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Ricci flow on locally homogeneous closed

4-manifolds

James Isenberg, Martin Jackson and Peng Lu

We discuss the Ricci flow on homogeneous 4-manifolds. After clas-
sifying these manifolds, we note that there are families of initial
metrics such that we can diagonalize them and the Ricci flow pre-
serves the diagonalization. We analyze the long time behavior of
these families. We find that if a solution exists for all time, then
the flow exhibits a type III singularity in the sense of Hamilton.

1. Introduction.

It is well-known that there are eight maximal, simply connected geome-
tries (X,G) with compact quotient in dimension three ([17], p.474). In
Thurston’s geometrization conjecture, any closed three-manifold can be cut
into pieces each of which admits one of these geometries. To explore the re-
lation between the Ricci flow and the model geometries, the first two named
authors analyze the long time behavior of the Ricci flow on locally homo-
geneous three-manifolds in [8]. In later work ([11]), using the notion of
quasi-convergence, Knopf and McLeod identify the equivalence classes of all
such flows except the case X = ŜL(2, R).

Ricci flow has proven to be very successful in studying the geometric and
topological properties of three manifolds ([4], [15], [16]), and there are indi-
cations ([3], [5], [7]) that it could be useful for the study of such properties in
four dimensions. In order to further explore its possible use in dimension 4,
we study the Ricci flow on locally homogeneous four-manifolds in this pa-
per. We find that unlike in the case of three dimensions ([14], [8]), some of
the families of locally homogeneous metrics can not be diagonalized because
even if one diagonalizes the initial metric, the flow destroys the diagonal-
ization of the metric at later times. The analysis of the ODE system given
by Ricci flow for locally homogeneous manifolds is considerably simplified
if the flow preserves the diagonalization. In this paper, we identify some
families of initial metrics such that the Ricci flow preserves their diagonal-
ization. For these families, we find that the behavior of the flow is very
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close to that seen in dimension three ([8]): either (a) the volume-normalized
Ricci flow converges to a metric of constant sectional curvature or constant
holomorphic bisectional curvature (CP 2 and CH2); or (b) as t → +∞, the
Ricci flow collapses to a lower dimensional flat manifold with the curvature
decaying at the rate 1

t ; or (c) the Ricci flow approaches, either in finite time
or in infinite time, a direct product of lower dimensional geometries with
constant sectional curvature.

After describing locally homogeneous geometric structures in dimension
4 in Section 1, we consider in Section 2 the case that the homogeneous space
X is a Lie group . We identify families of initial metrics whose diagonal-
ization is preserved by the Ricci flow, and then we discuss the long time
behavior of the Ricci flow for those families. In Section 3, we discuss the
long time behavior of the Ricci flow for the remaining cases. Since the Ricci
flow on closed manifolds preserves the isometry group, for any locally ho-
mogeneous closed 4-manifolds, we discuss the Ricci flow on their universal
covering spaces.

2. Compact locally homogeneous 4-geometries.

We identify a class of four dimensional homogeneous geometries by specify-
ing a simply connected four manifold M , a Lie group G that acts transitively
on M , and the minimal isotropy group I of the action. We only consider
those (M,G, I) in which M is the universal cover of a closed manifold Mq.
Such a class we call a compact four dimensional homogeneous geom-
etry. For each (M,G, I), there is a collection of Riemannian metrics on
M for which G is the isometry group. These are the lifts of the locally
homogeneous metrics on Mq.

2.1. List of compact four dimensional homogeneous geometries.

Let Hn be the simply-connected hyperbolic n-manifold and Sn be the
simply-connected round n-sphere. We denote the group of isometries of
Hn by H(n). We summarize the compact three dimensional homogeneous
geometries in the following table.
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Manifold M3 Lie group G Isotropy group I

R
3

R
3 {0}

S3 SU(2) {e}
ŜL(2, R) ŜL(2, R) {e}
Nil3 Nil3 {e}
Ŝol3 Ŝol3 {e}
R

3 E(2) {e}
S2 × R SO(3) × R SO(2) × {0}
H2 × R H(2) × R SO(2) × {0}
H3 H(3) SO(3)

Here, ŜL(2, R) is the universal cover of the special linear group SL(2, R);
its lie algebra sl2 has a basis X1,X2,X3 such that the Lie bracket is given
by

[X1,X2] = −X3, [X2,X3] = X1, [X3,X1] = X2.

Nil3 is the 3-dimensional Heisenberg group consisting of matrices of the
form ⎡⎣ 1 c1 c2

0 1 c3

0 0 1

⎤⎦ ;

its Lie algebra n3 has a basis X1,X2,X3 such that the Lie bracket is given
by

[X1,X2] = X3, [X2,X3] = 0, [X3,X1] = 0.

Ŝol3 is the simply-connected solvable Lie group whose Lie algebra sol3 has
a basis X1,X2,X3 satisfying

[X1,X2] = 0, [X2,X3] = −X2, [X3,X1] = −X1.

E(2) is also a solvable Lie group whose Lie algebra L(E2) has a basis
X1,X2,X3 satisfying

[X1,X2] = 0, [X2,X3] = −X1, [X3,X1] = −X2.

The Lie algebra su(2) of SU(2) can be described by

[X1,X2] = X3, [X2,X3] = X1, [X3,X1] = X2.

The compact four dimensional homogeneous geometries have been clas-
sified by Ishihara [9]. We list them in the following table (see [18]).
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Manifold M4 Lie group G Isotropy group I

Nil4 Nil4 {e}
Sol4m,n Sol4m,n {e}

Sol41 Sol41 {e}
Sol40 Sol40 {e}

ŜL(2, R) × R ŜL(2, R) × R {e}
Nil3 × R Nil3 × R {e}

S3 × R SU(2) × R {e}
R

4 E(2) × R {e}
R

4
R

4 {0}
S2 × S2 SO(3) × SO(3) SO(2) × SO(2)
S2 × R

2 SO(3) × R
2 SO(2) × {0}

S2 × H2 SO(3) × H(2) SO(2) × SO(2)
H2 × R

2 H(2) × R
2 SO(2) × {0}

H2 × H2 H(2) × H(2) SO(2) × SO(2)
CP 2 SU(3) U(2)
CH2 SU(1, 2) U(2)

H3 × R H(3) × R SO(3) × {0}
S4 SO(5) SO(4)
H4 H(4) SO(4)

Nil4, Sol4m,n, Sol41 and Sol40 are simply connected 4-dimensional Lie groups;
we describe their Lie algebras in Section 2.2. Note that Sol4m,n includes

Ŝol3 × R. CH2 is complex hyperbolic space which has Kähler symmetric
space structure (see [12], pp. 282–285).

Note that there is another locally homogeneous space M = F 4 listed in
[18]. This is not a compact homogeneous geometry because it does not have
compact quotients. The isometry group G contains a discrete subgroup Γ
such that F 4/Γ has finite volume.

One can find a more detailed description of four dimensional locally
homogeneous geometries in Part II of [6].

The Ricci flow study for those classes with trivial isotropy group requires
substantial new analysis; we group these in a category labelled A. We de-
scribe these classes in Section 2.2. Those classes with non-trivial isotropy
group are grouped in category B (Section 2.3).
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2.2. Four dimensional unimodular Lie groups.

Recall that a Lie group G is called co-compact if G contains a discrete sub-
group Γ such that G/Γ is compact. Each Lie group in (A) is co-compact. A
co-compact Lie group has unimodular Lie algebra ([14] Lemma 6.2). Instead
of studying Ricci flow on spaces in (A), we broaden the discussion to Ricci
flow on 4-dimensional unimodular Lie groups.

According to the classification of the 4-dimensional unimodular Lie al-
gebras ([13]), for each such algebra, there is some basis X1,X2,X3,X4 such
that the Lie bracket takes the form indicated below. We adopt the notation1

in [13].
A1. Class U1[(1, 1, 1)].

[X2,X3] = 0, [X3,X1] = 0, [X1,X2] = 0,
[X1,X4] = 0, [X2,X4] = 0, [X3,X4] = 0.

This corresponds to (M,G, I) = (R4, R4, {0}) where G acts on M by trans-
lation.

A2. Class U1[1, 1, 1].

[X2,X3] = 0, [X3,X1] = 0, [X1,X2] = 0,
[X1,X4] = X1, [X2,X4] = kX2, [X3,X4] = −(k + 1)X3,

where, without loss of generality, we assume k ≥ −1
2 since otherwise we

can interchange X2 and X3. Only the following special cases correspond to
compact homogeneous geometries.
(A2i) if k = 0, the Lie algebra is isomorphic to the direct sum sol3 ⊕ R.
This corresponds to (M,G, I) = (Ŝol3 × R, Ŝol3 × R, {e}).
(A2ii) if k = 1, the corresponding geometry is (M,G, I) = (Sol40, Sol40, {e});
this can be seen by choosing e1 = X1, e2 = X2, e3 = X3, and e4 = −X4 on
p.273 in [18].
(A2iii) if there is a number α > 0 such that the exponentials of α, β

.= kα
and γ

.= −(k + 1)α are roots of λ3 − mλ2 + nλ − 1 = 0 for some m,n ∈ N

and m �= n, then one has (M,G, I) = (Sol4m,n, Sol4m,n, {e}) for the geometry.
This can be seen by choosing e1 = αX1, e2 = αX2, e3 = αX3, and e4 =
−αX4 on p. 274 and p. 270 in [18].

1For example, U stands for unimodular and the various integers 1,2,3 refer to
certain characteristics of the Lie algebra structure; see [13] for details.
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A3. Class U1[Z, Z̄, 1].

[X2,X3] = 0, [X3,X1] = 0, [X1,X2] = 0,
[X1,X4] = kX1 + X2, [X2,X4] = −X1 + kX2, [X3,X4] = −2kX3,

where k is a real number. If k = 0, this corresponds to the geometry
(M,G, I) = (R4, E(2) × R, {e}). Other values of k do not correspond to
compact homogeneous geometries.

