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Heegaard splittings of the form H + nK

Yoav Moriah1, Saul Schleimer2 and Eric Sedgwick 3

Suppose that a three-manifold M contains infinitely many dis-
tinct strongly irreducible Heegaard splittings H + nK, obtained
by Haken summing the surface H with n copies of the surface K.
We show that K is incompressible. All known examples, of man-
ifolds containing infinitely many irreducible Heegaard splittings,
are of this form. We also give new examples of such manifolds.

1. Introduction.

F. Waldhausen, in his 1978 paper [19], asked if every closed orientable
three-manifold contains only finitely many unstabilized Heegaard splittings.
A. Casson and C. Gordon (see [1] or [11]), using a result of R. Parris [13],
obtain a definitive “no” answer; they obtain examples of closed hyperbolic
three-manifolds each of which contains strongly irreducible splittings of ar-
bitrarily large genus. These examples have been studied and generalized by
T. Kobayashi [5], [6], M. Lustig and Y. Moriah [10], E. Sedgwick [17], and
K. Hartshorn [3].

The goal of this paper is three-fold. We first show, in Section 3, that all
of the examples studied so far are of the form H + nK: There is a pair of
surfaces H and K in the manifold so that the strongly irreducible splittings
are obtained via a cut-and-paste construction, Haken sum, of H with n
copies of K. See Section 2 for a precise definition of Haken sum.

Next, and of more interest, we show when such a sequence exists the
surface K must be incompressible (in Sections 5 through 6). We claim:

Theorem 1.1. Suppose M is a closed, orientable three-manifold and H and
K are closed orientable transverse surfaces in M . Suppose that a Haken sum
H +K is given so that, for arbitrarily large values of n, the surfaces H +nK
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are pairwise non-isotopic strongly irreducible Heegaard splittings. Then the
surface K is incompressible.

Theorem 1.2. shows that all of the counter-examples to Waldhausen’s
question found thus far are Haken manifolds. This was already known but
required somewhat subtle techniques (see Lemmas 3.2 and 3.3 and Theo-
rem 4.9 of Y.-Q. Wu’s paper [20]).

Theorem 1.3. was originally conjectured by Sedgwick along with the much
stronger:

Conjecture 1.4. Let M be a closed, orientable 3-manifold which contains
infinitely many irreducible Heegaard splittings that are pairwise non-isotopic.
Then M is Haken4.

We also produce new counter-examples, which are quite different from
those previously studied. These examples are discussed in Section 7. The
paper concludes in Section 8 by listing several conjectures.

2. Preliminaries.

Fix M , a closed, orientable three-manifold. If X is a submanifold of M we
denote an open regular neighborhood of X by η(X).

A surface K is incompressible in M if K is embedded, orientable, closed,
not a two-sphere, and a simple closed curve γ ⊂ K bounds an embedded
disk in M if and only if γ bounds a disk in K. The three-manifold M is
irreducible if every embedded two-sphere bounds a three-ball in M . If M
is irreducible and contains an incompressible surface, then M is a Haken
manifold.

A surface H is a Heegaard splitting for M if H is embedded, connected,
and separates M into a pair of handlebodies, say V and W . A disk D
properly embedded in a handlebody V is essential if ∂D ⊂ ∂V is not null-
homotopic in ∂V .

Definition 2.1. A Heegaard splitting H ⊂ M is reducible if there is a pair
of essential disks D ⊂ V and E ⊂ W with ∂D = ∂E. If H is not reducible,
it is irreducible.

4After our paper was submitted this conjecture, and the other conjectures in
Section 8, were claimed by T. Li. See [8] and [9].
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Definition 2.2. A Heegaard splitting H ⊂ M is weakly reducible if there is
a pair of essential disks D ⊂ V and E ⊂ W with ∂D ∩ ∂E = ∅. (See [2].) If
H is not weakly reducible it is strongly irreducible.

One reason to study strongly irreducible Heegaard splittings is that these
surfaces have many of the properties of incompressible surfaces. An impor-
tant example of this is:

Lemma 2.3 (Scharlemann’s No Nesting Lemma [15]). Suppose that
H ⊂ M is a strongly irreducible Heegaard splitting. Suppose γ ⊂ H bounds
a disk D that is embedded in M and transverse to H. Then, γ bounds a disk
in either V or W . ��

We now turn from Heegaard splittings to the concept of the Haken sum
of a pair of surfaces. See Figure 1 for an illustration.

F�G
F

F�nG

sum

sum

n copies n copies

G

Figure 1: For every intersection of F and G, we have n intersections of F
and nG. The light lines are the annuli A+(γi).

Suppose F,G ⊂ M are a pair of closed, orientable, embedded, transverse
surfaces. Assume that Γ = F ∩G is non-empty. Note that, for every γ ∈ Γ,
the open regular neighborhood T (γ) = η(γ) is an open solid torus in M .
Note that ∂T (γ)�(F ∪ G) is a union of four open annuli A1(γ) ∪ A2(γ) ∪
A3(γ) ∪ A4(γ), ordered cyclically. We collect these into two opposite pairs;
A+(γ) = A1 ∪ A3 and A−(γ) = A2 ∪ A4. For every γ ∈ Γ, choose an
ε(γ) ∈ {+,−} and form the Haken sum:

F + G =

(
(F ∪ G) �

(⋃
γ

T (γ)

))
∪
(⋃

γ

Aε(γ)(γ)
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Note that the Haken sum depends heavily on our choices of ε(γ). As
a bit of notation, we call the core curves of the annuli Aε the seams of
the Haken sum. Also there is an obvious generalization of Haken sum to
properly embedded surfaces.

Remark 2.4. If F and G are compatible normal surfaces, carried by a
single branched surface, or transversely oriented, there is a natural choice
for the function ε(γ).

We now define the Haken sum F + nG: Take n parallel copies of G in
η(G) and number these {Gi}n

1 . For every curve γ ∈ Γ, we now have n curves
{γi ⊂ F ∩ Gi}n

i=1. A Haken sum F + G is determined by labelings A±(γ)
and choices ε(γ) ∈ {+,−}. Using the parallelism of the Gi, we take identical
labelings for A±(γi) and make identical choices for ε(γi). See Figure 6 for a
cross-sectional view at γ.

The surface F +nG is now the usual Haken sum of F and nG with these
induced choices, A±(γi) and ε(γi).

3. Existing examples.

This section shows that the Casson–Gordon examples are of the form
H + nK. At the end of the section, we briefly discuss the examples of
Kobayashi [6], and Lustig and Moriah [10].

Let k = k(n1, . . . , nm) ⊂ S3 be a pretzel knot [4] with twist boxes of order
ni. Here, we choose m and the ni to be odd, positive, and greater than 4.
See Figure 2 for an example.

Figure 2: The k(5, 5, 5, 5, 5)-pretzel knot.

A pretzel knot has an associated Seifert surface, F . This is the compact
checkerboard surface for the standard diagram. Again, see Figure 2. Let
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B be the three-ball containing the pair of consecutive twist boxes of order
ni and ni+1. Let S = ∂B. Note that |k ∩ S| = 4; see Figure 3. There is
a well-known twisting procedure which, twists k = k(n1, . . . , nm) along S
giving

k1 = k(n1, . . . , ni−1,−1, ni, ni+1, 1, ni+2, . . . , nm).

