a p-
equivariant map f : X — Y is given by

Bl = [ V1P
X

where X is identified with a fundamental domain of X. Amapf: X —VYis
said to be in the space L2(X,Y) if f is a p-equivariant map satisfying

/ @ (f,Q)dp < o0
X

for any @ € Y. Define a distance function do on L?)()_( ,Y) by

da(f.g) = /X (£ (p), 9(p))du(p).

It is known (see [KS2] Lemma 2.1.2) that the curve t — u; € L%()_(, Y) for
t € [0,1], where ug(p) = (1 —t)uo(p) +tu1(p), is ageodesic and (L3(X,Y), do)
is a NPC space. We will refer to {u; }o<¢<1 as the geodesic homotopy of ug and
u1. The set Wﬁ}’Q (X,Y) is defined to be the subset L2(X,Y') with finite energy.

Proposition 4.3. Let X,I',p and Y as above. There exists a p-equivariant
globally Lipschitz map. Therefore, Wﬁ}’Q (X,Y) is non-empty.

Proof. The proof of Proposition 2.6.1 of [KS1] can be followed almost verbatim
to prove Proposition 4.3. O
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Proposition 4.4. Let X,T',p and Y as above. There exists a sequence
{u;}iz12,.. C W,}’Q()_(,Y) and constants A, « and 0 so that E% — Ey :=
inf{Ef: f e W,}’Z(X,Y)} and

d(ui(p), ui(q)) < Ad%(p,q) whenever d%(p,q) <0
foralli.

Proof. We follow the argument of Theorem 2.6.4 of [KS1] making the necessary
modification to account for the fact that X is not a Riemannian manifold. By
Proposition 4.3, we know that Wp ()_( Y') is nonempty and Ej is finite. Let
{vi} C W1 2(X,Y) be a minimizing sequence, i.e. E% — Ej.

Choose a finite cover of X by balls { B!, ..., BV} of radius 7 < 1 and let 2B’
denote ball of radius 2r with the same center as B7. Choose r small enough so
that for any p € X, Ujpcopi 2B7 is simply connected. Let {1/} be a partition
of unity subordinate to B7. Lift the functions 7/ and the sets B’ to functions 7/
and sets B’ on X invariant under I'. Ineach 2B7, let uJ be the Dirichlet solution
w1th boundary values equal to that of v;. Extend u] outside of 2BJ by defining

uz equal to v; there. Thus, Evi < Evi, Furthermore, by Theorem 3.12, there
exist A and « independent of 4 so that

d(u?(p),uz(q)) < Ad% (p, q) whenever p € spt (77 ) C B’ and d(p,q) <

r
: 2
(4.1)
Consider a measure v on the set of natural numbers N defined by v/(j) = 7’ ( )
Define a function ¢ : (N,v) — Y by setting ¢(j) = u](p). Let u;(p) be
center of mass of ¢, i.e.

/ d(6(), ui (p))dv(j) = inf / A7), Q)dv ().
N N

QeY

By following the proof of Theorem 2.6.4 of [KS1], we can see that for suffi-
ciently large 7,

d? (ui( ) < 2Zn ), (q))-

Thus, the regularity of u; follows from inequality (4.1). To show that {u;} is
a minimizing sequence, we refer again to [KS1]. O

We are now ready to prove the existence theorem of p-equivariant harmonic
maps. We follow the proof of [KS2] taking into account that X is not a Rie-
mannian manifold.
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Theorem 4.5. Let X,T', p andY as above with (Y, d) a metric space of curva-
ture bounded from above by k < 0. If p does not fix an equivalent class of rays,
then there exists a p—equivariant harmonic map.

Proof. Let C. C L%(X ,Y') be the set of uniformly Holder continuous maps
whose energy is bounded by Ej + €, where Ej denotes the infimum of energies
of maps in L%(X ,Y'), and satisfies

d(f(q), f(q)) < Ad%(p,q) whenever dx(p,q) <0

for some constants A, o, and d. By Proposition 4.4, C, is nonempty for every
e > 0 if A is chosen large enough and «, § are chosen small enough. We check
that C. is a closed convex set. For ug, u1 € Ce, let u; be the geodesic homotopy
of ug and u1. Then by the property of NPC space

d(ut(p), ut(q)) < (1 —t)d(uo(p), uo(q)) + td(ui(p), ui(q))

for any t € [0,1] and p,q € X with dg(p,q) < 1. This shows that the en-
ergy is a convex functional in L/QJ(X ,Y') and that the Holder estimates are pre-
served along geodesics in LZ (X,Y). ThusC.isaconvexset. Theset C, is closed
since the energy is lower semicontinuous and so is the Holder estimate since L?
convergence is equivalent to uniform convergence in the presence of a uniform
modulus of continuity.

