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1. Introduction and statements of the results.

Let f : M → N be a homotopy equivalence between closed negatively curved
manifolds. The fundamental existence results of Eells and Sampson [5] and
uniqueness of Hartmann [15] and Al’ber [1] grant the existence of a unique
harmonic map h homotopic to f . Based on the enormous success of the
harmonic map technique, Lawson and Yau conjectured that the harmonic
map h should be a diffeomorphism. This conjecture was proved to be false
by Farrell and Jones [6] in every dimension in which exotic spheres exist.
They constructed examples of homeomorphisms f : M → N between closed
negatively curved manifolds for which f is not homotopic to a diffeomor-
phism. These counterexamples were later obtained also in dimension six by
Ontaneda [21] and later generalized by Farrell, Jones and Ontaneda to all
dimensions > 5 [8]. In fact, in [21] and [8] examples are given for which f is
not even homotopic to a PL homeomorphism. The fact that f is not homo-
topic to a PL homeomorphism has several interesting strong consequences
that imply certain limitations of well known powerful analytic ethods in
geometry [9], [10], [11], [12] (see [13] for a survey).

In all the examples mentioned above, one of the manifolds is always
a closed hyperbolic manifold. Hence, both manifolds M and N have the
homotopy type of a closed hyperbolic manifold (hence the homotopy type
of a closed locally symmetric space). We call these examples of hyperbolic
homotopy type.

In [2], Ardanza also gave counterexamples to the Lawson–Yau conjec-
ture. In his examples, the manifolds M and N are not homotopy equivalent
to a closed locally symmetric space; in particular, they are not homotopy
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equivalent to a closed hyperbolic manifold. We call these examples of non-
hyperbolic homotopy type. In these examples, the map f is not homotopic to
a diffeomorphism and exists in dimensions 4n − 1, n ≥ 2. Hence Ardanza’s
result is an analogue of Farrell-Jones result [6] for examples of non-hyperbolic
homotopy type. His constructions use branched covers of hyperbolic man-
ifolds. Recall that Gromov and Thurston [14] proved that large branched
covers of hyperbolic manifolds do not have the homotopy type of a closed
locally symmetric space.

In this paper, we show that most of the results obtained for examples
of hyperbolic homotopy type in [21], [8], [9], [10], [11], [12], [13] are also
true for examples of non-hyperbolic homotopy type. We now state our main
results.

First, we extend Ardanza’s result to every dimension > 5 and also with
the stronger property that f is not even homotopic to a PL homeomorphism.
This is an analogue of the result in [8] for examples of non-hyperbolic ho-
motopy type.

Theorem 1.1. Given ε > 0 and n > 5, there are closed n-dimensional
Riemannian manifolds M1, M2 and a homeomorphism f : M1 → M2 such
that:

1. f is not homotopic to a PL homeomorphism. In particular, the unique
harmonic map homotopic to f is not a diffeomorphism.

2. M1 and M2 have ε-pinched to −1 sectional curvatures.

3. M1 and M2 do not have the homotopy type of a closed locally symmet-
ric space. In particular, they are not homotopy equivalent to a closed
hyperbolic manifold.

Remark 1.2. This result is a little weaker than the result in [2] (for exam-
ples of non-hyperbolic homotopy type) and than the one in [8] (for examples
of hyperbolic homotopy type): in [2], M1 is not diffeomorphic to M2 and in
[8] M1 is not PL homeomorphic to M2. The Theorem above states the exis-
tence of a particular map f that is not homotopic to a PL homeomorphism,
but we do not know whether M1 and M2 are PL homeomorphic. The miss-
ing ingredient is “differentiable rigidity” which, for examples of hyperbolic
homotopy type, is provided by Mostow’s Rigidity Theorem: every homotopy
equivalence between hyperbolic manifolds is homotopic to a diffeomorphism
(in fact an isometry). We do not know whether every homotopy equiva-
lence between branched covers of hyperbolic manifolds is homotopic to a
diffeomorphism.
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As for the case of examples of hyperbolic homotopy type, the fact that
the map f is not homotopic to a PL homeomorphism has the following
interesting consequence:

Corollary 1.3. Given ε > 0 and n > 5, there are closed n-dimensional Rie-
mannian manifolds M1, M2 and a harmonic homotopy equivalence h : M1 →
M2 such that:

1. h is not one-to-one.

2. M1 and M2 have ε-pinched to −1 sectional curvatures.

3. M1 and M2 do not have the homotopy type of a closed locally symmet-
ric space. In particular, they are not homotopy equivalent to a closed
hyperbolic manifold.

This Corollary can be directly deduced from Theorem 1.1 and the C∞−
Hauptvermutung of Scharlemann and Siebenmann [24] (the proof of Corol-
lary 1.3 appears after the proof of Theorem 1.1). Also, if Poincare’s conjec-
ture for three dimensional manifolds is true, then the map h above is not
even a cellular map, hence it cannot be approximated by homeomorphisms.
The proof of this fact is similar to the proof for examples of hyperbolic
homotopy type. For more details see [9] or [13].

In the examples provided by the Corollary above, the main obstruction
to h being a diffeomorphism or a homeomorphism is that h is not homotopic
to a PL homeomorphism. We may ask then what happens if this obstruc-
tion vanishes, that is, if h is homotopic to a PL homeomorphism or even
homotopic to a diffeomorphism. This was considered in Problem 111 of the
list compiled by Yau in [28]. Here is a restatement of this problem.