Again, see Figure 3.

k

S

1

Figure 3: After twisting the k(5, 5, 5, 5, 5)-pretzel knot, we obtain the
k(5, 5,−1, 5, 5, 1, 5)-pretzel knot.

So, given the pretzel knot k and the sphere S, we can produce the se-
quence {kn} of n-times twisted pretzels:

kn = k(n1, . . . , ni−1,

n︷ ︸︸ ︷
−1, . . . ,−1, ni, ni+1,

n︷ ︸︸ ︷
1, . . . , 1, ni+2, . . . , nm).

Denote the associated Seifert surface for kn by Fn. Note that kn is isotopic
to k = k0 and that F0 = F .

In his thesis, Parris proves:

Theorem 3.1 (Parris [13]). The surfaces Fn are free incompressible
Seifert surfaces for k. ��

Let X = S3�η(kn). Let V̂n be a closed regular neighborhood of Fn ∪
η(kn). So kn ⊂ V̂n. Let Wn = S3�V̂n. Now, as kn is isotopic into Hn = ∂V̂n,
doing 1/l Dehn surgery along k makes V̂n into a handlebody, which we denote
by Vn. Here, l is any positive integer greater than 4. Let M = X(1/l) be
the 1/l Dehn surgery of S3 along k. Let Hn = ∂Vn = ∂Wn ⊂ M . Note that
the genus of Hn is 2n + 4. We have:

Theorem 3.2 (Casson and Gordon [1], [11]). The Heegaard splittings
Hn ⊂ M are strongly irreducible. ��
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Now, let G be the surface ∂(B�η(k)) = (S�η(k)) ∪ (∂η(k) ∩ B). We
now state the main theorem of this section:

Theorem 3.3. The Heegaard surfaces Hn are isotopic to a Haken sum H0+
2nG.

We require several lemmas for the proof of Theorem 3.3.

Lemma 3.4. The surface Fn is isotopic to F0 + nS.

Proof. Let α and β be the arcs of intersection between S and F = F0. Let
Bα be a closed regular neighborhood of α. Let Sα be the boundary of Bα.
See the left side of Figure 4 for a picture of S ∪ F inside Bα.

Figure 4: The knot k has been thickened a bit. On the left, F is vertical
while S is horizontal. The middle is their Haken sum. The right shows the
isotopy of α′ ∪ k′ ∪ α′′ ∪ k′′ to be horizontal.

We choose the Haken sum which glues the top sheet of (F ∩ Bα)�α to
the back sheet of (S ∩Bα)�α. Glue the bottom sheet of (F ∩Bα)�α to the
front sheet of (S ∩ Bα)�α. See the center of Figure 4 for a picture of the
Haken sum.

Let α′ and α′′ be the seams along which the sheets of F and S are glued.
Let k′ and k′′ be the arcs of k�(∂α′ ∪ ∂α′′) inside of Bα. Do a small isotopy
of the loop γ = α′ ∪ k′ ∪ α′′ ∪ k′′ as shown in Figure 4. After this isotopy,
the image of γ lies in a regular neighborhood of the curve Sα ∩ S.

We perform the same sequence of steps near β. Recall that Sα ∩ S and
Sβ ∩ S cobound an annulus, A ⊂ S. Isotope the surface F + S to move k
close to the core curve of A – this isotopy is illustrated in a sequence of steps
in Figure 5.
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Now flatten out the right-hand side of Figure 5 by rotating the two twist
boxes inside of S by 180◦. Also flatten the annulus into the plane containing
the standard diagram of k. See Figure 6.

Note that the result is the Seifert surface associated to the pretzel knot
k1 = k(5, 5,−1, 5, 5, 1, 5). Thus, by induction, the proof of Lemma 3.4 is
complete. �

Figure 5: Isotoping F + S, moving k near the equator of S.

Figure 6: Flatten the resulting figure into the plane of the diagram.

Recall that k is the given pretzel knot, F = F0 is the associated Seifert
surface, and S is the two-sphere bounding the three-ball B, as above.

Lemma 3.5. The surface Fn is isotopic to F0 + nG.

Proof. Consider a single component of η(k) ∩ η(B). This component B′ is
a ball. Let k′ = k ∩ B′. The disk F ′ = F ∩ B′ is a boundary compression
for k′ in B′. The two disks S′ ∪ S′′ = S ∩ B′ each intersect k′ in a single
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point. See the left-hand side of Figure 7 for a picture. (The knot k has been
thickened a bit.)

The arcs S′ ∩ F ′ and S′′ ∩ F ′ are both part of α ⊂ S ∩ F . Thus, Haken
summing along S′ ∩ F ′ agrees with Haken summing along S′′ ∩ F ′. See the
right-hand side of Figure 7.

Turn now to F + G. Recall that G = ∂(B�η(k)). Note that G ∩ η(k)
is a pair of annuli. Isotope these annuli, rel boundary, slightly into η(k) so
that G�η(k) is identical to S�η(k). Thus, obtain the picture of F ∩B′ and
G ∩ B′, shown on the left in Figure 8.

Finally, take the Haken sum of F ′ with G′ = G ∩ B′ as forced by our
previous choices. See the right of Figure 8. Note that F ′ + G′ is isotopic to
F ′ + (S′ ∪S′′), rel boundary. The same holds inside the other component of
η(k) ∩ B. Finally, F + S is identical to F + G outside of η(k). The lemma
is proved. �

Figure 7: Forming the Haken sum of F (longitudinal) and S (meridional).

Figure 8: Forming the Haken sum of F and G.

We are now equipped to prove Theorem 3.3:
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Proof. Notice now that Hn is isotopic to the boundary of a regular neigh-
borhood of Fn. As ∂Fn = kn, the splitting Hn is obtained by gluing two
parallel copies of Fn with an annulus An ⊂ ∂η(kn), where the core curve of
An has longitudinal slope ∂η(kn) ∩ Fn. Note that A0 is taken to An by the
twisting isotopy taking k = k0 to kn. We thus have the following:

Hn = 2Fn ∪ An (3.1)
≈ 2(F0 + nG) ∪ A0 (3.2)
= (2F0 ∪ A0) + 2nG (3.3)
= H0 + 2nG. (3.4)

The second line follows from Lemma 3.5. The third line holds because
G has no boundary. This concludes the proof of Theorem 3.3. �

Remark 3.6. The examples of [6] and [10] are very similar – they begin
with a knot admitting a Conway sphere S and a natural Seifert surface F .
They then isotope the knot by twisting inside S. Thus their examples of
high genus Heegaard splittings may also be obtained via Haken sum.

4. Removing trivial curves.

Here we discuss a method for “cleaning” Haken sums. To be precise, we
have:

Lemma 4.1. Suppose H + nK is a sequence of Haken sums. Let m be the
number of curves of H ∩ K which are inessential on K. Then there is an
isotopy of H ′ = H + mK and a Haken sum H ′ + K so that

• all curves of H ′ ∩ K are essential on K and

• for all n > m the surface H + nK is isotopic to H ′ + (n − m)K.

