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Convergence of the Ricci flow toward a soliton

Natasa Sesum

We will consider a τ-flow, given by the equation d
dtgij = −2Rij +

1
τ gij on a closed manifold M , for all times t ∈ [0,∞). We will

prove that if the curvature operator and the diameter of (M, g(t))

are uniformly bounded along the flow, then we have a sequential

convergence of the flow toward the solitons. If we also assume that

one of the limit solitons is integrable, then we have a convergence

toward a unique soliton, up to a diffeomorphism.

1. Introduction.

The Ricci flow equation
d

dt
gij = −2Rij ,

has been introduced by Hamilton in his seminal paper [6]. We will refer to
this equation as to an unnormalized Ricci flow. A normalized Ricci flow is
given by the equation

d

dt
g̃ij = −2R(g̃)ij +

2
n
rg̃ij ,

where r = 1
Vol(M)

∫
M R(g̃)dVg̃. This equation is sometimes more convenient

to consider, since a volume of a manifold is being fixed along the normalized
Ricci flow and a volume collapsing case cannot happen in a limit, if the limit
exists.

A natural question that arises in studying the evolution equations, in
particular, the Ricci flow equation, is under which conditions a solution
will exist for all times, that is under which conditions it will avoid the
singularities at finite times. The other question one can ask is if there exists
a limit to the solutions when we approach infinity and how we can describe
the metrics obtained in the limit. In the case of dimension three with positive
Ricci curvature and dimension four with positive curvature operator, we
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know (due to Hamilton) that the solutions of the Ricci flow equation, in
both cases exist for all times, converging to Einstein metrics. In general, we
cannot expect to get an Einstein metric in the limit. We can expect to get
in the limit a solution to the Ricci flow equation which moves under one-
parameter subgroup of the symmetry group of the equation. These kinds
of solutions are called solitons. Since the Ricci flow equation is a gradient
flow of Perelman’s functional W, it is natural to expect that a soliton in the
limit is unique up to diffeomorphisms.

Our goal in this paper is to prove the following theorem.

Theorem 1.1. Let (gij)t = −2Rij + 1
τ gij be a Ricci flow on a closed man-

ifold M with uniformly bounded curvature operators and diameters for all

t ∈ [0,∞). Assume also that some limit soliton is integrable. Then there

is an 1-parameter family of diffeomorphisms φ(t), a unique soliton h(t)

and constants C, δ, t0 such that |φ(t)∗g(t) − h(0)|k,α < Ce−δt, for all

t ∈ [t0,∞). Moreover, if ψ(t) is a diffeomorphism such that h(t) = ψ∗h(0),

then |(φψ)∗g(t) − h(t)|C0 < Ce−ct.

The ideas for the proof of Theorem 1.1 have been inspired by those of
Cheeger and Tian in [3].

Outline of the proof of Theorem 1.1

In order to deal with this problem, we will first construct a gauge on time
intervals of an arbitrary length, so that in the chosen gauge, the τ -flow equa-
tion becomes strongly parabolic. We will look at the solutions of a strictly
parabolic equation. It will turn out that our metrics (in the right gauge) will
satisfy a strictly parabolic equation that is almost linear and therefore their
behavior is modeled on the behavior of the solutions of the linear equation.
There are 3 types of the solutions of our strictly parabolic equation,

• the solutions that have an exponential growth,

• the solutions that have an exponential decay,

• the solutions that change very slowly.

Roughly speaking, the integrability condition means that the solutions of
a linearized deformation equation for solitons arise from a curve of metrics
satisfying the same soliton equation. To deal with those slowly changing
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solutions, we will use the integrability condition to change the reference
soliton metric so that at the end, we deal only with the cases of either a
growth or a decay. We will rule out the possibility of the exponential growth,
by using the fact that our flow sequentially converges toward solitons and
by using the similar arguments established by Simon in [15] and also later
used by Cheeger and Tian in [3]. We will be left with the exponential decay
which will allow us to continue our gauge up to infinity.

The organization of the paper is as follows. In Section 2, we will give a
necessary background and notation. In Section 4, we will prove a sequential
convergence of a τ -flow with uniformly bounded curvature operators and
diameters toward the solitons. In Section 5, using the sequential convergence
of the τ -flow, we will construct a gauge on time intervals of an arbitrary
length, so that in the chosen gauge the τ -flow equation becomes strongly
parabolic. In Section 6, we will use the integrability assumption to prove
that a soliton that we get in the limit is unique up to a diffeomorphism.

2. Background.

Perelman’s functional W and its properties will play an important role in
the paper. M will always denote a closed manifold. W has been introduced
in [11].

W(g, f, τ) = (4πτ)−
n
2

∫
M
e−f [τ(|∇f |2 +R) + f − n]dVg.

We will consider this functional restricted to f satisfying∫
M

(4πτ)−
n
2 e−fdV = 1. (2.1)

W is invariant under simultaneous scalings of τ and g and under a diffeomor-
phism change, i.e. W(g, f, τ) = W(cφ∗g, φ∗f, cτ) for a constant c > 0 and a
diffeomorphism φ. Perelman showed that the Ricci flow can be viewed as a
gradient flow of a functional W, which is one of the reasons why this func-
tional plays an important role throughout [11]. Let µ(g, τ) = inf W(g, f, τ)
over smooth f satisfying (2.1). It has been showed by Perelman that µ(g, τ)
is achieved by some smooth function f on a closed manifold M , that µ(g, τ)
is negative for small τ > 0 and that it tends to zero as τ → 0.

We will explain the motivation why we have decided to study this flow
instead of a normalized one in which a volume of a manifold has been fixed
along the flow. First of all, there is a simple reparametrization that al-
lows us to go from a τ -flow to an unnormalized flow and many smoothing
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regularity properties that have been proved for the unnormalized flow con-
tinue to hold for a τ -flow as well. For example, Hamilton’s compactness
theorem also holds for the τ -flow. This is because Shi’s estimates hold for
τ -flow as well, and therefore, since we have a uniform curvature bound on
the solutions to a τ -flow, we may assume uniform bounds on all covari-
ant derivatives of the curvature, |DpRm| ≤ C(p). The reparametrization
that we use to go from a τ -flow to an unnormalized flow is as follows. Let
c(s) = 1 − s

τ and t(s) = −τ ln(1 − s
τ ). Let g̃(s) = c(s)g(t(s)). g̃(s) is a

solution to an unnormalized Ricci flow. On the other hand, we have that
W(g(t(s)), f(t(s)), τ) = W(g̃(s), f̃(s), τ − s). By the monotonicity formula
for W, we have that the latter quantity is increasing along an unnormal-
ized Ricci flow and therefore, the former quantity is increasing along the τ
flow as well. The monotonicity formula for a τ -flow gets the simpler form;
W(g(t), f(t), τ) is increasing along the τ -flow, while f(t) changes by the evo-
lution equation d

dtf = −∆f + |∇f |2 −R+ n
2τ and τ is just a constant. The

fact that τ is now a constant will be very useful in taking the limits of the
minimizers for W.

One of the most important properties of W is the monotonicity formula.

Theorem 2.1 (Perelman). d
dtW =

∫
M 2τ |Rij + ∇i∇jf − 1

2τ gij |2(4πτ)−
n
2

e−fdV ≥ 0 and therefore, W is increasing along the flow described by the

following equations

d

dt
gij = −2Rij ,

d

dt
f = −∆f + |∇f |2 −R+

n

2τ
,

τ̇ = −1.

One of the very important applications of the monotonicity formula is
non-collapsing theorem for the Ricci flow that has been proved by Perelman
in [11].

Definition 2.2. Let gij(t) be a smooth solution to the Ricci flow (gij)t =

−2Rij(t) on [0, T ). We say that gij(t) is locally collapsing at T , if there is a

sequence of times tk → T and a sequence of metric balls Bk = B(pk, rk)

at times tk, such that rk2
tk

is bounded, |Rm|(gij(tk)) ≤ r−2
k in Bk and

r−nk Vol(Bk) → 0.
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Theorem 2.3 (Perelman). If M is closed and T < ∞, then gij(t) is not

locally collapsing at T .

The corollary of Theorem 2.3 is

Corollary 2.4. Let gij(t), t ∈ [0, T ) be a solution to the Ricci flow on a

closed manifold M , where T <∞. Assume that for some sequences tk → T ,

pk ∈ M and some constant C we have Qk = |Rm|(x, t) ≤ C, whenever

t < tk. Then a subsequence of scalings of gij(tk) at pk with factors Qk
converges to a complete ancient solution to the Ricci flow, which is κ-non-

collapsed on all scales for some κ > 0.

We would like to recall a definition of a soliton that will appear in later
sections.

Definition 2.5. A Ricci soliton g(t) is a solution to a Ricci flow equa-

tion that moves by 1-parameter group of diffeomorphisms φ(t), i.e. g(t) =

φ(t)∗g(0).

The equation for a metric to move by a diffeomorphism in the direction of
a vector field V is 2Ric(g) = LV (g), or Rij = gikDjV

k + gjkDiV
k. If the

vector field V is the gradient of a function f , we say that the soliton is the
gradient Ricci soliton. Moreover, we can consider the solutions to the Ricci
flow that move by diffeomorphisms and also shrink or expand by a factor at
the same time. The stationary solutions of the unnormalized Ricci flow are
the Ricci flat metrics. The Ricci solitons are the generalizations of those,
namely they are the stationary solutions to the Ricci flow equations, up to
diffeomorphisms.

3. Sequential convergence of a τ-flow.

Definition 3.1. τ -flow is given by the equation

d

dt
gij = −2Rij +

1
τ
gij, (3.1)

for τ > 0.

We want to prove the following theorem in this section
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Theorem 3.2. Consider the flow

dgij
dt

= −2Rij +
1
τ
gij, (3.2)

on a compact manifold M , where τ > 0 is fixed, |Rm| ≤ C and

diam(M,g(t) ≤ C, ∀t ∈ [0,∞). Then for every sequence of times ti → ∞
there exists a subsequence, so that g(ti+t) → h(t) and h(t) is a Ricci soliton.

3.1. Convergence toward the solutions of the Ricci flow.

In order to prove Theorem 3.2, we will first show that it is reasonable to
expect a convergence toward a smooth manifold, i.e. that a limit manifold
will not collapse.

Claim 3.3. Consider the flow as above. For every fixed τ > 0, there exists

a constant C such that Volg(t)(M) ≥ C for every t, i.e. we have a uniform

lower bound on the volumes.

Proof. Assume that the claim is not true, i.e. that there exists a sequence

ti s.t. Volg(ti)(M) → 0 as i → ∞. Let ḡ(s) = c(s)g(t(s)) be unnormalized

flow, for s ∈ [0, τ), where:

t(s) = −τ ln(1 − s

τ
).

c(s) = 1 − s

τ
.

R(ḡ) =
R(g)
c(s)

.

Find si, such that t(si) = ti. We get that si = τ(1−e− ti
τ ). si → τ as i→ ∞.

Let

max
M×[0,si]

|Rm|(ḡ(s)) = Qi, (3.3)

and assume that the maximum is achieved at pi. By the corollary of Perel-

man’s non-collapsing theorem, we have that:

Volḡ(t)B(pi, r)
rn

≥ C1,
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for r ≤ C
√

τ
Qi

and t ∈ [0, si). Choose r = C
√

τ
Qi

and t = si.

(
√
Qi)nVolḡ(si)B(pi, C

√
τ

Qi
) ≥ (C

√
τ)nC1 = C̃.

Since Volḡ(si)B(pi, r) = c(si)
n
2 Volg(ti)B(pi, r̃), where r̃ might be a different

radius as a matter of scaling and since Qi ≤ C
c(si)

(because the curvature of

g(t) is uniformly bounded), we get that:

Volg(ti)(M) ≥ C̃/C,

where C̃ and C do not depend on i. Let i → ∞ in the previous inequal-

ity to get a contradiction. Therefore, we have a uniform lower bound on

volumes. �

Remark 3.4. The assumptions of the Theorem 3.2 and the result of Claim

3.3 imply the uniform bounds on the curvature tensors, uniform upper bound

on the diameters and uniform lower bounds on the volumes. Similarly, like

in the case of unnormalized flow, uniform bounds on the curvatures gives us

uniform bounds on all covariant derivatives, so by Hamilton’s compactness

theorem, for every sequence ti ↗ ∞ as i → ∞, there exists a subsequence

(call it again ti), such that (M,g(ti + t)) converges to (M,h(t)), in the

sense that there exist diffeomorphisms φi : M → M , so that φ∗i g(ti + t)

converge uniformly together with their covariant derivatives to metrics h(t)

on compact subsets of M × [0,∞). Moreover, h(t) is a solution of a τ -flow

as well.

3.2. Continuity of the minimizers for W.

We will recall a definition of Perelman’s functional W = (4πτ)−
n
2

∫
M e−f [τ

(R + |∇f |2) + f − n]dV . The constraint on f for this functional is
(4πτ)−

n
2

∫
e−fdV = 1. Let µ(g, τ) = inf W(g, f, τ) under the constraint.

This infinimum has been achieved by some smooth minimizer f . Perelman
has also proved that for a fixed metric g, limτ→0 µ(g, τ) = 0 and µ(g, τ) < 0
for a small value of τ > 0.
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In the case of a τ -flow g(t), τ > 0 is being fixed in time, and by the
monotonicity formula for W, we have that µ(g(t), τ) is increasing along the
flow. Therefore, there exists limt→∞ µ(g(t), τ).

Claim 3.5. limt→∞ µ(g(t), τ) is finite.

Proof. Assume that limt→∞ µ(g(t), τ) = ∞. Then, ∀i, ∃ti s.t. µ(g(ti), τ) ≥
i. There exists a subsequence (call it ti) such that (M,gi) converges to

(M,h), for some metric h. By the proof Lemma 3.6 up to estimate, we get

that µ(g(ti), τ) < µ(h, τ) + ε, for i big enough. Letting i → ∞, we get a

contradiction. �

Lemma 3.6. If (M,gi) tend to (M,h) when i → ∞, where gi = g(ti) and

ti ↗ ∞, then limi→∞ µ(gi, τ) = µ(h, τ).

Proof.

µ(h, τ) =
∫
M

(τ(|∇f |2 +R(h)) + f − n)(4πτ)−
n
2 dVh.

Since, φ∗i gi → h uniformly with their covariant derivatives, if ε > 0 is fixed,

there exists some big i0, so that for i ≥ i0

µ(h, τ) ≥
∫
M

(τ(|∇f |2 +R(g̃i)) + f − n)(4πτ)−
n
2 dVg̃i −

ε

2
,

where g̃i = φ∗gi. Change the variables in the above integral by diffeomor-

phism φi.