A4. Class U1[2, 1] with µ = 0.

[X2,X3] = 0, [X3,X1] = 0, [X1,X2] = 0,
[X1,X4] = X2, [X2,X4] = 0, [X3,X4] = 0.

This Lie algebra is isomorphic to the direct sum n3 ⊕R where n3 is the Lie
algebra of Nil3. Hence, in this case (M,G, I) = (Nil3 × R, Nil3 × R, {e}).

A5. Class U1[2, 1] with µ = 1.

[X2,X3] = 0, [X3,X1] = 0, [X1,X2] = 0,

[X1,X4] = −1
2
X1 + X2, [X2,X4] = −1

2
X2, [X3,X4] = X3.

This does not correspond to any of the compact homogeneous geometries.

A6. Class U1[3].

[X2,X3] = 0, [X3,X1] = 0, [X1,X2] = 0,
[X1,X4] = X2, [X2,X4] = X3, [X3,X4] = 0.

This corresponds to the geometry (M,G, I) = (Nil4, Nil4, {e}) which can be
seen by choosing e1 = X1, e2 = X2, e3 = X3, and e4 = −X4 on p. 274 in [18].

A7. Class U3I0.

[X1,X4] = 0, [X2,X4] = 0, [X3,X4] = 0,
[X2,X3] = X4, [X3,X1] = X2, [X1,X2] = −X3.

This corresponds to the geometry (M,G, I) = (Sol41, Sol41, {e}) which can
be seen by choosing e1 = X1, e2 = X2 + X3, e3 = X2 − X3, e4 = −2X4 on
p. 272 in [18].
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A8. Class U3I2.

[X1,X4] = 0, [X2,X4] = 0, [X3,X4] = 0,
[X2,X3] = −X4, [X3,X1] = X2, [X1,X2] = X3.

This does not correspond to any of the compact homogeneous geometries.

A9. Class U3S1.

[X1,X4] = 0, [X2,X4] = 0, [X3,X4] = 0,
[X2,X3] = X1, [X3,X1] = X2, [X1,X2] = −X3.

This Lie algebra is isomorphic to the direct sum sl2 ⊕ R. This corresponds
to the geometry (M,G, I) = (ŜL(2, R) × R, ŜL(2, R) × R, {e}).

A10. Class U3S3.

[X1,X4] = 0, [X2,X4] = 0, [X3,X4] = 0,
[X2,X3] = X1, [X3,X1] = X2, [X1,X2] = X3.

This Lie algebra is isomorphic to the direct sum su(2)⊕R. This corresponds
to the geometry (M,G, I) = (S3 × R, SU(2) × R, {e}).

2.3. Compact four dimensional homogeneous geometries with
non-trivial isotropy group.

Now we list the compact 4-dimensional homogeneous geometries (M4, G, I)
for which dimension of G is bigger than 4. Recall H(n) is the isometry group
of the simply-connected hyperbolic n-manifolds Hn.

B1. (M,G, I) = (H3 × R,H(3) × R, SO(3))

B2. (M,G, I) = (S2 × R
2, SO(3) × R

2, SO(2) × {0})
B3. (M,G, I) = (H2 × R

2,H(2) × R
2, SO(2) × {0})

B4. (M,G, I) = (S2 × S2, SO(3) × SO(3), SO(2) × SO(2))

B5. (M,G, I) = (S2 × H2, SO(3) × H(2), SO(2) × SO(2))

B6. (M,G, I) = H2 × H2,H(2) × H(2), SO(2) × SO(2))

B7. (M,G, I) = (CP 2, SU(3), U(2))

B8. (M,G, I) = (CH2, SU(1, 2), U(2))

B9. (M,G, I) = (S4, SO(5), SO(4))

B10. (M,G, I) = (H4,H(4), SO(4))
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3. The Ricci flow on 4-dimensional unimodular Lie groups.

Recall that our strategy is to analyze the Ricci flow on a simply connected
manifold M that is the universal cover of a closed manifold Mq. For a fixed
class (M,G, I) and a fixed initial homogeneous metric g0 compatible with
the class, let g(t) be the homogeneous solution of the Ricci flow

∂

∂t
g(t) = −2Ric(g(t)) g(0) = g0.

On the closed manifold Mq, we consider the volume-normalized Ricci flow
g̃N (t̃) as the solution of

∂

∂t̃
g̃N (t̃) = −2Ric(g̃N (t̃)) +

r̃N

2
g̃N g̃N (0) = g0

where r̃N is the scalar curvature of g̃N . Note that averaging of the scalar
curvature is not needed for homogeneous metrics. We also note that the
Ricci flow equation for homogeneous metrics reduces to a system of ordinary
differential equations.

For each class (Ai) listed in Section 2.2, we describe the families of initial
metrics which are diagonal and remain diagonal under the Ricci flow and
then study their long time behavior. To address the diagonalization issue, we
use the following strategy: Fix a homogeneous metric h and let {Xi} be any
basis of left-invariant vectors on the Lie group G with the bracket structure

[Xi,Xj ] = Ck
ijXk.

For those classes (e.g., A4, A9 and A10) in which the Lie group G is a prod-
uct group G1 × R with dim(G1) = 3, we choose X1,X2,X3 as left invariant
vector fields on G1 and X4 = ∂

∂u on R.
Let {Yi} be any basis orthogonal with respect to h; that is,

h(Yi, Yj) = λiδij.

Let the transformation from {Xi} to {Yi} be given by

Yi = Λk
iXk.

Computing the bracket structure for {Yi}, we get

[Yi, Yj ] = [Λk
iXk,Λl

jXl] = Λk
iΛ

l
jC

m
klXm = Λk

iΛ
l
jC

m
kl(Λ

−1)nmYn.

Thus,
[Yi, Yj] = C̃n

ijYn

where
C̃n

ij = Λk
iΛ

l
j(Λ

−1)nmCm
kl.
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Now, compute the Ricci curvature of h using the orthonormal basis {Ȳi}
defined by Ȳi = 1√

λi
Yi. For this, we use the following Ricci curvature formula

for unimodular Lie groups from Corollary 7.33 p. 184 [1],

Ric(W,W ) = −1
2

∑
i

∣∣[W, Ȳi]
∣∣2 − 1

2

∑
i

〈[W, [W, Ȳi]
]
, Ȳi〉+ 1

2

∑
i<j

〈[Ȳi, Ȳj],W 〉2.

(1)

Finally, check if any positive values of the parameters λi produce a diagonal
Ricci tensor. Only for these values does the metric remain diagonal under
the Ricci flow. We follow this strategy and use the same notation in the rest
of this section.

Remark In our search for families of initial metrics which remain diag-
onal under the Ricci flow, we have chosen special Yi so that the Lie brackets
[Yi, Yj ] are simple. Presumably, there are other families of initial metrics
and other bases Yi for which the diagonalization is preserved by the Ricci
flow. This possibility has not yet been explored. Our calculations do show
that there are (M,G, I) and bases Yi such that the property that the initial
metric has components (g0)a4 = 0, a = 1, 2, 3, is preserved under Ricci flow.

To study the decay of the curvature tensor, we use the following sectional
curvature formula for Lie groups from Theorem 7.30 p. 183 [1]. For the Lie
algebra g of G, define the operator U : g × g → g by

2〈U(X,Y ), Z〉 = 〈[Z,X], Y 〉 + 〈X, [Z, Y ]〉 for all Z ∈ g; (2)

then the curvature is given by

〈R(X,Y )X,Y 〉 = −3
4
|[X,Y ]|2 − 1

2
〈[X, [X,Y ]], Y 〉 − 1

2
〈[Y, [Y,X]],X〉

+ |U(X,Y )|2 − 〈U(X,X), U(Y, Y )〉. (3)

3.A1. U1[(1,1,1)].

For (M,G, I) = (R4, R4, {0}), G acts on M by translation h(x) = h + x for
h ∈ G. Any homogeneous metric g0 on M must be of the form

g0 = λ1dx1 ⊗ dx1 + +λ2dx2 ⊗ dx2 + λ3dx3 ⊗ dx3 + λ4dx4 ⊗ dx4

for some constants λi > 0. The metric g0 is flat; hence g(t) ≡ g0 for
−∞ < t < ∞.
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3.A2. U1[1, 1, 1].

For U1[1, 1, 1], we use Yi = Λk
iXk with

Λ =

⎡⎢⎢⎣
1 0 0 0
a1 1 0 0
a2 a3 1 0
a4 a5 a6 1

⎤⎥⎥⎦
to diagonalize the initial metric g0.

Proposition 3.1. For the class U1[1, 1, 1] suppose the initial metric g0 is
diagonal in the basis Yi. Then

(i) if k �= 1,−1
2 , the Ricci flow solution g(t) remains diagonal in the

basis Yi if and only if a1 = a2 = a3 = 0;
(ii) if k = 1, the Ricci flow solution g(t) remains diagonal in the basis

Yi if and only if a2 = a3 = 0;
(iii) if k = −1

2 , the Ricci flow solution g(t) remains diagonal in the basis
Yi if and only if a1 = a2 = 0;

Proof. We compute

[Y2, Y3] = 0, [Y3, Y1] = 0, [Y1, Y2] = 0,
[Y1, Y4] = Y1, [Y2, Y4] = kY2 + αY1, [Y3, Y4] = −(k + 1)Y3 + βY2 + γY1.

where

α = (1 − k)a1, β = (1 + 2k)a3, and γ = (k + 2)a2 − (1 + 2k)a1a3.