Problem 111 of [28] Let f : M1 → M2 be a diffeomorphism between
two compact manifolds with negative curvature. If h : M1 → M2 is the
unique harmonic map which is homotopic to f , is h a homeomorphism?, or
equivalently, is h one-to-one?

(This problem had been reposed in [27] as Grand Challenge Problem
3.6.) The answer to the problem was proved to be yes when dimM1 = 2 by
Schoen–Yau [25] and Sampson [23]. But it was proved by Farrell, Ontaneda
and Raghunathan [10] that the answer to this question is in general negative
for dimensions > 5. The counterexamples constructed in [10] are examples
of hyperbolic homotopy type. Here, we construct counterexamples of non-
hyperbolic homotopy type:
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Theorem 1.4. For every integer n > 5 and ε > 0, there is a diffeomorphism
f : M1 → M2 between a pair of closed n-dimensional Riemannian manifolds
such that:

1. The unique harmonic map homotopic to f is not one-to-one.

2. M and N have ε-pinched to −1 sectional curvatures.

3. M and N do not have the homotopy type of a closed locally symmetric
space. In particular, they are not homotopy equivalent to a closed
hyperbolic manifold.

Also, in [11], we constructed examples of harmonic maps h : M → N
between ε-pinched to −1 closed Riemannian manifolds such that h can be
approximated by diffeomorphisms, but h is not a diffeomorphism (in partic-
ular h is a cellular map). The examples in [11] are examples of hyperbolic
homotopy type. Here we also construct counterexamples of non-hyperbolic
homotopy type:

Theorem 1.5. For every integer n > 10 and ε > 0, there is a harmonic
map h : M1 → M2 between a pair of closed n-dimensional Riemannian
manifolds such that:

1. The harmonic map h is not a diffeomorphism.

2. The harmonic map h can be approximated by diffeomorphisms (in the
C∞ topology).

3. M1 and M2 have ε-pinched to −1 sectional curvatures.

4. M1 and M2 do not have the homotopy type of a closed locally symmet-
ric space. In particular, they are not homotopy equivalent to a closed
hyperbolic manifold.

As for examples of hyperbolic homotopy type, if Poincare’s Conjecture
for three dimensional manifolds is true, we can say a little more in this
case (see [11] or [13]). Also, it seems that it is straightforward to verify
(but we do not do this here) that in Theorems 1.1, 1.4 and Corollary 1.3
above (and may be also in Theorem 1.5) we can replace the word “har-
monic” by “natural”. The concept of natural map was defined by Besson,
Courtois and Gallot (e.g. see [3]). These maps have very powerful dy-
namic and geometric properties and are also used to prove rigidity results.
(For more details, see [13]).
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In [12], the results of [11] were used to construct examples of ε-pinched to
−1 closed Riemannian manifolds for which the Ricci flow does not converge
smoothly to a negatively curved metric. These examples are examples of
hyperbolic homotopy type. Here, we show also that the constructions used
to prove Theorem 1.5 (which are analogous to the constructions in [11])
can also be used to produce examples of non-hyperbolic homotopy type of
ε-pinched to −1 closed Riemannian manifolds for which the Ricci flow does
not converge smoothly to a negatively curved metric.

Remark 1.6. We say that the Ricci flow for a negatively curved Rie-
mannian metric h converges smoothly to a negatively curved metric if the
Ricci flow, starting at h, is defined for all t and converges (in the C∞ topol-
ogy) to a well defined negatively curved (Einstein) metric. The next Theo-
rem shows the existence of pinched negatively curved metrics for which the
Ricci flow does not converge smoothly to a negatively curved metric.

Theorem 1.7. For every integer n > 10 and ε > 0, there is a closed smooth
n-dimensional Riemannian manifold N such that:

1. N admits a Riemannian metric with sectional curvatures in [−1 −
ε,−1 + ε] for which the Ricci flow does not converge smoothly to a
negatively curved metric.

2. N does not have the homotopy type of a closed locally symmetric space.
In particular, N is not homotopy equivalent to a closed hyperbolic man-
ifold.

The proofs of all Theorems above use the following Proposition:

Proposition 1.8. For every integer n > 5 and r, s > 0, there are closed
connected orientable Riemannian manifolds M , N , T , P such that:

1. M is a n-dimensional hyperbolic manifold, N and P are totally geo-
desic (n − 1)-dimensional submanifolds of M and T is a totally geo-
desic (n − 2)-dimensional submanifold of M . N intersects T and P
transversally.

2. The isometry class of N does not depend on r (only on n and s).

3. 0 �= [N ∩ T ] ∈ Hn−3(M, Z2), where [N ∩ T ] is the Z2-homology class
represented by the (n − 3)-dimensional submanifold N ∩ T .
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4. The normal geodesic tubular neighborhood of N has width > r and the
normal geodesic tubular neighborhood of N ∩ P has width > s.

Remark 1.9. The Proposition remains valid if we replace N in item 2 by
T . (We cannot choose both N and T to be independent of the widths of
their normal geodesic tubular neighborhoods.) Also, we can have T ⊂ P , if
we choose so.

In the section 2, we prove Proposition 1.8 and show how it implies the
Theorems. The proofs of the Theorems resemble the proofs of the corre-
sponding Theorems for the case of examples of hyperbolic homotopy type
presented in [21], [8], [9], [10], [11], [12], [13]. We will refer to these papers.

2. Proofs of the results.

First we prove Proposition 1.8.

