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Some Multi-valued Solutions to Monge–Ampère

Equations

L. Caffarelli1 and YanYan Li2

1. Introduction.

In this paper, we construct several types of multi-valued solutions to the
Monge–Ampère equation in higher dimensions. Recently, there has been
considerable interest in understanding the behavior of a metric generated
by a solution of the Monge–Ampère equation at a singularity. See, for
instance Loftin, Yau and Zaslow [14] and Leung [12]. To explain our results
let us refer first to the theory of multi-valued harmonic functions. Typical
two dimensional examples of multi-valued harmonic functions are

f1(z) = Re(z
1
k ),

f2(z) = arg(z),

and
f3(z) = Re

(√
(z − 1)(z + 1)

)
.

The first one, f1, is finitely valued, since it repeats itself once you have gone
k-times around the origin. In the case of f2, each time we go around the
origin, the function increases by 2π. f3 is a 2-sheet harmonic function defined
as follows. Write z − 1 = reiθ, z + 1 = seiφ,

√
(z − 1)(z + 1) =

√
rsei

θ+φ
2 ,

and f3(z) =
√
rs cos

θ + φ

2
. Each time the point z goes around −1, or 1, and

cross the intervel (−1, 1), the value of f3(z) is changed by a multiplication
of −1. Therefore, f3 is actually defined on the 2-sheet cover of C \ {−1, 1}.

Multi-valued harmonic functions have been studied by G.V. Evans ([8],
[9] and [10]), H. Lewy [13] and L. Caffarelli ([1] and [2]), which have inspired
the present paper.

1Partially supported by NFS grant DMS-0140388 and G-37-X71-G4
2Partially supported by NSF grant DMS-0401118.

411



412 L. Caffarelli and YanYan Li

2. Finitely Valued Solutions of the Monge–Ampère Equation.

The geometric situation is the following: Let D ⊂ R
n, n ≥ 2, be a bounded

strictly convex open set with smooth boundary ∂D, and let Σ ⊂ D be
homeomorphic in R

n to a (n − 1)-dimensional closed disc, i.e., there exists
a homeomorphism ψ : R

n → R
n such that ψ(Σ) is a (n − 1)-dimensional

closed disc. Let Γ = ∂Σ, the boundary of Σ. Thus, Γ is homeomorphic to
a (n− 2)-dimensional sphere for n ≥ 3. In R

3, Γ is a curve “spanned” by a
disc.

Let
M = (D \ Γ) × Z,

denote a covering of D \ Γ with the following standard parameterization:
Fixing an x∗ ∈ D \ Σ, and connecting x∗ by a smooth curve in D \ Γ to a
point x in D \ Γ. If the curve goes through Σ m ≥ 0 times in the positive
direction (fixing such a direction), then we arrive at (x,m) in M . If the
curve goes through Σ m ≥ 0 times in the negative direction, then we arrive
at (x,−m) in M . For n ≥ 3, the fundamental group of D \ Γ is Z and M is
the universal cover of D \ Γ.

For k = 2, 3, 4, · · · , we introduce an equivalence relation “∼k” on M as
follows: (x,m) and (y, l) in M are “∼k” equivalent if x = y and m− l is an
integer multiple of k. We let

Mk := M/ ∼k,

denote the k-sheet cover of D \ Γ, and let

∂′Mk := ∪k
i=1(∂D × {i}).

For ϕ1, · · · , ϕk ∈ C0(∂D), it is easy to prove, by Perron′s method, that
there exists h ∈ C∞(Mk) ∩ L∞(Mk) ∩ C0(Mk ∪ ∂′Mk) satisfying{

∆h = 0, on Mk

h = ϕi, on ∂D × {i}, 1 ≤ i ≤ k.
(2.1)

Since Γ has zero capacity, the maximum principle holds onMk: Let u, v ∈
L∞(Mk) satisfy ∆u ≥ 0 ≥ ∆v in Mk and lim infdist(y,∂′Mk)(u(y)−v(y)) ≤ 0,
then u ≤ v in Mk.

Let h̄ ∈ C∞(D) ∩C0(D) be the solution to{
∆h̄ = 0, in D,
h̄ = 1

k

∑k
i=1 ϕi, on ∂D.
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It was proved by Caffarelli [2], under some mild additional regularity
assumption on Γ (e.g. Γ is C1), that

lim
x→x̄

h(x,m) = h̄(x̄), ∀x̄ ∈ Γ, 1 ≤ m ≤ k,

and, for some 0 < α < 1 and C > 0, that

|h(x,m) − h̄(x̄)| ≤ C|x− x̄|α, ∀ (x,m) ∈Mk.

It follows, by the maximum principle, that (2.1) has a unique bounded
solution h.

Let ϕ1, · · · , ϕk ∈ C0(∂D), and let f ∈ C0(Mk) satisfy, for some positive
constants a and b,

a ≤ f ≤ b on Mk. (2.2)

We consider the following Monge–Ampère equation on Mk with Dirichlet
boundary condition:{

det(D2u) = f, on Mk,
u = ϕi, on ∂D × {i}, 1 ≤ i ≤ k.

(2.3)

Theorem 2.1. Let Mk be as above, k = 2, 3, 4, · · · , ϕ1, · · · , ϕk ∈ C0(∂D),
h be the bounded solution of (2.1), and let f ∈ C0(Mk) satisfy (2.2) for
some positive constants a and b. Then (2.3) has at least one bounded locally
convex viscosity solution u satisfying u ≤ h on Mk.

Proof. of Theorem 2.1. Let P (x) be a convex quadratic polynomial satisfying

det(D2P ) ≥ b on D,

P < inf
Mk

h on D,

and let D′ be an open set in D containing Σ and satisfying dist(D′, ∂D) > 0.
As in Caffarelli, Nirenberg and Spruck [7], we construct ui ∈ C∞(D) ∩
C0(D), 1 ≤ i ≤ k, which satisfy

det(ui) ≥ b, on D,

ui = ϕi, on ∂D,

ui < P, on D′.

Define

u(x,m) = max{um(x), P (x)}, x ∈ D \ Γ, 1 ≤ m ≤ k.
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Then, u ∈ C0(Mk ∪ ∂′Mk) is a locally convex subsolution of (2.3) satisfying

u(x,m) = P (x) ∀ x ∈ D′, 1 ≤ m ≤ k.

Let S denote the set of locally convex functions v in C0(Mk ∪ ∂′Mk)
which are viscosity subsolutions to (2.3) satisfying

lim sup
x→x̄

max
1≤m≤k

[v(x,m) − h(x,m)] ≤ 0, ∀ x̄ ∈ Γ. (2.4)

Clearly, u ∈ S.
Define on Mk

u(x,m) = sup{v(x,m) | v ∈ S}, 1 ≤ m ≤ k.

For every v ∈ S,
∆v ≥ 0 on Mk.

By the maximum principle, using (2.4), v ≤ h on Mk. Thus, u ≤ h on
Mk, and u ∈ C0(Mk ∪ ∂′Mk) is a locally convex viscosity solution of (2.3).
Theorem 2.1 is established. �

Let S∗ denote the set of locally convex functions v in C0(Mk ∪ ∂′Mk)
which are viscosity solutions to (2.3) satisfying (2.4). Then,

u∗(x,m) := sup
{
v(x,m) | v ∈ S∗

}
, x ∈ D \ Γ, 1 ≤ m ≤ k

is the largest element in S∗. Moreover, by the maximum principle,

u∗ ≤ h in Mk.