Let pp € X, Q € Y and Cc = {u(po) : u € Cc}. If there exists R >
0, Cc N Br(Q) # 0 for all ¢ > 0, then we can find a minimizing sequence
which is bounded in L?)()_( ,Y) and we can find a harmonic equivariant map
(see the proof of [KS2] Theorem 2.1.3 to verify that a bounded minimizing
sequence yields a minimizing equivariant map). If for any R > 0, there exists
eo > 0 so that C¢ lies outside of Br(Q) for all € < ¢), then we show that there
exists an equivalence class of rays fixed by I'. Let u; € Cy—: and consider the
triangle with vertices @, u;(po) and wu;(po) for i < j. Let u; be the geodesic
homotopy of u; and uj. Then u; € Cy—i and hence uy(pg) € Cy—i which implies
that u:(po) N Br(Q) = 0, i.e. the geodesic between w;(pg) and u;(po) does
not intersect Br(Q). By the CAT(k) condition, the segments Qu;(py) and
Qu;(po) are uniformly close on bounded subsets of X'. Therefore, this sequence
of segments is Cauchy in the topology of uniform convergence, and converges
toaray o. Then foreach k =1,...,. N

d(p(vk)ui(po), wi(po)) = d(ui(vk(po)), ui(po)) < C.

independently of i using the uniform Holder continuity of u;. If we let 6(p) =
maxy=1,. N d(p(7k)p, p) then this means that ¢(-) is bounded along segment
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Qu;(po) for each i. Therefore, §(-) is bounded along o, and thus the equivalence
class of ¢ is invariant under I'. O

We also have the following uniqueness theorem:

Theorem 4.6. Let X,T',p and Y as above with curv(Y') < k < 0. If fo, f1 :
X — 'Y are p-equivariant energy minimizing maps, then fo = f1 unless fo(M)
1s contained in a geodesic.

Proof. The uniqueness theorem of harmonic maps when the target has strictly
negative curvature is proven in [Me]. It isnot too hard to extend the proof there
to cover the situation when the target is a admissible Riemannian simplicial
complex. O

5. The Korevaar-Schoen compactness theorem.

In this section, we consider compactness theorems for a family of harmonic
maps. The compactness of harmonic maps with a Riemannian domain was
obtained by Korevaar and Schoen [KS2]. The main difficulty in allowing the
domain X to be asimplicial complex is to control the energy near non-manifold
points.

Theorem 5.1. Let (Yy, dy) be a sequence of NPC spaces, py : I' — Isom(Y})
a sequence of isometric actions and fr, : X — (Yi,di) a sequence of py-
equivariant harmonic maps so that Ef¢ = 1. Then (1) there exists a NPC
space (Yoo, doo), an isometric action po : I' — Isom(Yy), a nonconstant
Poo-equivariant map foo : X — (Yoo, dso) and a subsequence fis so that fi
converges locally uniformly to f (see definition 3.3 of [KS2]); in particular,
dir (frr (+), frr (+)) converges uniformly to deo (foo(+), foo(+)) 0on any compact sub-
set K of X and fiy and f satisfies the same modulus of continuity estimates,
(2) the energy density functions of fi converges a.e. to that of fo and (3) feo
s harmonic.

Proof. (of (1) and (2)) Since E/¢ = 1, {fx} has a uniform modulus of conti-
nuity by Theorem 3.12. Following the proof of [KS2] Proposition 3.7, we can
show there exists a subsequence of { fi.} (which we will still denote by f for
simplicity) which converges locally uniformly in the pullback sense to a limit
map foo : X — (Yoo, doo)-

We now show that f. is a non-constant map.
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Fix k and v € V and let
Bur) = [ VAP and L) = [ dh(fi ue)ds
B (v) OBy (v)

for 0 < r < 1. Now fix r and we treat the following two cases:

rEg(r) >1
Ii,(r)
By Corollary 3.5,

CASE 1:

<

r2 12
which implies Ey(r) < r2E(1) < r2Efe =12,
case2: TEE0)
Ii(r)
By Theorem 3.12, I1,(r) < C,r A%r?* where Cyr = vol(0B,.(v)). Thus,
1
Ex(r) < L(v) < C A% < CA?r%
T

where C' = max,cy Cy.
Thus, CASE 1 and CASE 2 imply that for any k, v € Vand 0 < r < 1,