Proof. of the Proposition 1.8 We use all notation from [10]. Let G, G1, G2

be as in the proof of lemma of [10], p. 233. We have that Gi = Rk/QG′
i

where G′
i denotes the k-algebraic group SO(fi) and fi is the restriction of

the form f to the subspace of E generated by Bi, see[10] p.245. To be
specific, choose B1 = B \ {e1} and B2 = B \ {e2, e3}.

For ideals a, b, c , let Φ(a, b, c) be the arithmetic subgroup of G con-
structed in p. 234 of [10]. We will need the following two properties of Φ.
These properties can easily be checked directly from the definition.

a. Γ(c) ⊂ Φ(a, b, c) ⊂ Γ(a)

b. If a′ ⊂ a, b′ ⊂ b, c′ ⊂ c then Φ(a′, b′, c′) is a subgroup of finite index of
Φ(a, b, c).

The following is shown in [10]:
There is an ideal a0 of Z such that for every ideal a ⊂ a0, there is an

ideal b(a) ⊂ a with the following properties. For any ideal c ⊂ b(a), define
Φ = Φ(a, b(a), c), and Φi, M , N , T , as in p. 234 of [10]. Then M , N and T
are closed connected orientable manifolds that satisfy:

1. M is a n-dimensional hyperbolic manifold, N is a totally geodesic
(n − 1)-dimensional submanifold of M and T is a totally geodesic
(n−2)-dimensional submanifold of M . N and T intersect transversally.

2. The isometry class of N does not depend on c.
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3. 0 �= [N ∩ T ] ∈ Hn−3(M, Z2), where [N ∩ T ] is the Z2-homology class
represented by the (n − 3)-dimensional submanifold N ∩ T .

Moreover, given r we can choose c such that

4. The normal geodesic tubular neighborhood of N has width > r.

We have to define P . For this, let B3 = B \ {e2} and G3 = Rk/QG′
3

where G′
3 denotes the k-algebraic group SO(f3) and f3 is the restriction of

the form f to the subspace of E generated by B3. It can be verified from the
results of [10], Section 2, that there is an ideal a1 of Z such that P = X3/Φ3

is a connected closed orientable totally geodesic (n − 1)-dimensional sub-
manifold of X/Φ, where Φ is any subgroup of finite index of Γ(a1). Here,
Φ3 = Φ∩G3(Q) and X3 = (K ∩G3)/G3. Note that, since B2 ⊂ B3, we have
that T ⊂ P .

Now take an ideal a′ ⊂ a0 ∩ a1. Define Φ′ = Φ(a′, b′, b′) where b′ = b(a′).
Define Φ′

1, Φ′
2, Φ′

3, M ′, N ′, T ′, P ′ accordingly. Then M ′, N ′, T ′, P ′ satisfy
1,2,3 of the statement of the Proposition. That is, they satisfy all required
properties, except the ones about the widths of the normal geodesic tubular
neighborhoods. (Note that N ′ and P ′ intersect transversally because both
are different connected totally geodesic hypersurfaces of M ′.)

By using an argument similar to the one in pp. 235–236 of [10], we can
find an ideal a′′ ⊂ b′ such that the following holds. Define Φ′′ = Φ(a′′, b′′, b′′)
where b′′ = b(a′′). Define Φ′′

1, Φ′′
2 , Φ′′

3, M ′′, N ′′, T ′′, P ′′ accordingly. Then
we can choose a′′ such that the normal geodesic tubular neighborhood of
P ′′ ∩ N ′′ is larger that s. Note that M ′′, N ′′, T ′′, P ′′ also satisfy 1,2,3 of
the statement of the Proposition. (Here we required a′′ ⊂ b′ so that Φ′′ is a
subgroup of Φ′; it follows that M ′′ → M ′ is a finite cover.)

Finally, choose c ⊂ b′′ as in [10], pp. 235–236, such that the following
holds. Define Φ = Φ(a′′, b′′, c) and define Φ1, Φ2, Φ3, M , N , T , P ac-
cordingly. Then, we can choose c such that the normal geodesic tubular
neighborhood of N is larger than r. Note that we also have M , N , T , P sat-
isfy 1, 2, 3 of the statement of the Proposition and that the normal geodesic
tubular neighborhood of P ∩ N is larger than s. (Note also that N = N ′′.)
Then M , N , T , P satisfy 1, 2, 3, 4 of the statement of the Proposition. This
completes the proof of the Proposition. �

Remark 2.1. To prove the assertion in the Remark 1.9, just replace the
roles of N and T in the proof above.
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We now recall the construction of branched covers and introduce some
notation (for more details, see [22]). Let M be a hyperbolic manifold of
dimension n and let R and Q be compact totally geodesic submanifolds of
M of dimensions n − 1 and n − 2 with ∂Q = R. Assume that the normal
bundle of Q is trivial. The i-branched cover M(i) of M with respect to (Q,R)
is obtained in the following way. Cut M along Q to produce a manifold M ′.
Since the normal bundle of Q is trivial, M ′ contains two copies of Q that
intersect in R. Label these copies Q0 and Q1. Take now i copies of M ′ and
identify Q1 of the first copy of M ′ with Q0 of the second copy of M ′, and so
on. At the end identify Q1 of the last copy of M ′ with Q0 of the first copy
of M ′. The resulting manifold is the i-branched cover of M with respect to
(Q,R). The branched cover M(i) contains i copies of Q. The union of these
copies is called the i-book of M(i). These copies intersect in a (unique) copy
of R. Hence we consider R as a submanifold of M(i). There is a projection
map π : M(i) → M , which restricted to each copy of M ′ in M(i) is just the
identification map (identify back the two copies of Q). Note that if R = ∅,
then π : M(i) → M is an i-sheeted (ordinary) covering space. In general,
π : M(i) \R → M \R is also an i-sheeted covering space. Finally, note that
there is an action of Zi, the cyclic group of order i, on M(i) that “rotates”
the copies of M ′ around R

Remark 2.2. We present an alternative construction of the i-sheeted cover
of M with respect to (Q,R) that has an action of the dihedral group Di of
order 2i. We use the same notation as above. Now take 2i copies of M ′.
Identify Q1 of the first copy with Q1 of the second copy, then identify Q0 of
the second copy with Q0 of the second copy of M ′, and so on. We denote
this resulting manifold by M [i]. Then Di acts on M [i] in the obvious way.
Note that we can also consider R contained in M [i] as before.