It is clear from the proof of Theorem 2.1 that (2.3) has infinitely many
solutions. In the following, we study the existence of solutions to (2.3) with
prescribed values on Γ.

Theorem 2.2. Let Mk, ϕi, f and h be as in Theorem 2.1, and let u ∈
C0(Mk ∪ ∂′Mk) be a locally convex viscosity subsolution of (2.3) satisfying

u(x̄) := lim
x→x̄

u(x,m) exists, finite, independent of 1 ≤ m ≤ k,∀ x̄ ∈ Γ,

and
u(x̄) ≤ lim inf

x→x̄
min

1≤m≤k
h(x,m), ∀ x̄ ∈ Γ.

Then, there exists an unique locally convex viscosity solution u of (2.3) sat-
isfying

u(x̄) := lim
x→x̄

u(x,m) = u(x̄), 1 ≤ m ≤ k,∀ x̄ ∈ Γ.
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Proof. of Theorem 2.2. Let S denote the set of locally convex viscosity
subsolutions v of (2.3) in C0(Mk ∪ ∂′Mk) satisfying

lim sup
x→x̄

v(x,m) ≤ u(x̄), 1 ≤ m ≤ k,∀ x̄ ∈ Γ. (2.5)

Clearly, u ∈ S. Define on Mk,

u(x,m) := sup
{
v(x,m) | v ∈ S

}
, 1 ≤ m ≤ k, x ∈ D \ Γ.

By the maximum principle,

u ≤ u ≤ h on Mk.

It follows that u ∈ C0(Mk ∪ ∂′Mk) is a locally convex viscosity solution of
(2.3) satisfying

lim inf
x→x̄

u(x,m) ≥ u(x̄), ∀ 1 ≤ m ≤ k,∀ x̄ ∈ Γ.

Let v ∈ S, x̄ ∈ Γ and x ∈ D \Γ. Since the Hausdorff measure Hn−1(Γ) = 0,
there exist yi → x̄ and νi → x−x̄

‖x−x̄‖ such that

{yi + tνi | t ≥ 0} ∩ Γ = ∅.

By the convexity and the boundedness of v on the lifting of the segment
{yi + tνi | t ≥ 0} ∩D, we have, for some constant C independent of i,

v(yi + |x− x̄|νi,m) ≤ max
1≤m′≤k

v(yi,m
′) + C|x− x̄|, ∀ 1 ≤ m ≤ k.

Sending i to infinity, we have, by (2.5),

v(x,m) ≤ u(x̄) + C|x− x̄|, ∀ x ∈ D \ Γ,∀ 1 ≤ m ≤ k.

It follows that
lim sup

x→x̄
u(x,m) ≤ u(x̄).

Theorem 2.2 is established. �

Example: LetMk and f be as in Theorem 2.1, and let ϕ1, · · · , ϕk ∈ C0(∂D)
satisfy

ϕi ≥ ϕ1 on ∂D, 1 ≤ i ≤ k.
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Let G ∈ C0(D) be a convex function satisfying, in the viscosity sense,{
det(D2G) ≥ f in D,

G = ϕ1 on ∂D.

Then, (2.3) has a unique locally convex viscosity solution with G as the
prescribed value on Γ.

Let D′ be a convex open set, containing Γ satisfying D′ ⊂ D. We follow
[7] to construct convex u′2, · · · , u′k ∈ C∞(D) ∩C0(D) satisfying

det(D2u′i) ≥ f in D, 2 ≤ i ≤ k,

u′i = ϕi, on ∂D, 2 ≤ i ≤ k,

G > u′i in D′, 2 ≤ i ≤ k.

Let u′1 = G,

ui(x) := max{u′1(x), u′i(x)}, x ∈ D,

and
u(x,m) := um(x), x ∈ D \ Γ, 1 ≤ m ≤ k.

Then, u ∈ C0(Mk ∪ ∂′Mk) is a locally convex viscosity subsolution of (2.3)
satisfying

u(x,m) = G(x), ∀ 1 ≤ m ≤ k, for x in D \ Γ and close to Γ.

As a result, by Theorem 2.2, we can solve (2.3) with G as the prescribed
value on Γ.

3. Classical Solutions When Γ is a “Plane Curve”.

Solutions given by Theorem 2.1 and Theorem 2.2 are not necessarily classical
solutions. In this section, we study the existence of classical solutions of (2.3)
with value 0 on Γ under some further hypothesis on Γ.

Let Ω ⊂ D be two bounded open strictly convex subsets with smooth
boundaries, denoted respectively by ∂Ω and ∂D. Let Σ, diffeomorphic to a
(n − 1)-disc, be the intersection of Ω and a hyperplane in R

n, and let Γ be
the boundary of ∂Σ. The fundamental group of D \Γ is π1(D \Γ) = Z when
n ≥ 3. Let M = (D \ Γ) × Z and Mk = M/ ∼k be covering spaces of D \ Γ
as in Section 1. Σ divides Ω into two open parts, denoted as Ω+ and Ω−.
Fixing a x∗ ∈ Ω−, we use the convention that going through Σ from Ω− to
Ω+ denotes the positive direction through Σ.
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Theorem 3.1. Let Mk, k = 2, 3, 4, · · · , be as above and let f ∈ C∞(Mk)
satisfy (2.2) for some positive constants a and b. Then, there exists some
β > 0 such that for any ϕ1, · · · , ϕk ∈ C∞(∂D) satisfying

ϕi > β on ∂D, 1 ≤ i ≤ k, (3.1)

there exists a unique locally convex u ∈ C∞(Mk ∪∂′Mk) satisfying (2.3) and

lim
x→x̄

u(x,m) = 0, ∀ 1 ≤ m ≤ k,∀ x̄ ∈ Γ. (3.2)

Proof. of Theorem 3.1. Let v ∈ C∞(Ω) be a convex function satisfying{
det(D2v) ≥ b in Ω,

v = 0 on ∂Ω.

By Lemma 9.1, there exists x̄(ξ) ∈ R
n for every ξ ∈ ∂Ω such that

wξ(x) :=
1
2
(|x− x̄(ξ)|2 − |ξ − x̄(ξ)|2) < b−

1
n v(x), ∀ x ∈ Ω \ {ξ}.

Moreover, supξ∈∂Ω |x̄(ξ)| <∞.
Set

V (x) =

{
v(x), x ∈ Ω,
supξ∈∂Ω

(
b

1
nwξ(x)

)
, x ∈ D \ Ω.

Then, V ∈ C0(D) is a convex viscosity subsolution to

det(D2V ) = b in D.

Let
β = max

∂D
V.

With this value of β, and for any ϕ1, · · · , ϕk ∈ C∞(∂D) satisfying (3.1), we
can construct as in [7] convex u′1, · · · , u′k ∈ C∞(D) ∩ C0(D) satisfying

det(D2u′i) ≥ b in D, 1 ≤ i ≤ k,

u′i = ϕi on ∂D, 1 ≤ i ≤ k,

V > u′i in Ω, 1 ≤ i ≤ k.

Let
ui(x) = max{V (x), u′i(x)}, x ∈ D, 1 ≤ i ≤ k,
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and
u(x,m) = um(x), x ∈ D \ Γ, 1 ≤ m ≤ k.

Clearly, u is a locally convex viscosity subsolution of (2.3), u ∈ C0(Mk ∪
∂′Mk) and

u(x,m) = V (x), ∀ 1 ≤ m ≤ k, for x in D \ Γ close to Γ.

