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Relative Differential Characters
MARK BRIGHTWELL AND PAUL TURNER

There are two natural candidates for the group of relative Cheeger—
Simons differential characters. The first directly extends the work
of Cheeger and Simons and the second extends the description
given by Hopkins and Singer of the Cheeger—Simons group as
the homology of a certain cochain complex. We discuss both ap-
proaches and relate the two relative groups.

1. Introduction.

Given a principal G-bundle with connection on a smooth manifold M, an
invariant polynomial gives rise to a Chern—-Weil form in the base. Lifting
this to the total space gives an exact form and the well known form of
Chern and Simons [4] has the property that its differential is this exact
form. If one happens to have a global section, one can pull this back to
the base space, but in general Chern—Simons forms live in the total space.
Cheeger and Simons [3] introduced the notion of a differential character as
a way of understanding Chern—Simons forms in terms of the base space.
These differential characters can be assembled into a group H k(M) which
contains both homotopical and geometrical information. One may also think
of differential characters as encoding how integral cycles and differential
forms with integral periods interact when viewed in real cohomology. When
k = 2, the Cheeger—Simons group classifies U(1)-bundles with connection
and when k = 3, it classifies U(1)-gerbes with connection (see for example
[2]). The latter makes Cheeger—Simons groups relevant to “stringy” topology
since a gerbe with connection can be interpreted as a line bundle over a free
loop space with parallel transport over surfaces. In order to incorporate open
strings into such a framework it is necessary to develop a relative theory.
In this paper, we study the notion of relative differential character associ-
ated to a pair of manifolds A and M together with a smooth map p: A — M.
There are two competing definitions for the relative group: the first a natural
extension of Cheeger and Simons’ work giving what we will call the relative
Cheeger—Simons group, the second following the more recent work of Hop-
kins and Singer defining the Cheeger—Simons group as the cohomology of a
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certain cochain complex, giving what we will call the relative Hopkins—Singer
group. The purpose of this paper is to clarify the relationship between these
two groups.

For compact smooth manifolds A and M and a smooth map p: A — M,
we give in Section 2 a natural definition of the group of relative differential
characters H* (p), which closely mirrors the original definition of Cheeger
and Simons. We show that this group can be described as the homology of
a cochain complex analogous to the description of (non-relative) Cheeger—
Simons characters by Hopkins and Singer [6]. The relative group fits into
certain short exact sequences as in the non-relative case. We end Section 2
with some examples. There is, on the other hand, another natural candidate
for a relative group if one adopts the Hopkins—Singer point of view from the
outset. In Section 3, we define the relative Hopkins-Singer group H*(p).
Unlike the relative Cheeger—Simons group this group fits into a long exact
sequence. Finally, in Section 4, we relate the relative Cheeger—Simons group
to the relative Hopkins—Singer group showing that the latter is a quotient
of a certain subgroup of the former.

2. Relative Cheeger—Simons groups.

We begin by briefly reviewing the definition of differential characters given in
[3] and provide a variant of the Hopkins—Singer description as the homology
of a certain cochain complex [6]. We then introduce the group of relative
differential characters, provide a description as the homology of a complex
and present three short exact sequences. Finally, in this section we give
some examples of relative differential characters. We now fix for the rest of
the paper a proper subring A of R.

Cheeger—Simons differential characters.

Let M be a compact closed smooth manifold. We denote by Cy M and Z3 M
the groups of smooth k-chains and k-cycles in M. We let QXM denote the
group of k-forms on M which can be viewed as a subgroup of C*(M;R) via
integration. We let Q]XM denote the subgroup of k-forms with A-periods,
noting also that such forms are closed. One important property that we shall
use many times is that a non-zero differential form can never take values
only in a proper subring. It follows that we can view QM as a subgroup of
C*(M;R/A) and we will make this identification implicitly throughout.
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The group of Cheeger—Simons differential characters of degree k > 1 is
defined as

H*(M) = {f € Hom(Zj,_1M,R/A) such that fod e Q" M}.