Ei(r) < r? 4 CA%?
and for any kand 0 < r < 1,

1 = EN

- / IV fil2dp + / IV ful2du
X—Uvngr(U) U'UEVBT(U)

/ IV fulPdp + (#V) (r* + CA*r?®)
X—UvevBr(U

IN

where #V is the number of vertices of X. Thus,

L— (#V) (r*+ CA**) < / |V fr|2dp.
X*UUGVBT(U)

Let F be a face with vertices v1, vo, v3 and edges eq, e2, e3. Denote the e-

neighborhood of e; by ¢; .. For 0 < € < r, let Q2 be smooth domain compactly
contained in F so that F — Q C U3_,e; . By [KS2] Theorem 3.11,

: 2 2
dm [ 95 = [ 95l (5.1)
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By Theorem 3.11, the Lipschitz constant of fi in X — U,y B, (v) is uniformly
bounded independent of k, say by L. Therefore,

limsup/ IVfl? < limsup/ IV fil” 4+ 3Le
F—U?_ Br(v) Q-UZ_ Br(v)

k—o00 k—o00
< lim/|ka|2—|—3Le
k—oo Jq
_ /\Vfoo\Q—i-?)Le
Q
<

/ |V fool? + 3Le.
F

Since € can be chosen arbitrarily small, we see that

limsup/ \ka\2 S/ |Vfoo|2-
k—oo JX—U,cy Br(v) X

Combined with (5.1), we obtain
L (V) + 0 < [ (9 f P
X

Letting » — 0 and using lower semicontinuity of energy (cf. [KS1] Theorem
1.6.1), we conclude Ef> = 1. Thisshows fs, is a nonconstant map and finishes
the proof of (1). The assertion of (2) follows immediately by the fact that there
is no loss of energy and the lower semicontinuity of energy. We defer the proof
of (3) to Section 7. O

We also have a compactness theorem of harmonic maps in the case of com-
pact domains.

Theorem 5.2. Fix By = Dy or By = Xy or By = X/ (c¢f. Section 2.2). Let
B, ={z = (z;,y;) € By : |2| = /2 + y? < 7}. Let (Y),dy,) be a sequence of

NPC spaces, fr : By — (Y, dy) a sequence of harmonic maps with

W) = [ o). fe0)ds =1

and Efe < C. Then (1) there exists an NPC space (Yoo, doo), a non-constant
map foo : B1 — Yo and a subsequence fir so that fir converges locally uni-
formly to f (see definition 3.3 of [KS2]), (2) for0 < T < 1, the energy den-
sity functions of fi/|p, converges a.e. to that of foo and (3) for0 < 7 < 1,
foo @ Br — Y is harmonic.



Harmonic Maps from 2-complexes 533

Proof. (of (1) and (2)) For the case when B; = Dy, the statement was proved

by [Su]. For any 7 < 1, the Lipschitz constant of u, in uniformly bounded in B,
by Theorem 3.11. Therefore there exists a subsequence of f, which converges
locally uniformly in the pullback sense in B; to a harmonic map by applying
the argument of [KS2] Proposition 3.7. By choosing asequence 7, — 1 and by a

diagonalization procedure, we can pick a subsequence fi+ of fi which converges
locally uniformly to a map fo. We now show that f, is non-constant. Let

I(r) = /QB o diy(fr [1(0))ds
and
B = [ [Vl

For § € (0,1) and g € (6, 1], we have

T(ro) — In(8) = /emim o)do

- /TO ; /BB(, *(frs f1(0))dsdo

- [ 2d(fk,fk<0>>did(fk,fk<0>>dsda
6 JoB,(0) o

L
A R

By the Cauchy-Schwartz inequality and %d(fk, 11(0)) < |V fe|?, we have

Ii,(ro) — I(0) < €Ey(ro) + (1 + %) /07’0 Ii(r)dr

€

for 0 < 0 < r < 1and any € > 0. By Proposition 3.2,

roBk(ro) _ Ex(1)

Tu(ro) = 1,(1) ©

and hence

Iy(ro) — Ti(0) < B0 (1 n g) | nar

To €
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For any 0 € [%, 1), pick ro € (6,1]. Thenrg > 60 > % and by choosing € = %7

G0~ 10) < o+ | " Rryar

< (4C+2) /{9 L)