In particular,

u(x̄) = lim
x →x̄

u(x,m) = V (x̄) = 0, ∀ 1 ≤ m ≤ k,∀ x̄ ∈ Γ.

By Theorem 2.2, there exists a unique locally convex viscosity solution u of
(2.3) satisfying (3.2).

To complete the proof of Theorem 3.1, we need to show that u ∈
C∞(Mk ∪ ∂′Mk). This follows from the regularity theory developed by the
first author in [3], [4] and [5]. Indeed if u does not belong to C∞(Mk∪∂′Mk),
then, by theorem 1 in [3] and theorem 2 in [4], there must be a line in Mk

on which u is linear. By the arguments in the proof of corollary 4 in [3],
the line cannot hit ∂′Mk. So this singular line γ(t), 0 < t < 1, must be the
lifting of {tx(1) + (1− t)x(2) | 0 < t < 1} for some x(1), x(2) ∈ Γ, x(1) = x(2).
By (3.2), u(γ(t)) = 0 for all 0 < t < 1 and therefore, u = 0 on the (n − 1)
dimensional disc spanned by {γ(t)}0<t<1 and Γ. This violates the theorem
in [5]. Theorem 3.1 is established. �

4. Infinitely Valued Solutions with Exponentially
Growing Right-Hand Side.

This section is motivated by the following 2-d example: In the spirit of
arg(z) that grows by a constant every time, we go around the origin, we
construct a solution of the Monge–Ampère equation that grows by a factor
every time, we go around the origin. In dimension 2, we get the solution

u(r, θ) = r2eλθ

that satisfies
det(D2u) = 2(2λ2 − 2λ+ 1)eλθ.

We also mention some 3-d examples which are in similar spirit. First,
let Γ be a regular embedded closed plane curve containing a region Σ in
the plane, and let u denote the conductor potential of Σ (see [11]). u is the
unique harmonic function in R

3 \ Σ which takes the value 1 on Σ and 0 at
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infinity. Reflecting u by 2-u across Σ, we obtain a 2-sheet harmonic function
which takes value 0 at the infinity of one sheet and 2 for the other. Outside a
compact set, the domain of u is the disjoint union of two R

3\{a ball}. Next,
the solid angle (see [11] or [1]) gives an infinite-valued harmonic function:
Let Γ and Σ be as above. For any point x in R

3, we generate by Σ a cone
with vertex at x, and we obtain an infinite-valued harmonic function by
assigning the value u(x) as the area of the intersection of the cone and the
unit sphere centered at x. The function u is infinite-valued since each time
when x penetrates Σ from one side to the other, the intersection of the cone
and the unit sphere changes from one half of the unit sphere to the other half
with a minus sign and therefore, u has to be extended across Σ by adding
4π (the area of the unit sphere).

We do now a similar construction for the Monge–Ampère equation. For
D,Ω,Γ,M as in the last section, we study in this section multi-valued solu-
tions to Monge–Ampère equations on M .

Let S ∈ C∞(M) satisfy

S(x, k) = S(x, k − 1) + 1, ∀ x ∈ D \ Γ,∀ k ∈ Z,

and
c := sup

|k|≤2,x∈Ω

eS(x,k) <∞.

We use notation
∂′M = ∪∞

i=−∞(∂D × {i}).

Theorem 4.1. Let D,Ω,Γ,M, S be as above. Then, there exists some pos-
itive constant β such that for any ϕ ∈ C∞(∂D) satisfying

ϕ > β on ∂D, (4.1)

there exists a locally convex u ∈ C∞(M ∪ ∂′M) satisfying

det(D2u) = eS , in M, (4.2)

u(x, k) = e
1
nu(x, k − 1), ∀ (x, k) ∈M, (4.3)

lim
x→x̄

u(x,m) = 0, ∀ x̄ ∈ Γ, ∀ 1 ≤ m ≤ k, (4.4)

u(x, k) = e
k
nϕ(x), ∀ (x, k) ∈ ∂′M. (4.5)
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Proof. of Theorem 4.1. Let ξ ∈ C∞(Ω) be a convex function satisfying{
det(D2ξ) ≥ c, in Ω,

ξ = 0, on ∂Ω.

As in the proof of Theorem 3.1, we can extend ξ to a convex ξ̃ ∈ C0(D)
which satisfies in the viscosity sense

det(D2ξ̃) ≥ c in D.

Let
β : = max

∂D
ξ̃.

With this value of β, for any ϕ ∈ C∞(∂D) satisfying (4.1), we construct, as
in [7], some convex η′ ∈ C∞(D) ∩ C0(D) which satisfies

det(D2η′) ≥ c in D,

η′ = ϕ on ∂D,

η′ < ξ̃ on Ω.

Let
η(x) := max{η′(x), ξ̃(x)}, x ∈ D.

Then, η ∈ C0(D) is a locally convex function satisfying

η = ϕ on ∂D,

η = ξ̃ in an open neighborhood of Ω,

and, in the viscosity sense,

det(D2η) ≥ c in D.

In particular,

η = ξ on Ω,
η = 0 on ∂Ω,
η < 0 in Ω.

Define, for k ∈ Z,

u(x, k) =

{
e

k−1
n η(x), x ∈ Ω+,

e
k
n η(x), x ∈ D \ Ω+.
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It is not difficult to see that this extends to u ∈ C0(M ∪ ∂′M) which is
locally convex and satisfies

u(x, k) = e
1
nu(x, k − 1), ∀ (x, k) ∈M,

lim
x→x̄

u(x,m) = 0, ∀ x̄ ∈ Γ, ∀ 1 ≤ m ≤ k,

u(x, k) = e
k
nϕ(x), ∀ (x, k) ∈ ∂D × Z,

and, in the viscosity sense,

det(D2u) ≥ eS in M.

Let S denote the set of locally convex functions v ∈ C0(M ∪ ∂′M)
satisfying

v(x, k) = e
1
n v(x, k − 1), ∀ (x, k) ∈M,

lim
x→x̄

v(x,m) = 0, ∀ x̄ ∈ Γ, ∀ 1 ≤ m ≤ k,

v(x, k) = e
k
nϕ(x), ∀ (x, k) ∈ ∂′M,

and, in the viscosity sense,

det(D2v) ≥ eS in M.

Let B1, B2, B3, · · · be open balls in D \ Γ such that

D \ Γ = ∩∞
i=1 ∪∞

j=i Bj ,

i.e., every point in D \ Γ belongs to infinitely many balls.
For any v ∈ S, and for any open ball B ⊂ D\Γ, we define TBv as follows:

The lifting of B into M is the union of infinite disjoint balls, denoted as
{B(m)}∞m=−∞. We keep TBv the same as v outside ∪∞

m=−∞B(m), while in
each B(m), we replace v by the solution of{

det(D2(TBv)) = eS , in B(m),

(TBv) = v, on ∂B(m).
(4.6)

It is not difficult to see that TBv ∈ S, and TBv ≥ v in M . Let
B′

1, B
′
2, B

′
3, B

′
4, · · · be a sequence of balls defined by B′

1 = B1, B′
2 = B2,

B′
3 = B1, B′

4 = B2, B′
5 = B3, B′

6 = B1, B′
7 = B2, B′

8 = B3, B′
9 = B4,

B′
10 = B1, · · · , and let v0 = u and vi = TB′

i
vi−1 for i = 1, 2, 3, · · · . Thus, we

have defined a sequence of functions {vi} in S which satisfy

v0 ≤ v1 ≤ v2 ≤ v3 ≤ · · · in M.
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For x ∈ ∂D, let ν(x), denote the unit inner normal of ∂D at x. We will
show below that there exist some positive constants ε and C such that

vi(x+ tν(x), k) ≤ vi(x, k) + Ce
k
n t

= e
k
n +Ce

k+2
n t, ∀ x ∈ ∂D, k ∈ Z, 0 < t < ε, (4.7)

and
vi(x, k) ≤ Ce

k
n , ∀ x ∈ D \ Γ,∀ k ∈ Z. (4.8)