µ(h, τ) ≥
∫
M

(τ(|∇ifi|2 +R(gi)) + fi − n)(4πτ)−
n
2 dVgi −

ε

2
,

where fi = φ∗f . Perturb a little bit fi to get f̃i, by a quantity that tends to

zero, so that
∫
M e−f̃i(4πτ)−

n
2 dVgi = 1. Since our geometries are uniformly

bounded, for big enough i0, we will have

µ(h, τ) ≥ W(gi, f̃i, τ) − ε ≥ µ(gi, τ) − ε. (3.4)
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Let ui = e−
fi
2 . We have seen that minimizing µ(gi, τ) by fi is equivalent to

minimizing the following expression in ui:∫
M
τ(4|∇iui|2 +Riu

2
i ) − 2u2

i lnui − nu2
i )(4πτ)

−n
2 dVgi .

The minimizer ui has to satisfy the following elliptic differential equation

τ(−4∆iui +Riui) − 2ui lnui − nui = µi,τui. (3.5)

µi,τ is uniformly bounded, since there is a finite limt→∞ µ(g(t), τ). Now, we

can easily get:

∫
M
u2
i (4πτ)

−n
2 dVi ≤ C, (3.6)

τ

∫
M

|∇iui|2(4πτ)−
n
2 dVi ≤ C, (3.7)

i.e. ui ∈W 1,2 with

||ui||W 1,2 ≤ C ∀i.
From (3.5), by standard regularity theory of partial differential equations

and Sobolev embedding theorems, we get that ui ∈ W k,p with uniformly

bounded W k,p norms, where p < 2n
n−2 , and therefore, with uniformly

bounded C2,α norms, i.e. ||ui||C2,α ≤ C. Furthermore,

µ(gi, τ) =
∫
M

(τ(4|∇iui|2 +Riu
2
i ) − 2u2

i lnui − nu2
i )(4πτ)

−n
2 dVi

=
∫
M
τ(|∇̃ũi|24 + R̃iũi

2) − 2ũi ln ũi − nũi
2)(4πτ)−

n
2 dVg̃i ,(3.8)

where ũi = φ∗i ui. φ∗i gi is close to h and therefore, for i big enough, φi is

almost an isometry, so Djφ
−1
i can be uniformly bounded in terms of bounds

on gi and h, gi can be bounded in terms of h. We cover M with finitely

many geodesic balls of fixed radius ρ ( we can do it since, we have a uniform

bound on the injectivity radii from below). We use local coordinates in each

of the balls to get:

|∇̃iũi|2 = g̃jki Dj(ui ◦ φ−1
i )Dk(ui ◦ φ−1

i ).
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|∇̃ũi|2 = g̃jki (Djui)(Dkui)(φ−1
i )Djφ

−1
i Dkφ

−1
i .

Now, we can easily conclude that we have a uniform bound on |∇̃ui|2. Since

the integrand in (3.8) is uniformly bounded in i, and since g̃i uniformly

converge with their covariant derivatives to h, we have that for i large enough

µ(gi, τ) ≥
∫
M

(τ(4|∇hũi|2 +Rhũ
2
i ) − 2ũi ln ũi − nũ2

i )(4πτ)
−n

2 dVh − ε.

Since li =
∫
M ũ2

i (4πτ)
−n

2 dVh is close to 1 when i → ∞, taking ūi = ũi
li

and

using all the uniform bounds that we have got by now

µ(gi, τ) ≥ W(h, ūi, τ) − ε ≥ µ(h, τ) − ε.

By the previous inequality (for i big enough) and by (3.4), we get

lim
i→∞

µ(gi, τ) = µ(h, τ).

�

Following the notation from the previous lemma, by Arzela–Ascoli the-
orem, there exists a subsequence, ui, so that it converges in C2,α norm to
some function u. We can also get the higher order uniform estimates on ui
in a similar manner as in Lemma 3.6. Therefore, to show that a sequence
of minimizers for µ(gi, τ) converges to a minimizer of µ(h, τ) it is enough to
show the following lemma.

Lemma 3.7. ∃C > 0 so that ui ≥ C > 0 ∀i and ∀x ∈M

Proof. Assume that there exists a sequence ui and pi ∈ M , such that 0 <

ui(pi) < 1
2i . M is compact and therefore, there is a subsequence, {pi} con-

verging to p ∈M when i→ ∞. C2,α norms of ui are uniformly bounded in i

and therefore, ui(p) < ui(pi)+Cdistgi(p, pi) → 0 as i→ ∞. Let u be a limit

of {ui} in C2,α norm. Then u(p) = 0. Take a geodesic ball B(p, r). Let f ∈
C∞

0 (M) be a C∞ function of r alone, compactly supported in B(p, r)\{p}.∫
M

(τ(∇ui∇f +Riuif) − 2uif lnui − nuif − µ(gi, τ)uif)dVi = 0.
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For this f , letting i→ ∞, using the result of the previous lemma and the fact

that the integrand in the previous integral is uniformly bounded in i, we get
∫
M

(τ(∇u∇f + fuR(h)) − 2uf lnu− nuf − µ(h, τ)fu)dVh = 0.

Proceeding in the same manner as in [12], we can get that u ≡ 0 in some

small ball around p. Using the connectedness argument, u ≡ 0 in M . On

the other hand,
∫
M u2

i (4πτ)
−n

2 dVi = 1 and letting i → ∞, we get a contra-

diction. �

If we write down the equations (3.5) for all {ui}, letting i→ ∞, keeping
in mind the previous lemma, we get

τ(−4∆u+R(h))u− 2u ln u− nu = µ(h, τ)u,

i.e. u is the minimizer for µ(h, τ).

So far, we have proved the following theorem

Theorem 3.8. If (M,gi) → (M,h) as i → ∞, then for a given τ > 0,

if µ(gi, τ) = W(gi, fi, τ), then fi → f in C2,α norm, where µ(h, τ) =

W(h, f, τ).

3.3. Further estimates on the minimizers.

In this subsection, we want to use the minimizers ft for W at different times
to construct the functions ft(s) for s ∈ [0, t]. By using the parabolic regu-
larity, we will be able to get the uniform estimates on Ck,α norms of ft(s).
This will enable us to take a limit of these functions along the sequences.
These limits are the functions that will turn out to be the potential functions
that come into the equations describing the soliton type solutions arising in
a limit.

For any t, we can find ft such that W(g(t), ft, τ) = µ(g(t), τ). If we flow
ft backward, we will get functions ft(s) that satisfy

dft(s)
ds

= −R(s) − ∆ft(s) + |∇ft(s)|2 +
n

2τ
,

ft(t) = ft.
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We know that minimizing W in f is equivalent to minimizing the corre-
sponding functional in ũ, where ũt = e−

ft
2 . Let ut(s) = ũ2

t (s). The equation
for ut(s) is

dut
ds

= −∆ut + (− n

2τ
+R(s))ut(s),

ut(t) = ut.

By the monotonicity of W along the flow (3.1), we have that

µ(g(s), τ) ≤ W(g(s), ft(s), τ) ≤ W(g(t), ft, τ) = µ(g(t), τ).

First of all, there exists limt→∞ µ(g(t), τ). It is finite, since for every se-
quence ti → ∞, there exists a subsequence such that g(ti) → h(0) and by
Lemma 3.6 from the previous section, we have that µ(g(ti), τ) → µ(h(0), τ).

Instead of functional W(g(s), ft(s), τ), we can consider the equivalent
functional which depends on ũt(s) = e−ft(s)/2.

W(ut(s)) =
∫
M

[τ(4|∇ũt(s)|2 +Rũt(s)2) − ũt(s)2 log ũt(s)2

−nũt(s)2](4πτ)−n/2dV, (3.9)

where ũt satisfy

τ(−4∆ũt +Rũt) − 2ũt ln ũt − nũt = µ(g(t), τ)ũt,

since ft is a minimizer for W. Since µ(g(t), τ) is uniformly bounded, as

in the previous section, we can get that C2,α norms of ũt are uniformly

bounded. This implies that C2,α norms of ut are uniformly bounded. Before

we proceed with further discussion, notice the following.

Remark 3.9.
∫
M (4πτ)−

n
2 e−ft(s)dVg(s) = 1. This is a simple consequence of

the fact that
∫
M (4πτ)−

n
2 e−ftdVg(t) = 1, since ft is a minimizer for W with

respect to g(t), and the following backward parabolic equation

d

ds
ft(s) = −∆ft(s) + |∇ft(s)|2 −R+

n

2τ
.
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Namely,

d

ds

(∫
M
e−ft(s)dVg(s)

)

=
∫
M
e−ft(s)

(
∆ft(s) − |∇ft(s)|2 +R− n

2τ
−R+

n

2τ

)
dVg(s)

=
∫
M

∆(e−ft(s)dVg(s)) = 0

Since log is a concave function and ũt(s)2(4πτ)−n/2dV is a probability
measure, we have by Jensen and Sobolev inequalities∫

M
ũt(s)2 log ũt(s)2

(4πτ)−n/2dV =
n− 2

2

∫
M
ũt(s)2 log ũt(s)4/(n−2)(4πτ)−n/2dV

≤ n− 2
2

log
∫
M
ũt(s)2n/(n−2)(4πτ)−n/2dV

≤ n− 2
2

log[C
∫
M

(|∇ũt(s)|2 + ũt(s)2)dV ](n−2)/n

+
n− 2

2
log(4πτ)−n/2

=
n

2
logC

∫
M
τ(|∇ũt(s)|2 + ũt(s)2)(4πτ)−n/2dV.

This inequality shows that

τ

∫
M

|∇ũt(s)|2(4πτ)−n/2dV ≤ C. (3.10)

The constant C does not depend either on t or s ∈ [0, t]. To conclude, we
have the following estimates∫

M
|ũt(s)|2(4πτ)−n

2 dVs ≤ C1

τ(4πτ)−
n
2

∫
M

|∇sũt(s)|2dVs ≤ C2,

that is, we have that |ũt|W1,2 ≤ C for a uniform constant C.
Take a sequence ti → ∞. There exists a subsequence such that g(ti+t) →

h(t) when i → ∞, where h(t) is a Ricci flow on M . This follows from
Hamilton’s compactness theorem ([8]). Fix A > 0. ft will be a minimizer for
W with respect to g(t), which we flow backward, for every t. Let s ∈ [0, A].
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Lemma 3.10. For every A > 0, there exists δ = δ(A) > 0 such that

ut+A(t+ s) ≥ δ > 0 for all t and all s ∈ [0, A].

Proof. Assume that the statement of the lemma is not true. In that case,

there would exist a sequence si such that minM usi+A(si+ai) → 0 as i→ ∞,

for some ai ∈ [0, A]. Consider the equation

d

dt
usi+A(si + t) = −∆usi+A(si + t) + (R − n

2τ
)usi+A(si + t),

usi+A(si +A) = usi+A,

for t ∈ [0, A]. Let ûi(si + t) = minM usi+A(si + t). Then ∆ûsi+A(si + t) ≥ 0

and
d

dt
ûi(si + t) ≤ Cûi(si + t),

where C is a uniform constant. If we integrate it with respect to t, we get

ûi(si +A) ≤ eCAûi(si + t).

Since ûi(si+A) = minM usi+A and since by Lemma 3.7, we know that there

exists a constant δ such that usi+A ≥ δ > 0, we have that usi+A(si + t) ≥
δ(A) > 0 for all i and all t ∈ [0, A]. This contradicts our assumption that

ûi(si + ai) → 0 as i→ ∞. �

Lemma 3.11. For every A > 0, there exists C(A) such that

1.
∫
M ut(s)2dVg(s) ≤ C(A).

2.
∫
M |∇ut(s)|2dVg(s) ≤ C(A),

for all t ≥ A, s ∈ [t−A, t].

Proof. We will consider the equation

d

ds
ut(s) = −∆ut(s) + (R− n

2τ
)ut(s)

ut(t) = ut,
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where ut = e−ft and ft is a minimizer for W with respect to metric g(t).

Let ût(s) = maxM ut(s). Then

d

ds
ût(s) ≥ −Cût(s),

where C > 0 is a uniform constant that does not depend either on s or t, but

on the uniform bounds on geometries g(t). If we integrate it with respect to

s, we get

ût = ût(t) ≥ e−CAût(s),

for any s ∈ [t − A, t]. On the other hand, we have already proved in the

previous section that C2,α norms of ut are uniformly bounded in t ∈ [0,∞).

Therefore, we get that 0 ≤ ut(s) ≤ C(A) on M for all t ∈ [A,∞) and all

s ∈ [t − A, t]. Now we immediately get part 1 of our claim. For part 2,

notice that

∫
M

|∇ut(s)|2dVg(s) = 4
∫
M
ut(s)|∇ũt(s)|2dVg(s) ≤ C̃(A),

since
∫
M |∇ũt(s)|2 is uniformly bounded for all t ≥ A and s ∈ [t−A, t]. �

The previous two lemmas tell us that in order to find the uniform esti-
mates on fti+A(ti + s) for s ∈ [0, A], it is enough to find the uniform Ck,α

estimates on uti+A(ti + s). Our main goal in this section is to prove the
following theorem.

Theorem 3.12. Under the assumptions of the main theorem, with the nota-

tions as above, for every A > 0, there exists a uniform constant C, depending

on A such that |ut(s)|C2,α ≤ C for all t ≥ A, ∀s ∈ [t−A, t].

Proof. Consider the equation

d

ds
ut(s) = −∆ut(s) + (R(s) − n

2τ
)ut(s),
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for t ∈ [A,∞) and s ∈ [t − A, t]. All our further estimates will depend on

A. We will use C to denote different absolute constants that depend on A

and the uniform bounds on our geometries g(t). Denote by h1 = (h1)t(s) =

(− n
2τ +R(s))ut(s). Omit the subscript t.

d

ds
u+ ∆u = h1.∫

M
h2

1 =
∫
M

(
d

ds
u)2 + 2

∫
M

d

ds
u∆u+

∫
M

(∆u)2, (3.11)

where we should keep in mind that the metric depends on s.∫
M

d

ds
u∆u = −

∫
M
gij∇i(

d

ds
u)∇judVs (3.12)

= − 1
2
d

ds

∫
M

|∇u|2dVs −
∫
M

|∇u|2( n
2τ

−R)dVs

+
∫
M
gpigqjDiuDju(2Rpq − 1

2τ
gpq)dVs,

where the second term on the right-hand side of (3.12) comes from taking

the derivative of the volume element and the third term appears from taking

the derivative of gij . Denote the former one by J1 and the latter one by J2.