(4C +2)(1 —0) sup I(r).
relf,o]

N

Since rg is an arbitrary point in (6, 1], we have

1
— sup Ip(r) — I(0) < (4C +2)(1 — 6) sup Iy(r).
2 re[6,1] r€(6,0]

Now choose 6 sufficiently close to 1 so that (4C + 2)(1 — 0) < =. Then

1
5
1 1 1
1(0) > & sup Ir) > ~1(1) = +.
relf,1] 3 3
By the uniform convergence of di(fi(), fx(*)) t0 doo(foo(*); foo(*)), We then
have

1
I(0) > -,
OFE

and this shows that f. is not constant.

Next, we prove the convergence of the energies. We consider the case when
0 is a vertex since the proofis simpler if 0 is not a vertex. Forany 0 < 7 < 1 and
0 < r < 7, fi is uniformly Lipschitz continuous in B, — B,. Thus, following
the proof of Theorem 5.1, we can show that the Sobolev energy and directional
energy densities of f; converge to that of fo, in B, — B,.. Using the energy
estimate near a vertex of Theorem 5.1, we see that

Ex(r) < liminf Ex(T)

k—oo

< liminf Ey(1) — Ex(r) + (2 + CA%*r?)

k—oo

= Eo(7) — Exo(r) + (r* 4 CA%?).

Since r can be chosen arbitrarily small, we see that Ef+(7) — Ef>~ (7). Since
there is no loss of total energy in B;_., the convergence of the energy density
functions follows by the lower semicontinuity of energy. We defer the proof of
(3) to Section 7 O



Harmonic Maps from 2-complexes 535

6. Tangent maps.

The tangent map of f is defined to be alimit of the blow up maps defined below.

Definition 6.1. Suppose f : X — Y is a map from a flat admissible locally
finite 2-complex X to a NPC space (Y, d). For pg € X and o < inj(po), let

El)= [ Vi
Bo'(po)

f o) = 2 s
I (0) /8 o T

and )
uh (o) = (If (o 1) 3.
If pg is a face point, let By be the unit disk Dy. If pg is an edge point, let By

be an edge piece X isometric to B,(pg). If py is a vertex point, let By be an
vertex piece X/ isometric to By (pg). Let do,p, be the distance function on Y’

defined by dg p, (-, ) = ,ugo (o)d(-,-). We define the o-blow up map of f at pg
as the map

7f:B1— (Y, dcfypo)
defined by

z
") = 1)
where B, (po) is identified with D,, X, or X/ via z = z(p) defined in Section 2.

Proposition 6.2. Let f : X — (Y, d) be a harmonic map from a flat admis-
sible 2-complex into a NPC space (Y, d). For eachpy € X, let B = D1 if pg is
a face point, By = X1 if po is an edge point and By = X if po is a vertex point
and let

There exists a sequence o; — 0 so that theo;-blowup maps? f : By — (Y, dgp, )
of f atpg converge in the sense of Theorem 5.2 to amap f, : By — (Yi,dy) into
a NPC space. The map f. is Lipschitz continuous except possibly at the vertex
and is homogeneous of order ., i.e.

du(fi(2), £:(0)) = [2|%du(fx (7). £(0))

for every z € By. We call fy a tangent map of f at pg.

z

E
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Proof. We have

L) = (4l (0))? d(f (o), £(0))ds

and, by Proposition 3.2,
B = (4l (0))? /B 0|V (o) da
1

= (L, (0)) /B IV F () de

oEj(0) _ EJ(1)
o) ~ I3

< Ey

for any ¢ < 1. Therefore, Theorem 5.2 implies that there exists o; — 0, so
that % f : By — (T,d,,) converges locally uniformly in the pull back sense to
a limit map f, : By — (T, d). The map f, is Lipschitz continuous in a small
neighborhood U of a non-vertex point since the Lipschitz constant of 7 f in U
is independent of i.