Since Γ is closed, there exists ε > 0 such that dist(Γ, ∂D) > ε. For any
x ∈ ∂D, since Hn−1(Γ) = 0, there exists |νl| = 1, νl → ν(x), such that

{x+ tνl | t > 0} ∩ Γ = ∅.
Let tl > ε, x+ tlνl ∈ ∂D and let γ(t), 0 ≤ t ≤ tl, γ(0) = (x, k), be the lifting
of {x+tνl | 0 ≤ t ≤ tl} to M , then vi(γ(t)) is a convex function for t ∈ [0, tl].
Since Γ ∈ ∂Ω and Ω is strictly convex, the segment {x + tνl | 0 ≤ t ≤ tl}
can intersect Σ at most once. Therefore, for |k′ − k| ≤ 1,

vi(x+ tνl, k) ≤ vi(x, k) +
(
vi(x+ tlνl, k

′) − vi(x, k)
tl

)
t

= vi(x, k) +

(
e

k′
n ϕ(x+ tνl) − e

k
nϕ(x)

tl

)
t ≤ vi(x, k) + Ce

k
n t.

Estimate (4.7) is established.
For x ∈ D, dist(x, ∂D) < ε, and k ∈ Z, we deduce from (4.7) that

vi(x, k) ≤ Ce
k
n .

Since Hn−1(Γ) = 0, for any x ∈ D \ Γ with dist(x, ∂D) > ε, there exists
|ν| = 1 such that

{x+ tν | t ∈ R} ∩ Γ = ∅.
Let t− < 0 < t+ satisfy x+ t±ν ∈ ∂D. Let γ(t), t− ≤ t ≤ t+, γ(0) = (x, k),
be the lifting of {x + tν | t− ≤ t ≤ t+} into M . As before, vi(γ(t±))
are bounded from above by Ce

k
n . Thus, by the convexity of vi(γ(t)) in t,

vi(x) is bounded from above by Ce
k
n . Estimate (4.8) is established. With

(4.7) and (4.8), and some standard arguments, vi monotonically converge to
some locally convex u ∈ C0(M ∪ ∂′M) which satisfy (4.3), (4.5), and, in the
viscosity sense, (4.2). Using some arguments similar to those in the proof of
Theorem 2.2, we see that u satisfies (4.4). The smoothness of u follows from
the regularity theory of the first author as used in the proof of Theorem 3.1.
Theorem 4.1 is established. �
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5. Global Finitely Valued Solutions.

We present here existence results closely related to theorem 1.7 in [6]. Let Ω,
Γ, Σ be as at the beginning of Section 2, and we take D to be R

n instead of
a bounded strictly convex open set. We restrict to n ≥ 3. For k = 2, 3, · · · ,
we define M and Mk as at the beginning of Section 2 with D replaced by
R

n.
Let

A = {A | A is real n×n symmetric positive definite matrix with det(A) = 1}.

For f ∈ C0(Mk) satisfying, for some positive constants a and b,

a ≤ inf
Mk

f ≤ sup
Mk

f ≤ b, (5.1)

and
{f = 1} is compact, (5.2)

we consider
det(D2u) = f on Mk. (5.3)

Theorem 5.1. For n ≥ 3, k ≥ 2, let Mk, Γ be as above, and let f ∈ C0(Mk)
satisfy (5.1) and (5.2) for some positive constants a and b. Then, for any
cm ∈ R, bm ∈ R

n and Am ∈ A, 1 ≤ m ≤ k, there exists some β∗ ∈ R such
that for any β > β∗ there exists a unique locally convex viscosity solution
u ∈ C0(Mk) of (5.3) which satisfy

lim sup
|x|→∞

(
|x|n−2

∣∣∣∣u(x,m) −
[
1
2
x′Amx+ bm · x+ cm

]∣∣∣∣) <∞, ∀ 1 ≤ m ≤ k,

(5.4)
lim
x→x̄

u(x,m) = −β, ∀ x̄ ∈ Γ, ∀ 1 ≤ m ≤ k. (5.5)

Moreover, u ∈ C∞(Mk) provided that f ∈ C∞(Mk).

Proof. of Theorem 5.1. For simplicity, we assume that f ≡ 1. The general
case can be obtained by incorporating some arguments in [6]. Let Φ ∈
C∞(Ω) be a convex function satisfying{

det(D2Φ) > 1 on Ω,
Φ = 0, on ∂Ω.
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By Lemma 9.1, there exists x̄(ξ) ∈ R
n for every ξ ∈ ∂Ω such that

wξ(x) :=
1
2

(
|x− x̄(ξ)|2 − |ξ − x̄(ξ)|2

)
< Φ(x), ∀ x ∈ Ω \ {ξ}.

Moreover, supξ∈∂Ω |x̄(ξ)| <∞.
Define,

V (x) =
{

Φ(x), x ∈ Ω,
supξ∈∂Ωwξ(x), x ∈ R

n \ Ω.

Then, V is a convex function satisfying, in the viscosity sense,

det(D2V ) ≥ 1 in R
n.

Fix some R1 > 0 such that

Ω ⊂ BR1 .

Write

1
2
x′Amx+ bm ·x+ cm =

1
2

∣∣∣(Am)
1
2x+ (Am)−

1
2 b
∣∣∣2 + c− 1

2

∣∣∣(Am)−
1
2 b
∣∣∣2 . (5.6)

Let
R2 := 2 max

1≤m≤k
max
|x|≤R1

∣∣∣(Am)
1
2x+ (Am)−

1
2 b
∣∣∣ .

Define, for a > 1,

wm,a(x) := inf
BR2

V +
∫ |(Am)

1
2 x+(Am)−

1
2 b|

2R2

(sn + a)
1
nds, 0 < |x| <∞.

wm,a satisfies

det(D2wm,a(x)) = 1 ∀ 0 < |x| <∞.

By the definition of R2,

wm,a(x) ≤ inf
BR2

V +
∫ R2/2

2R2

(sn + a)
1
n ds

< inf
BR2

V ≤ V (x), ∀ 1 ≤ m ≤ k, ∀ |x| ≤ R1.

Fixing some R3 > 3R2 satisfying

min
1≤m≤k

min
|x|=R3

|(Am)
1
2x+ (Am)−

1
2 b| > 3R2,



Some Multi-valued Solutions to Monge–Ampère Equations 425

we choose a1 > 1 such that

wm,a(x) > inf
BR2

V +
∫ 3R2

2R2

(sn+a)
1
nds > V (x), ∀ |x|=R3,∀ 1 ≤ m ≤ k,∀ a ≥ a1.

It is easy to see, in view of (5.6), that

wm,a(x) =
1
2
x′Amx+ bm · x+ cm + µ(m,a) +O(|x|2−n) as |x| → ∞,

where µ(m,a), monotonic and continuous in a for large a, tends to ∞ as
a→ ∞.