Let W = w1Ȳ1 +w2Ȳ2 +w3Ȳ3 +w4Ȳ4. We compute [W, Ȳi] first and then
use (1) with h = g0 to compute the coefficients of wiwj in Ric(W,W ). We
find that the off-diagonal components of the Ricci tensor in the basis {Ȳi}
are given by

Ric(Ȳ1, Ȳ2) =

(
βγλ2 + (k − 1)αλ3

)√
λ1

2
√

λ2λ3λ4

Ric(Ȳ1, Ȳ3) = −(2 + k)γ
√

λ1

2
√

λ3λ4

Ric(Ȳ2, Ȳ3) = −αγλ1 + (1 + 2k)βλ2

2
√

λ2

√
λ3λ4

Ric(Ȳ1, Ȳ4) = Ric(Ȳ2, Ȳ4) = Ric(Ȳ3, Ȳ4) = 0
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In order for these off-diagonal components to be zero, we must have
α = β = γ = 0. The proposition follows. �

Now we discuss the long time behavior for the families of the initial
metrics in Proposition 3.1 We start with (A2iv) and later show that the
other three cases are covered by the same analysis.

(A2iv) In this case, k �= 0, 1,−1
2 . We have

Y1 = X1, Y2 =X2,

Y3 = X3, Y4 =X4 + a4X1 + a5X2 + a6X3.

and

[Y2, Y3] = 0, [Y3, Y1] = 0, [Y1, Y2] = 0,
[Y1, Y4] = Y1, [Y2, Y4] = kY2, [Y3, Y4] = −(k + 1)Y3.

The bases Yi and Xi both satisfy the same Lie bracket relations so either
can be used in the Ricci flow analysis. We use Xi.

Let θi be the frame of 1-forms dual to Xi. Assume the Ricci flow solution
takes the special form

g(t) = A(t)(θ1)2 + B(t)(θ2)2 + C(t)(θ3)2 + D(t)(θ4)2 (3.5)

with
g0 = λ1(θ1)2 + λ2(θ2)2 + λ3(θ3)2 + λ4(θ4)2.

Then, X̄1 = 1√
A

X1, · · · , X̄4 = 1√
D

X4 is an orthonormal frame with respect
to the metric g. Let W = w1X̄1 + w2X̄2 + w3X̄3 + w4X̄4 and then compute

[W, X̄1] = − 1√
D

w4X̄1 [W, X̄2] = − k√
D

w4X̄2

[W, X̄3] =
k + 1√

D
w4X̄3 [W, X̄4] =

1√
D

w1X̄1 +
k√
D

w2X̄2 − k + 1√
D

w3X̄3.

We have from (1) with h = g

Ric(W,W ) = 0 · w2
1 + 0 · w2

2 + 0 · w2
3 − 2(k2 + k + 1)

D
· w2

4.

So

Ric(X1,X1) = Ric(X2,X2) = Ric(X3,X3) = 0,

Ric(X4,X4) = D · Ric(X̄4, X̄4) = −2(k2 + k + 1),
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and the Ricci flow is
dA

dt
= 0,

dB

dt
=0,

dC

dt
= 0,

dD

dt
=4(k2 + k + 1).

The solution is given by

A(t) = λ1, B(t) = λ2, C(t) = λ3, and D(t) = λ4 + 4(k2 + k + 1)t.

Hence for the subfamily in Proposition 3.1, the Ricci flow does not move in
three directions and expands in the fourth direction at a speed linear in t.

Next, we compute the curvature decay of g(t). From (2) we find

U(X1,X1) = −A

D
X4 U(X2,X2) = −kB

D
X4

U(X3,X3) =
(k + 1)C

D
X4 U(X4,X4) = 0 U(X1,X2) = 0

U(X1,X3) = 0 U(X2,X3) = 0 U(X1,X4) =
1
2
X1

U(X2,X4) =
k

2
X2 U(X3,X4) = −k + 1

2
X3.

From (3) with h = g we find the sectional curvatures

K(X1,X2) = − k

D
, K(X1,X3) =

k + 1
D

, K(X2,X3) =
k(k + 1)

D
,

K(X1,X4) = − 1
D

, K(X2,X4) = −k2

D
, K(X3,X4) = −(k + 1)2

D
.

These curvatures of the solution g(t) decay at the rate 1/t.
Recall on closed manifolds the volume-normalized solution g̃N (t̃) relates

to g(t) by scaling, where t̃ is a function of t with limt→∞ t̃ = ∞. From (3.5),
it is easy to see that the behavior of g̃N (t̃) as t̃ → ∞ is the same as the
behavior of gN (t) as t → ∞ where

gN (t) .=
(

λ1λ2λ3λ4

A(t)B(t)C(t)D(t)

)1/4

g(t).

In discussing the long time behavior of volume normalized Ricci flow solu-
tions, from this point on, we work with gN (t). For convenience, we call this
the volume-normalized solution.

Let us pick a point p ∈ Mq. It is clear that the volume-normalized solu-
tion (Mq, gN (t), p) collapses to a line in the the pointed Gromov–Hausdorff
topology.
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(3.A2i) This is a special case of (A2iv) if we allow k = 0, so the analysis
in (A2iv) applies. Note that since the Lie algebra is the direct sum sol3⊕R,
we can get the same conclusions from the analysis in [8](pp. 733-735).

(3.A2ii) In this case, k = 1. We have

Y1 = X1, Y2 =X2 + a1X1,

Y3 = X3, Y4 =X4 + a4X1 + a5X2 + a6X3.

and

[Y2, Y3] = 0, [Y3, Y1] = 0, [Y1, Y2] = 0,
[Y1, Y4] = Y1, [Y2, Y4] = Y2, [Y3, Y4] = −2Y3.

Note that this is the Lie algebra structure in (A2iv) if we allow k = 1. Hence,
the analysis of (A2iv) applies with the same conclusion.

(3.A2iii) In this case, k = −1
2 . We have

Y1 = X1, Y2 =X2,

Y3 = a3X2 + X3, Y4 =X4 + a4X1 + a5X2 + a6X3.

and

[Y2, Y3] = 0, [Y3, Y1] = 0, [Y1, Y2] = 0,

[Y1, Y4] = Y1, [Y2, Y4] = −1
2
Y2, [Y3, Y4] = −1

2
Y3.

Note that this is the Lie algebra structure in (A2iv) if we allow k = −1
2 .

Hence, the analysis of (A2iv) applies with the same conclusion.

3.A3. U1[Z, Z̄, 1].

For U1[Z, Z̄, 1], we use Yi = Λk
iXk with

Λ =

⎡⎢⎢⎣
1 a2 a3 0
0 1 a1 0
0 0 1 0
a4 a5 a6 1

⎤⎥⎥⎦
to diagonalize the initial metric g0.

Proposition 3.2. For the class U1[Z, Z̄, 1], suppose the initial metric g0 is
diagonal in the basis Yi. Then, the Ricci flow solution g(t) remains diagonal
in the basis Yi if and only if a1 = a2 = a3 = 0.
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Proof. We compute

[Y2, Y3] = 0, [Y3, Y1] = 0, [Y1, Y2] = 0, [Y3, Y4] = −2kY3

[Y1, Y4] = (k − α)Y1 + (α2 + 1)Y2 + βY3, [Y2, Y4] = −Y1 + (k + α)Y2 + γY3.

where

α = a2, β = a2a3 − a1a
2
2 − a1 − 3ka3, and γ = a3 − 3ka1 − a1a2.

We compute the off-diagonal components of the Ricci tensor in the basis
{Ȳi} using (1) as in Section 2.A2 and get

Ric(Ȳ1, Ȳ2) = −2αλ1 + 2α(1 + α2)λ2 + βγλ3

2
√

λ1λ2λ4

Ric(Ȳ1, Ȳ3) = −
(
γλ1 + (α − 3k)βλ2

)√
λ3

2
√

λ1λ2λ4

Ric(Ȳ2, Ȳ3) =

(
(α + 3k)γλ1 + (1 + α2)βλ2

)√
λ3

2λ1

√
λ2λ4

Ric(Ȳ1, Ȳ4) = Ric(Ȳ2, Ȳ4) = Ric(Ȳ3, Ȳ4) = 0.

In order for these off-diagonal components to be zero, we must have α =
β = γ = 0 and the proposition follows. �

If α = β = γ = 0, the Yi and Xi both satisfy the same Lie bracket
relations. As in Section 2.A2, we use Xi in carrying out the analysis of the
long time behavior of the Ricci flow solution for the family in Proposition 3.2.
Proceeding as in Section 2.A2, we find

[W, X̄1] = − k√
D

w4X̄1 −
√

B

AD
w4X̄2

[W, X̄2] =

√
A

BD
w4X̄1 − k√

D
w4X̄2, [W, X̄3] =

2k√
D

w4X̄3

[W, X̄4] = (
k√
D

w1 −
√

A

BD
w2)X̄1 + (

√
B

AD
w1 +

k√
D

w2)X̄2 − 2k√
D

w3X̄3.

We have from (1)

Ric(W,W ) =
A2 − B2

2ABD
w2

1 −
A2 − B2

2ABD
w2

2 + 0 · w2
3 −

(A − B)2 + 12k2AB

2ABD
w2

4,
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so the Ricci flow is

dA

dt
= −A2 − B2

BD
,

dB

dt
= −B2 − A2

AD
,

dC

dt
= 0,

dD

dt
=

(A − B)2 + 12k2AB

AB
.

Clearly, C(t) = λ3.
If λ1 = λ2, then

A(t) = λ1, B(t) = λ2, and D(t) = λ4 + 12k2t.

If λ1 �= λ2, we may assume λ2 > λ1 without loss of generality by the
symmetry of A and B in this system. A simple computation gives

1
A

dA

dt
+

1
B

dB

dt
= 0,

so the product AB = λ1λ2 for all t. Another computation gives

d

dt
[B − A] = −(A + B)2

ABD
(B − A),

so B − A is positive and is decreasing in t. From the equation for dD
dt , it

follows easily that

12k2 ≤ dD

dt
≤ 12k2 +

λ2

λ1
,

and so
λ4 + 12k2t ≤ D(t) ≤ λ4 + (12k2 +

λ2

λ1
)t.

Since,
(A + B)2

ABD
≥ 4

D
≥ 4

λ4 + (12k2 + λ2
λ1

)t
,

it follows that

1
B − A

d

dt
[B − A] ≤ − 4

λ4 + (12k2 + λ2
λ1

)t
.