Gromov and Thurston proved that M(i) admits a Riemannian metric
with sectional curvatures equal to −1 outside a normal geodesic tubular
neighborhood of R of width s, and sectional curvatures in the interval
[−1 − ε,−1], where 0 < ε < (10 log 2i)2

s2 , inside a normal geodesic tubular
neighborhood of R. The Zi-action on M(i) (with this Riemannian metric)
is by isometries.

Remark 2.3. It is a simple matter to verify that M [i] (see remark 2.2) also
admits a Riemannian metric with sectional curvatures equal to −1 outside
a normal geodesic tubular neighborhood of R of width s, and sectional
curvatures in the interval [−1 − ε,−1], where 0 < ε < (10 log 4i)2

s2 , inside a
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normal geodesic tubular neighborhood of R. Also the Di-action on M [i] is
by isometries.

Gromov and Thurston also proved that, for large i (how large depending
on M and R), M(i) does not have the homotopy type of a closed locally
symmetric space (they mention that probably all M(i), i > 1, do not have
the homotopy type of a closed locally symmetric space). For the proofs
of the Theorems we will need the following stronger (and more technical)
result, proved also by Gromov and Thurston in Section 3.5 of [14] (p. 6):

2.1. Let Ms, s = 1, 2, ... be a sequence of closed n-dimensional hyperbolic
manifolds, n ≥ 4, and Rs a closed codimension 2 totally geodesic submani-
fold of Ms with trivial normal bundle that bounds a compact codimension 1
totally geodesic submanifold Qs of Ms. Assume that the width of the normal
geodesic tubular neighborhood of Rs is larger than s.

Then, there is a sequence of branched covers Ms(is) of Ms, with respect
to (Qs, Rs), satisfying the following property:

Given ε > 0 there is a s0, such that for all s ≥ s0 we have:

1. Ms(is) does not have the homotopy type of a closed locally symmetric
space.

2. Ms(is) admits a metric with sectional curvatures in [−1 − ε,−1].

Remark 2.4. 1. Let M be a closed negatively curved manifold of di-
mension �= 3,4. Farrell–Jones Rigidity Theorem [7] implies that M
has the homotopy type of a closed locally symmetric space if and only
if M admits a negatively curved locally symmetric differentiable struc-
ture, i.e. a differentiable structure that supports a negatively curved
locally symmetric Riemannian metric.

2. If a closed strictly 1/4-pinched negatively curved Riemannian manifold
is homotopically equivalent to a closed locally symmetric space N , then
N is a (real) hyerbolic manifold. This is a consequence of [16], [17],
[20] and [29], and can also be seen by comparing Pontryagin classes
and using a known case of Novikov’s Conjecture due to Mishchenko
[19].

3. We can give an altenative construction of pinched negatively curved
closed manifolds that are not homotopy equivalent to a closed locally
symmetric space, that do not use the results of 3.5 of [14]. Consider
Ms, Qs and Rs as in 2.1 above. To simplify our notation, we drop the
subindex “s”. We show that M [2] or M [2](2) satisfy 1 and 2 of 2.1.
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In fact (see remark 2.2), both M [2] and M [2](2) satisfy 2, for s large
enough. If M [2] is not homotopically equivalent to a closed hyperbolic
manifold, we are done. Suppose that M [2] is homotopically equivalent
to a closed hyperbolic manifold. Then there is a homotopy equivalence
f : M[2]→ N , where N is a closed hyperbolic manifold. We show then
that M [2](2) is not homotopy equivalent to a closed locally symmetric
space. Note that D2 = Z2 ⊕ Z2 acts on M [2] and the fixed point sets
of the three non-zero involutions are codimension 1 submanifolds H1,
H2 and the codimension 2 submanifold R = H1 ∩ H2. Note that Hi

is homeomorphic to the double of Q along its boundary R. Identify
Q with one of the two copies (of Q) that form, say, H1. Note also
that H1 and H2 split M [2] in four pieces, each homeomorphic to M ′,
where M ′ is obtained from M by cutting along Q. Now, by Theorem
11 of [26], D2 acts by isometries on N and f is homotopic to a D2-
equivariant map g. Pansu in [22] shows that N also splits in four
homeomorphic pieces and g induces an isomorphism of fundamental
groups from each copy of M ′ in M [2] to each of the four pieces of N
(and these isomorphisms are also isomorphisms when restricted to the
boundaries). Using this, it is not difficult to construct a D2-equivariant
map h homotopic to f such that h maps each copy of M ′ to each
of the four pieces of N . In particular, Q′ = h(Q), R′ = h(R) are
totally geodesic submanifolds of N and ∂Q′ = R′. This h can be lifted
to give a homotopy equivalence between M [2](2) and N(2), where
the 2-branched covers are taken with respect to (Q,R) and (Q′, R′),
respectively. But 3.6 of [14] implies that N(2) (and consequently, also
M [2](2)) is not homotopy equivalent to a closed locally symmetric
space, that is, M [2](2) satisfies 1 and 2 of 2.1.