Define, for a ≥ a1 and 1 ≤ m ≤ k,

um,a(x) =
{

max{V (x), wm,a(x)} − µ(m,a), |x| ≤ R3,
wm,a(x) − µ(m,a), |x| ≥ R3.

Then, for 1 ≤ m ≤ k,

um,a(x) =
1
2
x′Amx+ bm · x+ cm +O(|x|2−n) as |x| → ∞, (5.7)

um,a = −µ(m,a) on Γ,

um,a = V in some open neighborhood of Σ,

and um,a is a convex function satisfying, in the viscosity sense,

det(D2um,a) ≥ 1 in R
n.

It is easy to see that there exist continuous functions a(m)(a), 2 ≤ m ≤ k,
satisfying

lim
a→∞ a(m)(a) = ∞

and, for 2 ≤ m ≤ k,

µ(m,a(m)(a)) = µ(1, a) for large a.

Define, with the convention a(1)(a) = a,

ua(x,m) = um,a(m)(a)(x), ∀ (x,m) ∈Mk.

Then, ua is a locally convex function on Mk satisfying

ua(x,m) =
1
2
x′Amx+ bm · x+ cm +O(|x|2−n) as |x| → ∞,
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lim
x→x̄

ua(x,m) = µ(1, a), ∀ x̄ ∈ Γ, ∀ 1 ≤ m ≤ k,

and, in the viscosity sense,

det(D2ua) ≥ 1 in Mk.

Next, we produce appropriate supersolutions. Let R4 be defined by

max
1≤m≤k

max
|x|=2R3

|(Am)
1
2x+ (Am)−

1
2 b| = R4,

and let

w+
m(x) =

⎧⎪⎨⎪⎩
∫ |(Am)

1
2 x+(Am)−

1
2 b|

R4

[sn − (R4)n]
1
nds, |(Am)

1
2x+ (Am)−

1
2 b| ≥ R4,

0, |(Am)
1
2x+ (Am)−

1
2 b| < R4.

Then, w+
m ∈ C1(Rn) ∩ C∞(Rn \BR4) is a convex function, satisfying

det(D2w+
m)(x) = 1 for |(Am)

1
2x+ (Am)−

1
2 b| > R4, (5.8)

∇w+
m(x) = 0 for |(Am)

1
2x+ (Am)−

1
2 b| = R4, (5.9)

w+
m(x) = 0 ∀ |x| < 3

2
R3,

and, for some β̄(m) ∈ R,

w+
m(x) =

1
2
x′Amx+ bm · x+ cm + β̄(m) +O(|x|2−n), as |x| → ∞.

Define,

w+(x,m) := w+
m(x) − β̄(m), ∀ (x,m) ∈Mk.

Clearly, w+ satisfies, in the viscosity sense

det(D2w+)) ≤ 1, on Mk.

For λ large, w+ + λ > ua on Mk. Let

λ̄a := inf{λ > 0 | w+ + λ > ua on Mk}.

Fix some a2 ≥ a1, such that

−µ(1, a) < − max
1≤m≤k

β̄(m) ∀ a ≥ a2. (5.10)
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By (5.7), (5.8), (5.9) and (5.10), no touching of w+ + λ̄a and ua can
occur (see arguments on page 575 of [6]). Thus λ̄a = 0 and w+ > ua on Mk

for all a ≥ a2.
Let Sa denote the set of locally convex functions v on Mk satisfying

v ≤ w+ on Mk,

det(D2v) ≥ 1 on Mk,

lim sup
x→x̄

v(x,m) ≤ −µ(1, a), ∀ x̄ ∈ Γ,∀ 1 ≤ m ≤ k.

Clearly, ua ∈ Sa. Define

ua(x,m) = sup{v(x,m) | v ∈ S}, ∀ (x,m) ∈Mk.

Using some arguments similar to those in the proof of Theorem 2.2, together
with some standard arguments, we see that ua, for a ≥ a2, is a locally convex
solution to (5.3) with f ≡ 1 satisfying (5.4) and (5.5) with β = µ(1, a). To
complete the proof of Theorem 5.1, we only need to prove that u ∈ C∞(Mk).
This follows from the regularity theory of the first author as used in the proof
of Theorem 3.1. Indeed, the only additional observation is that, because of
(5.4), there can not be a ray to infinity on which ua is linear. Theorem 5.1
is established. �

6. Infinitely Valued Solutions with a Triple Point.

In this section, only in R
3, we construct more complex multi-valued solu-

tions. Here, the curve defining the multiple leaved space is like a “Mercedes
Benz star” and each time, we cross one of the three holes, we go into a
different copy of R

3 \ Γ. In particular, the origin is a triple point where the
“three cuts” coexist. We point out that this construction is possible due to
the particular geometry of the Pogorelov singular solution.

Let R
3 = {(x1, x2, x3) | xi ∈ R}, and let e1, e2, e3 be distinct unit vectors

lying in the (x1, x2)-plane. We assume that

e1 · e2 > −1, e2 · e3 > −1, e3 · e1 > −1. (6.1)

Let,

e′1 =
e1 + e3

1 + e1 · e3 , e′2 =
e2 + e1

1 + e2 · e1 , e′3 =
e3 + e2

1 + e3 · e2 ,

and
�′1(x) := e′i · x, i = 1, 2, 3.
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Clearly, ⎧⎨⎩
�′1(e1) = �′1(e3) = 1,
�′2(e2) = �′2(e1) = 1,
�′3(e3) = �′3(e2) = 1.

(6.2)

Let D be a strictly convex bounded open set containing the origin with
diameter diam(D) = 2. Recall that the singular solution to Monge–Ampère
equation of Pogorelov in 3-dimension:

P (x1, x2, x3) = f(x1)|(x2, x3)|
4
3 (6.3)

where f is positive and smooth in, say, (−2, 2), and blows up at x1 = ±2.
See, e.g., [5] for the ODE satisfied by f . The function P satisfies in the
viscosity sense

det(D2P ) = 1.

Moreover, P (x1, 0, 0) = 0 for all |x1| < 2.
Let Pej (x) denotes the Pogorelov solution which vanishes along the

ej−line, and let

h0(x) = max
j

{x · ej + Pej (x)}, x ∈ D.

Let,
β′ := sup

D
{h0, �′1, �

′
2, �

′
3} > 0.

For any ϕ′ ∈ C0(∂D), satisfying min∂D ϕ
′ > β′, we can construct as before

convex h′ ∈ C∞(D) ∩ C0(D) satisfying

det(D2h′) > 1 in D,

h′ = ϕ′ on ∂D,

h′ < 0 in B1.

Define,
h(x) = max{h0(x), h′(x)}, x ∈ D.

By (6.2), and the fact that Pej = 0 along the ej−line, we have, ∀ 0 < s < 1,

�′1(se1) = h(se1) = s, �′1(se3) = h(se3) = s,

�′2(se2) = h(se2) = s, �′2(se1) = h(se1) = s,

�′3(se3) = h(se3) = s, �′3(se2) = h(se2) = s.
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We, now consider the convex domain

Cj := {x ∈ D | h(x) < �′j(x)}
and let

Σj = Cj ∩ {x | x3 = 0},
Γj := ∂Cj ∩ {x | x3 = 0},

Γ = Γ1 ∪ Γ2 ∪ Γ3,

Ω+
j = Cj ∩ {x | x3 > 0}, Ω−

j = Cj ∩ {x | x3 < 0}.
Let M denote the universal cover of D \ Γ. The fundamental group

G of M is the free products of three cyclic groups G1, G2 and G3. We
use gi to denote the generator of Gi. Fixing a base point x∗ in D \ Γ, we
parameterize points of M = (D \ Γ) × G as usual: For x ∈ D \ Γ and
g = gi1

1 g
i2
2 g

i3
3 · · · gi3l+1

1 g
i3l+2

2 g
i3l+3

3 ∈ G, we use (x, g) to denote the point of M
obtained by a path starting from x∗, ending at x, and crossing Σ1 i1 times
(i1 = 0 means no crossing, i1 > 0 means crossing in the positive direction,
i.e., from Ω−

1 to Ω+
1 , i1 < 0 means crossing in the negative direction), crossing

Σ2 i2 times, crossing Σ3 i3 times, crossing Σ1 i4 times, crossing Σ2 i5 times,
· · · , crossing Σ3 i3l+3 times. We use notation ∂′M = {(x, g) | x ∈ ∂D,
g ∈ G}.