∫
M

(∆u)2 =
∫
M
gijDiDjug

klDkDlu

= −
∫
M
gijgklDjuDiDkDlu

= −
∫
M
gijgklDjuDkDiDlu+

∫
M
gijgklDjuR

l
iksDsu

= I +
∫
M
gijgklDkDjuDiDlu

= I +
∫
M

|∇2u|2,

where I =
∫
M gijgklDjuR

l
iksDsu. Let l ∈ (t−A, t) where A > 0. Integrating,

the equation (3.11) in s, from l to t gives∫ t

l
(
∫
M

(
d

ds
u)2dVs)ds+

∫
M

|∇u|2dVs|s=l +
∫ t

l

∫
M

|∇2u|2dVsds

=
∫ t

l

∫
M
h2

1 +
∫
M

|∇u|2dVs|s=t +
∫ t

l
(2J1 + 2J2 + I).
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∫ t

l
J1 ≤ AC sup

s∈(t−A,t)

∫
M

|∇u|2dVs ≤ C̃,

for every t. Similarly, we get estimates for J2 and I. From all these estimates,

we can conclude the following
∫ t

t−A

∫
M

(
d

ds
ut(s))2dVsds ≤ C. (3.13)

∫ t

t−A

∫
M

|∇2ut(s)|2dVsds ≤ C. (3.14)

sup
s∈(t−A,t)

∫
M

|∇u|2dVs ≤ C, (3.15)

where C = C(A). Let ũt = d
dsut(s) (we will not confuse this ũt with one

defined at the beginning of this section). Omit the subscript t.

d

ds
ũ = −Ds∆su+

d

ds
[(R − n

2τ
)u].

Multiply the equation by ũ and integrate it along M .

1
2
d

ds

∫
M

∣∣∣∣ ddsu
∣∣∣∣
2

dVs = −
∫
M

d

ds
(g(s)ijDiDju)ũ+

∫
M

(
d

ds
(R − n

2τ
))uũ

+
1
2

∫
M

(R− n

2τ
)| d
ds
u|2dVs

= 2
∫
M

(−Rpq +
1
2τ
gpq)gpi(s)gqj(s)DiDjuũ

−
∫
M
g(s)ijDiDj(

d

ds
u)ũ

+
∫
M

(
d

ds
(R− n

2τ
))uũ

∫
M
gjk(

d

dt
Γkij)

∂u

∂xk
ũ

+
1
2

∫
M

(R− n

2τ
)| d
ds
u|2dVs.

Since
∫
M g(s)ijDiDj

d
dsuũ = − ∫

M |∇s( ddsu)|2 and since we are on the Ricci

flow, metrics g(s) are uniformly bounded, after applying Cauchy–Schwartz
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inequality and using the uniform boundedness of the curvature operator,

we get∫ t

t−A

∫
M

|∇(
d

ds
u)|2dVsds + sup

s∈(t−A,t)

∫
M

| d
ds
u|2

≤ C

∫ t

t−A

∫
M

| d
ds
u|2dVsds

+C

∫ t

t−A

∫
M

|∇2u|2dVsds

+
∫
M

| d
ds
u|2dVs|s=t + C

∫
M

|∇u|2.
∫
M | ddsu(s)|2dVs|s=t ≤ C(

∫
M |∆ut|2 +

∫
M h1(t)2) where h1(s) = ( n2τ −

R(s))u(s). Since ut = e−ft , where ft are the minimizers for W, like in

the previous section, we can conclude that ut ∈W k,p, with uniform bounds

on W k,p norms (these bounds depend on k) and therefore,
∫
M | ddsu(s)dVs|s=t

are uniformly bounded in t. This estimate together with estimates (3.13)

and (3.14) gives that
∫ t

t−A

∫
M

|∇(
d

ds
u)|2dVsds ≤ C. (3.16)

sup
s∈(t−A,t)

∫
M

| d
ds
u|2 ≤ C. (3.17)

If ũ = d
dsu and h̃ = d

dsh1 then:

d

ds
ũ = −Ds∆u+ h̃.

Ds∆u =
d

ds
(g(s)ijDiDju) = g(s)ipg(s)jq(

1
τ
gpq − 2Rpq)DiDju

+ g(s)ijDiDj ũ

+ g(s)ij
d

ds
(Γkij)Dku.

H = h̃− gipgjq(
1
τ
gpq − 2Rpq)DiDju− g(s)ij

d

ds
(Γkij)Dku (3.18)

=
d

ds
ũ+ ∆ũ.
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All the estimates that we have got so far tell that
∫ t
t−A

∫
M H2 is uniformly

bounded in t. The analogous estimates to the estimates (3.13), (3.14) and

(3.15) for u, we can get for d
dsu (by using the evolution equation for d

dsu and

all the estimates that we have got so far by analyzing the evolution equation

for u). ∫ t

t−A

∫
M

∣∣∣∣∇2

(
d

ds
u

)∣∣∣∣
2

dVsds ≤ C. (3.19)

∫ t

t−A

∫
M

(
d2

ds2
u

)2

dVsds ≤ C. (3.20)

sup
s∈(t−A,t)

∫
M

∣∣∣∣∇
(
d

ds
u

)∣∣∣∣
2

dVs ≤ C. (3.21)

To obtain these estimates, we have used the fact that
∫
M

|∇ d

ds
u|2dVg(s)|s=t ≤ C(

∫
M

|∇∆ut|2 +
∫
M

|∇(R − n

2τ
)ut|2,

where the right-hand side is uniformly bounded in t, since ut = e−ft and ft
are the minimizers for W.

By standard regularity theory, considering ∆ut(s) = − d
dsut(s)+ (h1)t(s)

as an elliptic equation whose right-hand side has uniformly bounded W 1,2

norms for s ∈ (t − A, t) and all t ≥ A, we have that |ut(s)|W 3,2 ≤ C, for

a uniform constant C that depends on A. Take a derivative in s of the

equation d
ds ũ = −∆ũ+H, with ũ = d

dsu. Denote by ū = d
ds ũ. By using the

estimates that we have got for ũ, it is easy to conclude that ū satisfies the

equation
d

ds
ū = −∆ū+H1,

where

H1 =
d

ds
H + gipgjq(−2Rpq +

1
τ
)DiDj ũ+ g(s)ij

d

ds
(Γkij)Dkũ

and
∫ t
t−A

∫
M H2

1dVg(s)ds is uniformly bounded in t. As in the case of the

previous estimates, we can conclude that
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sup
s∈(t−A,t)

∫
M

| d
ds
ũ|2dVs ≤ C,

sup
s∈(t−A,t)

∫
M

|∇(
d

ds
ũ)|2dVs ≤ C.

By regularity theory applied to the equation ∆ũ = − d
ds ũ+H, we can get that

d
dsut(s) has uniformly bounded W 3,2 norms. If we go back to the parabolic

equation for ut(s), we can get that |ut(s)|W 5,2 ≤ C for all t ≥ A and all

s ∈ (t−A, t). Continuing this process by taking more and more derivatives

in t of our original parabolic equation, we can conclude that W p,2 norms of

ut(s) are uniformly bounded for every p, by the constants that depend on A

and p. Sobolev embedding theorem now gives that all Ck,α norms of ut(s)

are uniformly bounded for all t > A and all s ∈ [t−A, t], by constants that

depend on A and k. �

Combining Theorem 3.12 and Lemma 3.10, we get that for every A there,
exist constants Ck = C(k,A) such that |ft(s)|Ck,α ≤ Ck, for all t ≥ A and
all s ∈ [t−A, t].

3.4. Ricci soliton in the limit.

In this subsection, we want to finish the proof of Theorem 3.2.
We have uniform curvature and diameter bounds for our flow g(t). We

have already proved that we also have a volume non-collapsing condition
along the flow, for all times t ≥ 0. This gives a uniform lower bound on the
injectivity radii. Hamilton’s compactness theorem (modified to the case of
our flow) gives that for every sequence ti → ∞, there exists a subsequence
so that g(ti+t) → h(t) uniformly on compact subsets of M× [0,∞) and that
h(t) is a solution to the Ricci flow (3.1). We will show below that for each t,
h(t) satisfies actually a Ricci soliton equation with the Hessian of function
fh(t) involved, where fh(t) is a smooth one parameter family of functions.
We will now see how we get the functions fh(t), using the estimates on ft(s)
from the previous subsection and Perelman’s monotonicity formula.

Take any t and let ft be a function so that µ(g(t), τ) = W(g(t), ft, τ).
Flow ft backward. Fix A > 0. Then:
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I(t) = W(g(t +A), ft+A, τ) −W(g(t), ft+A(t), τ)
≤ µ(g(t+A), τ) − µ(g(t), τ) → 0(t → ∞).

0 ≤ I(t) =
∫ A

0

d

du
W (g(t+ s), ft+A(t+ s), τ)ds → 0,

as t → ∞. We will consider uti+A(ti + s) where s ∈ [0, A]. We will divide
the proof of the theorem in a few steps.

Step 3.13. ∀A > 0, limi→∞ d
duW (g(s + ti), fti+A(s + ti), τ) = 0 for almost

all s ∈ [0, A].

Proof. I(ti) → 0 by Claim 3.5. On the other hand

I(ti) = W(g(ti +A), fti+A, τ) −W(g(ti), fti+A(ti), τ)

=
∫ A

0

d

du
W (g(ti + s), fti+A(ti + s), τ)ds,

and

lim
i→∞

I(ti) = lim
i→∞

∫ A

0

d

du
W (g(ti + s), fti+A(ti + s), τ)ds

≥
∫ A

0
lim inf
i→∞

d

du
W (g(ti + s), fti+A(ti + s), τ)ds,

by Fatou’s Lemma. Since by Perelman’s monotonicity formula
d
duW (g(ti + s), fti+A(ti + s), τ) ≥ 0, we have that

limi→∞ d
duW (g(ti + s), fti+(ti + s), τ) = 0 for almost all s ∈ [0, A], for

∫ A

0
lim
i→∞

d

du
W (g(ti + s), fti+A(ti + s), τ)ds ≤ lim

i→∞
I(ti),

by Fatuous lemma. �

Step 3.14. |ũt(s)|C2,α ≤ C, ∀t, where ũt(s) = d
dsut(s).

Proof. Following the notation of the previous subsection, we get that:

d

ds
ũt(s) = −∆ũt(s) +Ht(s),
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where Ht(s) = d
dsht(s) + gipgjq( 1

τ gpq − 2Rpq)DiDju+ gij dds(Γ
k
ij)Dku.

ũt(t) =
d

ds
ut(s) = −∆ut + (− n

2τ
+R)ut.

In the previous subsection, we have proved that there exists a uniform lower

and an upper bound on ut(s) and that |ut(s)|W 3,p ≤ C(p,A) for all t ≥ A

and all s ∈ [t−A, t]. Similarly, we can get that |ut(s)|W k,p ≤ C(k, p,A) and

therefore |ũt(s)|W k−2,p ≤ C(k, p,A), ∀t ≥ A and all s ∈ [t − A, t]. We can

get that |ũt(s)|C2,α ≤ C, for all t ≥ A and ∀s ∈ [t − A, t]. We can extend

this to all higher order time derivatives of ut(s). �

Step 3.15. For every A > 0, there exists a subsequence ti, so that the limit

metric h(s) of a sequence g(ti + s) is a Ricci soliton for s ∈ [0, A].

Proof. By step 3.13, we have that

lim
i→∞

Rjk(ti + s) + ∇j∇kfti+A(ti + s) − 1
2τ
gjk(ti + s) = 0,

for almost all s ∈ [0, A] and almost all x ∈M , since

d

ds
W(g(ti + s), fti+A(ti + s), τ)

= (4πτ)−
n
2

∫
M

2τ |Rjk + ∇jfti+A∇kfti+A − 1
2τ
gjk|2dVg(ti+s).

By Lemma 3.10 and Theorem 3.12, we have that 0 < C1 ≤ |uti+A(s+ ti)| ≤
C2 for all i ≥ i0 and all s ∈ [0, A], for some constants C1 and C2 that

depend on A. By step 3.14 and Theorem 3.12, we can find a subsequence,

say {ti} such that fti+A(ti + s) converges in C2,α norm to f̃A(s) for all

s ∈ [0, A] and all x ∈ M . More precisely, for a countable dense subset {sj}
of [0, A] there exists a subsequence so that fti+A(ti + sj) converges in C2,α

norm to f̃A(sj) on M . For any s ∈ [0, A] there exists a subsequence tik so

that ftik+A(tik + s) converges to f̃A(s) in C2,α norm. We want to show that

actually fti+A(ti+s)
C2,α→ f̃A(s). For that we use the fact that d

dsfti+A(ti+s)

is uniformly bounded in C2,α norm, and therefore
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|f̃A(s) − f̃A(s0)|C2,α < ε,

for some small ε > 0 and some s0 ∈ {sj} that is sufficiently close to s. We

also have

|f̃A(s0) − fti+A(ti + s0)|C2,α < ε,

for i ≥ i0 and

|fti+A(ti + s) − fti+A(ti + s0)|C2,α < ε,

since | ddsfti+A(ti + s)|C2,α ≤ C(A), for all i ≥ i0 and all s ∈ [0, A]. By

triangle inequality, we now get that for every ε > 0 there exists i0 so that

|f̃A(s) − fti+A(ti + s)|C2,α < 3ε,

for all i ≥ i0 and all s ∈ [0, A].

fti+A(ti + s) converges in C2,α norm on M to f̃A(s), for all s ∈ [0, A].

Finally, we get that

Rjk + ∇j∇kf̃A(s) − 1
2τ
hjk(s) = 0, (3.22)

for all s ∈ [0, A], and for almost all x ∈M . Because of the continuity, it will

hold for all x ∈ M . Since h(s) is a Ricci flow, all covariant derivatives of h

and the covariant derivatives of a curvature operator are uniformly bounded,

and therefore |∇pf̃A(s)| ≤ C(p), ∀s ∈ [0, A] and all p ≥ 2. Also we have that

| dp

dsk∇pf̃A(s)| ≤ C(p, k) where C(p, k) does not depend on A, for p ≥ 2. �

Step 3.16. We can glue all the functions f̃A that we get for different values

of A, to get a function fh(s) defined on M× [0,∞), which defines our metric

h(s) as a soliton type solution for all times s ≥ 0.