Integrating the inequality, we get

B − A ≤ (λ2 − λ1)
(

1 + (
12k2

λ4
+

λ2

λ1λ4
)t
)− 4

12k2+
λ2
λ1 .
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Hence for the family in Proposition 3.2, When K �= 0 the long-time behavior
of the solution g(t) as t → +∞ is (see [8] for K = 0)

A(t) →
√

λ1λ2, B(t) →
√

λ1λ2, C(t) = λ3, D(t) → ∞ linearly.

Next, we compute the curvature decay of g(t). From (2), we find

U(X1,X1) = −kA

D
X4 U(X2,X2) = −kB

D
X4 U(X3,X3) =

2kC

D
X4

U(X4,X4) = 0 U(X1,X2) =
A − B

2D
X4 U(X1,X3) = 0

U(X2,X3) = 0 U(X1,X4) =
k

2
X1 − A

2B
X2

U(X2,X4) =
B

2A
X1 +

k

2
X2 U(X3,X4) = −kX3.

From (3), with h = g, we find the sectional curvatures

K(X1,X2) =
A
B + B

A − 2 − 4k2

4D
K(X1,X3) =

2k2

D

K(X2,X3) =
2k2

D
K(X1,X4) =

A
B − 3B

A + 2 − 4k2

4D

K(X2,X4) =
−3A

B + B
A + 2 − 4k2

D
K(X3,X4) = −4k2

D
.

Hence for the family in Proposition 3.2, the curvatures of the solution g(t)
decay at the rate 1/t. Let us pick a point p ∈ Mq. It is clear that the
volume-normalized solution (Mq, gN (t), p) collapses to a line in the pointed
Gromov–Hausdorff topology.

3.A4. U1[2, 1].

For U1[2, 1], we use Yi = Λk
iXk with

Λ =

⎡⎢⎢⎣
1 a2 a3 0
0 1 0 0
0 a1 1 0
a4 a5 a6 1

⎤⎥⎥⎦
to diagonalize the initial metric g0.

Proposition 3.3. For the class U1[2, 1] suppose the initial metric g0 is di-
agonal in the basis Yi. Then the Ricci flow solution g(t) remains diagonal
in the basis Yi for all t ≥ 0.



Ricci flow on locally homogeneous closed 4-manifolds 361

Proof. We compute

[Y2, Y3] = 0, [Y3, Y1] = 0, [Y1, Y2] = 0,
[Y1, Y4] = Y2, [Y2, Y4] = 0, [Y3, Y4] = 0.

This bracket structure is identical to that of the basis {Xi}.
We compute the off-diagonal components of the Ricci tensor in the basis

{Ȳi} using (1) as in Section 2.A2 and find Ric(Ȳi, Ȳj) = 0 for all i < j. The
proposition is proved. �

Since Yi and Xi both satisfy the same Lie bracket relations, as in Sec-
tion 2.A2, we use Xi and can carry out the analysis of the long time behavior
of the Ricci flow solution for the family in Proposition 3.3 Proceeding as in
Section 2.A2, we find the Ricci tensor

Ric(W,W ) = − B

2AD
w2

1 +
B

2AD
w2

2 + 0 · w2
3 −

B

2AD
w2

4.

Hence, the Ricci flow is

dA

dt
=

B

D
,

dB

dt
= − B2

AD
,

dC

dt
= 0,

dD

dt
=

B

A
.

From d
dt(

A
D ) = d

dt(AB) = 0, we get

A = λ1(1 +
3λ2

λ1λ4
t)1/3 B = λ2(1 +

3λ2

λ1λ4
t)−1/3

C = λ3 D = λ4(1 +
3λ2

λ1λ4
t)1/3

Hence, for the family in Proposition 3.3, the long time behavior of the solu-
tion g(t) as t → +∞ is

A(t) → +∞, B(t) → 0+, C(t) = λ3, D(t) → +∞.

Next, we compute the curvature decay for g(t). From (2), we find
U(X1,X2) = − B

2DX4, U(X2,X4) = B
2AX1 and all other U(Xi,Xj) = 0.

From (3) with h = g, we find the sectional curvatures

K(X1,X2) = K(X2,X4) =
B

4AD
, K(X1,X4) = − 3B

4AD
,
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and all other K(Xi,Xj) = 0. Hence for the family in Proposition 3.3,
the curvatures of the solution g(t) decay at the rate 1/t. We now pick a
point p ∈ Mq. It is clear that the volume-normalized solution (Mq, gN (t), p)
collapses to a plane in the pointed Gromov–Hausdorff topology. Note that
since the Lie algebra is the direct sum n3⊕R, we can get the same conclusions
from the analysis in [8](p. 734).

3.A5. U1[2, 1].

For U1[2, 1], we use Yi = Λk
iXk with

Λ =

⎡⎢⎢⎣
1 a2 a3 0
0 1 a1 0
0 0 1 0
a4 a5 a6 1

⎤⎥⎥⎦
to diagonalize the initial metric g0.

Proposition 3.4. For the class U1[2, 1], suppose the initial metric g0 is
diagonal in the basis Yi. Then the Ricci flow solution g(t) remains diagonal
in the basis Yi if and only if a1 = a3 = 0.

Proof. We compute

[Y2, Y3] = 0, [Y3, Y1] = 0, [Y1, Y2] = 0,

[Y1, Y4] = −1
2
Y1 + Y2 + βY2, [Y2, Y4] = −1

2
Y2 + αY3, [Y3, Y4] = Y3.

where
α =

3
2
a1 β =

3
2
(a3 − a1).

We compute the off-diagonal components of the Ricci tensor in the basis
{Ȳi} using (1) as in Section 2.A2 and get

Ric(Ȳ1, Ȳ2) = − αβλ3

2
√

λ1λ2λ4
Ric(Ȳ1, Ȳ3) = − 3β

√
λ3

4
√

λ1λ4

Ric(Ȳ1, Ȳ4) = 0 Ric(Ȳ2, Ȳ3) =
(−3αλ1 + 2βλ2)

√
λ3

4λ1

√
λ2λ4

Ric(Ȳ2, Ȳ4) = 0 Ric(Ȳ3, Ȳ4) = 0.

In order for these off-diagonal components to be zero, we must have α =
β = 0 and the proposition follows. �
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If α = β = 0, the Yi and Xi both satisfy the same Lie algebra bracket
relations. As in Section 2.A2, we use Xi and carry out the analysis of the
long time behavior of the Ricci flow solution for the family in Proposition 3.4.
Proceeding as in Section 2.A2, we find

[W, X̄1] =
1

2
√

D
w4X̄1 −

√
B

AD
w4X̄2,

[W, X̄2] =
1

2
√

D
w4X̄2, [W, X̄3] = − 1√

D
w4X̄3,

[W, X̄4] = − 1
2
√

D
w1X̄1 +

(√
B

AD
w1 − 1

2
√

D
w2

)
X̄2 +

1√
D

w3X̄3.

We have from (1)

Ric(W,W ) = − B

2AD
w2

1 +
B

2AD
w2

2 + 0 · w2
3 −

1
2
(

3
D

+
B

AD
)w2

4,

so the Ricci flow is

dA

dt
=

B

D
=

B

AD
A,

dB

dt
= − B2

AD
= − B

AD
B,

dC

dt
= 0,

dD

dt
= 3 +

B

A
.

It is clear that
C(t) = λ3. (4)

From 1
A

dA
dt + 1

B
dB
dt = 0, we get AB = λ1λ2. Since d

dt

[
A
B

]
= 2

D , A/B is
increasing, so

3 ≤ dD

dt
= 3 +

B

A
≤ 3 +

λ2

λ1
,

from which we get

3t + λ4 ≤ D(t) ≤ (3 +
λ2

λ1
)t + λ4. (5)

To bound A(t) from below and above, we compute

dA2

dt
= 2A · B

D
=

2λ1λ2

D
,

from which it follows that

2λ2
1λ2

(3λ1 + λ2)t + λ1λ4
≤ dA2

dt
≤ 2λ1λ2

3t + λ4
.
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Then, by, integrating we obtain

λ1

√
2λ2

3λ1 + λ2
ln
(

1 +
3λ1 + λ2

λ1λ4
t

)
+ 1 ≤ A(t) ≤ λ1

√
2λ2

3λ1
ln
(

1 +
3
λ4

t

)
+ 1.

(6)
From AB = λ1λ2, we then get

λ2√
2λ2
3λ1

ln
(
1 + 3

λ4
t
)

+ 1
≤ B(t) ≤ λ2√

2λ2
3λ1+λ2

ln
(
1 + 3λ1+λ2

λ1λ4
t
)

+ 1
. (7)

Hence, for the family in Proposition 3.4, the long time behavior of the solu-
tion g(t) as t → +∞ is

A(t) → +∞, B(t) → 0+, C(t) = λ3, D(t) → +∞.

Next, we compute the curvature decay of g(t). From (2) we find

U(X1,X1) =
A

2D
X4 U(X2,X2) =

B

2D
X4 U(X3,X3) = −C

D
X4

U(X4,X4) = 0 U(X1,X2) = − B

2D
X4 U(X1,X3) = 0

U(X2,X3) = 0 U(X1,X4) = −1
4
X1 U(X2,X4) =

B

2A
X1 − 1

4
X2

U(X3,X4) =
1
2
X3.

From (3) with h = g, we find the sectional curvatures

K(X1,X2) =
−1 + B

A

4D
K(X1,X3) =

1
2D

K(X2,X3) =
1

2D

K(X1,X4) = −1 + 3B
A

4D
K(X2,X4) =

−1 + B
A

4D
K(X3,X4) = − 1

D
.

Hence, for the family in Proposition 3.4, the curvatures of the solution g(t)
decay at the rate 1/t. We now pick a point p ∈ Mq. It is clear that
(Mq, gN (t), p) collapses to a line in the pointed Gromov–Hausdorff topology.

3.A6. U1[3].