Cheeger and Simons index this group by k—1, but it is convenient to shift up
the dimension by 1 to be consistent with Hopkins and Singer. The example
one should have in mind is when k = 2, where a line bundle with connection
gives a differential character via its holonomy.

These groups sit in three exact sequences as follows.

0 — H"Y(M;R/A) — H* (M) — QKM — 0
0 — QM /M — HF(M) — H*(M;A) — 0
0 — H* ' (M;R)/r(H* 1 (M; A)) — H*(M) — RF(M; A) — 0,

where 7 is the natural map H*~1(M;A) — H*1(M;R) and
RM(M;A) = {(w,u) € QXM x HY(M; A) | [w] = r(u)}.

The closed differential form associated to the differential character is to
be thought of as a curvature form and the class in H¥(M;A) as a charac-
teristic class analogous to the first Chern-Class for U(1)-bundles.

We now turn to the description of Cheeger—Simons groups as the ho-
mology of a cochain complex following Hopkins and Singer. Consider the
cochain complex C*(M) defined by

CF(M) = C*(M,A) x C*1(M;R) x Qk M
with differential A: C*(M) — C*+1(M) given by
A(e,h,w) = (d¢c,w — ¢ — 6h,0).

This differs from the Hopkins—Singer approach in that we include only forms
with A-periods in the complex above. This allows us to obtain all Cheeger—
Simons groups as the homology of a single chain complex. Indeed, denoting
the subgroup of cocycles by Z¥(M), we can define a map ¢: Z¥(M) —
H*(M) by ¢(c, h,w) = hlz,  ar (here the tilde means mod A reduction)
and Hopkins and Singer show that ¢ induces an isomorphism
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Relative Cheeger—Simons groups.

Let A and M be compact smooth manifolds, possibly with boundary, and
p: A — M asmooth map. In order to define a relative version of Cheeger—
Simons, we find it convenient to consider the following chain complex:

Ck(p) = CM x Cp 1 A
with differential 0 : Ci(p) — Cr—_1(p) given by
(o, 7) = (0o + ps7, —OT).

We will denote the cycles and boundaries of this complex by Zi(p) and
By(p) respectively. For a general map p the homology of this complex is
the homology Hy(C,) of the mapping cone C,, while in the special case of
submanifold A C M with p the inclusion map we recover the usual relative
homology groups Hy (M, A).

The associated dual complex C*(p; G) = Hom(C,(p), G) with coefficient
group G has differential §(h,e) = (0h,p*h — de). In general, taking ho-
mology gives H k’(Cp; G) and when p is an inclusion this is isomorphic to
H¥(M, A; G). Notice the symbols 0 and ¢ are used both to denote the rel-
ative differentials and as the usual operators in the non-relative complexes.

We will also use the complex of pairs of differential forms

Q(p) =M x Q1A

with differential §(w,0) = (dw, p*w — df). The homology of this complex
gives the relative de Rham cohomology (see for instance [1]). As above in
the non-relative version, we can view QF(p) as a subgroup of C*(p; R/A) via
integration: for (w,8) € QF(p) set

(w,e)(a,T):/Uw+/Te

where (0,7) € Ck(p). For p the inclusion map, this induces the relative de
Rham isomorphism.

There is now an obvious definition to be made for the notion of relative
differential character.

Definition 2.1. Let p: A — M be a smooth map. The group of relative
Cheeger—Simons differential characters of degree k associated to the triple
(A, p, M) is defined as

H*(p) = {f € Hom(Z_;(p),R/A) such that f o @ € Q%(p)}.
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This definition has already appeared in [7] in the case p is an inclusion and
a close variant has also appeared in [5] for the restricted case of manifolds
with boundary. It is immediately seen that if we take A = (), we recover the
non-relative group ok (M) and we present two further examples at the end
of this section.

Associated to a differential character is a pair of differential forms and a
characteristic class in the cohomology of the mapping cone. We shall denote
by QX'H (p) < QF*+1(p) the subgroup of pairs (w, #) taking A values on relative
cycles and say that such pairs have relative A-periods. In fact, if p is the
inclusion, €} (p) consists of precisely those forms representing the image of
A-classes in relative real cohomology (via the de Rham isomorphism). In
particular, a pair with relative A-periods satisfies the following properties.