Proof. Take any increasing sequence Aj → ∞. For every Aj, by the previous

step, we can extract a subsequence ti so that fti+Aj(ti + s) C2,α→ f̃Aj(s)

for all s ∈ [0, Aj ]. Diagonalization procedure gives a subsequence so that
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fti+Aj(s)
C2,α→ f̃Aj(s) for all j and all s ∈ [0, Aj ]. For this subsequence ti

we have that g(ti + t) → h(t), uniformly on compact subsets of M × [0,∞).

Compare the functions f̃Aj and f̃Ak
for j < k, on the interval [0, Aj ]. We

know that they both satisfy

∆h(s)f̃Ar +R(h(s)) − n

2τ
= 0,

and therefore, ∆h(s)(f̃Aj − f̃Ak
) = 0. Since M is compact, this implies

that f̃Ak
(s) = f̃Aj(s) + cAk

Aj
(s), for s ∈ [0, Aj ], where cAk

Aj
(s) is a constant

function for every s ∈ [0, Aj ]. On the other hand, because of the integral

normalization condition, we have

(4πτ)−
n
2

∫
M
e
−f̃Aj

(s)
dVh(s) = 1,

(4πτ)−
n
2

∫
M
e−f̃Ak

(s)dVh(s) = 1 = e
−cAk

Aj
(s)

(4πτ)−
n
2

∫
M
e
−f̃Aj

(s)
dVh(s),

which implies that cAk
Aj

(s) = 0 for all s ∈ [0, Aj ] and all k ≥ j. Therefore,

f̃Aj(s) = f̃Ak
(s) for all s ∈ [0, Aj ]. Define a function fh(s) in the following

way. Let fh(s) = f̃Aj(s), for all s ∈ [0, Aj ] and all Aj → ∞. fh(s) is a well

defined function because of the previous discussion. We also have that

R(h(s))pq + ∇p∇qfh(s) − 1
2τ
h(s)pq = 0, (3.23)

holds for all s ∈ [0,∞). The definition of fh(s) does not depend on a choice of

an increasing sequence Aj. Namely, if Bj were another increasing sequence

and if fh′(s) were functions defined using the sequences Bj and ti (ti is the

same sequence as above), then at each time, both functions fh(s) and fh′(s)

would satisfy the same equation (3.23) and the same integral normalization

condition. Therefore, fh(s) = fh′(s) for all s ∈ [0,∞). �
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3.5. Some properties of the limit solitons.

Let ti be any sequence converging to infinity. Then as we have seen earlier,

there exists a subsequence such that g(ti + s) → h(s), where h(s) is a Ricci

soliton. Let R̂(h(t)) = minR(h(t)). We will first state a theorem that

Hamilton proved in his paper [10].

Theorem 3.17 (Hamiton). Under the normalized Ricci flow, whenever

R̂ ≤ 0, it is increasing, whereas if ever R̂ ≥ 0 it remains so forever.

We will use the proof of Theorem 3.17 to prove the following lemma.

Lemma 3.18. Under the assumptions of Theorem 3.2, R̂(h(t)) ≥ 0, ∀t,
for the limit metric h(t) of any sequence of metrics g(ti), where g(t) is a

solution of

d

dt
gjk = −2Rjk(g(t)) +

1
τ
gjk(t).

Proof. Assume that there exists t0 such that R̂(h(t0)) < 0. Without loss of

generality assume that t0 = 0. Since g(ti) → h(0) as i→ ∞, there exists i0,

so that for all i ≥ i0 R̂(g(ti)) < 0. The evolution equation for R is

d

dt
R = ∆R+ 2|Ṙic|2 +

2
n
R

(
R− n

2τ

)
.

This implies
d

dt
R̂ ≥ 2

n
R̂

(
R̂− n

2τ

)
.

If R̂ ≤ 0, then R̂ is increasing (since d
dt R̂ ≥ 0). If R̂ ≥ 0 at some time it can

not go negative at later times. If there existed t > ti0 such that R̂(g(t)) ≥ 0,

then R̂ ≥ 0 would remain so forever, for all s ≥ t and therefore, we could

not have R̂(g(ti)) < 0 for ti > t. That contradicts the fact that R̂(g(ti)) < 0

for all i ≥ i0. Therefore, ∀t ≥ ti0 we have that R̂(g(t)) < 0.

dR̂

dt
≥ 2
n
R̂(R̂− n

2τ
) ≥ 0,
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for all t big enough. That implies R̂ is increasing and therefore, there exists

limt→∞ R̂(g(t)) = −C ≤ 0. Moreover, R̂(h(s)) = −C for all s. Since

limi→∞ R̂(g(ti)) = R̂(h(0)) < 0, C > 0. We also have that

dR̂(h(s))
ds

≥ − 2
n
R̂(h(s))(

n

2τ
− R̂(h(s))) =

2
n
C(

n

2τ
+ C) ≥ 0.

The left-hand side of the above inequality is zero and therefore, we get that

C = − n
2τ or C = 0. Since C > 0, we get a contradiction. Therefore,

R(h(t)) ≥ 0 for all t, what we wanted to prove. �

Remark 3.19. Let (M,g) be a compact manifold and g(t) be a Ricci flow

on M . Since

d

dt
W =

∫
M

2τ |Rij + ∇i∇jf − 1
2τ
gij |2(4πτ)−n

2 e−fdV,

W(g, f, τ) = const along the flow, if g is a Ricci soliton satisfying the equa-

tion

Rij + ∇i∇jf − 1
2τ
gij = 0.

Let ti → ∞ and si → ∞ be two sequences such that g(ti+ t) → h(t) and
g(si + t) → h′(t) where h(t) and h′(t) are 2 Ricci solitons on M that have
been constructed earlier. We have proved that

Rjk(h) + ∇j∇kfh(t) − 1
2τ
hjk = 0,

Rjk(h′) + ∇j∇kfh′(t) − 1
2τ
h′jk = 0,

where

fh(t) = lim
j→∞

lim
i→∞

fAj+ti(ti + t),

fh′(t) = lim
j→∞

lim
i→∞

fBj+si(si + t),

for some increasing sequences Aj → ∞ and Bj → ∞. By Remark 3.19, we
know that W(h(t), fh(t), τ) = C1 and W (h′(t), fh′(t), τ) = C2 are constant
along the flows h(t) and h′(t) respectively.
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Lemma 3.20. C1 = C2, i.e. W(h(t), fh(t), τ) is a same constant for all

solitons h(t) that arise as limits of sequences of metrics of our original flow

g(t) (3.1) on a compact manifold M .

Proof.

W(g(ti + t), fti+Aj (ti + t), τ)− W (g(si), fsi+Bj (si), τ)

≤ W(g(ti +Aj), fti+Aj (ti +Aj), τ)

−W(g(si), fsi(si), τ)

= µ(g(ti +Aj), τ) − µ(g(si), τ) → 0,(3.24)

where we have used the fact that W(g(t), f(t), τ) increases in t along the

flow (3.1) and the fact that fsi(si) = fsi is a minimizer for W(g(si), f, τ)

over all f belonging to a set {f | ∫
M (4πτ)−

n
2 e−fdVg(si)}. Similarly,

W(g(ti + t), fti+Aj(ti + t), τ)− W (g(si), fsi+Bj (si), τ)

≥ W(g(ti + t), fti+t(ti + t), τ)

−W(g(si +Bj), fsi+Bj (si +Bj), τ)

= µ(g(ti + t), τ)

−µ(g(si +Bj), τ) → 0, (3.25)

when i→ ∞. From equations (3.24) and (3.25), letting i→ ∞, we get

W(h(t), f̃Aj (t), τ) −W(h′(0), f̃ ′Bj
(0), τ) ≤ 0.

W (h(t), f̃Aj (t), τ) −W (h′(0), f̃ ′Bj
(0), τ) ≥ 0.

Let j → ∞ to get

C1 = W(h(t), fh(t), τ) = W(h′(0), fh′(0), τ) = C2.

�



310 Natasa Sesum

Lemma 3.21. For every Ricci soliton h(t) that arises as a limit of some se-

quence of metrics of our original flow g(t), the corresponding function fh(t),

that we have constructed before, is a minimizer for Perelman’s functional W
with respect to a metric h(t).

Proof. We will first prove the following claim.

Claim 3.22. There exists a sequence ti → ∞ such that g(ti + t) → h(t) as

i→ ∞, where h(t) is a Ricci soliton satisfying Rjk(h)+∇j∇kfh− 1
2τ hjk = 0

and fh(t) is a minimizer for W(h(t), f, τ).

Proof of the Claim. Let H(t) = (4πτ)−n/2
∫
M 2τ |Rij + ∇i∇jft − 1

2τ gij |2dt,
where ft is a function such that µ(g(t), τ) = W (g(t), ft, τ). If we flow ft

backward by the equation

d

dt
f = −∆f + |∇f |2 −R+

n

2τ
,

starting at time t, for every t > 0, we get solutions ft(s). Look at Ft(s) =

W(g(s), ft(s), τ). We know that

d

ds
Ft(s) = (4πτ)−

n
2

∫
M

2τ |Rjk + ∇j∇kft(s) − 1
2τ
g(s)jk|2dVg(s).

Ft(s) is a continuous function in s ∈ [0, t] and lims→t
d
dsFt(s) = H(t). There-

fore, there exists a left derivative of Ft(s) at point t and (Ft)′−(t) = H(t)

for every t > 0. Moreover, g(t) and all the derivatives of ft up to the sec-

ond order are Lipshitz functions in t (this follows from the estimates in the

previous subsections) and therefore

µ(t) := µ(g(t), τ) = inf
{f | �M (4πτ)−

n
2 e−f =1}

W(g(t), f, τ)

is a Lipshitz function in t as well, i.e. k(t) = Ft(t) = W(g(t), ft, τ) is

a Lipshitz function in t. This tells that k(t) is differentiable in t, almost
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everywhere. Our discussion then implies that k′(t) = H(t) in a sense of

distributions.

∫ ∞

δ
H(t)dt = lim

K→∞

∫ K

δ
k′(t)dt

= lim
K→∞

W (g(K), fK , τ) −W (g(δ), fδ , τ)

= lim
K→∞

(µ(g(K), τ) − µ(g(δ), τ) ≤ C, (3.26)

where δ > 0 and C is some uniform constant. We have that
∫ ∞
δ H(t) ≤ C.

This implies that there exists a sequence ti → ∞ such that H(ti) → 0 as

i→ ∞, i.e.

lim
i→∞

(Rjk + ∇j∇kfti −
1
2τ
gjk)(ti) = 0.

By what we have proved before, after extracting a subsequence, we can

assume that g(ti) → h(0) smoothly and fti → f̃ in C2,α norm, where by

Theorem 3.8 f̃ is a minimizer for W with respect to metric h(0). Therefore,

Rjk(h(0)) + ∇j∇kf̃ − 1
2τ
hjk(0) = 0. (3.27)

On the other hand, g(ti + t) → h(t) as i → ∞ where h(t) is a Ricci soliton

and

Rjk(h(t)) + ∇j∇kfh(t) − 1
2τ
hjk(t) = 0, (3.28)

where fh(t) = limj→∞ limi→∞ fti+Aj(ti + t), for some sequence Aj → ∞.

From equations (3.27) and (3.28), we have that ∆(fh(0) − f̃) = 0, i.e.

fh(0) = f̃+C for some constant C. We know that
∫
M (4πτ)−

n
2 e−f̃dVh(0) = 1,

since f̃ is a minimizer. From the construction of fh(t) it follows that∫
M (4πτ)−

n
2 e−fh(0)dVh(0) = 1 and therefore, f̃ = fh(0). Since there exists a

finite limit, limt→∞ µ(g(t), τ), we have that µ(h(0), τ) = µ(h(t), τ) for all t.

This implies that

µ(h(t), τ) = µ(h(0), τ) = W(h(0), f̃ , τ)

= W(h(0), fh(0), τ) = W(h(t), fh(t), τ),
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where we have used the fact that W is constant along a soliton. This means

that fh(t) is a minimizer for W with respect to a metric h(t), for every

t ≥ 0. �

To continue the proof of Lemma 3.21 take any sequence si → ∞. By

a sequential convergence of our original flow g(t) to Ricci solitons, after

extracting a subsequence, we may assume that g(si + t) → h′(t) as i → ∞
where h′(t) is a Ricci soliton. Take a soliton h(t) with the properties as in

Claim 3.22. From the convergence of µ(g(t), τ), we know that µ(h′(t), τ) =

µ(h(s), τ) for all t and all s.

µ(h′(t), τ) = µ(h(s), τ) = W(h(s), fh(s), τ). (3.29)

By Lemma 3.20, we have that W(h(s), fh(s), τ) = W(h′(t), fh′(t), τ) for all s

and t. Combining this with (3.29) gives that µ(h′(t), τ) = W(h′(t), fh′(t), τ),

i.e. fh′(t) is a minimizer for h′(t) for every t. �

One useful property of the sequential soliton limits of our flow (3.1) is
that all limit solitons are the solutions of the normalized flow equation

d

dt
hij = −2Rij +

2
n
r(h(t))hij ,

where r(h(t)) = 1
Volh(t)M

∫
M R(h(t))dVh(t). In the case of any of our soliton

limits, we have thatR(h(t))+∆fh(t)− n
2τ = 0 and therefore, r = r(h(t)) = n

2τ
for all t ≥ 0.

Remark 3.23. Let ti → ∞ and g(ti + t) → h(t), where h(t) is an Einstein

metric with an Einstein constant 1
2τ . If Volh′(M) = Volh(M), for any other

limit soliton h′, then h′ is an Einstein metric with the same Einstein constant
1
2τ .

Proof. The fact that h is Einstein metric implies that ∇i∇jfh = −2Rij +
1
τ hij = 0, that is ∆fh = 0. Since M is compact, fh = C such that

(4πτ)−n/2e−CVolh(M) = 1. An easy computation shows that µ(h, τ) =



Convergence of the Ricci flow toward a soliton 313

W(h,C, τ) = C − n
2 , and therefore, µ(h′, τ) = µ(h, τ) = C − n

2 . Then,

(4πτ)−n/2e−CVolh′(M) = 1, implies that f = C is a minimizer for W with

respect to h′ as well. This yields

τ(2∆f − |∇f |2 +R(h′)) + f − n = C − n

2
,

that is

R(h′) =
n

2τ
.

From

∆fh′ =
n

2τ
−R(h′) = 0,

we get that fh′ = C and therefore

Rij(h′) + ∇i∇jfh′ − 1
2τ
h′ij = 0,

yields Rij(h′) = 1
2τ h

′
ij . �

In the discussion that follows, we will use Moser’s weak maximum prin-
ciple. We will state it below, for a reader’s convenience.