For U1[3], we use Yi = Λk
iXk with

Λ =

⎡⎢⎢⎣
1 a2 a3 0
0 1 a1 0
0 0 1 0
a4 a5 a6 1

⎤⎥⎥⎦
to diagonalize the initial metric g0.
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Proposition 3.5. For the class U1[3], suppose the initial metric g0 is di-
agonal in the basis Yi. Then the Ricci flow solution g(t) remains diagonal
in the basis Yi if and only if a1 = a2.

Proof. We compute

[Y2, Y3] = 0, [Y3, Y1] = 0, [Y1, Y2] = 0,
[Y1, Y4] = Y2 + αY3, [Y2, Y4] = Y3, [Y3, Y4] = 0.

where α = a2 − a1. We compute the off-diagonal components of the Ricci
tensor in the basis {Ȳi} as in Section 2.A2 and get

Ric(Ȳ1, Ȳ2) = − αλ3

2
√

λ1λ2λ4
, Ric(Ȳ2, Ȳ3) =

α
√

λ2λ3

2λ1λ4
,

and Ric(Ȳ1, Ȳ3) = Ric(Ȳ1, Ȳ4) = Ric(Ȳ2, Ȳ4) = Ric(Ȳ3, Ȳ4) = 0. In order
for these off-diagonal components to be zero, we must have α = 0 and the
proposition is proved. �

If α = 0, the Yi and Xi both satisfy the same Lie bracket relations. As in
Section 2.A2, we use Xi and carry out the analysis of the long time behavior
of the Ricci flow solutions for the family in Proposition 3.5. Proceeding as
in Section 2.A2, we compute

[W, X̄1] = −
√

B

AD
w4X̄2 [W, X̄2] = −

√
C

BD
w4X̄3,

[W, X̄3] = 0 [W, X̄4] =

√
B

AD
w1X̄2 +

√
C

BD
w2X̄3.

We have from (1)

Ric(W,W ) = − B

2AD
w2

1 +
1
2
(

B

AD
− C

BD
)w2

2 +
C

2BD
w2

3 −
1
2
(

B

AD
+

C

BD
)w2

4,

so the Ricci flow is
dA

dt
=

B

D

dB

dt
=

AC − B2

AD
dC

dt
= − C2

BD

dD

dt
=

B

A
+

C

B
.

Note that
1
A

dA

dt
=

B

AD

1
B

dB

dt
=

C

BD
− B

AD
1
C

dC

dt
= − C

BD

1
D

dD

dt
=

B

AD
+

C

BD
.
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Hence, ABC = λ1λ2λ3 and A
CD = λ1

λ3λ4
. Define E

.= B
AD and F

.= C
BD , we

compute
dE

dt
= −3E2 dF

dt
= −3F 2.

Solving these gives

E(t) =
E0

3E0t + 1
F (t) =

F0

3F0t + 1

where E0
.= λ2

λ1λ4
and F0

.= λ3
λ2λ4

. Using these in the equations for
(1/A)(dA/dt) and (1/C)(dC/dt), we can integrate to get

A(t) = λ1 (3E0t + 1)1/3 C(t) = λ3 (3F0t + 1)−1/3 . (8)

Using these with the conserved quantities ABC and A
CD , we get

B(t) = λ2 (3E0t + 1)−1/3 (3F0t + 1)1/3

D(t) = λ4 (3E0t + 1)1/3 (3F0t + 1)1/3 . (9)

Hence, for the family in Proposition 3.5, the long time behavior of the solu-
tion g(t) is

A(t) → +∞ B(t) → (λ1λ2λ3)1/3 C(t) → 0+ D(t) → +∞.

Next, we compute the curvature decay of g(t). From (2), we find

U(X1,X1) = 0 U(X2,X2) = 0 U(X3,X3) = 0

U(X4,X4) = 0 U(X1,X2) = − B

2D
X4 U(X1,X3) = 0

U(X2,X3) = − C

2D
X4 U(X1,X4) = 0 U(X2,X4) =

B

2A
X1

U(X3,X4) =
C

2B
X2.

From (3) with h = g, we find the sectional curvatures

K(X1,X2) =
B
A

4D
K(X1,X3) = 0 K(X2,X3) =

C
B

4D

K(X1,X4) = −3B
A

4D
K(X2,X4) =

B
A − 3C

B

4D
K(X3,X4) =

C
B

4D
.

Hence, for the family in Proposition 3.5, the curvatures of the solution g(t)
decay at the rate 1/t. Now pick a point p ∈ Mq, it is easy to see that the
volume-normalized solution (Mq, gN (t), p) collapses to a plane in the pointed
Gromov–Hausdorff topology.
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3.A7. U3I0.

For U1[2, 1], we use Yi = Λk
iXk with

Λ =

⎡⎢⎢⎣
1 a4 a5 a6

0 1 a2 a3

0 0 1 a1

0 0 0 1

⎤⎥⎥⎦
to diagonalize the initial metric g0.

Proposition 3.6. For the class U3I0, suppose the initial metric g0 is di-
agonal in the basis Yi. Let

α
.= a2 β

.= a1a2 − a3 − a4 γ
.= a1 − a1a

2
2 + a2a3 + a2a4 − a5.

Then the Ricci flow solution g(t) remains diagonal in the basis Yi if and only
if either

(i) α = β = γ = 0; or
(ii) β = γ = 0 and λ2 = (1 − α2)λ3.

Proof. We compute

[Y1, Y4] = 0 [Y2, Y4] = 0 [Y3, Y4] = 0 [Y2, Y3] = Y4

[Y3, Y1] = Y2 − αY3 + βY4 [Y1, Y2] = −αY2 + (α2 − 1)Y3 + γY4.

We compute the off-diagonal components of the Ricci tensor in the basis
{Ȳi} using (1) as in Section 2.A2 and get

Ric(Ȳ1, Ȳ2) =
βλ4

2
√

λ1λ2λ3

Ric(Ȳ1, Ȳ3) =
γλ4

2
√

λ1λ3λ2

Ric(Ȳ1, Ȳ4) = 0

Ric(Ȳ2, Ȳ3) =
−2αλ2 + 2α(1 − α2)λ3 + βγλ4

2λ1

√
λ2λ3

Ric(Ȳ2, Ȳ4) =
(βλ2 − αγλ3)

√
λ4

2λ1

√
λ2λ3

Ric(Ȳ3, Ȳ4) =
(−αβλ2 + (α2 − 1)γλ3)

√
λ4

2λ1λ2

√
λ3
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In order for these off-diagonal components to be zero, we must have either
(i) or (ii) in the proposition. To finish the proof of (ii), we need to ensure
that the condition B(t) = (1 − α2)C(t) holds for all t > 0. We prove this
near the end of this subsection. �

A7i First, we study the family (i) in Proposition 3.6. If α = β = γ = 0,
the bases Yi and Xi both satisfy the same Lie bracket relations. As in
Section 2.A2, we use Xi and carry out the analysis of the long time behavior
of the Ricci flow solutions for the family (i) in Proposition 3.6. Proceeding
as in Section 2.A2, we find

[W, X̄1] =

√
B

AC
w3X̄2 +

√
C

AB
w2X̄3

[W, X̄2] = −
√

C

AB
w1X̄3 −

√
D

BC
w3X̄4

[W, X̄3] = −
√

B

AC
w1X̄2 +

√
D

BC
w2X̄4

[W, X̄4] = 0.

We have from (1)

Ric(W,W ) = −1
2
(

B

AC
+

C

AB
+

2
A

)w2
1 − 1

2
(

C

AB
+

D

BC
− B

AC
)w2

2

−1
2
(

B

AC
+

D

BC
− C

AB
)w2

3 +
1
2

D

BC
w2

4,

so the Ricci flow equation is

dA

dt
=

B

C
+

C

B
+ 2

dB

dt
=

C

A
+

D

C
− B2

AC
dC

dt
=

B

A
+

D

B
− C2

AB

dD

dt
= − D2

BC
.

Straightforward calculations give us

1
BC

d

dt
[BC] = 2

D

BC

1
D

dD

dt
= − D

BC
,

from which we conclude that BCD2 = λ2λ3λ
2
4. Now, we can write dD

dt =
− D4

λ2λ3λ2
4

and solve to get

D(t) = λ4

(
1 + 3

λ4

λ2λ3
t

)−1/3

. (10)
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Another set of simple calculations give us

1
B − C

d

dt
[B − C] =

AD − (B + C)2

ABC

1
AD

d

dt
[AD] = −AD − (B + C)2

ABC

from which we conclude that AD(B − C) = λ1λ4(λ2 − λ3). We get

(B − C)2

BC
A2 =

A2D2(B − C)2

BCD2
=

λ2
1(λ2 − λ3)2

λ2λ3

.= 4k2
3 .

for some k3 ≥ 0. With this and the identity

(B + C)2

BC
=

(B − C)2

BC
+ 4,

we can write
dA

dt
=

4k2
3

A2
+ 4.

Integrating gives us

A − k3 tan−1

(
A

k3

)
= 4t + λ1 − k3 tan−1

(
λ1

k3

)
. (11)

For large t, we have A(t) ∼ 4t.
Using the conserved quantities AD(B − C) and BCD2, we could solve

to get B(t) and C(t) explicitly. More importantly, we see that for large t,

B(t) ∼ C(t) ∼ 1
D(t)

∼ t1/3. (12)

Hence, for the family (i) in Proposition 3.6, the long time behavior of the
solution g(t) is

A(t) → +∞ B(t) → +∞ C(t) → +∞ D(t) → 0+.

Next, we compute the curvature decay of g(t). From (2), we find

U(X1,X1) = 0 U(X2,X2) = 0 U(X3,X3) = 0

U(X4,X4) = 0 U(X1,X2) =
B

2C
X3 U(X1,X3) =

C

2B
X2

U(X2,X3) = −B + C

2A
X1 U(X1,X4) = 0 U(X2,X4) = − D

2C
X3

U(X3,X4) =
D

2B
X2.
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From (3) with h = g, we find the sectional curvatures

K(X1,X2) =
B
C − 3C

B − 2
4A

K(X1,X3) =
C
B − 3B

C − 2
4A

K(X1,X4) = 0 K(X2,X3) = − 3D
4BC

+
B
C + C

B + 2
4A

K(X2,X4) =
D

4BC
K(X3,X4) =

D

4BC
.