Lemma 2.2. If (w, ) has relative A-periods, then
1. §(w,0) =0 in the complex Q*(p) i.e. dw =0 and df = p*w.

2. w has A-periods.

Proof. For (1) let a € CxA. Then

[ ao) - /Mw - [ 0= 00w

Since (w,f) has relative A-periods and (p.a, —0a) is a relative cycle, the
right-hand side is in A. Recalling that a non-zero form never takes values
only in a proper subring, we conclude that df — p*w = 0. Showing dw = 0
is similar.

For (2), let o € Z;; M, then

/Uw:/aw—/OH:(w,H)(J,O)

and the right-hand side in an element of A since (w, #) has relative A-periods.
O

We now define two homomorphisms

o1+ H*(p) — Q4 (p),
Sy 2 H*(p) — HF(Cp; A).

Let f € I:Tk(p) Since R/A is divisible and Z_1(p) free, f can be extended to
amap Cy_1(p) = Cr_1M x Cy_2A — R, which we denote by the pair (h,e).
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From the definition of differential character, there exists a pair (w, ) € QF(p)
and pair (c,b) € C¥(p; A) such that

5(h7 6) = (wa 9) - (Ca b)
The above homomorphisms are defined by

01(f) = (w,0) d2(f) = [e, b].

To see that d; is well defined, observe that for a relative cycle (o, 7) € Zk(p),
we have,

(w,0)(o,7) = (6(h,e) + (¢, b))(0,7) = (c,b)(0,7) € A
and hence, (w, @) has relative A-periods. For do observe that
5(07 b) = (5((&),9) - (5(h‘7 6)) = 5(&),9) -0=0

since (w, ) is closed by Lemma 2.2. Moreover, ¢; and d2 are independent of
the choice of the extension (h,e) of f.

It would now be possible to determine the kernels of §; and Jo directly
and fit them into short exact sequences. We prefer to first describe the
relative Cheeger—Simons groups as the homology of a cochain complex along
the lines of the non-relative case described above. We can then easily deduce
the short exact sequences using this description.

Consider the complex

C*(p) = C*(p; A) x C* (g R) x Q4 (p)
with differential
A((c,b), (h,e), (w,0)) = (6(c,b), (w,8) — (c,b) — (h,e),0).

The last entry is in fact d(w,#), but this is zero since (w,6) € Q}(p)
and hence is closed. Let Z*(p) denote the group of k-cocycles in C*(p) and
define a map R R

p: Z%(p) — H"(p)

by

—_~

¢((¢c,b), (h,e), (w,0)) = (h,e) |Zk,1(p)

where, as above, the tilde denotes mod A reduction. Since we start with

e~ e~

a cocycle, we have §(h,e) = (w,0) — (¢,b) and so (h,e) o 0 = (w,0) which

shows (h,e)|z, ,(p is indeed a differential character.
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Theorem 2.3. The homomorphism ¢ defined above induces an isomor-
phism R
Hi,(C*(p)) = H*(p).

Proof. To show ¢ is surjective, let f : Zx_1(p) — R/A be a relative differ-
ential character. From the discussion of the maps ¢; and d5 above, we can
find pairs (h,e) € C¥~1(p;R), (c,b) € C*(p; A) and (w, 8) € QF (p) such that
0(c,b) =0 and 6(h,e) = (w,0) — (¢,b). In other words, ((c,b), (h,e), (w,8))
is a cocycle which maps to f under .

The proof will be completed by showing that Kerp = ImA.

Firstly, an element in the image of A has the form (§(c/,b), (w',0") —
(b)) = 8(I,€'),0) where ((¢,V), (I, ¢), (W', 6") € CF1(p). Since, («',8')
has relative A-periods and (¢/,b') is A-valued, this is clearly mapped to 0
under . Hence, ImA C Kerp.