Lemma 3.24 (Moser’s weak maximum principle). Let g = g(t), 0 ≤
t < T , be a smooth family of metrics, b a non-negative constant and f a

non-negative function on M × [0, T ) which satisfies the partial differential

inequality

df

dt
≤ ∆f + bf,

on M× [0, T ], where ∆ refers to a Laplacian at time t. Then for any x ∈M ,

t ∈ [0, T ),

|f(x, t)| ≤ c
1√
V
ecHdmax(1, d

n
2 )(b+ l +

1
t
)

1+n/2
2 ecbt||f0||L2 ,

where c is a positive constant depending only on n and d =

max0≤t≤T diam(M,g(t)), H = max0≤t≤T
√||Ric||C0 , f0 = f(·, 0), V =

min0≤t≤T Volg(t)(M).

The following remark will give us a condition that will imply obtaining
the Einstein metrics in the limit.
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Remark 3.25. If g(t) is a solution to (gij)t = −2Rij + 1
τ gij , for t ∈ [0,∞)

such that

1. A curvature operator and a diameter are uniformly bounded along the

flow.

2. 0 ≤ R(x, t) ≤ n
2τ for all x ∈M and all t ∈ [0,∞).

Then all the solitons that arise as limits of the subsequences of our flow g(t)

are Einstein metrics with scalar curvatures R = n
2τ and Tij(t) converge to

zero, uniformly on M as t → ∞. Tij = Rij − R
n gij is a traceless part of the

Ricci curvature.

Proof of the Remark. Notice that now we do not make an assumption that

one of the metrics that we get in a limit is an Einstein metric. Look at the

evolution equation for r(t) = 1
Volt(M)

∫
M RdVt,

d

dt
r(t) =

1
Volt(M)

(2
∫
M

|T |2 + (1 − 2
n

)
∫
M
R(

n

2τ
−R) + r(r − n

2τ
).

R ≤ n
2τ implies r(t) ≤ n

2τ and therefore

d

dt
r(t) ≥ 2

Volt(M)

∫
M

|T |2 + r(r − n

2τ
). (3.30)

We have proved that in the case of flow g(t), a volume non-collapsing condi-

tion holds for all times t ≥ 0. d
dt ln(Volt(M)) = n

2τ − r and C1 ≤ Volt(M) ≤
C2 give that

∫ ∞
0 ( n2τ − r(t))dt < ∞. We can integrate the inequality (3.30)

in t ∈ [0,∞). This, together with the uniform estimates on Volt(M) and

r(t) give that ∫ ∞

0

∫
M

|T |2dVt ≤ C. (3.31)

Following the calculations in Hamilton’s paper [6], Rugang computed the

evolution equation for T under a normalized Ricci flow ([18]). In the case

of flow (3.1), we have

d

dt
|T |2 = ∆|T |2 − 2|∇T |2 + 4Rm(T ) · T +

4
n

(R− n

2τ
)|T |2. (3.32)
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Since the curvature operators of g(t) are uniformly bounded, we derive from

equation (3.32) that
d

dt
|T | ≤ ∆|T | + C|T |.

Applying Lemma 3.24 to this differential inequality and intervals [t−1, t+1]

where t > 1, we derive

|T |2(x, t) ≤ ||T ||2(t)C0(M) ≤ C(
∫
Mt−1

|T |2),

where Mt = (M,g(t)). Integrate this inequality in t ∈ [k, k + 1], for all

k ≥ k0 and sum up all the inequalities that we get this way. We get

∫ ∞

k0

||T ||2dt ≤ C
∑
k≥k0

∫ k+1

k
(
∫
Mt−1

|T |2)dt

∫ ∞

k0

||T ||2dt ≤ C

∫ ∞

k0

∫
M

|T |2dVt−1dt, (3.33)

where dVt−1 is a volume form for metric g(t − 1).
∫
M |T |2dVt−1 ≤

C
∫
M |T |2dVt, because d

dt ln Volt = n
2τ − R and the curvatures of g(t) are

uniformly bounded. The right-hand side of inequality (3.33) is bounded by

a uniform constant, because of the estimate (3.31). Therefore,
∫ ∞
k0

||T ||2dVt
≤ C.

If there exists (p, t0) such that |T |2(p, t0) > ε, then there is a small

neighbourhood of (p, t0) inM×[0,∞), say Uδ(p, t0) = Bp(δ, t0)×[t0−δ, t0+δ]
such that |T |2(x, t) ≥ ε

2 for all (x, t) ∈ Uδ(p, t0). This follows from the fact

that in the case of a Ricci flow, a bound |Rm| ≤ C implies |DkDl
tRm| ≤

C(k, l). Costant δ does not depend on a point (p, t0) ∈M × [0,∞), since all

our bounds and estimates are uniform.

If there existed ε > 0 and a sequence of points (pi, ti) ∈M × [0,∞), with

ti → ∞ such that |T (pi, ti)| ≥ ε, then we would have that ||T ||C0 ≥ ε
2 for

all t ∈ [ti − δ, ti + δ] and for all i. This would imply C ≥ ∫ ∞
0 ||T ||2dVt ≥∑∞

i=0 εδ = ∞. This is impossible. Therefore, ||T ||C0(Mt) → 0 as t→ ∞.
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d
dt ln(Volt) = n

2τ − R ≥ 0 for all t imply that there exists a finite

limt→∞ Volt for every x ∈ M (otherwise, we can argue as in the previ-

ous paragraph). If we integrate this equation in t ∈ [0,∞), we will get that∫ ∞
0 ( n2τ −R)dt <∞. As in the case for a traceless part of the Ricci curvature

T , we can conclude that limt→∞R = n
2τ uniformly on M .

We can conclude that under the assumptions given at the beginning of

this remark, for every sequence ti → ∞, we can find a subsequence such

that g(ti+ t) → h(t), where h(t) is an Einstein soliton with scalar curvature
n
2τ . We also know that Rij − 1

2τ gij → 0 as t→ ∞, uniformly on M and that

there exists limt→∞ Volt. �

To conclude, we have proved a sequential convergence of a solution of a
τ -flow towards solitons (generalizations of Einstein metrics), under uniform
curvature and diameter assumptions. We still do not know whether we get a
unique soliton (up to diffeomorphisms) in the limit or not. All observations
in this subsection are in favor of the uniqueness of a soliton in the limit.

4. Uniqueness of a limit soliton.

In this section, we will assume that one of the limit solitons is integrable,
in order to prove the uniqueness of a soliton in the limit, up to a diffeomor-
phism. We will first construct a gauge in which a τ -flow becomes a strictly
parabolic flow. Similar ideas to those in [3] will help us finish the proof of
Theorem 1.1.

4.1. The construction of a gauge.

To construct the right gauge, assume for simplicity that we are in a situation
when g(t) → h as t → ∞, where h is an Einstein metric, with the Einstein
constant 1

2τ . We will see how we construct a gauge so that our modified Ricci
flow equation becomes strictly parabolic on time intervals of an arbitrary
length, if we go sufficiently far in time direction. This construction applies to
our more general case, just with minor modifications and only for simplicity
reasons, we have decided to consider a case of an Einstein metric in a limit.
The main purpose of this section is to prove the following Proposition that
will be reformulated in the next section for our more general setting.
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Proposition 4.1. Let A > 0 be an arbitrary real number, k an integer and

0 < α < 1. There exists ε0(A, k) such that for every ε < ε0, there exists

s0 = s0(A, k, h, ε), such that for all t0 ≥ s0 the equation

d

dt
φ = ∆g(t),hφ, (4.1)

φ(t0) = φt0 ,

has a solution φ(t), so that it is a diffeomorphism, |φ(t) − Id|k,α,h < ε and

|φ∗g(t) − h|k,α < ε, for every t ∈ [t0, t0 + A]. φt0 is chosen to be a diffeo-

morphism so that δφ∗(t0)h(g(t0)) = 0.

Definition 4.2. Let φ : M →M be a smooth function. Define e(φ− Id) =

gijhkl(φki −Idki )(φlj−Idlj). Define E(φ−Id) =
∫
M e(φ−Id) and Fl = φl−Idl.

Throughout the proof of Proposition 4.1, we will have a tendency to use
the same symbol for different uniform constants.

Proof of Proposition 4.1. Fix A > 0. Let ε > 0 be very small (we will

see later how small we want to take it). We know that for s0 sufficiently

big, we can make |g(t) − h| as small as we want, and therefore, we have

that δφ(t0)∗hg(t0) = 0 implies that |φ(t0)− Id|k+2,α,h < ε/1000 on M (see [3]

for more details). Choose some t0 ≥ s0. We can make |F (t0)|N,α,h, for say

N >> k as small as we want by choosing s0 sufficiently big. Since g(t) → h

as t → ∞, the coefficients and the initial data of harmonic map flow (4.1)

are uniformly bounded and uniformly close to each other for t0 big enough.

This implies that there exists a uniform constant δ1 > 0 so that a solution

to (4.1) exists on t ∈ [t0, t0 + δ1), for all t0 ≥ s0. For the same reasons

there exists some δ > 0 such that |F (t)|W 2,N ,g(t) < ε, for t ∈ [t0, t0 + δ). We

can assume that we have chosen N big enough so that as a consequence of

Sobolev embedding theorems, we have that |F |k,α,g(t) < ε̃ (ε̃ differs from ε

by a Sobolev embedding constant) for all t ∈ [t0, t0 + δ) and all t0 ≥ s0. We

want to show that the estimate |F (t)|W 2,N ,g(t) < ε holds past time t0 + δ,

until δ < A. Then |F |k,α,g(t) < ε̃ continues to hold past time t0 + δ, until
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δ < A. This actually gives a uniform upper bound on the energy densities

on whole manifold M . To see this, notice that a bound |F |k,α < ε̃ implies

that e(φ− Id) ≤ Cε̃. Since

e(φ− Id) = e(φ) + e(Id) − 2gijhklIdki φ
l
j,

by the Schwartz inequality for quadratic forms and the interpolation in-

equality, we get that

e(φ) ≤ Cε̃+ C + 2(gijhklφki φ
l
j)

1/2(gijhklIdki Id
l
j)

1/2

≤ Cε̃+ C + ηe(φ),

for some η < 1, which implies that e(φ) ≤ C̃. By the results proved by Eells

and Sampson in [5] there exists δ̄, depending on (M,h) and the uniform

bound on the energy densities C̃, so that for every s ∈ [t0, t0 + δ) a solution

to a harmonic map flow (4.1) can be extended to [s, s+δ̄]. If t0+δ+δ̄ < t0+A,

we can repeat the procedure above for a solution φ(t), on time interval

[t0, t0+δ+δ̄) to get that the energy density estimates with the same constant

C̃ hold past time t0 + δ + δ̄. Since all our estimates depend only on A and

the uniform bounds on geometries g(t), we can iterate the argument till we

reach time t0 +A, for every t0 ≥ s0. As a result, we will get φ(t), a solution

to (4.1), such that |φ(t) − Id|k,α < ε̃ for all t ∈ [t0, t0 +A].

We know that (∆g(t),hId)γ = gαβ(Γ(h)γαβ − Γ(g)γαβ) and that d
dt Id = 0.

Therefore, we have

d

dt
(φk − Idk) = ∆g(t),h(φ

k − Idk) + gij(Γkij(h) − Γkij(g)), (4.2)

where we can choose s0 so big, that the last term is arbitrarily small (since

g(t) → h). We will see later how small we want to make it, for now we can

say it is less than some ε1 > 0.

Before we start establishing the estimates on F = φ− Id, we will occupy

ourselves with the problem of replacing equation (4.2) which in terms of local

coordinates on M is a local system of equations, by some much more global
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system. Passing to a global system of equations will make establishing the

estimates on F much easier. We will follow a discussion in [5].

Since M is compact, there exists an embedding ω : M → Rq and due

to Eells and Sampson ([5]) it is always possible to construct a smooth Rie-

mannian metric g′′ = (g′′ab)1≤a,b≤q on a tubular neighborhood N of M in Rq,

such that N is Riemannian fibered. They actually meant that if π : N →M

is a projection map, it suffices to construct an appropriate smooth inner

product in each space Rq(p) for all p ∈ M , for which we can translate that

tangent space to any point m ∈ N along the straight line segment (that is

contained in N) from p = π(m) to m. Following the arguments of Section 7

in [5], we find that the evolution equation (4.2), given in local coordinates is

satisfied by φ− Id if and only if W − W̃ , where W = ω ◦ φ and W̃ = ω ◦ Id

satisfies

d

dt
(W c − W̃ c) = ∆(W c − W̃ c) + πcab(W

a
i − W̃ a

i )(W b
j − W̃ b

j )g
ij

+
∂ωc

∂yk
gij(Γkij(h) − Γkij(g)), (4.3)

where (y1, . . . , yn) are the local coordinates on M . Moreover, since M is

compact, the projection π satisfies (see [5])

|πcab|k+1,α ≤ C,

on M and there are constants A1 and A2 so that

A1ds
2
0 ≤ ds2 ≤ A2ds

2
0,

where ds20 denotes the line element induced on M by the usual metric on

Rq. These estimates immediately imply that

|∂
kπcab
∂yk

W a
i W

b
j g

ij | ≤ C(k)e(φ),

where also e(φ) = g′′abW
a
i W

b
j g

ij , e(φ − Id) = g′′ab(W − W̃ )gij . Moreover, if

F̃ c = W c − W̃ c, then |∂kπc
ab

∂yk F̃ ai F̃
b
j g

ij | ≤ Ce(φ− Id).
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The evolution equation for e(φ − Id) (see for details [5] and [9]) is

d

dt
e(φ− Id) = ∆e(φ− Id) − 2|D2(φ− Id)|2

+ 2Rm(D(φ− Id),D(φ− Id),D(φ− Id),D(φ− Id))

− 1
τ
e(φ− Id) + gijhkl(φkj − Idkj )

[gpq(Γlpq(h) − Γlpq(g))]i (4.4)

where Rm(D(φ−Id),D(φ−Id),D(φ−Id),D(φ−Id)) = gikgjlRpqmnDi(φp−
Idp)Dj(φq − Idq)Dk(φm − Idm)Dl(φn − Idn) and |D2(φ − Id)|2 =

gikgjlhpqD
2
ij(φ

p − Idp)D2
kl(φ

q − Idq). Applying the Schwarz inequality for

quadratic forms and using the fact that 2
√
τ(gpq(Γlpq(h) − Γlpq(g)))i can be

made arbitrarily small by choosing s0 sufficiently big (e.g. smaller than
2ε

1000 ), the last term in inequality (4.4) can be estimated as

gijhkl(φkj − Idkj )[g
pq(Γlpq(h) − Γlpq(g))]i ≤

e(φ− Id)
1
2

2
√
τ

(2ε)/1000.