Hence, for the family (i) in Proposition 3.6, the curvatures of the solution
g(t) decay at the rate 1/t. For the volume-normalized solution gN (t), the
metric components have the following long time behavior: AN (t) → +∞,
BN (t) and CN (t) approach some positive constant, and DN (t) → 0+. It
follows that the volume-normalized solution (Mq, gN (t), p) collapses to a
strip in the pointed Gromov–Hausdorff topology for p ∈ Mq.

A7ii For the rest of this subsection, we address the family (ii) in Propo-
sition 3.6. Suppose β = γ = 0. The Lie brackets from the proof of Proposi-
tion 3.6 take the form

[Y1, Y4] = 0 [Y2, Y4] = 0 [Y3, Y4] = 0 [Y2, Y3] = Y4

[Y3, Y1] = Y2 − αY3 [Y1, Y2] = −αY2 + (α2 − 1)Y3.

Recall we must show the condition B(t) = (1 − α2)C(t) is preserved under
Ricci flow. Let ωi be the frame dual to Yi. Assume the Ricci flow solution
g takes the form

g(t) = A(t)(ω1)2 + B(t)(ω2)2 + C(t)(ω3)2 + D(t)(ω4)2

with
g0 = λ1(ω1)2 + λ2(ω2)2 + λ3(ω3)2 + λ4(ω4)2.

Let Ȳ1
.= 1√

A
Y1, · · · , Ȳ4

.= 1√
D

Y4 and let W = w1Ȳ1 + w2Ȳ2 + w3Ȳ3 + w4Ȳ4.
We first compute [W, Ȳi] and then compute the Ricci curvature of g(t) using
(1). We find that Ric(W,W ) is given by

Ric(W,W ) = −B2 + 2(1 + α2)BC + (1 − α2)2C2

2ABC
w2

1

+
−AD + B2 − (1 − α2)2C2

2ABC
w2

2 +
−AD − B2 + (1 − α2)2C2

2ABC
w2

3

+
D

2BC
w2

4 +
α(−B + (1 − α2)C)

A
√

BC
w2w3.
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The Ricci flow equation is

dA

dt
=

B2 + 2(1 + α2)BC + (1 − α2)2C2

BC

dB

dt
=

AD − B2 + (1 − α2)2C2

AC
dC

dt
=

AD + B2 − (1 − α2)2C2

AB

dD

dt
= − D2

BC
.

Hence,

d

dt
(−B + (1 − α2)C) =

AD − (B + (1 − α2)C)2

ABC

(−B + (1 − α2)C
)
.

Since −B + (1 − α2)C = 0 at time t = 0, it remains 0 for all time which
implies that g(t) is diagonal in the basis Yi.

With −B + (1 − α2)C = 0, the Ricci flow equations reduce to

dA

dt
= 4

dB

dt
= (1 − α2)

D

B

dD

dt
= −(1 − α2)

D2

B2
.

A simple calculation gives d
dt(B

2D2) = 0 which implies BD = λ2λ4. Now,
we can solve the Ricci flow equations to obtain

A = λ1 + 4t B =
(
λ3

2 + 3(1 − α2)λ2λ4t
)1/3

C =
1

1 − α2

(
λ3

2 + 3(1 − α2)λ2λ4t
)1/3

D = λ2λ4

(
λ3

2 + 3(1 − α2)λ2λ4t
)−1/3

.

Hence for the family (ii) in Proposition 3.6, the long time behavior of the
Ricci flow g(t) as t → ∞ is

A(t) → +∞ B(t) → +∞ C(t) → +∞ D(t) → 0+

Finally, we compute the curvature decay of g(t). From (2), we find

U(Y1, Y1) = 0 U(Y2, Y2) = −αB

A
Y1

U(Y3, Y3) =
αC

A
Y1 U(Y4, Y4) = 0

U(Y1, Y2) =
α

2
Y2 +

B

2C
Y3 U(Y1, Y3) =

(1 − α2)C
2B

Y2 − α

2
Y3

U(Y1, Y4) = 0 U(Y2, Y3) = −B + (1 − α2)C
2A

Y1

U(Y2, Y4) = − D

2C
Y3 U(Y3, Y4) =

D

2B
Y2.
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From (3) with h = g, we find the sectional curvatures

K(Y1, Y2) = − 1
A

K(Y1, Y3) = − 1
A

K(Y2, Y3) = − 3D
4BC

+
1
A

K(Y1, Y4) = 0 K(Y2, Y4) =
D

4BC
K(Y3, Y4) =

D

4BC
.

Hence for the family (ii) in Proposition 3.6, the curvatures of the solution
g(t) decay at the rate 1/t. For the volume-normalized solution gN (t), the
metric components have the following long time behavior: AN (t) → +∞,
BN (t) and CN (t) approach some positive constants, and DN (t) → 0+. It
follows that the volume-normalized solution (Mq, gN (t), p) collapses to a
strip in the pointed Gromov–Hausdorff topology for p ∈ Mq.

3.A8. U3I2.

For U3I2, we use Yi = Λk
iXk with

Λ =

⎡⎢⎢⎣
1 a4 a5 a6

0 1 a2 a3

0 0 1 a1

0 0 0 1

⎤⎥⎥⎦
to diagonalize the initial metric g0.

Proposition 3.7. For the class U3I2, suppose the initial metric g0 is di-
agonal in the basis Yi. Then, the Ricci flow solution g(t) remains diagonal
if and only if a2 = 0, a1 = a5 and a3 = a4.

Proof. We compute

[Y1, Y4] = 0 [Y2, Y4] = 0 [Y3, Y4] = 0 [Y2, Y3] = −Y4

[Y3, Y1] = Y2 + αY3 + βY4 [Y1, Y2] = αY2 + (1 + α2)Y3 + γY4.

where

α = −a2 β = a1a2 − a3 + a4 γ = −a1 − a1a
2
2 + a2a3 − a2a4 + a5.
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We compute the off-diagonal components of the Ricci tensor in the basis
{Ȳi} using (1) as in Section 2.A2 and get

Ric(Ȳ1, Ȳ2) =− βλ4

2
√

λ1λ2λ3
Ric(Ȳ1, Ȳ3) = − γλ4

2
√

λ1λ3λ2

Ric(Ȳ1, Ȳ4) =0 Ric(Ȳ2, Ȳ3) =
2αλ2 + 2α(1 + α2)λ3 + βγλ4

2λ1

√
λ2λ3

Ric(Ȳ2, Ȳ4) =
(βλ2 + αγλ3)

√
λ4

2λ1

√
λ2λ3

Ric(Ȳ3, Ȳ4) =
(αβλ2 + (1 + α2)γλ3)

√
λ4

2λ1λ2

√
λ3

.

In order for these off-diagonal components to be zero, we must have α =
β = γ = 0 and the proposition follows. �

If α = β = γ = 0, the bases Yi and Xi both satisfy the same Lie bracket
relations. As in Section 2.A2, we use Xi and carry out the analysis of the long
time behavior of the Ricci flow solutions for the family in Proposition 3.7.
Proceeding as in Section 2.A2, we find

[W, X̄1] =

√
B

AC
w3X̄2 −

√
C

AB
w2X̄3

[W, X̄2] =

√
C

AB
w1X̄3 +

√
D

BC
w3X̄4

[W, X̄3] = −
√

B

AC
w1X̄2 −

√
D

BC
w2X̄4

[W, X̄4] = 0.

We have from (1)

Ric(W,W ) =
1
2
(
2
A

− C

AB
− B

AC
)w2

1 +
1
2
(

B

AC
− C

AB
− D

BC
)w2

2

+
1
2
(

C

AB
− B

AC
− D

BC
)w2

3 +
D

2BC
w2

4.

The Ricci flow is

dA

dt
=

C

B
+

B

C
− 2

dB

dt
= − B2

AC
+

C

A
+

D

C
dC

dt
= − C2

AB
+

B

A
+

D

B

dD

dt
= − D2

BC
.

The equations here are similar to those of the case A7(i), with the only
difference being in the equation for A. Because the equations for B, C and D
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are the same, we know that BCD2 = λ2λ3λ
2
4. It follows that dD

dt = − D4

λ2λ3λ2
4
,

and hence,

D(t) = λ4

(
1 +

3λ4

λ2λ3
t

)−1/3

. (13)

Calculations similar to those in the case A7(i) show that AD(B + C) =
λ1λ4(λ2 + λ3). So A2(C

B + B
C + 2) = (AD(B+C))2

BCD2

.= k2
4 is a constant where

k4 ≥ 0, and
dA

dt
=

k2
4

A2
− 4.

Integrating the equation gives us

k4

2
tanh−1

(
2A
k4

)
− A = 4t + k5 (14)

where k5 is a constant. Since A increases for all t and tanh x asymptotes to
1, we see that A(t) → k4/2 as t → +∞.

Using the conserved quantity BCD2 and AD(B + C), we conclude that
for the family in Proposition 3.7 both B and C grow at the rate t1/3, and
the long time behavior of the Ricci flow g(t) as t → +∞ is

A(t) → k4/2 B(t) → +∞ C(t) → +∞ D(t) → 0+.

Next, we compute the curvature decay of g(t). From (2), we find

U(X1,X1) = 0 U(X2,X2) = 0 U(X3,X3) = 0

U(X4,X4) = 0 U(X1,X2) =
B

2C
X3 U(X1,X3) = − C

2B
X2

U(X2,X3) =
−B + C

2A
X1 U(X1,X4) = 0 U(X2,X4) =

D

2C
X3

U(X3,X4) = − D

2B
X2.