—~

Now, suppose ((¢,b), (h,e), (w,0)) € Kerp. Then, (h, €)|Zk_1(M,A) =0,

—~——

so d(h,e) = 0. Since, (w,0) = (¢,b) + d(h,e), we have

—_~ —~

(w,0) = (¢,b) +(h,e) =0

as so (w,0) = 0. Using the splitting of the standard short exact sequence
relating cycles, chains and boundaries, we can extend the A-valued map
—(h,e)lz, () Zk—1(p) — A to a map Cj_1(p) — A. Denoting this exten-
sion by (¢, b'), we have

5(c, b)) = —=6(h,e) = (e,b) — (w,0) = (¢, b).

Finally, since —(c/,b') — (h,e) is zero on cycles, it is a real coboundary,
namely —(c’,b') — (h,e) = 6(h’, ') for some (h',¢’) € C*%(p;R). Hence ,

A((C,> b/)> (hlv 6/), 0) = (5(0/7 b/)> _(0/7 b/) - 5(h/> 6,)7 0) = ((C> b)> (hv 6)7 (wv 9))7

and so ((¢,b), (h,e), (w,0)) € ImA. Thus, Kerp C ImA which finishes the
proof. O

Using this description is now easy to fit the relative Cheeger—Simons
groups into three short exact sequences. Let r : H*(Cy; A) — H*(C,;R) be
the natural map induced by the inclusion A — R and set

R*(p, A) = {((w,0),u) € QX (p) x H*(Cp; A) | [w, 0] = r(u)}

where [w, 0] denotes the de Rham cohomology class.
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Theorem 2.4. The following sequences are exact.

H*1(CpR/A)

QF1(p) /2 (p)

~ (81,02)
_—

00— H*"1(Cy;R) /r(H*H(Cp; A)) — H"(p) RF(p; A) —=0

Proof. Consider the following short exact sequences of chain complexes.

0— C*(p; A) x C* (o R) — C*(p) — Qi(p) — 0
0— C*H(piR) x Qi(p) — C*(p) — C*(p; A) — 0
0— C* H(piR) — C*(p) = C*(p; A) x Qi(p) = 0

Each of the differentials in the complexes on the left is obtained by restriction
of the differential of C*(p). Then as in [6], the three exact sequences of the
theorem can be deduced from the long exact sequences obtained from the
short exact sequences above. O

Notice that taking A = () recovers the usual non-relative short exact
sequences. Unfortunately, there is no long exact sequence for the relative
group of the triple (A, p, M). This is easily seen just at the level of differential
forms: a differential character with associated pair of forms (w,#) induces
a differential character on M with form w, however unless 6 is closed, there
is no guarantee that p*w = 0 which would be required by any long exact
sequence.

Examples. We end this section by presenting a couple of examples. In

both, p is the inclusion map and we adopt the standard relative notation
Zp(M, A) and H*(M, A) for Zi(p) and H*(p).

Example 2.5. Let M be a smooth manifold with submanifold A. Let
P — M be a principal S'-bundle with connection together with a given triv-
ialisation of the bundle over A. The relative holonomy H : Zy(M, A) — S*
of P is defined as follows. Given v € Z1(M, A), split v into a (finite) collec-
tion of piecewise smooth paths +; with endpoints in A. For each ~;, define
H(v;) to be the holonomy along 7; where the endpoint fibres are identified
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via the given trivialisation over A. Then, H(v) is defined to be the product
(in the circle group) of the H(v;).

We now define the relative differential character ¥ : Z1(M,A) — R/Z
associated to P by the equation

"X = H(~).

To see that ¥ is indeed a differential character consider the curvature 2-form
w of P. Since P is trivial over A and hence w exact on A, there exists a 1-form
9 such that on A, we have w = df. This form satisfies H () = 2™ /- ? for
7 € C1A, which in turn immediately implies that H(8(c, 7)) = €2 o« +/:0)
for a relative boundary 9(o, 7). Using the defining equation for Y, we see
that

X(0(o, 7)) = /w-i—/@ = (w,0)(o,7) mod Z
and hence, ¥ € H2(M, A).