Factor of 1000 (that we can increase if necessary) is chosen so that after

multiplying ε
1000 by at most a polynomial expression in A (which will become

more apparent later in the proof of Proposition 4.1) can be made again much

smaller than ε. Therefore, for t ∈ [t0, t0 + δ) we have that

Claim 4.3. There exists C, small ε and sufficiently big s0 such that for all

t0 ≥ s0

1. e(φ − Id) < ε1,

2. E(φ − Id)(s) < ε1,

for all s belonging to a time interval starting at t0 at which φ exists, where

ε1 is a constant that can be made much smaller than ε.
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Proof. By using the interpolation inequality in (4.4), we get

d

dt
e(φ− Id) ≤ ∆e(φ− Id) +Cε4 − 1

τ
e(φ− Id) +

1
2τ
e(φ − Id) + C

ε2

10002

≤ ∆e(φ− Id) − 1
2τ
e(φ− Id) +

ε

1000
,

since we can start with ε as small as we want, in particular, we may choose

ε so that Cε4 +C ε2

10002 <
ε

1000 and increase s0 if necessary.

Let f(t) = maxM e(φ− Id)(t). Then

d

dt
f ≤ − 1

2τ
f +

ε

1000
,

d

dt
f ≤ − 1

2τ
(f − τε

500
).

If we choose s0 big enough, we may assume that f(t0) < τε
500Volh(M). If

f(t) ≥ τε
500Volh(M)) for some t > t0, then f(t) is non-increasing (because

d
dtf(t) ≤ 0 and since it starts as f ≤ τε

500Volh(M))), it will remain so forever

while φ exists. Denote by ε1 = τε
500 maxt Volg(t)(M).

E(φ− Id)(s) =
∫
U
e(φ− Id)(s)dVg(s) < ε1. (4.5)

�

By Claim 4.3, e(W − W̃ ) can be made much smaller than ε whenever

φ is defined (if t0 is big enough and ε is small enough). The conditions

|F |W 2,N < ε and |F |k,α < ε̃ actually mean that for F̃ , we make an assumption

that |F̃ |W 2,N < ε and |F̃ |k,α < ε̃, for t ∈ [t0, t0 + δ) (these ε and ε̃ can be

slightly different from those for F ). In order to finish the proof of Proposition

4.1, it is enough to show that |F̃ |k,α < ε̃ continues to hold past time t0 + δ,

for t0 big enough. From now on, we will consider a globally defined evolution

equation

d

dt
(F̃ c) = ∆F̃ c + πcabF̃

a
i F̃

b
j g

ij +
∂ωc

∂yk
gij(Γkij(h) − Γkij(g)), (4.6)
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Step 4.4.
∫
M |F̃ c|2dVg(t) and

∫ t0+δ
t0

∫
M |∇F̃ c|2dVg(t) can be made much

smaller than ε, for all t ∈ [t0, t0 + δ) and for all t0 big enough.

Multiply the equation (4.6) by F̃ c and integrate it over M against the

metric g(t).

1
2
d

dt

∫
(F̃ c)2dVg(t) <

∫
M

(F̃ c)2(
n

2τ
−R)dVg(t) −

∫
M

|∇F̃ c|2dg(t)

+ ε1

∫
M

|F̃ c|dVg(t)

+C

(∫
M
e(F̃ )2dVg(t)

)1/2 (∫
M

(F̃ c)2dVg(t)

)1/2

≤ ε1ε−
∫
M

|∇F̃ c|2 + ε1[
∫
M

|F̃ c|dVg(t)]

+Cεε1

∫
M

(F̃ c)2dVg(t)

(4.7)

since ∫
M
F̃ c
∂ωc

∂yl
gij(Γ(hlij − Γ(g)lij)dVg(t) ≤ ε1

∫
M

|F̃ c|dVg(t),

∫
M
F̃ cgijπcabF̃

a
i F̃

b
j ≤ C(

∫
M
e(F̃ )2)1/2(

∫
M

(F̃ c)2)1/2

< Cεε1[
∫

(F̃ c)2)]1/2.

In the above estimates, we have used the energy estimates (4.5), the fact that

g(t) → h as t→ ∞ uniformly on M and that |F̃ |W 2,N < ε for t ∈ [t0, t0 + δ)

(which implies |F̃ |Ck,α < ε̃ for sufficiently big N). For those reasons, ε1 << ε

is a constant that can be made much smaller than ε, by taking ε small and

s0 big. Integrate (4.7) in t.

1
2

sup
t∈[t0,t0+δ)

∫
(F̃ c)2(t)dVg(t) + sup

t∈[t0,t0+δ)

∫ t

t0

∫
M

|∇F̃ c|2dVg(t)

≤
∫

1
2
(F̃ c)2(t0)dVh +CAεε1.
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Since for big t0 the first integral on the right-hand side of the previous

inequality can be made much smaller than ε, it follows that for big t0 and

small ε,

sup
t∈[t0,t0+δ)

∫
M

(F̃ c)2(t)dVg(t) < ε̃,

sup
t∈[t0,t0+δ)

∫
M

|∇F̃ c|2dVg(t) < ε̃,

for some constant ε̃ << ε and these estimates depend on A.

Step 4.5. supt∈[t0,t0+δ)

∫ t
t0

∫
M | ddt F̃ c|2dVg(t) and supt∈[t0,t0+δ)

∫ t
t0

∫
M |∇2F̃ c|2

dVg(t) can be made much smaller than ε for big enough s0 which depends on

A and on the rate of convergence of g(t) to h, for small enough ε.

d
dt F̃

c = ∆F̃ c + Hc, where Hc = ∂ωc

∂yl
gij(Γ(h)lij − Γ(g)lij) + gijπcabF̃

a
i F̃

b
j .

Then,

(Hc)2 = (∆F̃ c)2 + (
d

dt
F̃ c)2 − 2∆F̃ c

d

dt
F̃ c. (4.8)

−
∫
M

d

dt
F̃ c∆F̃ c =

∫
M
gij∇i(

d

dt
F̃ c)∇jF̃

c (4.9)

=
1
2
d

dt

∫
M

|∇F̃ c|2 +
1
2

∫
M
gipgjq(−2Rpq +

1
τ
gpq)|∇F̃ c|2

− 1
2

∫
M

|∇F̃ c|2( n
2τ

−R).

∫
M

(∆F̃ c)2 =
∫
M

|∇2F̃ c|2 +
∫
M
gijgks∇jF̃

cRsjkp∇pF̃
c. (4.10)

Combining (4.8), (4.9) and (4.10), we get

∫
M

| d
dt
F̃ c|2 +

∫
M

|∇2F̃ c|2 +
d

dt

∫
M

|∇F̃ c|2

≤
∫
M

(Hc)2 + C

∫
M

|∇F̃ c|2dVg(t). (4.11)
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since ∫
M
gipgjq(2Rpq − 1

τ
gpq)|∇F̃ c|2 ≤ ε1

∫
|∇F̃ c|2,

∫
M
gijgks∇jF̃

cRsjkp∇pF̃
c ≤ C

∫
M

|∇F̃ c|2,

Notice also that

∫
M

(Hc)2dVg(t) ≤
∫
M
C(gij(Γlij(h) − Γlij(g)))

2dVg(t) + C

∫
M
e(F̃ )2dVg(t)

< ε1 +Cεε1, (4.12)

since e(F̃ ) < ε for t ∈ [t0, t0 +δ) and
∫
M e(F̃ )dVg(t) < ε1 by energy estimates

(4.5). We will sometimes use the same constant ε1 to denote any constant

that can be made much smaller than ε, (the estimates above are possible if

we start with ε small enough and increase s0 if necessary, depending on how

big A is). If we integrate (4.11) in t and use the above estimates, we get

∫
M

|∇F̃ c(t)|2dVg(t) +
∫ t

t0

∫
M

| d
dt
F̃ c|2 +

∫ t

t0

∫
M

|∇2F̃ c|2 (4.13)

≤
∫
M

|∇F̃ c(t0)|2dVg(t0) +
∫ t

t0

∫
M

(Hc)2 + C

∫ t

t0

∫
M

|∇F̃ c|2dVg(s)ds
≤ ε1,

because of Step 4.4, the fact that
∫
M |Hc|2 < ε1 for big t0 and the fact that

for big t0
∫
M |∇kF̃ |2(t0)dVg(t0) can be made very small.

Step 4.6. supt∈[t0,t0+δ)

∫
M | dds F̃ c|2,

∫ t
t0

∫
M |∇ d

dt F̃
c|2 can be made much

smaller than ε for big t0, for all t ∈ [t0, t0 + δ).

Let F̂ c = d
dt F̃

c. Then

d

dt
F̂ c = ∆F̂ c + gipgjq(2Rpq − 1

τ
gpq)∇i∇jF̃

c +
d

dt
Hc − gij

d

dt
Γkij∇kF̃

c.
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Multiply this equation by F̂ c and integrate it over M .

1
2
d

dt

∫
M

(F̂ c)2 − 1
2

∫
M

(F̂ c)2(
n

2τ
−R) = −

∫
M

|∇F̂ c|2

+
∫
M
gipgjq(2Rpq − 1

τ
gpq)∇i∇jF̃

cF̂ c

+
∫
M
F̂ c

d

dt
Hc −

∫
M
gij

d

dt
Γkij∇kF̃

cF̂ c.

Integrate it in t to get

1
2

∫
M

(F̂ c(t))2 +
∫ t

t0

∫
M

|∇F̂ c|2 ≤ 1
2

∫
M

(F̂ c(t0))2 +
1
2

∫ t

t0

∫
M

(F̂ c)2
( n

2τ
−R

)

+ ε1

(∫ t

t0

∫
|∇2F̃ c|2

)1/2 (∫ t

t0

∫
|F̂ c|2

)1/2

+
(∫ t

t0

∫
M

(F̂ c)2
)1/2 (∫ t

t0

∫
M

d

dt
Hc)2

)1/2

+ C

(∫ t

t0

∫
M

|∇F̃ c|2
)1/2 (∫ t

t0

∫
M

(F̂ c)2
)1/2

. (4.14)

Notice that∫ t

t0

∫
M

(
d

dt
Hc

)2

≤ C

(∫ t

t0

∫
M

(
d

dt

(
∂ωc

∂yl
gij

)(
Γ(h)lij − Γ(g)lij

)))2

+
∫ t

t0

∫
M

((
d

dt
gij

)
πcabF̃

a
i F̃

b
j

)2

(4.15)

+
∫ t

t0

∫
M

(
gijπcab

(
d

dt
F̃ ai

)
F̃ bj

)2

, (4.16)

where ∫ t

t0

∫
M

(
d

dt

(
gij
∂ωc

∂yl

(
Γ(h)lij − Γ(g)lij

)))2

< ε1,

∫ t

t0

∫
M

((
d

dt
gij

)
πcabF̃

a
i F̃

b
j

)2

≤ ε1,

if t0 is big enough, since g(t) → h uniformly on M and d
dtg

ij = gpigqj(2Rpq−
1
τ gpq), and

∫ t

t0

∫
M

(
gijπcab

(
d

dt
F̃ ai

)
F̃ bj

)2

≤ Cε

∫ t

t0

∫
M

|∇F̂ c|2 < 1
2

∫ t

t0

∫
M

|∇F̂ c|2,
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if we choose ε small enough, such that Cε < 1
2 , since |∇jF̃ | < ε for t ∈

[t0, t0 + δ).

∫
M

|F̂ c|2dVg(t) ≤ C

(∫ t

t0

∫
M

|∇2F̃ c|2 + C

∫ t0+δ

t0

∫
M

|∇F̃ c|2 + ε1

)
≤ C(ε1+ε1),

by Step 4.5. The assertion of Step 4.6 follows now immediately from (4.14).

From the estimate (4.15), we can now get (using the estimates of Steps

4.4, 4.5 and 4.6) that
∫ t
t0

∫
U ( ddtH

c)2 can be much smaller than ε. Consider

the equation
d

dt
F̂ c = ∆F̂ c + Ĥc, (4.17)

where F̂ c = d
dt F̃

c and

Ĥc = gipgjq
(

2Rpq − 1
τ
gpq

)
∇i∇jF̃

c +
d

dt
Hc − gij∇kF̃

c d

dt
(Γkij)

. Since g(t) → h, where Ric(h) = 1
2τ h, by using the previous estimates, we

can easily see that
∫ t
t0

∫
U (Ĥc)2dVg(s)ds can be made much smaller than ε. In

the same manner as we have obtained the estimates in step 4.5 for F̃ c, we

can get the following estimates for F̂ c = d
dt F̃

c by considering the evolution

equation (4.17).

sup
t∈[t0,t0+δ)

∫
U
|∇ d

dt
F̃ c|2,

∫ t0+δ

t0

∫
U
|∇2 d

dt
F̃ c|2,

∫ t0+δ

t0

∫
U
(
d2

dt2
F̃ c)2,

can be made much smaller than ε for big t0.

We have that ∆F̃ c = d
dt F̃

c−Hc where W 1,2 norm of d
dt F̃

c and L2 norm

of Hc can be made much smaller than ε. By elliptic regularity theory, we

can get that W 2,2 norm of F̃ c can be made much smaller than ε (since it

can be estimated in terms of W 1,2 norm of d
dt F̃

c and L2 norm of Hc). Using

that and the fact that |F̃ |1,α,g < ε notice that
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∫
M

|∇Hc|2 < C(ε1 +
∫
M
grs(∇r(gijπcab))F̃

a
i F̃

b
j )(∇sg

i′j′πc
′
a′b′F̃

a′
i′ F̃

b′
j′ )

+
∫
grs(gijπcab∇rF̃

a
i F̃

b
j )(g

i′j′πc
′
a′b′∇sF̃

a′
i′ F̃

b′
j′ )

< C(ε1 + ε
∑
a

∫
M

|∇F̃ a|2 + ε
∑
b

∫
M

|∇2F̃ b|2)

< ε̃,

for some small constant ε̃, that can be assumed to be much smaller than

ε, since W 2,2 norm of F̃ c can be made much smaller than ε. By elliptic

regularity theory this implies that W 3,2 norm of F̃ c can be made much

smaller than ε for t0 very big.