From (3) with h = g, we find the sectional curvatures

K(X1,X2) =
B
C − 3C

B + 2
4A

K(X1,X3) =
−3B

C + C
B + 2

4A

K(X2,X3) = − 3D
4BC

+
B
C + C

B − 2
4A

K(X1,X4) = 0

K(X2,X4) =
D

4BC
K(X3,X4) =

D

4BC
.
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Here, the decay rate is not obvious for all sectional curvatures. Note
that B

C → 1. The decay rate of B
C − 1 follows from the equation of dA

dt . It
suffices to show that dA

dt decays at the rate e−ct for some c > 0. From (14),
we get

A =
k4

2
tanh

[
8
k4

t +
2
k4

A +
2k5

k4

]
and the decay rate of dA

dt follows from taking the time derivative of this
equation. Thus B

C − 1 decays exponentially. Hence, for the family in Propo-
sition 3.7, the curvatures of the solution g(t) decay at the rate 1/t.

For the volume-normalized solution gN (t), the metric components have
the following long time behavior: AN (t) → 0+, BN (t) and CN (t) approach
some positive constants, and DN (t) → 0+. The volume-normalized flow
(Mq, gN (t), p) collapses to a plane in the pointed Gromov–Hausdorff topol-
ogy for p ∈ Mq.

3.A9. U3S1.

The Lie bracket relations for cases 3.A9 and 3.A10 differ only in [X1,X2]. To
unify some of the calculations for these two cases, we introduce a constant
δ and write [X1,X2] = δX3 with δ = −1 corresponding to 3.A9 and δ = 1
corresponding to 3.A10.

For U3S1 and U3S3, we use Yi = Λk
iXk with

Λ =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
a1 a2 a3 1

⎤⎥⎥⎦
to diagonalize the initial metric g0.

Proposition 3.8. For the class U3S1, suppose the initial metric g0 is di-
agonal in the basis Yi. Then

(i) if λ1 �= λ2, the Ricci flow solution g(t) remains diagonal if and only
if a1 = a2 = a3 = 0; and

(ii) if λ1 = λ2, the Ricci flow solution g(t) remains diagonal if and only
if a1 = a2 = 0.

Proof. We compute

[Y1, Y4] = −a3Y2 + δa2Y3 [Y2, Y4] = a3Y1 − δa1Y3 [Y3, Y4] = −a2Y1 + a1Y2

[Y2, Y3] = Y1, [Y3, Y1] = Y2, [Y1, Y2] = δY3.
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We compute the off-diagonal components of the Ricci tensor in the basis Ȳi

using (1) as in Section 2.A2 and get

Ric(Ȳ1, Ȳ2) =
(λ2

3 − λ1λ2)a1a2

2λ3λ4

√
λ1λ2

Ric(Ȳ1, Ȳ3) =
(λ2

2 − δλ1λ3)a1a3

2λ2λ4

√
λ1λ3

Ric(Ȳ2, Ȳ3) =
(λ2

1 − δλ2λ3)a2a3

2λ1λ4

√
λ2λ3

Ric(Ȳ1, Ȳ4) = −(λ2 − δλ3)2a1

2λ2λ3

√
λ1λ4

Ric(Ȳ2, Ȳ4) = −(λ1 − δλ3)2a2

2λ1λ3

√
λ2λ4

Ric(Ȳ3, Ȳ4) = −(λ1 − λ2)2a3

2λ1λ2

√
λ3λ4

.

The diagonal components are given by

Ric(Ȳ1, Ȳ1) =
(λ2

1 − λ2
3)λ2a

2
2 + (λ2

1 − λ2
2)λ3a

2
3 +

(
λ2

1 − (λ2 − δλ3)2
)
λ4

2λ1λ2λ3λ4

Ric(Ȳ2, Ȳ2) =
(λ2

2 − λ2
3)λ1a

2
1 + (λ2

2 − λ2
1)λ3a

2
3 +

(
λ2

2 − (λ1 − δλ3)2
)
λ4

2λ1λ2λ3λ4

Ric(Ȳ3, Ȳ3) =
(λ2

3 − λ2
2)λ1a

2
1 + (λ2

3 − λ2
1)λ2a

2
2 +

(
λ2

3 − (λ1 − λ2)2
)
λ4

2λ1λ2λ3λ4

Ric(Ȳ4, Ȳ4) = −(λ2 − δλ3)2λ1a
2
1 + (λ1 − δλ3)2λ2a

2
2 + (λ1 − λ2)2λ3a

2
3

2λ1λ2λ3λ4
.

(15)

For δ = −1, in order for these off-diagonal components to be zero, we
must have either (i) or (ii) in Proposition 3.8. As in case A7ii, to finish
the proof of (ii), in Proposition 3.8, we need to ensure that the condition
A(t) = B(t) holds for all t > 0. We prove this at the end of this subsection. �

Remark. Note that there are many initial metrics g0 that cannot be diag-
onalized by the choice of Λ we use here. For 3.A9 and 3.A10, the Lie group
G is a product G1 × R with dim(G1) = 3. After transforming with Λ as
given above, one can use a Milnor frame on G1 (with respect to a chosen
initial metric on G1) to further diagonalize, in which case the Lie algebra
takes the form

[Y1, Y4] = a1Y1 + a2Y2 + a3Y3

[Y2, Y4] = b1Y1 + b2Y2 + b3Y3

[Y3, Y4] = c1Y1 + c2Y2 + c3Y3

[Y2, Y3] = Y1 [Y3, Y1] = Y2 [Y1, Y2] = δY3
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with a1 + b2 + c3 = 0 from the unimodular condition. With these, the
off-diagonal components of the Ricci curvature are given by

Ric(Ȳ1, Ȳ2) =
c1 c2λ1λ2 + b1(b2 − a1)λ1λ3 + a2(a2 − b2)λ2λ3 − a3b3λ

2
3

2
√

λ1

√
λ2 λ3 λ4

Ric(Ȳ1, Ȳ3) =
−c1(2a1 + b2)λ1λ2 + b1b3λ1λ3 − a2c2λ

2
2 + a3(2a1 + b2)λ2λ3

2
√

λ1 λ2

√
λ3 λ4

Ric(Ȳ1, Ȳ4) = −(λ2 − δ λ3) (c2 λ2 + b3 λ3)
2
√

λ1 λ2 λ3

√
λ4

Ric(Ȳ2, Ȳ3) =
−b1c1λ

2
1 − c2(a1 + 2b2)λ1λ2 + b3(a1 + 2b2)λ1λ3 + a2a3λ2λ3

2λ1

√
λ2

√
λ3 λ4

Ric(Ȳ2, Ȳ4) =
(λ1 − δ λ3) (c1 λ1 + a3 λ3)

2λ1

√
λ2 λ3

√
λ4

Ric(Ȳ3, Ȳ4) = −(λ1 − λ2) (b1 λ1 + a2 λ2)
2λ1 λ2

√
λ3

√
λ4

One can analyze these expressions to determine conditions under which Ricci
flow preserves the diagonalization of an initial metric. The complexity of
these expressions leads to many cases that must be analyzed so we have
limited our attention to the transformation matrix Λ given above with the
results given in Proposition 3.8 for A9 and Proposition 3.9 for A10.

3.A9i First, we study family (i) in Proposition 3.8. For a1 = a2 = a3 =
0, we have Yi = Xi. The metric g(t) is a product metric on ŜL(2, R) × R

g(t) = gSL(t) + λ4du2

where gSL(t) = A(t)(θ1)2 + B(t)(θ2)2 + C(t)(θ3)2 is a Ricci flow solution on
ŜL(2, R). From (15), we get the Ricci flow equations

dA

dt
=

(B + C)2 − A2

BC

dB

dt
=

(A + C)2 − B2

AC

dC

dt
=

(A − B)2 − C2

AB
.

The long time behavior of gSL(t) has been analyzed in [8]: the curvatures
of gSL(t) decay at the rate 1/t and the volume-normalized Ricci flow g̃SL(t̃)
collapses to a plane. Hence, the volume-normalized solution (Mq, gN (t), p)
collapses to a plane in the pointed Gromov–Hausdorff topology for p ∈ Mq.

3.A9ii For the rest of this subsection we address family (ii) in Proposi-
tion 3.8 where λ1 = λ2 and a1 = a2 = 0. From (15), we conclude that the
Ricci flow equation of g(t) is
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dA

dt
=

(B + C)2 − A2

BC
+

−A2 + B2

BD
a2

3

dB

dt
=

(A + C)2 − B2

AC
+

A2 − B2

AD
a2

3

dC

dt
=

(A − B)2 − C2

AB

dD

dt
=

(A + B)2

AB
a2

3.

Recall that we must show that the condition A(t) = B(t) is preserved
under Ricci flow. To this end, we compute

d

dt
(A − B) =

[
C2 − (A + B)2

ABC
− (A + B)2

ABD
a2

3

]
(A − B).

Since A − B = 0 at time t = 0, this implies that A(t) = B(t) and g(t)
remains diagonal in the basis Yi.

With A = B, the Ricci flow equations reduce to

dA

dt
=

C

A
+ 2

dC

dt
= −C2

A2

dD

dt
= 4a2

3.

A simple computation shows d
dt

(
C
A

)
= −2A−1

(
C
A + (C

A )2
) ≤ 0; hence 2 ≤

dA
dt ≤ 2 + λ3

λ1
and

2t + λ1 ≤ A(t) = B(t) ≤ (2 +
λ3

λ1
)t + λ1. (16)

From the equation for dC
dt and (16), we get − C2

(2t+λ1)2
≤ dC

dt ≤ 0. Integrating
these inequalities we find

2λ1λ3

2λ1 + λ3
≤ C(t) ≤ λ3. (17)

Finally,
D(t) = 4a2

3t + λ4. (18)

Hence, for family (ii) in Proposition 3.8, with a3 �= 0, the long time behavior
of of the Ricci flow g(t) as t → +∞ is

A(t) → +∞ B(t) → +∞ C(t) → constant > 0 D(t) → +∞.