Example 2.6. In this example, we consider A = S"~! as the boundary of
M = D". Using the exact sequences in Theorem 2.4 and some elementary
topology, one obtains the following.

C>®(D",R/A) k=1
Qk(Dn, 8"y 2<k<n
R/A E=n+1
0 k>n+2

ﬁk(Dn’ Snfl) _

3. Relative Hopkins—Singer groups.

Following the description of Hopkins and Singer, there is another candidate
for the relative group. This group, which we refer to as the relative Hopkins—
Singer group can be identified with a quotient of a subgroup of the relative
Cheeger—Simons group and does fit into a long exact sequence.

Recall from the previous section the chain complex

CF(M) = CF(M,A) x CFY(M;R) x QK M

with differential d(c, hyw) = (d¢,w — ¢ — dh,0) which, as we have seen, has
homology H*(M). Following the approach used to define relative real and
de Rham cohomology, consider the chain complex

C*(M) x C*(A)
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with differential 6(S,T) = (AS, p*S — AT), where S, T are triples in C*(M)
and C*~1(A) respectively.

Definition 3.1. The relative Hopkins—Singer groups are defined by
H*(p) = Hy(C*(M) x C*1(A)).

These groups can be fitted into short exact sequences analogous to those
above for the relative Cheeger—Simons groups. However, the groups of forms
appearing are not particularly enlightening and it is better to understand
this group in terms of its relation to the relative Cheeger—Simons group
which is the subject of the next section.

A main feature of the relative Hopkins—Singer groups is that they do fit
into a long exact sequence. Let ¢ be the projection C*(M) x C*~1(A) —
C*(M) and let [ be the inclusion C*~1(A) — C*(M) x C*~1(A). Using the
same notation for induced maps, we have the following theorem.

Theorem 3.2. The following sequence is exact.

~ l . q = P~

where p is the natural pullback map from differential characters on M to
those on A.

Proof. This is the long exact sequence induced by the following exact se-
quence of chain complexes

0— C*YA) = C*(M) x C*HA) - C*(M) =0
with the boundary map of this sequence coinciding with the map p above.l

4. Relating the Relative Hopkins—Singer Groups and the
Relative Cheeger—Simons Groups.

We now relate the relative Hopkins—Singer group to the relative Cheeger—
Simons group by identifying H*(p) as a quotient of a subgroup of i (p).

In order to do this, it will be helpful to view the relative Hopkins—Singer
groups as the homology of a slightly different chain complex. Consider the
chain complex

C*(p) = C*(p; A) x C*L(p;R) x QA M x Q1A
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with differential A : C*(p) — C*+1(p) given by

A((C, b)v (h? 6)7 (w? 9)) = (5(C> b)> (wv 9) - (C> b) - 5(h? 6)7 (07 p*w))

Notice that the last term is in fact d(w,0) = (dw, p*w — df) = (0, p*w).
This chain complex C*(p) is isomorphic (by changing the sign of e) to
C*(M) x C*1(A) and so, we have

H*(p) = Hy(C*(p)).

Let I;T(’f (p) < il *(p) be the subgroup of relative differential characters
defined by R ~
HE(p) = {f € H*(p) such that f|z,_ 4 = 0}.

Here, we are regarding Zy 1A C Zy_ 1M C Zp_1(M,A) ie. regard 7 €
Zp_1A as (1,0) € Zp_1(M, A). Notice that

f(1r,0) = fo0(0,7) = (w,0)(0,7) = /9,

T

so the condition f|z, ,4 = 0 is equivalent to # having A-periods.
These groups can also be identified with the cohomology of a cochain

complex. Let B
Q"M = {w € Q"M | (w,0) € 2 (p)},

noticing that QFM ¢ Qk M. Then ﬁ(])" (p) is the homology of the cochain
complex

Ci(p) = C*(p; A) x C* Y R) x @°M x 051 A
with differential

A((e,0), (hs€), (,0)) = (5(c,b), (w,0) — (e,b) — 3(h, ), 0).
We can easily relate I/:\T(’]“(p) to H*(p). Let
Q1A = Im(2f (p) — QA).
and note that given 0 € Q]f\_lA, then (0,0) € Q% (p) and so Q]f\_lA < Q];;LIA.
Proposition 4.1. The following sequence is exact.
0 — HE(p) — H*(p) — Qf, 1 4/Qf 1A — 0