To see that f, is homogeneous, we will follow the argument of [GS] Lemma
3.2. But we need to work with the fact that we have not yet shown the har-
monicity of f,. First, observe

TEg* (1) lim TEgif(T)
G TG S

T(1ho (00) 2B (10y)

=0 (1d, (0:)) 20 L Iy (T0y)

TO'Z‘EZ];O(TO'Z‘)
=0 [} (roy)
= a. (6.1)

Using equality (3.2) with % f replaced with f and the convergence of the energy
density functions, we see that

¢ (Of N>, 9C (0fN\? O Of.0f. . OC Of. 0f.
0 /Br(po) aﬁ(ax) Tl \ oy ) T0:Y0r oy Ty  or oy
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Taking ¢ to be an approximation of the characteristic function of the ball

B, (po), we get
2

d ds.

ey —
(B () =2 /%T(O)

Additionally, Proposition 3.1 with f replaced by % f and ¢ a radial function
which is equal to 0 outside B,.(0) and equal to 1 near 0 implies that

Of«
or

O ek pwry 0P
— Zd X
/BT(O) o (f~f (0))6% 1

_ *  px 82_90
= [, oy

o 0%
= 1 9i f i _—
lim BT(O)d( £ 50) 5 g du

0 o ro 0
A" L7 F(0) 5 dp

= —lim —
o—0 BT(O) 87"

B _/ Vd(7 £,7 £(0)) - Vo
B;-(0)

> 2/ V7 fPedu
B;-(0)

= 2/ ‘vf*|290d,u'
B;-(0)
Letting ¢ approximate the characteristic function of B, (0), we obtain
9 0
IV fel"dp < d(f*,f*(O))a—d(f*,f*(O))dS. (6.2)
B (0) 9B (0) r
Thus, following the proof of Proposition 3.2, we conclude that
I
i IOg Of(r)
dr rEy(r)
5 2
< 2ABf O ) {( / d(f*,f*(O))a—d(f*,f*(O))dS)
3B (0) r

2
_ (/ d2(f*,f*(0))ds> (/ ds)] <0,
8B,(0) 9B,(0)

of*
or
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Therefore, by (6.1),

2
( / d(f*7f*(0))§d(f*,f*(O))d8>
8B (0) T

2
= ( / d2(f*,f*(0))d8> ( / > (6.3)
9B,(0) 0Br(0)

Combined with (3.4) and (3.5) with f replaced by fi, we have that

9 (of.
Sra(f (0 ds = |

f*
or

almost everywhere. For a ray 7(7“) =rf, £ €IdB(0)andrg <r <1,

Of*
or

/; (. £:(0))ds

Fi(€), £:(0)) — d(fi(r08), f(0))
( +(&), fe(rof)),

which implies that f.(7y) is a geodesic path in Y,. Additionally, (6.3) and
(3.4) with f replaced by f. implies that there exists a constant h(r) so

that
=

length(f.(v)) =

IN

= h(r)d(f«, f<(0)).
el =t 1.0
Combined with the equality in (6.2), we obtain

fe(p) = Of«
B0 = [ a0 %

On the other hand, we have that Eg* (r) = ar‘llg* (r) so we conclude h(r) =
ar~!. Integration of

ds = h(r)I{" (r).

2 d(f., f.(0))
or = h(r) =
d(f fu0) )

along a ray from z to |—§| implies the homogeneity. O

o
r

With the help of the order function and tangent map, we can make the
following regularity estimate of a harmonic map f : X — Y on a face F' of X.
This gives the explicit dependency of the Lipschitz constant in terms of the
distance to a vertex.
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Theorem 6.3. For a vertexv of F', let

where E,(r) = fBT(u) |V £12du and I,,(r) = faBr(v) d?(f, f(v))du. Then
IVfP(2) < Cr2e?

forallz € B%(v) where C depends on ET andr = dx (v, 2).

Proof. It will be sufficient to estimate the gradient bound in X} C X for a
2

harmonic map f : X{ — T dependent only on EJ and the distance to the
vertex v = (0,0). For any point (z;,y;) € X] — {v}, let a(z;, y;) be the order
of f at (x;,y;), i.e.
rE. (T
a(zi, y;) = lim "B 1) )-

r—0 I(xi,yi)(r)
Since f, is a homogeneous map of order «(x;,y;), the Lipschitz continuity of
f« implies that a(z;,y;) > 1. In particular, Proposition 3.2 implies that for
any point (z;,v;) € X7 — {v},

,’AQ
N (AN
(:Uuyz)
< v ) >0 (6.6)
and s )
zi, )\

r

Let zo = (w;,y;) € X be a face point and rog = |zp|. We may assume without
2

the loss of generality that tan~! (%) < & (otherwise, we can reparametrize

W; C X{ so that the line tan~! (£) = Z is the 2-axis and vice versa). Thus,

Yi < \% Let § = z;sin§ = %% and note that Bs(x;,0) C st(z;,y;) and
2y; < 2\% = 0. Let 0 < y; and ¢ € Bz (20). By Proposition 3.8,

c Iy (0
PUQ S <€ [ P plan s = o),
0Bo (2i,yi)

o g
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Furthermore,
(@i,5)(0) < ( “yg y )02 (by inequality (6.6))
o Y;