Throughout the proofs of all Theorems in this paper, we can replace
the use of M(i) (in 2.1 above) by M [2] or M [2](2) (whichever satisfies
1 of 2.1.), and the proofs remain valid.

Proof. of Theorem 1.1 Fix ε > 0. For each s = 1, 2, 3, ... let M ′
s, N ′

s, P ′
s and

T ′
s be as in Proposition 1.8, with the width of the normal geodesic tubular

neighborhood of N ′
s ∩ P ′

s larger than s and with large r (how large will be
determined in a moment; note that, by item 2 of Proposition 1.8, N ′

s does not
depend on r). We assume also r > 2s. To alleviate the notation we will drop
the subindex “s” whenever this causes no confusion. Write U ′ = N ′ ∩ T ′.
By item 3 of Proposition 1.8 c′ = Dual(U ′) �= 0 ∈ H3(M ′, Z2). Then we
have a smooth structure Σ′ on M ′ such that its corresponding PL structure
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corresponds to c′. (We choose this correspondence to assign the hyperbolic
differentiable structure to 0 ∈ H3(M ′, Z2), see [21]. It follows that Σ′ is not
PL-concordant to the hyperbolic differentiable structure, see [18].) Choose
r large enough so that (M ′,Σ′) admits a Riemannian metric with sectional
curvatures ε-close to −1, see [21] (r depends on s and ε). The important
point here is the following. Identify (a piece of) the tubular neighborhood
of N ′ with N ′ × [−r, r]. Then outside V ′ = N ′ × [−r,− r

2 ] we have that
Σ′ coincides with the hyperbolic differentiable structure and the ε-pinched
metric, mentioned above, is hyperbolic, see [21]. That is, the change of the
differentiable structure and the change of the metric only happen inside V ′.
Note that the distance between V ′ and N ′ is r

2 > s. �

Remark 2.5. Since the differentiable structure Σ′ is not PL-concordant
to the hyperbolic differentiable structure, we have that the identity map
M ′ → (M ′,Σ′) is not homotopic to a PL homeomorphism. More generally,
if M is any closed non positively curved manifold of dimension �= 3,4, and
Σ is a differentiable structure not PL-concordant to the given non posi-
tively curved differentiable structure then the identity map M → (M,Σ)
is not homotopic to a PL homeomorphism. To see this, suppose that
h : M × [0, 1] → M is a homotopy from idM to a PL homeomorphism.
Then, by Farrell–Jones Rigidity Theorem [7], the map H ′(x, t) = (h(x, t), t)
is homotopic to a homeomorphism H : M×[0, 1] → M×[0, 1] with H0 = idM

and H1 equal to the PL homeomorphism above. It follows that Σ is PL-
concordant to the given non positively curved differentiable structure.

From item 3 of Proposition 1.8, it follows that 0 �= [N ′] ∈ Hn−1(M ′, Z2).
Let M be the double cover of M ′ with respect to N ′, that is, with respect to
the kernel of the map π1M

′ → Z2 given by α 	→ Dual(N ′)[α]. Let p : M →
M ′ be the covering projection. Note that M consists of two copies A, B
of the manifold obtained from M ′ by cutting along N ′. A and B intersect
in two copies of N ′. Denote one of these copies by N . Let T = p−1(T ′).
Write U = N ∩ T . Then p|U : U → U ′ is a homeomorphism (in fact an
isometry). Hence 0 �= [U ] ∈ Hn−3(M). Hence, as before, c = Dual(U) �=
0 ∈ H3(M, Z2). Also, the normal geodesic tubular neighborhood of N is as
large as the normal geodesic tubular neighborhood of N ′ and let V be the
piece of p−1(V ′) that lies in the r normal geodesic tubular neighborhood of
N . Also we assume that, say, V ⊂ A. Note that V is a piece, of width r

2 , of
the normal geodesic tubular neighborhood of N which is at a distance r

2 > s
from B.



260 F. T. Farrell and P. Ontaneda

Let P = p−1(P ′), Q = P ∩ B and R = ∂Q. Note that R consists of
two copies of N ′ ∩ P ′ and that the width of the normal geodesic tubular
neighborhood of R is larger than s. Note also that the distance between V
and Q is > s.

So far, we have obtained (we write back the subindex “s”) sequences Ms,
Ns, Ts, Rs, Qs, Vs, Us = Ns ∩ Ts, cs satisfying:

a. Ms is a closed n-dimensional hyperbolic manifold and Ns is a closed
codimension one totally geodesic submanifold of Ms. Us is a closed
codimension three totally geodesic submanifold of Ms and Us ⊂ Ns.

b. Rs is a closed codimension 2 totally geodesic submanifold of Ms that
bounds the compact codimension 1 totally geodesic submanifold Qs.
The width of the normal geodesic tubular neighborhood of Rs is larger
than s.

c. Vs is a piece of the tubular neighborhood of Ns and Vs is at a distance
> s from Qs.

d. cs = Dual(Us) is a non zero cohomology class. As for M ′
s, Ms, with the

smooth structure Σs whose corresponding PL structure corresponds
to cs, admits a Riemannian metric with sectional curvatures ε-close to
−1. Outside Vs this ε-pinched to −1 metric is hyperbolic.