Definition 4.2. We call such sequences essential in K.

Proof of Lemma 4.1. If m = 0 there is nothing to prove. If not, we claim
there is a surface Ĥ such that: Ĥ is isotopic to H + K, Ĥ ∩ K has fewer
inessential (on K) curves than H ∩K does, and Ĥ + (n− 1)K is isotopic to
H + nK for all n > 0. Applying this m times will prove the lemma.
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So suppose α ⊂ H ∩K is inessential on K. Assume that the disk D ⊂ K
bounded by α is innermost. That is, D ∩ H = α.

Let N = η(K) ∼= K×[0, 1]. We identify K with K×{1/2}. Let D′ be the
component of (H + K)�∂N containing D. Suppose that D′ has boundary
in K×{1}. (The case D′ ⊂ K×{0} is similar.)

Isotope D′ up, relative to (H + K) ∩ ∂N , to lie in η(K×{1}), while
isotoping all other components of K�H down into η(K×{0}). See Figure 9.

H�K

D

H
K×{1}

K×{0}

Figure 9: On the left, we see H +K intersecting η(K). On the right, H +K
has been isotoped to Ĥ.

Let Ĥ be this new position of H + K and note that Ĥ ∩ (K×{1/2}) has
at least one fewer trivial curve of intersection with K.

We now must prove that Ĥ + (n − 1)K is isotopic to H + nK, for all
n > 0. Recall that α was the chosen innermost curve of H ∩ K, bounding
D ⊂ K. Form H + nK and isotope all subdisks parallel to D up. Isotope
the lowest copy of K�D down. This yields Ĥ + (n− 1)K. (See Figure 10.)
This completes the claim and thus the lemma. �

H�2KH�3K

Figure 10: H + 3K is isotopic to Ĥ + 2K.
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5. Adding surfaces of genus greater than two.

Theorem 1.3 divides into two statements. The first addresses the case
genus(K) > 1 while the second deals with the case K a torus. We begin with:

Theorem 5.1. Suppose M is a closed, orientable three-manifold and H
and K are closed orientable transverse surfaces in M , with genus(K) ≥ 2.
Suppose that a Haken sum H + K is given so that the surface H + nK is a
strongly irreducible Heegaard splitting for arbitrarily large values of n. Then
the surface K is incompressible.

We begin by giving a brief sketch of the proof. Aiming for a contradic-
tion, we assume that K is compressible. Using Lemma 5.2 below, we find a
compressing disk D for K with ∂D separating in K.

For large n, the disk D intersects H + nK in a fairly controlled way – in
particular, there is a large family of parallel curves {γi} in the intersection
(H + nK) ∩ D. We will show that many of the {γi} are essential curves
on H + nK. By Scharlemann’s “No Nesting” Lemma 2.3, all of these γi’s
bound disks Di in one of the two handlebodies Vn or Wn. (Here ∂Vn = ∂Wn

equals H + nK.) Finally, the two curves γi and γi+1 cobound a subannulus
Ai ⊂ D. Compressing or boundary compressing Ai, will give an essential
disk Ei disjoint from Di. This demonstrates that H+nK is weakly reducible,
a contradiction.

5.1. Finding a separating compressing disk.

We will need a simple lemma:

Lemma 5.2. If G ⊂ M is a compressible surface, which is not a torus, then
there is a compressing disk D ⊂ M so that ∂D is a separating curve, on G.

Proof. Let E be any compressing disk for G. If ∂E is a separating curve then
take D = E and we are done. So suppose instead that ∂E is non-separating
in G. Choose γ ⊂ G to be any simple closed curve which meets ∂E exactly
once. Let N be a closed regular neighborhood of γ ∪E, taken in M . Let D
be the closure of the disk component of ∂N�G. This is the desired disk. �

5.2. The intersection with the compressing disk.

We now begin the proof of Theorem 5.1.
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Recall that H and K are a pair of surfaces so that H + nK is a strongly
irreducible Heegaard splitting for arbitrarily large n. Applying Lemma 4.1,
we may assume that every curve of intersection between H and K is essential
in K.

In order to obtain a contradiction assume that K is compressible. Use
Lemma 5.2 to obtain a compressing disk D for K, transverse to H, where ∂D
is separating in K. We may choose D to minimize the size of the intersection
|(H ∩ K) ∩ D|. Denote the two components of K�∂D by K ′ and K ′′.

For any n > 0 such that H + nK is a strongly irreducible Heegaard
splitting, proceed as follows: Label the components of nK as K1, . . . ,Kn.
Isotope nK so that all of the Ki lie inside of η(K), are disjoint from K,
and meet interior(D) in a single curve. Choose subscripts for the Ki con-
secutively so that K1 ∩ D is innermost among the curves of intersection
(∪Ki) ∩ D. See Figure 11 for a picture of how the Ki and H intersect D.

stack

H

H

K

K

�D

1

4

Figure 11: A picture of D. The concentric circles are the curves of Ki ∩ D.
The arcs and small circles make up H ∩ D.

Note that H ∩ D is a collection of arcs and simple closed curves. The
arcs’ intersection with Ki ∩ D will give a cross-sectional view of the Haken
sum of H with nK.

Fix attention on a stack of intersections: a collection of n consecutive
points of intersection between an arc of H∩D and nK, all of which are close
to a point of H ∩∂D. Again, see Figure 11. Choose a transverse orientation
on D. Assign a parity to the stack as follows: A stack is positive if, after the
Haken sum, the segment of (Ki ∩ D)�η(Ki ∩ H) on the left is attached to
the segment of (Ki+1 ∩D)�η(Ki+1 ∩H) on the right. Otherwise, the stack
is negative. See Figure 12.
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H�nK

�D

plus

H�nK

�D

minus

Figure 12: In both cases, we are looking at D in the direction of the trans-
verse orientation.

Claim 5.3. The number of positive stacks equals the number of negative
stacks.

Proof. Recall ∂D separates K into two pieces, K ′ and K ′′. So every com-
ponent of H ∩ K ′ is either a simple closed curve, disjoint from ∂D, or is a
properly embedded arc. Pick one of these arcs, say α ⊂ H ∩ K ′. Note the
endpoints of α lie in ∂D and give rise to stacks of opposite parity. �

x

x
x

H�nK

γ

�D

3

4

1

Figure 13.

Next, analyze how the intersection (H+nK)∩D lies in D: As in Figure 13,
fix any point x ∈ (∂D�H). Let xi be the corresponding point of Ki ∩ D.

An arc of (Ki ∩D)�η(H ∩nK) is a horizontal arc at level i. In particular,
the arc containing xi is at level i. Orient these arcs in a clockwise fashion.
Note that horizontal arcs are also subarcs of (H+nK)∩D. When a horizontal
arc at level i enters a positive stack, it ascends and when it enters a negative
stack it descends a single level.
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Consider now an arc of (H ∩ D)�η(H ∩ nK). These are the vertical
arcs. If a vertical arc meets ∂D, call it an external arc. If a vertical arc is
contained in the subdisk of D bounded by K1 ∩ D call it an internal arc.
See Figure 11.