Let a1, a2, a3 ∈ R and let S be a smooth function defined on M satisfying

S(x, g) = S(x, ḡ) + (i1 + i4 + · · · + i3l+1)a1

+(i2 + i5 + · · · + i3l+2)a2 + (i3 + i6 + · · · + i3l+3)a3,

where, ḡ denotes the identity element of G and

g = gi1
1 g

i2
2 g

i3
3 · · · gi3l+1

1 g
i3l+2

2 g
i3l+3

3 ∈ G.

We will produce in the rest of this section locally convex viscosity solu-
tions u to

det(D2u) = eS in M, (6.4)

satisfying

D2

(
u(x, g) − γ(g)u(x, ḡ)

)
= 0, ∀ (x, g) ∈M, (6.5)

where

γ(g) = γ1(g)γ2(g)γ3(g), γ1(g) = e
a1
n

(i1+i4+···+i3l+1),

γ2(g) = e
a2
n

(i2+i5+···+i3l+2), γ3(g) = e
a3
n

(i3+i6+···+i3l+3).
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Let b = e10(|a1|+|a2|+|a3|), h∗ = bh, and β = bβ′. We consider ϕ ∈ C0(∂D)
satisfying

min
∂D

ϕ > β. (6.6)

We will first construct u on M satisfying

det(D2u) ≥ eS on M, (6.7)

u(x, g) = γ(g)u(x, ḡ) − γ1(g)�1 − γ2(g)�2 − γ3(g)�3, (x, g) ∈M, (6.8)

and

u(x, g) = γ(g)ϕ − γ1(g)�1 − γ2(g)�2 − γ3(g)�3, (x, g) ∈ ∂′M, (6.9)

where �j = b�′j.
We will use ∂Cj ∩{x | x3 > 0} as a cut-off surface, playing a similar role

as ∂Ω ∩ ∂Ω+ in the proof of Theorem 4.1. We change h∗ − �j (�j = b�′j) to

e
aj
n (h∗ − �j) when crossing Σj in the positive direction into Ω+

j , so on that

leaf, we replace h∗ by e
aj
n (h∗ − �j) + �j . In general, for e

c
nh∗ + � (� is some

linear function), we change it to e
c+aj

n (h∗ − �j) + e
c
n �j + �.

Following the above procedure we have defined u:

u(x, ḡ) =

{
h∗(x) x ∈ D \ (Ω+

1 ∪ Ω+
2 ∪ Ω+

3 ),
e

aj
n (h∗ − �j) + �j x ∈ Ω+

j , j = 1, 2, 3,

and u satisfies (6.7), (6.8) and (6.9).

Theorem 6.1. For ϕ ∈ C0(∂D) satisfying (6.6), there exists a unique lo-
cally convex viscosity solution u ∈ C0(M ∪ ∂′M) to (6.4) satisfying

u(x, g) = γ(g)u(x, ḡ) − γ1(g)�1 − γ2(g)�2 − γ3(g)�3, (x, g) ∈M,

u(x, g) = u(x, g), ∀ (x, g) ∈ ∂′M,

and

lim
x→x̄

(
u(x, g) − u(x, g)

)
= 0, ∀ x̄ ∈ Γ, g ∈ G. (6.10)

Consequently u satisfies (6.5).

Remark 6.2. The above theorem can easily be extended to m ≥ 3 unit
vectors e1, · · · , em lying in the (x1, x2)-plane satisfying

e1 · e2 > −1, e2 · e3 > −1, · · · , em−1 · em > −1, em · e1 > −1.

In fact, {e1, · · · , em} do not need to lie exactly in the (x1, x2)-plane. These
can be seen from the proof of Theorem 6.1.
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Proof. of Theorem 6.1. Let S denote the set of locally convex functions
v ∈ C0(M ∪ ∂′M) satisfying, in the viscosity sense,

det(D2v) ≥ eS in M,

lim sup
x→x̄

(
v(x, g) − u(x, g)

)
≤ 0, ∀ x̄ ∈ Γ, g ∈ G,

v(x, g) = γ(g)v(x, ḡ) − γ1(g)�1 − γ2(g)�2 − γ3(g)�3, (x, g) ∈M,

and

v(x, g) = γ(g)ϕ − γ1(g)�1 − γ2(g)�2 − γ3(g)�3, (x, g) ∈ ∂′M.

Clearly, u ∈ S. Define,

u(x, g) = sup {v(x, g) | v ∈ S}, (x, g) ∈M.

Modifying the arguments in the proof of Theorem 4.1, we see that u belongs
to S and satisfies (6.4) and (6.10). The uniqueness of such u follows from
standard arguments. Theorem 6.1 is established.

�

7. Infinitely Valued Solutions with Constant
Right-Hand Side.

In this section, we construct infinitely valued solutions with constant right-
hand side. The invariance here, is given by the fact that u in consecutive
leaves differs from the previous one in an affine transformation.

For n ≥ 3, we use R
n−1 = {x = (x1, · · · , xn−1, 0) | xi ∈ R} to denote

the hyperplane in R
n = {x = (x1, · · · , xn) | xi ∈ R}. Let Σ ⊂ R

n−1 be a
(n−1)-dimensional strictly convex bounded open set with smooth boundary,
and T be a n× n real matrix satisfying Tx = x for all x ∈ R

n−1, i.e.

T =

⎛⎜⎜⎜⎜⎝
1 0 0 · · · 0 λ1

0 1 0 · · · 0 λ2

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 λn−1

0 0 0 · · · 0 1

⎞⎟⎟⎟⎟⎠ .

Let Γ be the boundary of Σ in the R
n−1, and let

M = (Rn \ Γ) × Z
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be the universal cover of R
n \ Γ with the usual parameterization: Fixing a

point x∗ in R
n \ Γ, and connecting x∗ by a smooth curve in R

n \ Γ to a
point x in R

n \ Γ. If the curve goes through Σ m ≥ 0 times in the positive
direction (say, increasing x3), then we arrive at (x,m) in M . If the curve
goes through Σ m ≥ 0 times in the negative direction, then we arrive at
(x,−m) in M .

For k = 2, 3, 4, · · · , we introduce an equivalence relation “∼k” on M as
follows: (x,m) and (y, l) in M are “∼k” equivalent if x = y and m− l is an
integer multiple of k. We let

Mk := M/ ∼k,

denote the k−sheet cover of R
n \ Γ.