We can continue our proof by studying the equation d
dt F̂

c = ∆F̂ c + Ĥc.

|F̃ c|2,α < ε for t ∈ [t0, t0 + δ). By a standard parabolic regularity we can

get the higher order estimates of F̃ c, by constants that are comparable to

ε. Therefore, by the similar analysis as above, we can get that W 3,2 norms

of F̂ c can be made much smaller than ε, since from the estimates that we

have got till this point, we can again easily get that W 1,2 norm of Ĥc can

be made much smaller than ε. Consider again the equation

∆F̃ c =
d

dt
F̃ c −Hc. (4.18)

We know that W 3,2 norm of d
dt F̃

c and W 3,2 norms of F̃ c can be made

much smaller than ε. Let’s check that W 3,2 norm of Hc can be made much

smaller than ε as well. In order for it to be true, it is enough to check that∫
M |∇3(gijπcabF̃

a
i F̃

b
j )|2 can be made much smaller than ε.∫

|∇3(gijπcabF̃
a
i F̃

b
j )|2 ≤ C(ε

∫
M

|∇F̃ |2

+C
∑
a,b

∫
|∇4F̃ a|2|∇F̃ b|2

+C
∑
a,b

∫
M

|∇3F̃ a|2|∇2F̃ b|2)

< C(ε1 + Cεε1 + ε21) < ε̃,
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since |F̃ |W 2,N ,g(t) < ε for all t ∈ [t0, t0 + δ) and all t0 ≥ s0. From here, again

by elliptic regularity theory applied to equation (4.18), it follows that W 5,2

norm of F̃ c can be made much smaller than ε.

We can continue the proof in a similar manner as above, by taking the

higher order derivatives of our original equation ∆F̃ c = d
dt F̃

c − Hc in t,

using the estimates that we get on the way and then go backward to our

original equation to improve a regularity of F̃ c. As a result, we can get

(performing the previously described procedure sufficiently many times) that

|F̃ |WN,2,g(t) < ε continues to hold past time t0 + δ. �

So far, we have proved that for every A > 0 and an integer k there exists
ε0 = ε0(A, k) such that for every ε < ε0 we can find s0 = s0(A, ε, k), so that
∀ t0 ≥ s0 there exists a solution of

d

dt
φ(t) = ∆g(t),hφ(t) (4.19)

φ(t0) = φt0 ,

for all t ∈ [t0, t0 +A] and |φ− Id|k,α < ε.
We want to show that these maps φ(t) : M → M are actually dif-

feomorphisms which will imply that we have constructed an 1- parameter
family of gauges such that for ḡ(t) = (φ(t)∗)−1g(t) the linearization of the
Ricci–DeTurck flow

d

dt
ḡ = −2R̄ij +

1
τ
ḡij + ∇iWj + ∇jWi,

with ḡ(t0) = (φ−1
t0 )∗g(t0) is strictly parabolic (Wj = ḡjkḡ

pq(Γkpq(ḡ)−Γ(h)kpq)).

Corollary 4.7. Adopt the notation from Proposition 4.1. φ(t) are diffeo-

morphisms for all t ∈ [t0, t0 +A] and all t0 ≥ s0.

Proof. Fix any t0 ≥ s0. Consider the equation

d

dt
g̃ij = −2R̃ij +

1
τ
g̃ij + ∇iV

j + ∇jV
i, (4.20)

g̃(t0) = (φ−1
t0 )∗g(t0),
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where V k = g̃pq(Γkpq(g̃) − Γkpq(h)). This is a strictly parabolic system of

equations and therefore, there exists some δ > 0 so that a solution g̃ exists

for all times t ∈ [t0, t0 + δ). On the other hand, look at the system

d

dt
ψ(t) = −V ◦ ψ(t), (4.21)

ψ(t0) = φt0 .

Vector fields V (t) are defined for t ∈ [t0, t0 + δ) and therefore, the system

(4.21) has a solution ψ(t) for all those times. It is easy to show (a classical

result) that all ψ(t) are diffeomorphisms for t ∈ [t0, t0 + δ). The simple

computation (due to the fact that g(t) is a solution of the Ricci flow equation)

shows that
d

dt
ψ(t) = ∆g(t),hψ(t),

with ψ(t0) = φt0 . Because of the uniqueness of a harmonic map flow with

the same initial data (we know that our solutions are smooth and uniformly

bounded, so the uniqueness follows by the arguments of Eells and Sampson

in [5]), we have that ψ(t) = φ(t) for all t ∈ [t0, t0 + δ). This means φ(t) is a

diffeomorphism for t ∈ [t0, t0 + δ) and g̃(t) = (φ(t)−1)∗g(t). We know that

for all t ∈ [t0, t0 +A], for t0 sufficiently big, we have that |φ(t)− Id|k,α,h < ε.

Therefore, |φ−1 − Id|k,α can be made small which implies that |g̃(t) − g(t)|
can be made very small, comparable to ε, for all t ∈ [t0, t0 + δ). We want to

extend a solution g̃(t) of (4.20) all the way up to t0 +A. Since |g̃(t)−h| < ε̃

and since our flow (4.20) is strictly parabolic, there exists t1 = t1(h, ε̃) so that

for every t ∈ [t0, t0 + δ), a solution to (4.20) exists for all times s ∈ [t, t+ t1).

That means, we can extend our solution past time t0+δ. Since our estimates

on |g̃(t)−h| for those times for which a solution g̃(t) exists are independent

of δ ≤ A, we can easily extend our solution all the way up to t0 + A, with

|g̃(t)−h| staying very small (comparable to ε) for all t ∈ [t0, t0+A]. Existence

of g̃(t) for t ∈ [t0, t0 +A] gives that φ(t) stays a diffeomorphism for all times

up to t0 +A, because it solves the equation (4.21). �



330 Natasa Sesum

4.2. The integrable case.

The proofs in this subsection are motivated by those in [3], where Cheeger
and Tian have considered the uniqueness problem of tangent cones under
the assumption of integrability of one of the tangent cones and under some
curvature and volume bounds.

Remark 4.8. So far, we have proved that if a limit h is an Einstein metric

(this assumption is not essential and will be removed later, it only stands

for techical simplicity) then for every A > 0 and an integer k there ex-

ists ε0 = ε0(A, k) such that for every ε ≤ ε0 there exists s0 = s0(ε,A, k)

with the property that for every t0 ≥ s0 there is an 1-parameter family of

diffeomorphisms φ(t) so that

1. φ−1 solves a harmonic map flow equation

d

dt
φ−1 = ∆g,hφ

−1,

φ−1(t0) = φt0 ,

where δφ∗t0h(g(t0)) = 0, for t ∈ [t0, t0 +A],

2. g̃ = φ∗g solves strictly parabolic equation on [t0, t0 +A]

d

dt
g̃ = −2Ric(g̃) +

1
τ
g̃ + ∇iVj + ∇jVi,

where V i = g̃pq(Γipq(g̃)−Γipq(h)). We will say that g̃ is in a standard

form around h. We will denote by Ph0(g̃) = ∇iVj + ∇jVi.

3. |φ− Id|k,α < ε.

4. |g̃ − h|k,α < ε.

From now on, we will simply write φg instead of φ∗g. By the assumptions
of Theorem 1.1 there exists a limit soliton, say h(t) which is integrable.
There is a sequence ti such that g(ti + t) → h(t) as i→ ∞ and

Rij + ∇i∇jf − 1
2τ
hij(t) = 0,
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for some function f . From before, we know that f(t) is a minimizer for W
with respect to a metric h(t), for every t. Let ψ(t) be 1-parameter family
of diffeomorphisms induced by a vector field −∇f . Then h(t) = ψ∗(t)h0,
where h0 = h(0). Since h0 = (ψ−1)∗h(t), it satisfies the equation

0 =
d

dt
h0 = −2Ric(h0) +

1
τ
h0 − Lψ∗ d

dt
ψ−1h0, (4.22)

From ψ ◦ ψ−1 = Id, by taking a time derivative, we see that ψ∗ d
dtψ

−1 +
ψ∗L d

dt
ψψ

−1 = 0 and since ψ is a diffeomorphism, we get that

d

dt
ψ−1 = −L d

dt
ψψ

−1 = L∇f(ψ)ψ
−1. (4.23)

Since {f(t)}0≤t<∞ are the minimizers for W, there are uniform Ck+2,α es-
timates on f(t). Since d

dtψ = −∇f(ψ), there are uniform Ck+1,α bounds
on ψ, for t ∈ [0, B]. This together with (4.23) yields |ψ−1|k,α ≤ C(B), for
t ∈ [0, B]. Let g̃(t) = ψ−1g(t). Then g̃(t) satisfies the equation

d

dt
g̃ = −2Ric(g̃) +

1
τ
g̃ − Lψ∗ d

dt
ψ−1 g̃,

and

|g̃(ti + t) − h0|k,α ≤ |ψ−1||g(ti + t) − h(t)| ≤ C(B)|g(ti + t) − h(t)| → 0,

when i→ ∞, uniformly on M × [0, B] (that implies g̃(ti+ t) → h0 uniformly
on compact subsets of M×[0,∞)). The proof of Proposition 4.1, after minor
modifications can be used to get the following result that tell us how to find
an appropriate gauge in the case of convergence toward the solitons instead
of Einstein metrics.

Theorem 4.9. For every L > 0 and an integer k, there exists ε0 = ε0(L, k)

such that for every ε < ε0, we can find i0 = i0(L, ε, k), so that whenever

i ≥ i0 there is a gauge φ(t) on M × [ti, ti +L] such that φg is in a standard

form around h0 (see Remark 4.11 below), |φg̃−h0|k,α < ε and |φ−Id|k,α < ε.

Definition 4.10. A limit soliton h(0) is said to be integrable if for every

solution a of a linearized deformation equation

d

du
(Ricgu + Lψ∗ d

dt
ψ−1gu − 1

τ
(gu)ij)|u=0 = 0,
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with g0 = h0 there exists a path of solitons hu, satisfying the soliton equation

Richu + Lψ∗ d
dt
ψ−1hu − 1

τ
(hu)ij = 0, (4.24)

with u ∈ (−ε, ε) and h0 = h(0) such that

d

du
|u=0hu = a.

Remark 4.11. In the context of Theorem 1.1, to say that ḡ(t) is in a stan-

dard form around h0 means that ḡ satisfies the following equation

d

dt
ḡ = −2Ric(ḡ) +

1
τ
ḡ + Ph0(ḡ) − Lψ∗ d

dt
ψ−1 ḡ, (4.25)

where Ph0(g̃) = ∇iVj +∇jVi and V k = g̃pq(Γkpq(g̃)−Γkpq(h0)). We will write

h0 for h(0) in a further discussion.

Choose i0, φ as in Theorem 4.9 with 3L instead of L. Denote by ||·||a,b =∫ b
a | · |, where | · | is just the L2 norm. Let π denote an orthogonal projection

on the subspace ker(− d
dt + ∆ + 1

τ + U)M×[ti0 ,ti0+L], with respect to norm
|| · ||ti0 ,ti0+L, where U is a linear first-order expression that comes out after
linearizing the equation (4.25). Let g1 be a suitable chosen soliton. Denote
by k = φg − g1 and put πk = (πk)↑ + (πk)↓ + (πk)0. The integrability
assumption on h0 enters when we choose g1 so that (πk)0 = 0. Look at the
explanation for (·)↑, (·)↓ and (·)0, just after the equation (4.27) below.

Lemma 4.12. Let h0 be an integrable limit soliton. Then if τ < τ(n,L),

for any cylinder M × [ti0 , ti0 +L] there is a soliton g1 satisfying Ph0(g1) = 0

and equation (4.24), and such that (πk)0 = 0. Moreover, if

sup
[ti0 ,ti0+L]

|φg(t) − h0| < τ,

then

||g1 − h0||ti0 ,ti0+L ≤ 2||π(φg(t) − h0)||ti0 ,ti0+L, (4.26)

where the left-hand side of estimate (4.26) is time independent.
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Proof. The proof of this lemma follows the proof of Lemma 5.56 in [3]. The

integrability assumption implies that the set of metrics g̃ satisfying

Ric(g̃) − 1
τ
g̃ + Lψ∗ d

dt
ψ−1 g̃ = 0,

Ph0(g̃) = 0,

has a natural smooth manifold structure near h0. Let V be a sufficiently

small Euclidean neighborhood of h0. The tangent space to V at h0 is natu-

rally identified with

K = {a ∈ ker(∆ +
1
τ

+ U)|DPh0a = 0}.

Define ψ : V → K by

ψ(g̃) =
∑
i

〈g̃, Bi〉Bi,

where Bi is an orthonormal basis for K with respect to a natural inner

product. ψ is a smooth map and the differential of ψ is the identity map.

We can use now the implicit function theorem and Lemma 4.13 to finish the

proof of the Lemma 4.12. �

The inequality (4.26) implies that |g1−h0| ≤ 2 sup[ti0 ,ti0+L] |π(φg(t)−h0|,
where | · | is just the usual L2 norm. The linearization of the right-hand side
of the equation d

dtφg = Q(φg), satisfied by φg, where φ is a gauge chosen
as in Theorem 4.9 is DQ(k) = ∆k + 1

τ k + U , where U is a linear first-order
expression in k and a Laplacian and U are with respect to metric φg. Let
F be a solution of

d

dt
F = LF, (4.27)

where L = ∆ + 1
τ + U and the Laplacian and U are this time given with

a respect to a fixed metric (in our case, we will take metric h0). Let {λk}
be the set of eigenvalues of L. We can write F = F↑ + F↓ + F0, where
F↑(t) =

∑
λk<0 ake

−λkt, F↓(t) =
∑

λk>0 ake
−λkt, and F0 is a projection of F

to a kernel of L.
The basic parabolic estimates (for example similarly as in [15] and [3])

yield the following.
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Lemma 4.13. There exists τ > 0 such that for any solution η of (4.27)

with |g1 − h0|k+2,α ≤ τ , we have that

sup
(t0,t0+L)

|η|k,α ≤ C sup
(t0,t0+L)

|η|,

where the first norm is Ck,α norm and the last norm is L2 norm.

Lemma 4.14. There exists α > 1 such that

sup
[L,2L]

|F↑| ≥ α sup
[0,L]

|F↑|, (4.28)

sup
[L,2L]

|F↓| ≤ α−1 sup
[0,L]

|F↓|. (4.29)

The norms considered above are standard L2 norms.