Suppose the component of (H + nK) ∩ D which contains xi does not
contain any internal or external vertical arcs. Then, call that component
γi. For each value of i where the property above does not hold, γi is left
undefined.

Set
c1 = |H ∩ ∂D|. (5.1)

Note that c1 is even.

Claim 5.4. The collection (H + nK) ∩ D consists of

• exactly c1/2 arcs,

• the curves {γi}, and

• at most another |H ∩ D| simple closed curves.

Furthermore, each γi is a simple closed curve. Also |{γi}| ≥ n− c1. Finally,
γi and γi+1 cobound an annulus component Ai of D�(H + nK).

The claim follows from Figure 13. For completeness, a proof is included.

Proof of Claim 5.4.. The first statement in the claim is trivial: H ∩∂D and
(H + nK) ∩ ∂D are the same set of points. Next, count the γi’s: Choose
any i with c1/2 < i < n− c1/2 and let α be the component of (H +nK)∩D
containing xi. Starting at xi, and moving along α in a clockwise fashion, we
ascend whenever we go through a positive stack and descend through the
negative stacks. As there are c1/2 positive stacks and the same number of
negative stacks α contains no internal or external vertical arcs. Also α goes
through none of the other xj ’s. So α is a simple closed curve and is labeled
γi.

It follows that there are at least n − c1 of the γi’s in (H + nK) ∩ D.
These are all parallel in D, yielding the annuli {Ai}. Again, see Figure 5.2.

To finish the claim, note that any simple closed curve of (H + nK)∩D,
which is not a γi, is either a simple closed curve component of H ∩ D or
contains an internal vertical arc. Thus, there are at most |H∩D| such simple
closed curves. �
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In short, if n is sufficiently large then (H + nK) ∩ D cuts D into pieces
and most of these pieces are the parallel annuli, Ai.

5.3. Finding a “cover” of K.

Recall that K�∂D = K ′ � K ′′. Let {α′
j} = H ∩ K ′. Similarly, let

{α′′
j } = H ∩ K ′′. Due to the minimality assumptions (see the beginning

of Section 5.2) every loop of H ∩K is essential in K and every arc α′
j ⊂ K ′

and α′′
j ⊂ K ′′ is also essential

Choose a collection of oriented arcs {β′
j} with the following properties:

• Every arc β′
j is simple and is embedded in K ′.

• Both endpoints of β′
j are at the point x.

• The interiors of the β′
j are disjoint.

• The union of the β′
j , together with ∂D, forms a one-vertex triangula-

tion of K ′.

• The chosen arcs {β′
j} minimize the quantity |(⋃j α′

j) ∩ (
⋃

j β′
j)|.

Similarly, choose a collection of arcs {β′′
j } for K ′′.

Now, lift everything to a subsurface of H + nK which is “almost” a
cyclic cover of K: Let K̃ = (H + nK) ∩ η(K). Let π : K̃ → K be the
natural projection map. So π is the composition of the homeomorphism
of η(K) ∼= K×(0, 1) with projection onto the first factor, restricted to K̃ ⊂
η(K). (It is necessary to slightly tilt the vertical annuli coming from H�nK.
This makes π, a local homeomorphism.)

Thus {xi} = π−1(x). As discussed above, for most values of i the curve
γi is the component of π−1(∂D) which contains xi.

Now lift the set of curves α′, α′′, β′, β′′: To be precise, let α′
j,i be the

component of π−1(α′
j) which is contained in the annulus connecting Ki and

Ki+1. Define α′′
j,i similarly. See Figure 14.

Let β′
j,i be the component of π−1(β′

j) which, given the orientation of β′
j ,

starts at the point xi. Define β′′
j,i similarly. Not every β′

j,i is useful. However,
letting

c2 = max
k

⎧⎨⎩
∣∣∣∣∣∣
⎛⎝⋃

j

α′
j

⎞⎠ ∩ β′
k

∣∣∣∣∣∣ ,
∣∣∣∣∣∣
⎛⎝⋃

j

α′′
j

⎞⎠ ∩ β′′
k

∣∣∣∣∣∣
⎫⎬⎭ (5.2)
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H

H�nK

�¡

j, 3

j, 2

j, 1

j, 2

j, 1

Figure 14: The left is before the Haken sum and the right is after. We have
tilted the vertical annuli of H.

we have:

Claim 5.5. For all j and for all i with c2 < i < n−c2, we have π(β′
j,i) = β′

j .
The same holds for π|β′′

j,i.

Proof. Every time β′
j,i crosses one of the α′

j,i’s it goes up (or down) exactly
one level. Thus, any β′

j,i, with i as in the hypothesis, has both endpoints on
some lift of x and the claim holds. �

Definition 5.6. Suppose that c2 < i < n− c2. Suppose that the final point
of β′

j,i is xk. By definition of β′
j,i the starting point is xi. Define the shift of

β′
j,i to be σ(β′

j,i) = k − i.

An important observation is:

Claim 5.7. The shift σ(β′
j,i) does not depend on the value of i. ��

Remark 5.8. Note that c2 is an upper bound on the absolute value of any
shift σ(β′

j,i) or σ(β′′
j,i).

Henceforth, we will use σ(β′
j) to denote the shift of β′

j,i, for any i. The
same notation will be used for arcs of K ′′.

5.4. Finding essential curves and annuli.

Now to gain some control over the parallel curves γi ⊂ D. Set

c3 = max {c1, 2c2} . (5.3)
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Claim 5.9. If, for all j, the shifts σ(β′
j) are zero then, for all i with c2 <

i < n − c2, the curve γi separates H + nK into two surfaces. One of these
is homeomorphic to K ′ (and in fact is isotopic, relative to γi, to K ′

i). The
similar statement holds on the K ′′ side. ��

Remark 5.10. It follows immediately that there is at least one non-zero
shift on at least one side. Otherwise, H + nK would be disconnected for
large n.

Claim 5.11. For all i with c3 < i < n − c3, the curve γi is essential in
H + nK.

Proof. Consider some curve γi with i in the indicated range.
First, suppose that all shifts on one side, say K ′, are zero. Take n >

7 · c3 (this lower bound is used here and in Claim 5.12 below). Recall that
χ(K) < 0 and that Euler characteristic is additive under Haken sum. Thus
χ(K ′) + 1 > χ(H) + nχ(K) = χ(H + nK). Now, if γi is inessential then, by
Claim 5.9, γi bounds a surface homeomorphic to K ′ on one side and bounds
a disk on the other side. It would follow that χ(H + nK) = χ(K ′) + 1, a
contradiction. So if all shifts on one side are zero, then γi is essential.

Now suppose that there are non-zero shifts on both sides. Reversing the
orientation of some β′

j or β′′
k , we may assume that the shifts σ(β′

j) = r and
σ(β′′

k ) = s are both positive. We may further assume that r ≤ s. If r = s,
take δ = β′

j,i ∪ β′′
k,i. If r < s, take δ = β′

j,i ∪ β′′
k,i+r−s ∪ β′

j,i−s ∪ β′′
k,i−s.