By 2.1, there is a s0, such that for all s ≥ s0, we have:

1. Ms(is) does not have the homotopy type of a locally symmetric space.

2. Ms(is) admits a metric with sectional curvatures in [−1− ε,−1]. This
metric is hyperbolic outside the normal geodesic tubular neighborhood
of width s of Rs.

Write (M1)s = Ms(is) and we again drop the subindex “s”. Let π : M1 →
M be the ramified projection. Choose a copy of M \ (Q \R) in M1. Hence,
we then can find N1, V1, U1 contained in this copy such that:

π|N1 : N1 → N , π|V1 : V1 → V , π|U1 : U1 → U are homeomorphisms.

Since U does not bound, it follows that c1 = Dual(U1) �= 0 ∈
H3(M1, Z2). Then we have a smooth structure Σ1 on M1 such that its corre-
sponding PL structure corresponds to c1. (Again, we choose this correspon-
dence to assign the branched differentiable structure to 0 ∈ H3(M ′, Z2).)
Hence Σ1 is not PL-concordant to the branched differentiable structure.
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But M2 = (M1,Σ1) admits a Riemannian metric with sectional curvatures
ε-close to −1 such that outside V1 this metric coincides with the metric of
item 2 above. It follows then that the identity map id : M1 → M2 is a ho-
motopy equivalence between ε-pinched to −1 closed manifolds which is not
homotopic to a PL homeomorphism (see the last remark above) and M1

and M2 do not have the homotopy type of a locally symmetric space. This
proves Theorem 1.1.

Corollary 1.3 can be directly deduced from Theorem 1.1 and the C∞−
Hauptvermutung of Scharlemann and Siebenmann [24]:

Proof. of Corollary 1.3 By Theorem 1.1, we have
In every dimension n ≥ 6, there is a pair of closed negatively curved n-
dimensional manifolds M1 and M2 and a homeomorphism f : M1 → M2

that satisfy (2) and (3) of the statement of Corollary 1.3, and f is not
homotopic to a PL homeomorphism.

Let h : M1 → M2 be the (unique) harmonic map homotopic to f . We
have to prove that h is not one-to-one. But this follows by just applying the
following result of M. Scharlemann and L. Siebenmann [24]
A smooth homeomorphism between closed smooth manifolds of dimension ≥
6 is homotopic to a PL-homeomorphism.
(Smooth homeomorphisms are not necessarily diffeomorphisms. A simple
example is given by the smooth homeomorphism f : R → R, f(x) = x3.)

Thus, the harmonic map h cannot be a homeomorphism (equivalently,
cannot be one-to one) because f is not homotopic to a PL homeomorphism.
This proves Corollary 1.3.

Before we prove Theorem 1.4, we need a remark about coverings of
branched covers. Let p : M → M ′ be a cover, where M and M ′ are hyper-
bolic manifolds. Let R and R′ be closed codimension two totally geodesic
submanifolds of M and M ′, respectively, that bound closed codimension one
totally geodesic submanifolds Q and Q′ of M and M ′, respectively. Assume
Q = p−1(Q′) and R = p−1(R′). Then, for any i, we can use p to construct
a cover q : M(i) → M ′(i), where M(i) and M ′(i) are the i-branched covers
of M and M ′ with respect to (Q,R) and (Q′, R′) respectively. The covers p
and q fit in the following commutative square: �

M(i) π→ M
q ↓ ↓p

M ′(i) π′→ M ′

If p is a �-sheeted cover, then so is q. If p is a regular cover, so is q. We now
prove Theorem 1.4.
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Proof. of Theorem 1.4 Let M ′, N ′, T ′, R′, Q′, V ′, U ′, c′, Σ′ be as in the
proof of Theorem 1.1 (we are dropping the subindex “s” and introducing
a prime on each symbol). These objects satisfy properties a, b, c, d in the
proof of Theorem 1.1. We assume also T ′ ⊂ P ′ (see Remark 1.9). Let also
M ′

1, N ′
1, V ′

1 , U ′
1, c′1, π′, Σ′

1, M ′
2 be as in the proof of Theorem 1.1 (we are

also dropping the subindex “s” and introducing a prime on each symbol).
We have that M ′

1 satisfies properties a and b in the proof of Theorem 1.1
(assuming s large enough).

Let p : M → M ′ be the double cover of M ′ with respect to N ′. Note
that M consists of two copies D, and E of the manifold obtained from M ′

by cutting along N ′. D and E intersect in two copies of N ′. Let Σ = p∗Σ′.
We know from [10] that the identity M → (M,Σ) is now homotopic to a
diffeomorphism f : M → (M,Σ), but the unique harmonic map h homotopic
to f (or to the identity) is not one-to-one. This is because the PL structure
corresponding to Σ corresponds to c = p∗(c′) which vanishes. (The coho-
mology class c vanishes because it is dual to p−1(U ′), which is the boundary
of D ∩ p−1(T ′).)

Let M1 = M(i). Since we also have (by definition) M ′
1 = M ′(i), the

commutative square given just before this proof becomes:

M1
π→ M

q ↓ ↓p
M ′

1
π′→ M ′

Define σ1 = q∗Σ′
1, M2 = (M1,Σ1), c1 = q∗c′1 and U1 = q−1(U ′

1). Note
that:

(i) q : M2 → M ′
2 is a smooth cover.

(ii) M ′
1 = M1/F , where F = {id, φ} ∼= Z2 and φ : M1 → M1 is the unique

non trivial covering transformation.

(iii) The PL structure corresponding to Σ1 corresponds to c1.

(iv) c1 is dual to U1.