where the left map is the obvious inclusion and the right map the projection.
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Proof. Consider the short exact sequence of complexes
0——=C(p) = C*(p) =, A/ A—0

where complex on the right has trivial differential and j and p are the in-
clusion and projection maps. To show this is exact the only point worth
noting is that given 6 € Q’;;A, then by definition, there exists w such that
(w,0) € Q% (p) and so ((0,0), (0,0), (w,d)) is a cocycle mapped to 6 under p
i.e. p is onto.

The differential of the associated long exact sequence is trivial giving the
result. (]

To relate ffé“ (p) to the relative Hopkins—Singer group we need to define
two maps ¢ and J. We define the map

¢ - QKIM/QF M — HE (p)
as follows. For v € QX_IM, define ¢(v) : Zx_1(p) — R/A by

o) (y,—07) = /y mod A .

gl

If (0,7) € CxM x Ci_1A, we have ¢(v) o d(o,7) = (0,p*v)(o,7) and so
v(p) o 0 € QF(p). Thus, ¢(v) is a differential character as required and
moreover, if v € Q=10 , then p*v = 0 and so ¢ is well defined.

To define J, recall from Section 2 that given a relative differential charac-
ter f, we can find pairs (¢, b), (h,e) and (w, ) such that ((¢,b), (h,e), (w,8))
is a cocycle in 6*(,0) If f e I?(])“(p), then in addition, we have 6 has A-
periods and p*w = 0. Since, w also has A-periods (by Lemma 2.2) it follows
that ((¢,b), (h,e), (w,)) is in fact a cocycle in C*(p). Thus, we can define
a map R

J: Hij(p) — H*(p)
by
J(f) = [((Ca b)v (h7 6)7 (wv 0))]

The relationship between the relative Cheeger—Simons groups and the
relative Hopkins—Singer groups is given by Proposition 4.1 and the following
result.

Theorem 4.2. The following sequence is exact.

_ ~p_ ¢ =
0—= QK1 M/QF M —— HE(p) H*(p) 0



Relative Differential Characters 281

Proof. Consider the short exact sequence of complexes

0— Ci(p) —— C*(p) —= Q4 M/O*M —0

where the complex on the right has trivial differential, p is the projection and
7 is the inclusion. Note that j is well defined since by Lemma 2.2 w € QﬁM
and by definition 6 € Q]fClA. It is also a map of cochain complexes since
for ((¢,b), (h,e), (w,0)) € ég(p), we have p*w = df = 0.

The only non-trivial part in showing that the above sequence is indeed
exact is the middle term. If ((c,b), (h,e), (w,0)) € Ker(p), then w € QFM
ie. (w,0) € Q% (p). Note that since § has A-periods, we have (0,6) € QX (p).
Hence, (w,0) = (w,0) + (0,0) € Qk(p) showing that ((c,b), (h,e), (w,0)) €
Im(j) i.e. Ker(p) C Im(r). Conversely, if ((c,b), (h,e), (w,0)) € Im(j), then
w € QFM. Thus, Im(r) C Ker(p).

Using the same notation for induced maps, consider the long exact ho-
mology sequence of the above sequence.

= OO M I (p) — H(p) —— QM /M — -

We now claim Im(p) = 0. If ((¢,b), (h, e), (w,0)) is a cocycle in C*(p),
then (w,0) = (c,b) + d(h,e) and so (w,0) has relative integral periods.
Since (0,6) also has relative integral periods, we obtain w € QFM. Hence,
p(((c,b), (h,€), (w,0))) = 0.

Finally, Ker(§) = Im(p) = 0 and we obtain the desired sequence.

The induced map j clearly agrees with J and moreover the boundary
map §: Q' M/Q¥IM — HE (p) is given by 6([n]) = ((0,0), (1,0), (0, p*n))
and hence agrees with ¢. 0
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