So δ is a simple closed curve embedded in K̃: the important point, that
δ is closed, follows from Claim 5.5 and the fact that c3 is at least twice as
large as c2. Note that δ meets γi exactly once at the point xi. So γi is
essential. �

Similar ideas will give some control over the annuli Ai ⊂ D. Recall that
∂Ai = γi ∪ γi+1.

Claim 5.12. For all i with 3c3 < i < n − 3c3 − 1, the annuli Ai and Ai+1

are not boundary parallel into H + nK.

Proof. Suppose that Ai is boundary parallel into H +nK. (The situation for
Ai+1 is similar.) Let B ⊂ H +nK be the annulus with which Ai cobounds a
solid torus. So ∂B = ∂Ai = γi ∪ γi+1. As the other case is similar, suppose
that B is adjacent to the curve γi from the K ′-side.
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As B is not homeomorphic to K ′, it follows from Claim 5.9 that there
is a non-zero shift on the K ′ side. Let r = σ(β′

j) be the smallest non-zero
shift (in absolute value) on the K ′ side. Now the arc β′

j,i, by Claim 5.5,
runs from xi to xi+r. Also the interior of β′

j,i does not meet any γk. Since
∂B = γi ∪ γi+1 it follows that γi+r ⊂ B. Given the assumed bounds on i it
follows from Claim 5.11 that γi+r is essential in H + nK and thus in B. So
γi+r is parallel in B to γi.

Let B′ ⊂ B be the annulus cobounded by γi and γi+r. Now, B′ is
adjacent to both γi and γi+r on the K ′ side. Note that r = σ(β′

j,i) =
σ(β′

j,i+r), by Claim 5.7. As above deduce from Claim 5.5 that the arc β′
j,i+r

runs from xi+r to xi+2r. Also the interior of β′
j,i+r does not meet any γk.

Since ∂B′ = γi∪γi+r, it follows that γi+2r ⊂ B′. Given the assumed bounds
on i, it follows from Claim 5.11 that γi+2r is essential in H + nK and thus
in B′. So γi+2r separates γi from γi+r in B′. See Figure 15. This is a
contradiction, as β′

j,i connects xi ∈ γi to xi+r ∈ γi+r and does not meet
γi+2r. �

B�

γ

γ

γ

x

x

x

i�r

i�2r
i�2r

i
i

i�r

Figure 15: The curve γi+2r cannot be a core curve for B′ without crossing
β′

j,i.

5.5. Finishing the proof of the theorem.

Recall that all of the curves γi bound embedded disks in the manifold
because they bound disks in D. Thus, by Scharlemann’s “No Nesting”
Lemma 2.3, all of the γi’s bound disks in one of the two handlebodies
bounded by H + nK, Vn or Wn. From strong irreducibility of H + nK
and Claim 5.11, it follows that all the γi’s bound essential disks on the same
side. As the other case is identical, suppose that γi bounds Di ⊂ Vn for all
i.
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Now either Ai or Ai+1 lies in the opposite handlebody Wn. As the
two possibilities are symmetric, suppose Ai ⊂ Wn. There are two final
cases. If Ai is compressible in Wn, then compress to obtain two disks, say
Ei, Ei+1 ⊂ Wn. Here, ∂Ei = γi = ∂Di. It follows that H + nK is reducible,
a contradiction.

Suppose instead that Ai is incompressible. Since Ai is not boundary
parallel (Claim 5.12), there is a boundary compression of Ai yielding an
essential disk Ei with ∂Ei disjoint from ∂Ai = γi ∪ γi+1. So H + nK is
weakly reducible, another contradiction. This final contradiction completes
the proof of Theorem 5.1. ��

6. Adding copies of a torus.

For the remaining part of Theorem 1.3, the surface added is a torus, T .
Hence, we deal with sequences of strongly irreducible Heegaard splittings of
the form H + nT .

Theorem 6.1. Suppose M is a closed, orientable three-manifold and H
and T are closed orientable transverse surfaces in M , with T a two-torus.
Suppose that a Haken sum H + T is given so that the surface H + nT
is a strongly irreducible Heegaard splitting for arbitrarily large values of n.
Assume also that no pair of these splittings are isotopic in M . Then, the
surface T is incompressible.

Assume that T is compressible to obtain a contradiction. As M is ir-
reducible there are two cases: Either T bounds a solid torus or T bounds
a cube with a knotted hole. Denote this submanifold which T bounds by
X ⊂ M .

Before considering these cases in detail, apply Lemma 4.1 so that H ∩T
consists of curves essential on T . These all have the same slope. Further,
assign a parity to the curves of H ∩T as follows: Choose any oriented curve
α in T which meets each of the components of H ∩ T exactly once. Then,
traveling along α in the chosen direction, we cross the curves of H ∩ T and,
according to the Haken sum, H + nT either descends into the submanifold
X or ascends out of X. Assign the former a negative parity and the latter a
positive. As the other case is similar, we assume that there are more curves
of H∩T of positive parity than negative. (There cannot be equal numbers of
both as then, for large values of n, the surface H +nT fails to be connected.)
Recalling Definition 4.2 of an essential sequence we now have:
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Lemma 6.2. Suppose the sequence H + nT is essential in T . Let m be
the number of positive curves of H ∩ T minus the number of negative. Let
m′ = (|H ∩ T | − m)/2. Then, there is an isotopy of H ′ = H + m′T so that

• all curves of H ′ ∩ T are essential in T ,

• all curves of H ′ ∩ T are positive, and

• for all n > m′, the surface H + nT is isotopic to H ′ + (n − m′)T .
��

As the proof of Lemma 6.2 is essentially identical to that of Lemma 4.1,
we omit it. An essential sequence H + nT is reduced if all of the curves of
H ∩ T have the same parity.

6.1. Bounding a solid torus.

Suppose now that T bounds a solid torus X. We have:

Claim 6.3. If H + nT is reduced and m = |H ∩ T | then, for any positive
n, the surface H + nT is isotopic in M to H + (n + m)T .

Proof. Choose a homeomorphism X ∼= D
2×S1, where η(T ) ∩ X ∼= A×S1

with A ∼= {z ∈ C | 1/2 ≤ |z| ≤ 1}. Set D0 = D2�A.
If the slope of H ∩ T is meridional (isotopic to ∂D2×{pt}), then the

desired isotopy is ϕ : M×I → M with ϕt|(M�X) = Id, ϕt(z, θ) = (z, θ ±
2tπ) for all z ∈ D0, and ϕt(z, θ) = (z, θ±2tπ · (2−2|z|)) for all z ∈ A. Here,
the sign ± is determined by the parity of the curves H ∩ T . Note also that
we only need to do this isotopy once, not m times.

For any other slope the desired isotopy is ϕ : M×I → M with
ϕt|(M�X) = Id, ϕt(z, θ) = (z · exp(±2tπi), θ) for all z ∈ D0, and
ϕt(z, θ) = (z · exp(±2tπi(2 − 2|z|)), θ) for all z ∈ A. Again, the sign ±
is determined by the parity of the curves H ∩ T . �

Thus, when T bounds X a solid torus, the sequence H+nT contains only
finitely many isotopy classes of Heegaard splittings. This is a contradiction.