Proof. We will prove only (4.28), since the proof of (4.29) is similar. Let

δ = min{|λk| �= 0} > 0.

sup
[L,2L]

|F↑| − α sup
[0,L]

|F↑| = sup
[0,L]

∑
λk<0

a2
ke

−2λkte−2λkL − α sup
[0,L]

∑
λk<0

a2
ke

−2λkt

≥ sup
[0,L]

∑
λk<0

a2
ke

−2λkt(e2δL − α),

which is positive, if e2δL > α. We can choose α = eδL > 1. �

Lemma 4.15. There exists β < α such that if

sup
[L,2L]

|F | ≥ β sup
[0,L]

|F |, (4.30)

then

sup
[2L,3L]

|F | ≥ β sup
[L,2L]

|F |, (4.31)

and if

sup
[2L,3L]

|F | ≤ β−1 sup
[L,2L]

|F |, (4.32)
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then

sup
[L,2L]

|F | ≤ β−1 sup
[0,L]

|F |. (4.33)

Moreover, if F0 = 0 at least one of (4.31), (4.33) holds.

The proof of Lemma 4.15 is almost the same to the proof of analogous lemma
(5.31) in [3]. We can choose β to be of order e

Lδ
4 .

Let η = φg− g1, where φ is chosen as in Theorem 4.9 and g1 is a soliton
as in Lemma 4.12 which does not depend on t for a considered time interval
of length L.

Lemma 4.16.

d

dt
(φg−g1) = ∆h0(φg−g1)+

1
τ
(φg−g1)+F (φg, h0, g1)+U(φg−g1) (4.34)

where |F (φg, h, g1)|k,α ≤ C(|g1 − h0| + |η|k,α)|∇2η|k−2,α + C(|∇(g1 −
h0)|k−1,α + |∇η|k−1,α)|∇η|k−1,α and U is a first order linear expression in

φg − g1.

Proof. Since both φg and g1 are in a standard form around h0 (recall that

Ph0(g1) = 0), by using a formula for linearization of a second order operator

−2Ric(φg) + Ph0(φg), we get

d

dt
(φg − g1) = (−2Ric(φg) + Ph0(φg) − Lφ∗ψ∗ d

dt
ψ−1φg) − (4.35)

−(−2Ric(g1) + Ph0(g1) − Lψ∗ d
dt
ψg1) +

1
τ
(φg − g1)

= ∆φg(φg − g1) +
1
τ
(φg − g1) + U(φg − g1) + F̃ (φg, g1),

where |F̃ (φg, g1)|k,α ≤ C(|η|k,α|∇2η|k−2,α + |∇η|2k,α), by a similar computa-

tion to a computation in [3]. Furthermore, ∆φgη = ∆h0η+(∆φg−∆h0)η and

since |φg − h0|k,α ≤ C(|η|k,α + |g1 − h0|k,α), we have that |(∆φg − ∆h0)η| ≤
C(|η|k,α + |g1 − h0|k,α)|∇2η|k,α. The Lemma 4.16 now follows. �

We assume that |g1 − h0|k,α < ε. Let k be a solution to (4.34). Then,
we have the following Proposition.
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Proposition 4.17. There exists ε0 > 0, depending on the uniform bounds

on the geometries g(t), such that if ε < ε0, then if

sup
[L,2L]

|k| ≥ β sup
[0,L]

|k|, (4.36)

then

sup
[2L,3L]

|k| ≥ β sup
[L,2L]

|k|, (4.37)

and if

sup
[2L,3L]

|k| ≤ β−1 sup
[L,2L]

|k|, (4.38)

then

sup
[L,2L]

|k| ≤ β−1 sup
[0,L]

|k|, (4.39)

Moreover, if (πk)0 = 0, at least one of (4.37), (4.39) holds.

Proof. Assume there exist a sequence of gauges φi and constants τi → 0, such

that |ηi|k,α = |φig − h|k,α ≤ τi → 0, but for which none of the assertions in

Proposition 4.17 holds. Let ψi = ηi

sup[L,2L] |ηi| . Then in view of Lemma 4.13,

from standard compactness results (as in [3]), we get that for a subsequence

ψi
Ck,α→ ψ and

d

dt
ψ = ∆hψ + U(ψ) +

1
τ
ψ,

where ψ has a property that contradicts Lemma 4.15. Recall that β is of

order e
εL
4 . �

Proof of Theorem 1.1. We will adopt the notation from above. Take some

L > 0 big enough (we will see later how big we want to make it) and choose

ε0 > 0 as in Theorem 4.9 so that the Theorem holds for ε0, and 3L. For

every ε < ε0 there exists i0 such that for every i ≥ i0 there exists a gauge φ so

that φ satisfies all the conditions in Theorem 4.9, that is φg is in a standard
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form around h0, |φg−h0|k,α < ε and | ddtφg| < ε̃ on M × [ti, ti+ 3L], where ε̃

is comparable to ε. For each ti pick up the largest possible L′ (we will omit

emphasizing a dependence of L′ on i and we will call it just L′, since it is

irrelevant for further discussion) such that φ is defined on M × [ti, ti + L′),

φg is in a standard form around h and |φg−h|k,α < ε and min[ti,ti+3L] |φg−
h|k,α < ε

1000 . Divide [ti, ti+L′) into the subintervals of length L and assume

that N is the largest number such that [ti+(N−1)L, ti+NL] ⊂ [ti, ti+L′).

Notice that for L chosen above, from the proof of Theorem 4.9, all the es-

timates that we have got on |φ−Id|k,α in the previous subsection depend on a

polynomial in L (call it q(L)), whose coefficients depend only on a dimension,

an integer k and the uniform bounds on geometries g(t). By the estimates

established in Proposition 4.1, we can increase i0 if necessary, so that

1. For every i ≥ i0, we can find a gauge on M × [ti, ti + 3L], such that

sup[ti,ti+3L] |φg(t) − h0|k,α < ε
1000eLδ/4 .

2. If the initial data φ(s) is such that |φ(s) − Id|k,α < ε
eLδ/8 and

|φ(s)∗g(s)−h0|k,α < ε
eLδ/8 , where s ∈ [ti, ti+L′], for i ≥ i0, then φ can

be extended to interval [s, s+ 3L] such that sup[s,s+3L] |φg − h0|k,α <
ε

100p(L) (we might need increase i0 for this to hold). Polynomial p(L)

can be any polynomial with leading coefficient 1 and with a degree

that is e.g. one more than a degree of q(L).

3. If the initial data is such that |φ(s) − Id|k,α < ε
p(L) and |φ(s)∗g(s) −

h0|k,α < ε
p(L) , where s ∈ [ti, ti+L′], for i ≥ i0, then φ can be extended

on interval [s, s+ 3L] such that sup[s,s+3L] |φg − h0|k,α < ε.

We want to show that there exists i (for sufficiently big L, so that, above

holds) such that a corresponding L′ = ∞. Assume that for all i ≥ i0 and all

ε > 0, L′ <∞. Denote by Ij = [ti+ jL, ti + jL+L]. Assume that ε is small

enough so that we can apply Lemma 4.12, that is for every j there exists a

soliton gj such that (π(φg − gj))0 = 0 on Ij and therefore by Proposition

4.17, φg− gj either satisfies a growth condition ((4.36) ⇒ (4.37)) or a decay
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condition ((4.38) ⇒ (4.39)). Moreover, |gj − h0| ≤ 2 supIj |π(φg − h0)| ≤
C supIj |φg − h0|k,α. We need to consider two cases.

Case 4.18. Assume that for all i0 and all i ≥ i0, where i0 = i0(L) is chosen

as in Theorem 4.9 for L big enough (so that (1), (2) and (3) hold), and for

all the intervals Ij (that are defined with respect to ti; we want to omit double

indices) for which we have supIj |φg − h0|k,α ≤ ε
100p(L) , φg − gj satisfies a

decay condition on Ij (recall that L2 norms are considered in a growth and

a decay condition).

By using Proposition 4.17 inductively, we get that

sup
Il

|φg − gj| ≤ 1
βl

sup
I1

|φg − gj |,

for all l ≤ j. Moreover, supI1 |φg − gj | ≤ supI1 |φg − h0| + |gj − h0| ≤
supI1 |φg − h0| + 2 supIj |φg − h0| < 3ε

100p(L) , which yields

sup
Il

|φg − gj | ≤ 1
βl

3ε
100p(L)

,

By Lemma 4.13, we may assume that supIl |φg − gj|k+2,α ≤ ε
βl . Whenever,

we increase L (the necessity for L being increased will depend only on the

uniform estimates), we can choose an appropriate ε0 as in Theorem 4.9

and take any ε < ε0. Each time, we do that we might have to increase i0
(depending on ε < ε0). Therefore, on M × Il, for l ≤ j, we have

| d
dt
φg|k,α = | d

dt
(φg − gj)|k,α

= (−2Ric(φg) + 2Ric(gj)) +
1
τ
(φg − gj) + (Ph0(φg) − Ph0(gj))

+Lψ∗ d
dt
ψ−1(gj − φg)

≤ C sup
Il

|φg − gj |k+2,α <
Cε

βl
.
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For every l ≤ j, since d
dtφg = d

dt(φg − h0), we have that

sup
Il

|φg − h0|k,α ≤ 2L sup
Il∪Il−1

| d
dt
φg|k,α + sup

Il−1

|φg − h0|k,α

≤ 2LC
ε

βl−1
+ 2LC

ε

βl−2
+ · · · + 2LC

ε

β
+ sup

I2

|φg − h0|k,α

≤ sup
I2

|φg − h0|k,α +
2LCε
β − 1

,

which can be made smaller than ε
eLδ/8 for L chosen big enough at the be-

ginning. By Condition 2, for big values of i, we can extend φ on Ij+1 so

that supIj+1
|φg − h0| < ε

100p(L) and it has to coincide with our previously

constructed φ on Ij+1. We can continue a described procedure by looking

now at intervals Ij and Ij+1 replaced by intervals Ij+1 and Ij+2 respectively.

If we repeat this sufficiently many times, we will reach the interval IN−1

with

sup
IN−1

|φg − h0|k,α < ε

100p(L)
.

By Condition 3, we will now be able to extend φ (for sufficiently big values of

i) to interval [ti + (N − 1), ti + (N + 1)L], with sup[ti+(N−1),ti+(N+1)L] |φg−
h0| < ε holding. Since (N + 1)L > L′, this estimate contradicts a max-

imality of L′ with properties. Therefore, either there exists i such that a

corresponding L′ = ∞, or we have a following case holding.

Case 4.19. There are some L, i and j for which supIj |φg−h0|k,α < ε
100p(L) ,

and φg−h0 satisfies a growth condition on Ij (Ij is defined with respect to ti).

By using Proposition 4.17 inductively, we would have that
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sup
IN−1

|φg − gj| <
1
β

sup
IN

|φg − gj |

≤ 1
β

(sup
IN

|φg − h0| + |gj − h0|)

≤ 1
β

(sup
IN

|φg − h0| + 2 sup
Ij

|φg − h0|)

<
3ε
β
.

Moreover, if we use Lemma 4.13, together with the estimate

sup
IN−1

|φg − h0| ≤ sup
IN−1

|φg − gj | + |gj − h0|

≤ sup
IN−1

|φg − gj | + 2 sup
Ij

|φg − h0|

<
3ε
β

+
ε

100p(L)
,

which can be made smaller than ε
p(L) , by Condition 3 we can extend φ to an

interval [ti+(N−1)L, ti+(N+1)L] (if i is big enough), with |φg−h0|k,α < ε

holding. We again get a contradiction as in the previous case if we assume

L′ <∞ for all i.

Therefore, there exists i0 such that a gauge φ can be constructed on

M×[ti0 , ti0+L
′), satisfying properties and such that a correspondingL′ = ∞.

Consider again Ij = [ti0 + jL, ti0 + jL+L] and the corresponding gj that are

found by Lemma 4.12, such that for kj = φg − gj , we have that (πkj)0 = 0

on M × Ij. Notice that a decay condition ((4.38 ⇒ (4.39)) holds for all j.

If there existed some j for which it were not true, by using Proposition 4.17

inductively and standard parabolic estimates (Lemma 4.13), we would find

that

ε > sup
[ti0+(N−1)L,ti0+NL]

|φg − gj | ≥ βN−j sup
Ij

|φg − gj|,

for all N and we would get a contradiction by letting N tend to infinity

(if supIj |φg − gj | = 0, our metric g(ti0 + jL) would be a soliton satisfying
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(4.22) and it would stay so for all later times which is not an interesting

case). This means, we have a decay for all times if we do not start with a

soliton.

After passing to a subsequence, we may assume that for some metric

g∞ that satisfies a soliton type equation limj→∞ |gjp − g∞|k,α′ = 0, where

α′ < α.

Claim 4.20. limp→∞ supIjp
|kjp |k,α = 0.

Proof. If it were not the case, there would exist a subsequence of jp (denote

it by the same symbol) such that φg− gjp would satisfy a growth condition,

that is

sup
[ti0+(N−1)L,ti0+NL]

|φg − gjp | ≥ β(N−jp) sup
Ijp

|φg − gjp |,

for all N , where β can be taken to be e
Lδ
4 and by taking N → ∞ we imme-

diately get a contradiction, since sup[ti0+(N−1)L,ti0+NL] |φg − gjp | < Cε. �

As in the proof of the claim above, we get that φg − gjp has to satisfy a

decay condition for all p. By Claim 4.20, by using Proposition 4.17 induc-

tively and by standard parabolic estimates (Lemma 4.13), we find that for

some c > 0,

|φg − g∞|k,α ≤ ce−
δ(t−ti0

)

4 ,

for t ∈ [ti0 + (N − 1)L, ti0 +NL] and for all N > 0, that is

|φg − g∞|k,α ≤ Ce−ct, (4.40)

for all t ≥ ti0 . (4.40) implies that |g(t) − φ−1g∞|C0 < Ce−ct. φ−1g∞ is a

soliton that moves by diffeomorphisms φ(t)−1 and therefore, is determined

by metric φ−1(ti0)g∞. Since h0 is a limit soliton of metrics g(ti), h0 and

φ−1(ti0)g∞ differ only by a diffeomorphism, that is ηφ−1(ti0)g∞ = h0 for

some diffeomorphism η. Let finally φ′ = ηφ−1(ti0)φ(t). Then,

|φ′g(t) − h0|k,α < Ce−ct,
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that is φ′g(t) converges to a soliton h0 exponentially as t → ∞. We know

that h(t) = ψ(t)h0 and therefore,

|ψφ′g(t) − h(t)|C0 ≤ Ce−ct.

This finishes the proof of Theorem 1.1. �
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