Claim. M1 is not homotopy equivalent to a locally symmetric space.
If M1 supports a negatively curved locally symmetric differentiable structure
(see item 1 of Remark 2.4) then, by Mostow’s Rigidity Theorem, φ can be
realized by an isometry. It follows that M ′

1 admits a negatively curved locally
symmetric differentiable structure. This is a contradiction. This proves the
claim.
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Now, since p : M1 → M ′
1 and q : M2 → M ′

2 are smooth covers, we have
that both M1, M2 admit ε-pinched to −1 Riemannian metrics.

It remains to prove that Σ1 is DIFF -concordant to the differentiable
structure of M1. To be able to repeat the argument given in [10], pp. 230–
233, we need to prove that the cohomology class c1 vanishes. Equivalently,
we need to prove that U1 bounds. Recall that U ′ = T ′∩N ′. We assume that
T ′ ⊂ P ′ (see remark after the statement of the Proposition). Then we can
also find T ′

1 in one of the copies that form M ′
1 such that π′|T ′

1
: T ′

1 → T ′ is
a homeomorphism and U ′

1 ⊂ T ′
1. Then U ′

1 = T ′
1 ∩ N ′

1. Let T1 = q−1(T ′
1). A

simple geometric argument then shows that U1 = ∂(T1 ∩D1), where D1 lies
in the same copy where T1 lies and π(D1) = D. This proves Theorem 1.4.�

Proof. of Theorem 1.5 We use all notation from the proof of Theorem 1.4,
with the following changes.

1. Now, we assume that the width of the normal geodesic tubular neigh-
borhood of T ′ (not of N ′) is larger than r (see remark after the state-
ment of the Proposition). It follows that the width of the normal
geodesic tubular neighborhood of T is also larger than r.

2. The changes of structure and metric happen now in a piece of the
normal geodesic tubular neighborhood of T ′ and T : since the normal
bundle of T ′ is trivial, we have Nr(T ′) \T ′ can be identified with T ′ ×
S1 × (0, r), where Nr(T ′) is the normal geodesic tubular neighborhood
of T ′ of width r. In [11] it is shown that we can take now V ′ =
T ′ × I × (0, r

2), where I ⊂ S1 is any non-trivial interval. That is,
outside V ′, the differentiable structure Σ′ coincides with the hyperbolic
differentiable structure, and the metric is hyperbolic. Note that, by
choosing I properly, we have that V ′ does not intersect P ′.

3. Now p : M → M ′ denotes the finite sheeted cover given in [11]. Again,
we have that Σ is now DIFF -concordant to the hyperbolic differen-
tiable structure. The new feature now is that the metric pulled back
from (M ′,Σ′) can be deformed to the hyperbolic one and all this de-
formation happens inside V .

Now, since V does not intersect P , we can also deform the metric of M1

to the metric pulled back from M2, and all this happens inside V1. This is
the main ingredient needed for the proof. The rest follows exactly as in [11].
This completes the proof of Theorem 1.5. �
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Proof. of Theorem 1.7. The proof follows the ideas of the proofs of Theorem
and Corollary 1.3 in [12]. We use all objects in the proof of Theorem 1.5
above, but change the notation a bit to match the notation in [12]. From
the proof above we have a homotopy commutative diagram:

M1
f→ M2

q ↓ ↓ p

M ′
1

f ′
→ M ′

2

where f is a diffeomorphism and f ′ is not homotopic to a PL homeomor-
phism. Recall that f ′ is the identity and f is homotopic to the identity (the
underlying topological manifolds of M ′

2 = (M ′
1,Σ

′) and M2 = (M1,Σ) are
M ′

1 and M1 respectively). We now change the notation to match the one in
[12]. First identify M1 with M2 via f and write N . Then write M0 for M ′

1,
M1 for M ′

2, f for f ′, p0 for q and p1 for pf . The diagram above becomes:

N
p0 ↙ ↘ p1

M0
f→ M1

As in [12], we have then that M0, M1, N , are smooth closed manifolds
of dimension n > 10, that admit Riemannian metrics g0, g1 on M0 and M1,
respectively, and smooth regular finite covers p0 : N → M0, p1 : N → M1

such that:
(1) The map f is not homotopic to a PL-homeomorphism.
(2) and g0 and g1 have sectional curvatures in [−1 − ε,−1 + ε].
(3) There is a C∞ family of C∞ Riemannian metrics hs on N , 0 ≤ s ≤ 1,

with h0 = p∗0g0, and h1 = p∗1g1, such that every hs has sectional curvatures
in [−1 − ε,−1 + ε].

Let Gi ⊂ Diff (N), be (finite) subgroups of the group Diff (N), of all
self-diffeomorphisms of N , such that N/Gi = Mi, i = 0, 1. It was shown in
[10], [11], that G0 and G1 are conjugate in Top N , via a homeomorphism
homotopic to idN ; hence γG0 = γG1, where γ : Diff (N) → Out (π1N)
is the map described in the proof of Corollary 1.3 in [12]. Note that Gi ⊂
Iso(N,hi), where Iso (N,hi) ⊂ Diff (N) is the subgroup consisting of all
isometries of the negatively curved manifold (N,hi).