6.2. Bounding a cube with a knotted hole.

Suppose now that the two-torus T bounds a cube with a knotted hole. That
is, X ⊂ M is a submanifold contained in a three-ball Y ⊂ M , and T = ∂X
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compresses in Y but not in X. The unique slope of this compressing disk is
called the meridian.

We require one more definition: A pair of transverse surfaces H and K in
a three-manifold M are compression-free if all curves of H ∩K are essential
on both surfaces.

The main theorem of [7] is:

Theorem 6.4. Suppose H ⊂ M is strongly irreducible and the two-torus T
bounds X ⊂ M , a cube with a knotted hole. Suppose also that H and T are
compression-free with non-trivial intersection. Then:

• the components of H ∩ X are all annuli and

• there is at least one component of H�T which is a meridional annulus,
boundary parallel into T .

So, choose H and T as provided by the hypotheses of Theorem 6.1.
Suppose also, as provided by Lemmas 4.1 and 6.2, that H + nT is reduced
– all curves of H ∩ T are essential and of the same parity.

Claim 6.5. All curves of H ∩ T are meridional on T .

Proof. If H and T are compression-free, then apply Theorem 6.4 and we are
done. If not, then there is a curve of intersection which bounds an innermost
disk in H and which is essential on T . As T is not compressible into X, we
are done. �

The proof of Theorem 6.1, with X a cube with knotted hole, now splits
into two subcases. Either H ∩ T is compression-free or not.

6.2.1. The compression-free case. Suppose that H ∩T is compression-
free and that H + nT is a reduced sequence. We again wish to prove that
infinitely many of the H + nT are pairwise isotopic.

Take nT to be n parallel copies of T , all inside of X. Note that H ∩T =
(H + nT ) ∩ T and H�X = (H + nT )�X. Hence, H + nT and T are
compression-free.

We repeatedly isotope H + nT via the following procedure: Apply
Theorem 6.4 to H + nT and T . Thus, there is a meridional annulus
A ⊂ (H + nT )�T which is boundary parallel into T . Let B ⊂ T be the
annulus to which A is parallel. Denote by Z the solid torus which A and B
cobound.
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Now, if A ⊂ M�X then Z ∩ X = B. In this case, isotope A and all
components of (H + nT ) ∩ Z into X. Begin the procedure again appliying
to this new position of H + nT .

If A ⊂ X then Z ⊂ X as well. In this case all components of (H+nT )∩Z
are meridional annuli which are parallel rel boundary into T . Isotope A and
all of the annuli of (H + nT )∩Z out of X, but keeping them parallel to T .
See Figure 16.

T

X X

A
H�nT

Figure 16: Isotopic pieces of H + nT out of X.

At the end of the procedure, we have isotoped H + nT out of X. The
surface H + nT is thus isotopic to the surface which is a union of compo-
nents of H�X together with a union of annuli parallel to sub-annuli of T .
There are only finitely many of the latter (as H ∩ T is bounded). This is a
contradiction.

6.2.2. The meridional compression case. Suppose now that H�X
contains a meridional disk D ⊂ H for T . Let Y be the three-ball X ∪ η(D).
Note that all the curves {γj} = H ∩ ∂Y are parallel in ∂Y . This is because
all of the curves (H + nT ) ∩ T are meridional for T . We think of Y as a
copy of D2×I – “a tall tuna can” – with all of the γj of the form ∂D

2×{pt}.
For each n, we carry out an inductive procedure: Fix n. Let Y 0 =

Y and let H0 = Hn = H + nT . At stage i, there is a “stack of tuna
cans” Y i ∼= D

2×Ii ⊂ Y 0, where Ii is a disjoint union of finitely many closed
intervals in I. See either side of Figure 17.

Each component of ∂Y i contains at least one of the curves γj . Also,
the surface H0 has been isotoped to a surface H i so that H i�Y i ⊂
H i−1�Y i−1 ⊂ H�Y . It follows that ∂Y i ∩ H i is a subset of ∪γj. Note
that all the components of ∂Y i�H i are “vertical” annuli or disks.

Suppose some annulus component of ∂Y i�H i is compressible in
M�(Y i ∪ H i). So do the “packing tuna” isotopy: There is a disk Di with
interior in M�(Y i∪H i) and with boundary ∂Di ⊂ ∂Y i (see left side of Fig-



Heegaard splittings of the form H + nK 237

H �Y

Y

D D

i i

i

i
i

Figure 17: The packing step is illustrated on the left while the slicing step
is on the right. The disk Di is depicted by the dotted line.

ure 17). Let Z be the component of Y i containing ∂Di. Then ∂Di bounds
two disks in ∂Z, say E and E′. Then, either Di ∪ E or Di ∪ E′ bound a
three-ball in M which has interior disjoint from Z. (This is because M is
irreducible.) So there is an isotopy of H i which moves some components of
H i

�Z into Z. This reduces the number of curves of intersection H i ∩ ∂Y i.
Let H i+1 be the new position of H + nT . Let Y i+1 be equal to the union
of all the components of Y i which meet H i+1. The induction hypotheses
clearly hold.

Suppose instead some annulus component of ∂Y i
�H i is compressible

in Y i
�H i. Next, perform the “slice a can in half” move: Let Di ⊂ Y i

be such a compressing disk with ∂Di = D2×{pt} and Di ∩ H i = ∅. See
right side of Figure 17. Isotope Di ∪ H i until Di is level (Di = D2×{pt})
while maintaining Di ∩ H i = ∅. This isotopy is supported inside of Y i. Let
H i+1 be the new position of H + nT and let Y i+1 = Y i�η(Di). Again the
induction hypotheses clearly hold.

The procedure terminates after at most |{γj}| = |(H+nT )∩Y | steps. To
see this, note that we can never have |Y i| greater than the original number
of curves {γj}. So, we cannot “slice” more than that number of times. Also,
the number of components of (H + nT )�Y = H�Y is bounded and H i�Y i

is contained in H�Y . So, we cannot “pack” more than that number of
times.

Let m be the largest value of i reached in the above procedure. After
the procedure terminates, we have every component of ∂Y m�Hm being
incompressible in both M�(Y m ∪ Hm) and inside Y m�Hm. An innermost
disk argument shows that every component of ∂Y m�Hm is incompressible
in M�Hm.
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Let Z be a component of Y m. Recall that the curves γj ⊂ ∂Z are parallel.
Now apply Scharlemann’s Local Detection Theorem [15] (for three-balls) to
∂Z. It follows that Hm ∩ Z is either a disk or an unknotted annulus.

At the end of the procedure, the surface H + nT has been isotoped to
a surface which is a union of components of H�Y together with a union
of “vertical” annuli and disks of the form D2×{pt}. There are only finitely
many of the latter (as H ∩ ∂Y is bounded). So for all n, the splitting
H + nT is isotopic to one of these finitely many surfaces, a contradiction.
This completes the proof of Theorem 6.1. ��

7. New examples.

The goal of the next two sections is to give new examples of H,K,H +K ⊂
M such that for all integers n, the surface H + nK is a strongly irreducible
Heegaard splitting.