Theorem 7.1. Let M and T be as above, b ∈ R
n, c ∈ R, and let A be a real

symmetric n× n matrix with det(A) = 1. Then, there exists some constant
β∗ > 0, which depends only on T , Γ, A, b and c, such that for any β ≥ β∗,
there exists a unique locally convex function u ∈ C∞(M) satisfying

det(D2u) = 1 in M, (7.1)

u(x,m) = u(Tx,m− 1) ∀ (x,m) ∈M, (7.2)

lim
x→x̄

u(x,m) = −β, ∀ x̄ ∈ Γ, ∀ m ∈ Z, (7.3)

and

lim sup
|x|→∞

(
|x|n−2 |u(x,m) −Q(Tmx)|

)
<∞, ∀ m ∈ Z, (7.4)

where Q(x) := 1
2x

′Ax+ b · x+ c.

Remark 7.2. It is clear that the conclusion of Theorem 7.1 holds with M
replaced by Mk, k = 2, 3, 4, · · · .

Proof. of Theorem 7.1. By the affine invariance of the equation, we may
assume without loss of generality that b = 0, c = 0 and A is the identity
matrix. Let Ω ⊂ R

n be a strictly convex bounded open set with smooth
boundary satisfying Σ = Ω ∩ R

n−1 and, therefore, Γ = ∂Ω ∩ R
n−1. Let

Φ ∈ C∞(Ω) be a convex function satisfying{
det(D2Φ) > 1 on Ω,
Φ = 0, on ∂Ω,
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and let
Φ̃(x) := Φ(x) +K|xn|, x ∈ Ω,

where K > 1 is some fixed large constant, depending only on T and Γ,
satisfying, for all (x1, · · · , xn−1, 0) ∈ Σ, that⎧⎪⎪⎨⎪⎪⎩

lim inf
s→0

Φ̃(x1, · · · , xn−1, s) − Φ̃(x1, · · · , xn−1, 0)
|s| > 0,

lim inf
s→0

Φ̃(T (x1, · · · , xn−1, s)) − Φ̃(T (x1, · · · , xn−1, 0))
|s| > 0,

(7.5)

Because of (7.5), Φ̃ also satisfies, in the viscosity sense,

det(D2Φ̃) > 1 in Ω.

By Lemma 9.1, there exists x̄(ξ) ∈ R
n for every ξ ∈ ∂Ω such that

wξ(x) := Φ̃(ξ) +
1
2

(
|x− x̄(ξ)|2 − |ξ − x̄(ξ)|2

)
< Φ̃(x), ∀ x ∈ Ω \ {ξ}.

Moreover, supξ∈∂Ω |x̄(ξ)| <∞.
Define,

V (x) =
{

Φ̃(x), x ∈ Ω,
supξ∈∂Ωwξ(x), x ∈ R

n \ Ω.

Then V is a convex function satisfying, in the viscosity sense,

det(D2V ) ≥ 1 in R
n.

Let R1 > 0 satisfy,
Ω ⊂ BR1,

and let
R2 = 2 max

|m|≤4
max
|x|≤R1

|Tmx|.

We consider, for a > 1,

wa(x) := inf
BR2

V +
∫ |x|

2R2

(sn + a)
1
nds, 0 < |x| <∞.

By the definition of R2,

wa(Tmx) ≤ inf
BR2

V +
∫ R2/2

2R2

(sn + a)
1
nds < inf

BR2

V ≤ V (x),

∀ |m| ≤ 4, ∀ |x| ≤ R1.
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Fixing some R3 > 3R2 satisfying

min
|m|≤4

min
|x|=R3

|Tmx| > 3R2,

we choose some a1 > 1, such that

wa(Tmx) > inf
BR2

V +
∫ 3R2

2R2

(sn + a)
1
nds > V (x), ∀ |x| = R3, ∀ |m| ≤ 4.

It is easy to see that

wa(x) =
1
2
|x|2 + µ(a) +O(|x|2−n) as |x| → ∞,

where µ(a), monotonic and continuous in a for large a, tends to ∞ as a→ ∞.
Define, for a ≥ a1,

u(0)
a (x) =

{
max{V (x), wa(x)} − µ(a), |x| ≤ R3,
wa(x) − µ(a), |x| ≥ R3,

and
u(m)

a (x) = u(0)
a (Tmx), x ∈ R

n \ Σ, m ∈ Z.
Then, for m ∈ Z,

u(m)
a (x) =

1
2
|Tmx|2 +O(|x|2−n) as |x| → ∞, (7.6)

u(m)
a = −µ(a) on Γ,

u(m)
a = V in some open neighborhood of Σ,

and u(m)
a is a convex function satisfying, in the viscosity sense,

det(D2u(m)
a ) ≥ 1 in R

n.

Define,
ua(x,m) = u(m)

a (x), ∀ (x,m) ∈M.

Then, ua is a locally convex function on M satisfying

ua(x,m) =
1
2
|Tmx|2 +O(|x|2−n), as |x| → ∞,

lim
x→x̄

ua(x,m) = −µ(a), ∀ x̄ ∈ Γ, ∀ m ∈ Z,
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and, in view of (7.5), in the viscosity sense,

det(D2ua) ≥ 1 in M.

Let R4 be defined by

max
|m|≤4

max
|x|=2R3

|Tmx| = R4,

and let

w(x) =

⎧⎨⎩
∫ |x|

R4

[sn − (R4)n]
1
nds, |x| ≥ R4,

0, |x| < R4.

Then, w ∈ C1(Rn) ∩ C∞(Rn \BR4) is a convex function satisfying

det(D2w) = 1 on R
n \BR4, (7.7)

∇w = 0 on ∂BR4 , (7.8)

and, for some β ∈ R,

w(x) =
1
2
|x|2 + β +O(|x|2−n), as |x| → ∞.

Define,
w̄(x,m) = w(Tmx) − β, ∀ (x,m) ∈M.

Clearly, w̄ satisfies, in the viscosity sense

det(D2w̄) ≤ 1, on M.

For λ large, w̄ + λ > wa on M . Let

λ̄a := inf{λ > 0 | w̄ + λ > wa on M}.

Fix some a2 ≥ a1 such that

−µ(a) < −β ∀ a ≥ a2. (7.9)

By (7.6), (7.7), (7.8) and (7.9), no touching of w̄+ λ̄a and wa can occur
(see arguments on page 575 of [6]). Thus λ̄a = 0 and w̄ > wa on M for all
a ≥ a2.

Let Sa denote the set of locally convex functions v on M satisfying

v ≤ w̄ on M,
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v(x,m) = v(Tx,m− 1) ∀ (x,m) ∈M,

det(D2v) ≥ 1 on M,

lim sup
x→x̄

v(x,m) ≤ −µ(a), ∀ x̄ ∈ Γ, ∀ m ∈ Z.
Clearly, ua ∈ Sa. Define

ua(x,m) = sup{v(x,m) | v ∈ S}, ∀ (x,m) ∈M.

Using some arguments similar to those in the proofs of Theorem 2.2 and
Theorem 4.1, together with some standard arguments, we see that ua, for
a ≥ a2, is a locally convex solution to (7.1) satisfying (7.4) with Q(x) ≡ 1

2 |x|2
and (7.3) with β = µ(a). To complete the proof of Theorem 7.1, we only
need to prove that u ∈ C∞(M). This follows from the regularity theory
of the first author as used in the proof of Theorem 3.1. Indeed, the only
additional observation is that, because of (7.4), there can not be a ray to
infinity on which ua is linear. Theorem 7.1 is established. �

8. Infinitely Valued Solutions With Constant
Right-Hand Side and a Triple Point.

In this section we construct, only in R
3, infinitely valued solutions with

constant right-hand side and a triple point by combining the arguments in
Section 5 and 6. As in Section 5, the construction relies on the geometry of
the Pogorelov singular solution.