If the Ricci flow does not converge smoothly to a negatively curved
metric for some hs, we are done. So, let us assume that the Ricci
flow converges smoothly to a negatively curved metric for all hs. We
will show a contradiction. Write hs,t, for the Ricci flow starting at
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hs,0 = hs, 0 ≤ t < ∞, converging to the negatively curved Einstein
metric js. Using the same argument as the one given in the proof
of Theorem of [12], we get that all js are equal (modulo diffeomor-
phism and rescaling). Moreover, there is a diffeomorphism φ : N → N
homotopic to the identity such that j0 is equal to φ∗j1 up to scal-
ing (see also the proof of Corollary 1.3 in [12]). It follows that G1

is conjugate in Diff (N) to a subgroup of Iso (N, j0) via a diffeomor-
phism φ homotopic to idN ; i.e. φ−1G1φ ⊂ Iso (N, j0). Note that
γ(φ−1G1φ) = γ(G1) since φ ∼ idN ; hence γ(φ−1G1φ) = γ(G0). This
implies that φ−1G1φ = G0 since both φ−1G1φ and G0 are subgroups
of Iso (N, j0) and Borel–Conner–Raymond showed (see [4], p. 43) that
γ restricted to compact subgroups of Diff (N) is monic. (Recall that
N is aspherical and the center of π1(N) is trivial.) It follows that φ
induces a diffeomorphism ϕ between M0 = N/G0 and M1 = N/G1.
To find a contradiction, we have to prove that ϕ is homotopic to the
identity. Since all manifolds here are aspherical, it is enough to prove
that the induced map ϕ∗ at the fundamental group level is the iden-
tity. Note that, since φ∗ is the identity, we have that ϕ∗|π1N is the iden-
tity. Then, the fact that ϕ∗ is also the identity follows from the next
Lemma: �

Lemma 2.6. Let Γ be the fundamental group of a closed negatively curved
manifold. Let H be a subgroup of finite index of Γ and let α : Γ → Γ be
an isomorphism whose restriction to H is the identity. Then α is also the
identity.

Proof. Let x ∈ Γ. Since H has finite index in Γ we have that there is
a positive integer n such that xn ∈ H. Hence α(xn) = xn. Therefore,
(α(x))n = xn. But n-roots are unique in Γ, thus α(x) = x. This proves the
Lemma. �

Acknowledgement.

We wish to thank J-F. Lafont for the helpful discussions we had with him
while writing this paper.



266 F. T. Farrell and P. Ontaneda

References.

[1] S. I. Al’ber, Spaces of mappings into manifold of negative curvature,
Dokl. Akad. Nauk USSR 168 (1968), 13–16.

[2] S. Ardanza, PhD Thesis, Binghamton University (2000)

[3] G. Besson, G. Courtois and S. Gallot, Minimal entropy and Mostow’s
rigidity Theorems, Ergodic Theory & Dynam. Sys. 16 (1996), 623–649.

[4] P. E. Conner and F. Raymond, Deforming homotopy equivalences to
homeomorphisms in aspherical manifolds, Bull. AMS, 83 (1977), 36–
85.

[5] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian mani-
folds, Amer. J. Math. 86 (1964), 109–160.

[6] F. T. Farrell and L. E. Jones, Negatively curved manifolds with exotic
smooth structures, J. Amer. Math. Soc. 2 (1989), 899–908.

[7] F. T. Farrell and L. E. Jones, Rigidity in geometry and topology, Proc. of
the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990),
Math. Soc. Japan, Tokyo (1991), 653–663.

[8] F. T. Farrell, L. E. Jones and P. Ontaneda, Hyperbolic manifolds with
negatively curved exotic triangulations in dimension larger than five.
Jour. Diff. Geom. 48 (1998), 319–322.

[9] F. T. Farrell, L. E. Jones and P. Ontaneda, Examples of non-
homeomorphic harmonic maps between negatively curved manifolds,
Bull. London Math. Soc. 30 (1998), 295–296.

[10] F. T. Farrell, P. Ontaneda and M. S. Raghunathan, Non-univalent
harmonic maps homotopic to diffeomorphisms, Jour. Diff. Geom. 54
(2000), 227–253.

[11] F. T. Farrell and P. Ontaneda, Cellular harmonic maps which are not
diffeomorphisms, Invent. Math. 158 (2004), 497–513.

[12] F. T. Farrell and P. Ontaneda, A caveat on the convergence of the Ricci
flow for negatively curved manifolds, Asian J. of Math. 9(2005), 401–
406.



Brand Covers of Hyperbolic Manifolds and Harmonic Maps 267

[13] F. T. Farrell and P. Ontaneda, Exotic structures and the limitations of
certain analytic methods in geometry, Asian J. Math. 8, n. 4 (2004),
639–652.

[14] M. Gromov and W. Thurston, Pinching constants for hyperbolic man-
ifolds, Invent. Math. 89 (1987), 1–12.

[15] P. Hartman, On homotopic harmonic maps, Canad. J. Math. 19 (1967),
673–687.

[16] L. Hernández, Kähler manifolds and 1/4-pinching, Duke Math. J. 62
(1991), 601–611.

[17] J. Jost and S.-T. Yau, Harmonic maps and superrigidity, Proc. Sympos.
Pure Math. 54 (1), Amer. Math. Soc., Providence, R.I. (1993), 245–280.

[18] R. C. Kirby and L. C. Siebenmann, Foundational Essays on Topological
Manifolds, Smoothings, and Triangulations, Annals of Math. Studies
no.88, Princeton University Press, Princeton (1977).

[19] A.S.Mishchenko, Infinite dimensional representations of discrete groups
and higher signatures, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 81–
106.

[20] N. Mok, Y.-T. Siu and S.-K. Yeung, Geometric superrigidity, Invent.
Math. 113 (1993), 57–83.

[21] P. Ontaneda, Hyperbolic manifolds with negatively curved exotic trian-
gulations in dimension six, J. Diff. Geom. 40 (1994), 7–22.
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