Note that the manifolds of Casson–Gordon have Heegaard genus four
and larger. Our examples have genus as low as three. Also, our examples,
unlike those of [6] and [10], do not involve twisting around a two-sphere in
S3 or require the existence of an incompressible spanning surface.

In the next two sections, we first (7.1) construct our new examples and
then (7.2) prove that they have the desired properties.

7.1. Constructing the new examples.

To begin with, we sketch the construction, which has obvious generaliza-
tions. Take V a handlebody of genus three or more. Take γ to be a “suffi-
ciently complicated” curve in H = ∂V . Double V across H and let W be
the other copy of V . Alter the gluing of V to W by Dehn twisting along
γ at least six times. This gives M , a closed orientable manifold. Now, we
will have a properly embedded surface K ′ ⊂ V with K ′ ∩ γ = ∅. Thus K ′

doubles to give a surface K in M . Adding copies of K to H will give the
desired sequence of Heegaard splittings.

Before giving the details, recall:

Definition 7.1. Let V be a handlebody. A simple closed curve γ ⊂ ∂V is
disk-busting if ∂V �γ is incompressible in V .

For the remainder of this section, take V ′ a handlebody of genus two.
(Larger genus is also possible.) Let γ′ ⊂ ∂V ′ be a non-separating disk-
busting curve. Set K ′ = ∂V ′�η(γ′). For an example of this, see Figure 18.
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γ'

Figure 18: The curve γ′ is disk-busting in V ′

Take U , a solid torus, and fix a subdisk of the boundary E ⊂ ∂U . Let
V ′′ = (K ′×I) ∪ U where K ′×I is glued to U via some homeomorphism
between a subdisk of K ′×{1} and the disk E. Thus, E and any meridional
disk of U (which is disjoint from E) are essential disks in V ′′. Let ∂+V ′′ =
((K ′×{1}) ∪ ∂U) �E. Let ∂−V ′′ = K ′×{0}.

Now, choose γ ⊂ ∂+V ′′, a disk-busting curve for V ′′. See Figure 19, for
example.

γ

Figure 19: The curve γ ⊂ ∂+V ′′ is disk-busting for V ′′.

Form a genus three handlebody V by gluing V ′ to V ′′ via the natural
map between K ′ ⊂ ∂V ′ and ∂−V ′′ ⊂ ∂V ′′. It is easy to check that γ is
disk-busting in V . As this fact is not needed in what follows, we omit the
proof. However, see Figure 20 for a picture.

Now, form a manifold D(V ) by doubling V – that is, let W be an identical
copy of V and glue these two handlebodies by the identity map between their
boundaries. Finally, obtain a closed three-manifold M by altering the gluing
between V and W by Dehn twisting at least six times along γ. Again, we
do not need the fact that H is a strongly irreducible Heegaard splitting, nor
the consequence that M is irreducible.
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γ

Figure 20: To obtain M , double the handlebody shown and Dehn twist at
least six times along γ.

Let K = D(K ′) ⊂ M be the double of K ′. As K ′ is connected, so is K.
The surface K is also incompressible in M , but as this fact is not required
in the sequel, we omit any direct proof.

Next, choose the Haken sum of H and K: Label the two curves of K∩H
by α and β. Recall that γ′ was chosen to be disk-busting and non-separating
in ∂V ′. Note that α and β cobound an annulus A = η(γ′) = ∂V ′

�K ′ ⊂ H
and that α and β cut K into two halves K ′ ⊂ V and K ′′ ⊂ W . Also, α and
β cut H into two connected pieces, A and H�A ∼= ∂+V ′′. Note that K and
H are both separating surfaces in M . For a schematic picture, see the left
side of Figure 21.

H  A sum
H�K

A

K

Figure 21: Picture showing (schematically) the relative positions of H, K,
and H + K.

So choose the Haken sum of H and K as indicated by the right side of
Figure 21. To be precise, let H : M×I → M be an ambient isotopy of M
which is fixed pointwise outside of η(A), moves α across A to β, sends the
solid torus η(α) to η(β), takes K ∩ η(α) to K ∩ η(β), and takes H ∩ η(α) to
H ∩ η(β). Now choose any Haken sum of H and K along α and use H to
transfer this choice to β. Again, see Figure 21. This defines the Haken sum
H + K and thus defines H + nK.
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7.2. Demonstrating the desired properties.

We now can state:

Theorem 7.2. Given V and γ as above, the surface H + nK is a strongly
irreducible Heegaard splitting of M , for any even n > 0.

Remark 7.3. In fact H + nK is a strongly irreducible Heegaard splitting
for any integer n. We restrict n to positive and even, in order to simplify
the proof.

Remark 7.4. The curve γ in Figure 20 does not give a hyperbolic manifold
because the resulting M contains a pair of Klein bottles. See Figure 22 for
a more complicated curve γ. This curve does yield a hyperbolic manifold
with the desired sequence of Heegaard splittings.

γ

Figure 22: Doubling the handlebody and twisting along the curve shown
gives a hyperbolic manifold satisfying the hypotheses of Theorem 7.2

The proof of Theorem 7.2 divides naturally into two pieces.

Claim 7.5. For positive, even n the surface, H+nK is a Heegaard splitting.

Proof. Recall that M�η(H ∪ K) is homeomorphic to the disjoint union of
V ′, V ′′, W ′, and W ′′. Also, the curves K ∩ H are denoted by α and β.

Let nK be n evenly spaced parallel copies of K in η(K). That H + nK
is connected follows from our choice of Haken sum along α and β. H + nK
is separating because H and K are separating. See Figure 23.

Label the closures of the two components of M�(H + nK) by Vn and
Wn where Vn contains V �η(K) and Wn contains W�η(K). (This is where
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sum

H�nKnK

Vn

Figure 23: Adding nK to H yields a connected, separating surface.

“n positive and even” is used. Again, see the right half of Figure 23 for a
picture with n = 4.)

Consider now the collection of closed annuli H ∩ interior(Vn). Cutting Vn

along all of these gives several components: The first, V ′
n, contains V ′�η(K)

while the second, V ′′
n , contains V ′′�η(K) and the rest are isotopic to η(K ′)

or η(K ′′). Let V P
n be the submanifold of Vn obtained by taking the union of

all the latter (thus, not V ′
n or V ′′

n ). Here the “P” in the superscript stands
for “product”.

Let An∪Bn be the two annuli in H ∩ interior(Vn) which are also in ∂V P
n .

Here we assign labels so that An meets the component of H ∩ η(K) which
contains α. Thus, as n is even, Bn meets the component of H ∩ η(K) which
contains β. We have realized Vn as the union of three pieces V ′

n, V ′′
n , and

V P
n , glued to each other along the annuli An and Bn.