In R
3 = {(x1, x2, x3) | xi ∈ R}, let e1, e2, e3 be distinct unit vectors

lying in R
2 := {(x1, x2, 0) | xi ∈ R} which satisfy (6.1). With the Pogorelov

singular solution in (6.3), we let Pej denote the Pogorelov solution which
vanishes along the ej−line, and we define

h(x) = max
j

{x · ej + Pej(x)}, |x| ≤ 3
2
.

We let
h̃(x) := h(x) +K|x3|, |x| ≤ 3

2
,

and we will fix some large constant K below.
Let T1, T2, T3 be 3×3 real matrices satisfying Tix = x for all x ∈ R

2. We,
now fix some large positive constant K such that for all |(x1, x2, 0)| ≤ 3

2 , for
i = 1, 2, 3, and for all m = 0,±1,±2, we have

lim inf
s→0

h̃(Tm
i (x1, x2, s)) − h̃(Tm

i (x1, x2, 0))
|s| > 0, (8.1)
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Let b ∈ R
n, A be a real symmetric 3 × 3 matrix, then there exists some

c∗, which depends on A, b and h̃, such that for all c > c∗, we can construct,
as in Section 6, a convex function W on R

n, satisfying,

W (x) = h̃(x), ∀ |x| ≤ 5
4
,

W (x) =
1
2
x′Ax+ b · x+ c+O(

1
|x| ), as |x| → ∞,

and, in the viscosity sense,

det(D2W ) ≥ 1 in R
n.

Let Γ1,Γ2,Γ3 be three bounded convex curves lying in R
2 satisfying

Γ1 ∩ {x ∈ R
2 | |x| < 1} = {se1 | 0 ≤ s < 1} ∪ {se2 | 0 ≤ s < 1},

Γ2 ∩ {x ∈ R
2 | |x| < 1} = {se2 | 0 ≤ s < 1} ∪ {se3 | 0 ≤ s < 1},

and

Γ3 ∩ {x ∈ R
2 | |x| < 1} = {se3 | 0 ≤ s < 1} ∪ {se1 | 0 ≤ s < 1}.

We set
Γ = Γ1 ∪ Γ2 ∪ Γ3.

Let M denote the universal cover of R
3 \ Γ. The fundamental group

G of M is the free products of three cyclic groups G1, G2 and G3. We
use gi to denote the generator of Gi. Fixing a base point x∗ in R

3 \ Γ, we
parameterize points of M = (R3 \ Γ) × G as usual: For x ∈ R

3 \ Γ and
g = gi1

1 g
i2
2 g

i3
3 · · · gi3l+1

1 g
i3l+2

2 g
i3l+3

3 ∈ G, we use (x, g) to denote the point of M
obtained by a path starting from x∗, ending at x, and crossing Σ1 i1 times
(i1 = 0 means no crossing, i1 > 0 means crossing in the positive direction,
i.e., from Ω−

1 to Ω+
1 , i1 < 0 means crossing in the negative direction), crossing

Σ2 i2 times, crossing Σ3 i3 times, crossing Σ1 i4 times, crossing Σ2 i5 times,
· · · , crossing Σ3 i3l+3 times.

For g = gi1
1 g

i2
2 g

i3
3 · · · gi3l+1

1 g
i3l+2

2 g
i3l+3

3 ∈ G, we use notation

T (g) = T
i3l+3

3 T
i3l+2

2 T
i3l+1

1 · · ·T i3
3 T

i2
2 T

i1
1 .

Now, we define a function u on M by setting, for all (x, g) ∈M ,

u(x, g) = W
(
T (g)x

)
.
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It is clear that u is a locally convex function on M satisfying

u(x, ḡ) ≡W (x),

u(x, g) ≡ u(T (g)x, ḡ),

and, in the viscosity sense,

det(D2u) ≥ 1 in M.

Clearly, u satisfies

lim sup
|x|→∞

(
|x||u(x) −Q(T (g)x)|

)
<∞, ∀ g ∈ G,

where Q(x) := 1
2x

′Ax+ b · x+ c.
Modifying the construction of the super solution w̄ in Section 6, and

increasing the value of c∗ if necessary (recall that c > c∗), we may construct
a locally convex function u on M satisfying

u ≥ u on M,

lim sup
|x|→∞

(
|x||u(x) −Q(T (g)x)|

)
<∞, ∀ g ∈ G,

u(x, g) ≡ u(T (g)x, ḡ) ∀ (x, g) ∈M,

and, in the viscosity sense,

det(D2u) ≤ 1 on M.

Let S denote the set of locally convex functions v on M satisfying,

v ≤ u in M,

v(x, g) = v(T (g)x, ḡ) ∀ (x, g) ∈M,

lim sup
x→x̄

(
v(x, g) − u(x, g)

)
≤ 0 ∀ x̄ ∈ Γ, ∀ g ∈ G,

and, in the viscosity sense,

det(D2v) ≥ 1 in M.

Clearly, u ∈ S. Define

u(x, g) = sup{v(x, g) | v ∈ S}, ∀ (x, g) ∈M.
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Theorem 8.1. The above defined u is a locally convex viscosity solution to

det(D2u) = 1 in M, (8.2)

satisfying
u(x, g) = u(T (g)x, ḡ) ∀ (x, g) ∈M, (8.3)

lim
x→x̄

(
u(x, g) − u(x, g)

)
= 0 ∀ x̄ ∈ Γ, ∀ g ∈ G, (8.4)

and

lim sup
|x|→∞

(
|x||u(x) −Q(T (g)x)|

)
<∞, ∀ g ∈ G. (8.5)

Proof. of Theorem 8.1. This theorem follows from some arguments similar
to those used in the proofs of the theorems in previous sections. Let us
outline the arguments below. First, we let B1, B2, B3, · · · be defined as in
the proof of Theorem 4.1, with D \ Γ replaced by R

3 \ Γ. For v ∈ S, and
for any open ball B ⊂ R

3 \Γ, we define TBv, similar to the definition in the
proof of of Theorem 4.1, only changing eS in (4.6) to 1. Define {vi} ⊂ S
the same as below (4.6). Since vi ≤ u in M , we deduce, using also the local
convexity and the monotonicity property of {vi} (recall that vi ≤ vi+1 in
M), that vi converges in C0

loc(M) to some locally convex function u. Clearly
u satisfies (8.3) and (8.5). By some standard arguments, u satisfies (8.2) in
the viscosity sense. Since

lim sup
x→x̄

(
vi(x, g) − u(x, g)

)
≤ 0 ∀ x̄ ∈ Γ, ∀ g ∈ G,

we can deduce (8.4) by using arguments similar to those used in the proof
of Theorem 4.1. Theorem 8.1 is established. �

9. Appendix.

Lemma 9.1. Let D be a strictly convex bounded open set in R
n, n ≥ 1,

with C2 boundary, and let Φ ∈ C2(D). Then, there exists some constant
C, depending only on n,Φ and D, such that for every ξ ∈ ∂D, there exists
x̄(ξ) ∈ R

n satisfying

|x̄(ξ)| ≤ C and wξ < Φ on D \ {ξ},
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where

wξ(x) := Φ(ξ) +
1
2

(
|x− x̄(ξ)|2 − |ξ − x̄(ξ)|2

)
, x ∈ R

n.

Proof. It follows from modification of the proof of lemma 5.1 in [6].
�
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