Next, we compute the curvature decay of g(t) as in A7ii. From (2), we
find (using A(t) = B(t))

U(Y1, Y3) =
A + C

2A
Y2 U(Y2, Y3) = −A + C

2A
Y1

U(Y1, Y4) =
1
2
a3Y2 U(Y2, Y4) = −1

2
a3Y1,
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and all other U(Yi, Yj) = 0. From (3) with h = g, we find the sectional
curvatures

K(Y1, Y2) = −4 + 3C
A

4A
K(Y1, Y3) = K(Y2, Y3) =

C

4A2

and all other K(Yi, Yj) = 0. Hence for family (ii) in Proposition 3.8(ii), the
curvatures of the solution g(t) decay at the rate 1/t. It follows that the
volume-normalized solution (Mq, gN (t), p) collapses to Euclidean space R

3

in the pointed Gromov–Hausdorff topology.

3.A10. U3S3.

Using the setup given in A9, we prove the following.

Proposition 3.9. For the class U3S1, suppose the initial metric g0 is di-
agonal in the basis Yi. Then

(i) if λ1, λ2, λ3 are all different, the Ricci flow solution g(t) remains
diagonal if and only if a1 = a2 = a3 = 0;

(ii) if λj = λk �= λi for some permutation {i, j, k} of {1, 2, 3}, the Ricci
flow solution g(t) remains diagonal if and only if aj = ak = 0; and

(iii) if the initial metric satisfies λ1 = λ2 = λ3, the Ricci flow solution
g(t) remains diagonal for any a1, a2, and a3.

Proof. Set δ = 1 in the proof of Proposition 3.8. In order for the off-
diagonal Ricci components to be zero, we must have either (i) or (ii) or
(iii) in Proposition 3.9. As in previous cases, to finish the proof of (ii) in
Proposition 3.9, we need to ensure that the condition B(t) = C(t) holds
for all t > 0 (using j = 2, k = 3 without loss of generality). Also, to finish
the proof of (iii) in Proposition 3.9, we need to ensure that the condition
A(t) = B(t) = C(t) holds for all t > 0. These are verified below. �

3.A10i If a1 = a2 = a3 = 0, we have Yi = Xi. The metric is a product
metric on S3 × R

g(t) = gS3(t) + λ4du2

where gS3(t) = A(t)(θ1)2 + B(t)(θ1)2 + C(t)(θ1)2 is a Ricci flow solution on
S3. From (15), we get the Ricci flow equations

dA

dt
=

(B − C)2 − A2

BC

dB

dt
=

(A − C)2 − B2

AC

dC

dt
=

(A − B)2 − C2

AB
.

(19)
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The volume-normalized flow associated with gS3(t) has been analyzed in [8]
and is found to converge to a round sphere. Hence, the behavior of g(t) is
clear.

3.A10ii. For family (ii) in Proposition 3.9, without loss of generality,
we may assume that i = 1, j = 2, and k = 3 so λ2 = λ3 and a2 = a3 = 0.
From (15), we conclude that the Ricci flow equation of g(t) is

dA

dt
=

(B − C)2 − A2

BC

dB

dt
=

(A − C)2 − B2

AC
− B2 − C2

CD
a2

1

dC

dt
=

(A − B)2 − C2

AB
+

B2 − C2

BD
a2

1

dD

dt
= −(B − C)2

BC
a2

1.

Recall that we must show that the condition B(t) = C(t) is preserved
under Ricci flow. This follows from

d

dt
(B − C) =

[
A2 − (B + C)2

ABC
− (B + C)2

BCD
a2

1

]
(B − C).

With B = C, the Ricci flow equations reduce to

dA

dt
= −A2

B2

dB

dt
=

A

B
− 2

dD

dt
= 0.

This is a special case of equation (19) with B = C, so the conclusions from
3.A10i hold here.

3.A10iii For family (iii) in Proposition 3.9, λ1 = λ2 = λ3. From (15),
we conclude that the Ricci flow equation of g(t) is

dA

dt
= −(A2 − C2)Ba2

2 + (A2 − B2)Ca2
3 +

(
A2 − (B − C)2

)
D

BCD

dB

dt
= −(B2 − C2)Aa2

1 + (B2 − A2)Ca2
3 +

(
B2 − (A − C)2

)
D

ACD

dC

dt
= −(C2 − B2)Aa2

1 + (C2 − A2)Ba2
2 +

(
C2 − (A − B)2

)
D

ABD
dD

dt
=

(B − C)2Aa2
1 + (A − C)2Ba2

2 + (A − B)2Ca2
3

ABC
.

Recall we need to show A(t) = B(t) = C(t) is preserved under Ricci
flow. This follows from

d

dt
(A − B) = M11(A − B) + M12(A − C)

d

dt
(A − C) = M21(A − B) + M22(A − C)
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where Mij are continuous functions of t.
With A = B = C, the Ricci flow equations reduce to

dA

dt
=

dB

dt
=

dC

dt
= −1

dD

dt
= 0,

so
g(t) = (λ1 − t)(ω1)2 + (λ1 − t)(ω2)2 + (λ1 − t)(ω3)2 + λ4(ω4)2

where ωi is the dual frame of Yi. It follows from this explicit solution that
the conclusions from A10i hold here.

4. The Ricci flow of locally homogeneous closed 4-manifolds
modelled on Non-Lie Groups.

In this section, all of the metrics are on direct products of spheres, hyper-
bolic spaces, and euclidean spaces of various dimensions. Under Ricci flow,
the product structure is preserved, and the pieces evolve in characteristic
ways: the spheres each shrink to a point singularity in finite time (type 1
singularity); the hyperbolic spaces expand for all time, with no singularity
developing; and the euclidean spaces are flat and static.

Let gSn be the metric on n-dimensional sphere Sn with sectional cur-
vature 1 and let gHn be the metric on hyperbolic space Hn with sectional
curvature −1. In this section, we again use the notations stated at the
beginning of Section 3.

4.B1. H3 × R.

In this case, any initial metric can be written as

g0 = R2gH3 + du2

for some R > 0. The Ricci flow solution g is given by

g(t) = (R2 + 4t)gH3 + du2 − R2

4
< t < +∞.

4.B2. S2 × R
2.

In this case, any initial metric can be written as

g0 = R2gS2 + du2
1 + du2

2
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for some R > 0. The Ricci flow solution g is given by

g(t) = (R2 − 2t)gS2 + du2
1 + du2

2 −∞ < t <
R2

2
.

4.B3. H2 × R
2.

In this case, any initial metric can be written as

g0 = R2gH2 + du2
1 + du2

2

for some R > 0. The Ricci flow solution g is given by

g(t) = (R2 + 2t)gH2 + du2
1 + du2

2 − R2

2
< t < +∞.

4.B4. S2 × S2.

In this case, any initial metric can be written as

g0 = R2
1gS2(x) + R2

2gS2(y)

for some R1 > 0 and R2 > 0. The Ricci flow solution g is given by

g(t) = (R2
1 − 2t)gS2(x) + (R2

2 − 2t)gS2(y) −∞ < t < min{R2
1

2
,
R2

2

2
}.

4.B5. S2 × H2.

In this case, any initial metric can be written as

g0 = R2
1gS2 + R2

2gH2

for some R1 > 0 and R2 > 0. The Ricci flow solution g is given by

g(t) = (R2
1 − 2t)gS2 + (R2

2 + 2t)gH2 − R2
2

2
< t <

R2
1

2
.

4.B6. H2 × H2.

In this case, any initial metric can be written as

g0 = R2
1gH2(x) + R2

2gH2(y)

for some R1 > 0 and R2 > 0. The Ricci flow solution g is given by

g(t) = (R2
1 + 2t)gH2(x) + (R2

2 + 2t)gH2(y) max{−R2
1

2
,−R2

2

2
} < t < +∞.
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4.B7. CP 2.

Let gFS be the Fubini–Study metric on CP 2 with constant holomorphic
bisectional curvature +1. Then, the Ricci curvature Rij̄(gFS) = 3(gFS)ij̄ .
In this case, any initial metric can be written as (see [12], p. 277)

g0 = R2gFS

for some R > 0. The Ricci flow solution g (not the volume-normalized
Kähler Ricci flow) is given by

g(t) = (R2 − 6t)gFS −∞ < t <
R2

6
.

Note that Kähler Ricci flow with positive holomorphic bisectional cur-
vature on CP 2 has been studied by Chen and Tian ([2]); they prove that
the (volume-normalized) Kähler Ricci flow converges exponentially fast to a
Kähler metric of constant holomorphic bisectional curvature.

4.B8. CH2.

Let gCH2 be the Kähler metric on CH2 with constant holomorphic bisec-
tional curvature −1. Then, the Ricci curvature Rij̄(gCH2) = −3(gCH2)ij̄. In
this case, any initial metric can be written as (see [12], p. 277)

g0 = R2gCH2

for some R > 0. The Ricci flow solution g (not the volume normalized
Kähler Ricci flow) is given by

g(t) = (R2 + 6t)gCH2 − R2

6
< t < +∞.

4.B9. S4.

In this case, any initial metric can be written as

g0 = R2gS4

for some R > 0. The Ricci flow solution g is given by

g(t) = (R2 − 6t)gS4 −∞ < t <
R2

6
.
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4.B10. H4.

In this case, any initial metric can be written as

g0 = R2gH4

for some R > 0. The Ricci flow solution g is given by

g(t) = (R2 + 6t)gH4 − R2

6
< t < +∞.

5. Conclusion.

We have analyzed the Ricci flow for compact four dimensional homogeneous
geometries for which an initial diagonal metric remains diagonal under the
flow. We obtain explicit solutions in most cases. We find that if the solu-
tion has long-time existence, then it is a Type III singularity solution. For
volume-normalized flow, there are examples of collapse to dimensions 1, 2,
and 3.

For the non-diagonal cases, the relevent ordinary differential equation
systems are of a similar nature, but considerably more complicated. Nu-
merical techniques should be useful for verifying if the behavior is similar to
that of the diagonal cases.
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