E(wi,yi)(yi)
2
Ew; 0)(2yi)
< d—

(2y:)

E.. 0)(0)
(24,0)

4752

E(o,o)(QfUi) 2

< 12WJ (since Bg(l‘Z,O) C 3212(070))

< o? (by inequality (6.7))

o2 (since By, (x4, yi) C Bay,(x4,0))

IN

o? (by inequality (6.5))

By Proposition 3.2 and the assumption that «(0,0) > «, we have

E,0)(27;) < E,0)(1)

= Ef
(2332-)20‘ — 12a

which implies

dZ(f(C);jJ;(xiayi)) < 12cEf (2,)22
for all ¢ € Bg (x;,y;). Since (22;)% = 4a? > 327 + 3y? = 3rd,
IV f2(20) < Crge™?
where C depends on EV.

7. Completion of the proof of Theorem 5.1 and 5.2.

In this section, we will prove assertion (3) of Theorem 5.1 and Theorem 5.2;
i.e. we show that the limit map f. is harmonic in each of the compactness the-
orems. In order to do this, we essentially repeat the arguments of Theorem 3.9
and Theorem 3.11 resp. of [KS2]. But because we consider a singular domain
X, we must be careful with the mollification estimates used in their proof.

Proof. (of Theorem 5.1 (3)) Let 1 be asmooth, non-increasing function defined
on the interval [0, 1] which is equal to 0 in the neighborhood of 1 and so that

| atia =1
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Let ne(t) = e%n (). For afixed e > 0 and z € X, define
n.: X — RTN{0}
by setting
nz(z) = ez — 2|).
Note that for z € X, we can only guarantee that the total integral of n, is equal

to 1if z is a interior point of a some face F' and the distance from z to OF is at
least €. For z,w € X,

nz(z) = (@) = [ne(|z — 2]) = ne(jz — wl)|
|x w|
N wﬂ
< Sllo—wl— o -]
M
< gl

where M = supycjo 1) 7' (t). Additionally, there exists constant M’ so that

M
‘/ n.dp — nwdu‘ < 6—3\Z—w\' p(spt(nz — Nw))
M/
< —3\Z—w|-(6+\z—w\)2
M/
< e

for |z — w| < e. Thus, for |z — w| <¢,

(ov) - ()
(S m=dpt) ([ modpe)

X <\nz—nw|</xnwdu>+nw /andu—/xnzduD

1 y M [y nwdp +n(0) M’
(Jx m=du) (fx modn) €

"

< |z — w|

where M" only depends on M and M’ and the number of faces of X.
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With (Y, d) an NPC space, let h : X — Y satisfy
d(h(z1), h(z9)) < Ot e (7.2)
for |z1 —xe| < e < % with ¢ the distance from z; to V' and
d(h(zy), h(zy)) < Ce?0 (7.3)

for |71 — z2| < €. Let h(z) be the center of mass of the map h with respect to

the measure
7z
dv, = < >d,u.
© Uy medp

The existence and uniqueness of h(z) follows, for example, from Lemma 2.5.1
of [KS1]. Set vy = (1 —t)h(w) +th(z) where we use the notation (1 —¢)P +tQ
to denote the unique point in X which is distance td(P, Q) away from P and
(1 =t)d(P,Q) away from Q. Then for any x € X,

). (7.4)

2(h(z), h(w)) — d2(h(x), v
< Lima /Bl(z)dw( L) = LR, g,
< Limsu / A(h(a), h(w)) +d(h(x), v)td(A(:), Bw))
> 0 Bi(2) 1 z w |y

where the triangle inequality was used to derive the second inequality. Divid-
ing both sides by d(h(z), h(w)) and applying (7.4) for the first inequality below
and (7.1) for the second, we obtain