Recall now that V ′
n
∼= V ′, V ′′

n
∼= V ′′ and thus both are handlebodies. Also,

the annulus Bn is primitive in V ′′
n : There is a disk in V ′′

n meeting Bn in a
single co-core arc. See Figure 19 and notice that Bn is parallel to β×I ⊂
∂K ′×I ⊂ V ′′.

Since V P
n and V ′′

n are handlebodies it follows that V P
n ∪Bn V ′′

n is also a
handlebody. Also, as V P

n is a product, the annulus An is primitive on V P
n ∪Bn

V ′′
n . So, since V ′

n is a handlebody, we finally have Vn = V ′
n ∪An V P

n ∪Bn V ′′
n

is a handlebody and applying similar arguments to Wn the surface H + nK
is a Heegaard splitting of M . �

Claim 7.6. For positive, even n the surface H +nK is strongly irreducible.

Proof. Recall that γ was a curve in ∂+V ′′ and thus also a curve in H + nK.
Recall that M was obtained by doubling V and then twisting at least six
times along γ.
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We will show that γ is disk-busting for Vn and thus for Wn. The proof
of the claim will then conclude with a Theorem of Casson [11] proving that
H + nK is strongly irreducible.

Choose D, any essential disk in Vn. Choose a hyperbolic metric on
H+nK. Tighten ∂D, ∂An, ∂Bn, γ to be geodesics. Perform a further isotopy
of D relative to ∂D to minimize the intersection of D with An ∪ Bn.

Now note that An and Bn are incompressible in Vn. If not, then some
boundary component of An bounds a disk in V ′

n or some boundary com-
ponent of Bn bounds a disk in V ′′

n . (None of these curves bound disks in
V P

n because neither K ′ nor K ′′ is a planar surface.) The first is impossible
because ∂An is parallel to γ′ ⊂ V ′

n which is disk-busting. The second is
impossible because ∂−V ′′ is π1-injective into V ′′

n .
So no component of D ∩ (An ∪ Bn) is a simple closed curve. Let D′

be an outermost disk of D�(An ∪ Bn): That is, D′ is the closure of a disk
component of D�(An ∪ Bn) and D′ meets An ∪ Bn in at most one arc.
It follows that D′ is an essential disk in V ′

n, V P
n , or V ′′

n . (If not we could
decrease |∂D ∩ (An ∪ Bn)|, an impossibility.)

There are three cases: D′ lies in V ′
n, V P

n , or V ′′
n .

Suppose first that D′ ⊂ V ′
n. If D′ = D is disjoint from An then, as An is

parallel to γ′ in ∂V ′
n, we may isotope D to be disjoint from γ′. This contradicts

our choice of γ′ being disk-busting in V ′
n. If D′ ⊂ D is a strict inclusion then

D′ ∩ An is a single arc. Then, D′ may be isotoped either to lie disjoint from
γ′ (D′ ∩ An is inessential in An) or to meet γ′ in a single point (D′ ∩ An is
essential in An). Again, this is because γ′ and An are parallel on the boundary
on V ′

n. The former contradicts γ′ being disk-busting. For the latter take two
parallel copies of D′ in V ′

n and band these together along γ′�η(D′) to obtain
an essential disk disjoint from γ′. This is again a contradiction.

The next possibility is that D′ lies in V P
n . However, this cannot happen

as V P
n is the trivial I-bundle over a surface.
We conclude that D′ is an essential disk in V ′′

n . It follows that D′ inter-
sects γ because, γ was chosen to be disk-busting for V ′′ ∼= V ′′

n . Thus, D has
a non-trivial geometric intersection with γ. As our choice of D is arbitrary,
we conclude that γ ⊂ H + nK is disk-busting for both Vn and Wn.

Note that D(V ), the double of V , is reducible. To obtain M from D(V ),
we cut open along a neighborhood of γ in ∂+V ′′ and Dehn twisted at least
six times. It follows that H +nK gives a Heegaard splitting of D(V ) and all
of these are reducible in D(V ). (To see this, recall that the disk E cut the
solid torus U from V ′′. Thus, the double D(E) is a reducing sphere for all
of the H + nK in D(V ).) Thus, we are in a position to apply the following
Theorem of Casson (see the appendix of [11]):
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Theorem 7.7. Suppose γ ⊂ H ⊂ N is a curve on a weakly reducible Hee-
gaard splitting surface of a closed orientable manifold N , and that H�γ is
incompressible in N . Cutting N open along a neighborhood of γ in H and
Dehn-twisting at least six times gives a strongly irreducible splitting H ′ of
the new manifold N ′.

It follows that for all positive, even n the splittings H +nK are strongly
irreducible. We are done. �

Claim 7.5 and Claim 7.6 together prove Theorem 7.2. ��

Remark 7.8. There is a well-known relationship, due to H. Rubinstein [14]
and M. Stocking [18], between strongly irreducible splittings and almost nor-
mal surfaces. In particular, strongly irreducible surfaces should contain a
single place (or “site” in Rubinstein’s terminology) where the curvature is
highly negative. This supposedly corresponds to the almost normal octagon
or annulus of the almost normal surface. In our examples, we find that the
subsurface ∂+V ′′ is the distinguished subsurface of H + nK which presum-
ably contains this special site.

8. Questions.

Recall that Theorem 5.1 was originally conjectured by Sedgwick along with
the much stronger:

Conjecture 1.4. Let M be a closed, orientable 3-manifold which contains
infinitely many irreducible Heegaard splittings that are pairwise non-isotopic.
Then, M is Haken.

This conjecture may be split, roughly, into two parts. First we have the
so-called “Generalized Waldhausen Conjecture”:

Conjecture 8.1. Let M be a closed, orientable 3-manifold which contains
infinitely many Heegaard splittings, pairwise non-isotopic, all of the same
genus. Then M is toroidal.

Note that this has been claimed by W. Jaco and Rubinstein. However,
no manuscript is available as of the writing of this paper.

The other half of Sedgwick’s conjecture deals with splittings of increasing
genus and is the inspiration for our current work:

Conjecture 8.2. Let M be a closed, orientable 3-manifold which contains
irreducible Heegaard splittings of arbitrarily large genus. Then M is Haken.
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We now turn to questions about examples. In all of the manifolds listed
above, which contain splittings of arbitrarily large genus, the three-manifold
has had Heegaard genus three or higher. Kobayashi asks:

Question 8.3. Is there an example of a Heegaard genus two-manifold which
admits strongly irreducible splittings of arbitrarily large genus?

Remark 8.4. Note that there are examples of toroidal manifolds containing
infinitely many strongly irreducible splittings all of the form H+nT . Here, H
is a genus two Heegaard splitting and T is an incompressible torus; see [12].

Sedgwick, in [17], has shown that the Casson–Gordon examples satisfy
the so-called “Stabilization Conjecture [16]”. That is, for any two splittings
H and H ′ obtained from the same pretzel knot, after stabilizing the higher
genus splitting once, we may destabilize to find the lower genus splitting.
Sedgwick’s techniques apply to all of the splittings discussed in Section 3.
Kobayashi suggests that the examples of H + nK given in this paper, after
stabilizing twice, should destabilize about 2n times.

Question 8.5. Does one stabilization suffice?
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