(h (=), h(w)
1 _ _ _
< 3 /B ), R + dAE), ) v —
<5 )0 ﬁ<z>>+d<ﬁ<z>,ﬁ<w>>>Af—?,\z—wwu (75
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for |z —w| < e. Here, note that the domain of integration B (z) in the second
integral above comes from the fact that spt(r, — vy,) C Bac(2). By (7.2), if z
is a point at a distance at least 3¢ from V', then for x € By.(z), there exists a
constant C' so that

d(h(z), h(z)) < S )d(h(ﬂ«“%h(y)) < Ot 2,

where ¢ is the distance of z from V. Hence, by (7.1) and (7.5),

d(h(z), h(w)) < %/ (6Ct e + d(h(z), f_L(w)))M—3”|z —w|dp  (7.6)
Bae(z) €

for z € X — Uyey Bse(v) and w € B¢(z), which implies

d(h().hw) _ (scr1+ d(h(z) B(w)))

|2 — wl

where M is dependent on M” and the number of faces of X. Furthermore, by
(7.3),

d(h(x), h(2)) < S )d(h($)>h(y)) < C(2¢)%

for any z € X and x € Ba(z). Hence, by (7.5),

h h 1 @0 h(z), h(w %ﬁ zZ—w
ARE) R <5 [ (300 +d(he), Fw) Tl — wldn

for any z € X and w € Be(z). Thus,

) LT ()M_3”(30(2e)a0+d(B(Z),7L(w))) dy

|z — w] -2 €
< M <3C(26)ao—1 n M)

where M is dependent on M” and the number of faces of X. Therefore, denot-
ing h(z) by h * nc(z), we obtain

C'1200-2 Yz € X — Upey Bae(v)
9 < R veV D3e
VP < { Grns, gk

where ¢ is the distance of z to the nearest vertex and the constant C” is inde-
pendent of e. Now consider a e-neighborhood e, of an edge e inside Bs 4(vo) —
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Bs(vg) for some vertex vg. We can cover this set by a finite number of strips
[2¢, 3] x [0, €]. Thus, the energy of hx1, ine.N (B3/4(v0) — Bae(vo)) is bounded
by

e r3/4 1
C/// / t2a0_2dtd’7' — C”m ((3/4)2(10—1 _ (26)2a0_1) c
0 J2e 0—

where C” is a constant dependent C” and on the number of faces incident to e.
Additionally, the energy in B, (3¢) for vy € V is bounded by

01/162(10—2 . 62 _ C///ﬁan

where C" is a constant dependent on C” and on the number of faces incident to
vo. This implies that, we can bound the energy of h * 7). in the e-neighborhood
Xél) of the 1-skeleton of X by C/(e + €2*0) for some constant C' independent of
€. By Theorem 1.5.2 of [KS2], the energy of h * 7 in X — XY is bounded by

(1+Ce) ,EN

for some constant C. Here, I,E? is the e-approximate energy of h as defined in
[KS1], [KS2]. In summary, the energy of h * 1. has a bound of

EMe < (14 Ce) ,EM 4 Cle + €2). (7.7)

Let hoo : X — (Yoo, doo) be a poo-equivariant harmonic map. Then hq is
globally Holder continuous and the Lipschitz constant of hy, in a neighbor-
hood at a distance ¢ away from V is Lt®0~! for some constant L and aqg by
Theorem 3.12 and Theorem 6.3. Thus, for any § > 0 and k sufficiently large,
we can construct a piecewise constant map hg : X — Y}, so that

JEM < Ehee 4§ (7.8)

and so that inequalities (7.2) and (7.3) are true with h replaced by hy, by fol-
lowing the proof of Theorem 3.9 [KS2]. By (7.7) and (7.8) and using the fact
that hi * 7 is a competitor of fi, we get

Efe < Ehne < (14 Ce)(Eh>= 4 6) + C(e + €20). (7.9)

Combining this with the lower semicontinuity of energy and noting that e and
0 can be made arbitrarily small, we obtain

Ef= < lim inf Efr <limsup Ef* < Ehe
—00

k—o0



Harmonic Maps from 2-complexes 545

which implies that f.o is minimizing. Taking h. = foo above, we conclude
that Ef+ — Ef~. The convergence of the energy density measures follows
from the lower semicontinuity of energy. This completes the proof of Theo-
rem 5.1. g

Proof. (of Theorem 5.2 (3)) Let w; be the Dirichlet solution in By, t < 7, with
boundary value equal to that of fi|p,. By following the argument of [KS2]
Theorem 3.11,

lim B = B < El=. (7.10)
—T
Let
. wt(z), S Bt
v(z) = { foo(2), 2z € B, — By.

By the Lipschitz continuity of f. in B; — B and Lemma 4.2, v; is uniformly
continuous in B.. Furthermore, (7.10) implies that

lim BVt < EJe,

t—T1

Fix § > 0 and let ¢ sufficiently close to T so that
E'=E" < Ef~ 3§
where v = v;. For 0 < € < (7 — t)/2 sufficiently small,
JEU < ET= 4§

where , E? is the e-approximate energy in B¢+, and v as in the proof of The-
2

orem 5.1 (3). Since v is uniformly continuous, we can approximate it closely
enough in the C'*° norm to obtain a map v : B; — Y, which is piecewise
constant in By, is equal to f in B, — By and

JE? < BT= 45,

For k sufficiently large, we follow [KS2] to construct a map o : By — Y} so
that vy, is piecewise constant in By, equal to fi in B, — B; and

JE% < BTk 465,
The mollification estimate in the proof of Theorem 5.1 (3) implies

E% s, < (14 Ce)(E® +6) + C(e + €2)
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where the mollified map is defined in B_.. We apply [KS2] Lemma 3.12 (which
can be readily modified to our setting) and follow the rest of the proof of [KS2]
Theorem 3.11 to bridge the gap between fj and U, * 7. somewhere in the strip
B, — B-+t+. The resulting map vy, is a competitor for the fi Dirichlet problem
and thus2

Bl < B <(1+C’e)(E°°—1—5)—1—0(6—1-620‘0)—1—2(5—1—/ IV £ [2.
T_Bt

This inequality, which is analogous to (7.9), shows

lim sup B/ < B
k—o0
which combined with the lower semicontinuity of energy implies that f. is
harmonic. This completes the proof of Theorem 5.2. (]

8. The convergence of equivariant harmonic maps.

Let I be a finitely generated group, X a flat admissible finite 2-complex with
normal cover p : X — X and I as its transformation group. A homomor-
phism p : I' — SL(2,C) is called a SL(2, C)-representation of I'. Let R(T")
be the set of SL(2, C)-representations of I'. An element p € R(I") defines a
character x, : I' — C by x,(g9) = Trace(p(g)). The character variety of I is
the set of equivalence classes of representations in R(I') where p1, p2 € R(I)
are equivalent if x,, = x,,. We note that two irreducible representations are
equivalent if and only if they are conjugate (cf. [CuSh]). A sequence {py} is
said to converge to infinity in the character variety if x,, (g) converges to in-
finity for some g € I'. If we interpret SL(2, C) as the isometry group of H3,
then Theorem 4.5 assures the existence of a p—equivariant harmonic map u,
from X to H? for each p € R(T).

Foramapu : X — H3 let f : X — (H?, ﬁng) be the map that
is pointwise equal to u but with the distance function on the target space H?

rescaled by a factor of \/ﬁ We will refer to f as the rescaled map of u.

Lemma 8.1. Suppose that {px} is a sequence of irreducible representations
converging to infinity in the character variety of I'. If up, = u,, : X — H3 is
the associated py-equivariant harmonic map, then E%* — oo.

Proof. Choose a compact set K C X containing = and vz for some z € X.
Suppose E¥ < ( for all k and let f be the rescaled map of ug. Then, by
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Theorem 5.1, there exists a subsequence f;s and a harmonic map fo : X —
(Yoo, doo) so that fis converges locally uniformly in the pull back sense to a
limit map fo. In particular, for any € X and any v € T,

Jnf dys(pk(7)2,2) - < das(pr(7)ur(®), u(®))
= dgs(ug(yz), up())
< VO (i), @)

On the other hand, if p; converges to infinity, then

inf d
Jnf d(p(7)z,2) — o0

for some v € I (cf. [Ka] 10.2). This shows E** — oo. O

Theorem 8.2. Let {pi}tr=12,. be a sequence of unbounded irreducible
SL(2,C) representations of a finitely generated group T and uy, : X — H3,
k=1,2,..., be p-equivariant harmonic maps. Let fy, : X — Y}, be the rescaled
maps where Y}, = (H3, ﬁst ). Then there is a subsequence of fi, which con-
verges locally uniformly in the pullback sense to a equivariant harmonic map
foo : X — (T, d) into a R-tree. The tree T is minimal, i.e. it does not contain
any proper subtree invariant under the action of I', and the length function of
the action of I' on T is in the projective class of the Morgan-Shalen limit of the

sequence {py}.

Proof. We apply Theorem 5.1 to show the convergence of the subsequence of
fr to foo. That fact that the limit space is a tree (T, d), that 7" is minimal, and
the length function is in the projective class of the Morgan-Shalen limit follows
readily from [DDW1]. O
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