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From spatially periodic instantons to singular

monopoles

Benoit Charbonneau1

The main result is a computation of the Nahm transform of a
SU(2)-instanton over R × T 3, called spatially-periodic instanton.
It is a singular monopole over T 3, a solution to the Bogomolny
equation, whose rank is computed and behavior at the singular
points is described.

1. Introduction.

Heuristically, there is a correspondence, called the Nahm transform, between

1. solutions to the anti-self-dual (ASD) equation, or its appropriate di-
mensional reduction, on the quotient of R4 by a closed subgroup Λ of
R

4, and satisfying a finite energy condition, and

2. solutions to some associate equation satisfying some boundary condi-
tion on the quotient of R

4∗ by the dual subgroup Λ∗ = {f ∈ R4∗ |
f(Λ) ⊂ Z}.

This heuristic comes from a re-engineering due to Nahm [22] of the ADHM
construction of instantons on R

4 [1]. Nahm’s approach has the advantage
of being transportable to quotients by non-trivial subgroup Λ as well, with
some ad hoc efforts necessary in each case.

Nahm gave an outline of the correspondence for classical instantons (Λ =
{0}) and for monopoles on R3 (Λ = R). Corrigan and Goddard in [10]
completed the details of the ADHM construction following Nahm’s guideline,
while Hitchin in [13] completed the story for SU(2)-monopole on R3. In [23],
Nakajima rendered Hitchin’s proof more parallel to the ADHM story.

This framework guided several other authors in the quest for an under-
standing of other moduli spaces of instantons (or their appropriate dimen-
sional reduction) on various quotients of R

4: for instantons on T 4, see [27, 5];

1This research was supported by NSERC PGS A-B and MIT.
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for monopoles of other classical groups, see [14]; for calorons, or instantons
on S1 × R3, see [25, 24]; for instantons on T 2 × R2, see [19, 15, 16, 17, 4];
and for monopoles on R2 × S1, see [8, 9, 7]. Marcos Jardim wrote a survey
paper [18] on the Nahm transform, and the reader is invited to consult it
for some insights on an even more general framework in which to place the
above referenced literature and the present paper.

Apart from some numerical approximations and remarks in [28] and a
computation of the Nahm transform of charge 1 instantons in [29], the case
of the spatially periodic instantons, instantons on R × T 3, has been largely
ignored. The present paper starts the groundwork necessary to close that
gap. We prove here that the Nahm transform of an instanton on R × T 3 is
a singular monopole on T 3 with specific behavior at the singular points.

This paper is organized as follows. The main result on the Nahm trans-
form of instantons on R × T 3 and its singular behavior is spelled out in
Section 5 after the adequate language is explained. Before reaching this
result, it is useful to go over a brief overview of the classical ADHM con-
struction in Section 2, then check the bigger picture of the Nahm transform
heuristic in Section 3, and then zoom in on the Fredholmness properties of
the Dirac operators on R × T 3 in Section 4. The proof of the result splits
three ways: first, the rank of the transformed bundle is computed at the end
of Section 5; then, a splitting of the transformed bundle around the singu-
larities is developed in Section 6; and finally, the asymptotic of the Higgs
field is proved in Section 7.

2. The classical ADHMN.

The classical work of Atiyah, Drinfeld, Hitchin and Manin, termed ADHM
construction, classifies all the solutions to the ASD equation on R4, up to
gauge equivalence. Once viewed under the umbrella of the Nahm transform
heuristic, thus adding an N to form ADHMN, the classification is as follows.

A connection A on a SU(n)-bundle E over R4 whose curvature FA

satisfies the ASD equation ∗FA = −FA and the finite energy condition∫
R4 |FA|2 <∞ gives rise, through an analysis of its Dirac operator D/A, to a

set of algebraic data: two vector spaces

V = L2 ∩ ker(D/∗A), and
W = bounded harmonic sections of E for ∇A,
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and five maps

Φ1, . . . ,Φ4 : V →W,

η : V → S+ ⊗W.

Since the vector space is built using the augmented Dirac operator D/∗A acting
on sections of S− ⊗E, the dimension of V can be computed by some index
theorem, and

dimV =
1

8π2

∫
R4

|FA|2

provided the cokernel L2∩ker(D/A) is {0}. It is indeed so, as the Weitzenbock
formula

D/∗AD/A = ∇∗
A∇A + cl(F+

A )

clearly establishes: for an instanton connection, the Clifford multiplication
term vanishes and a L2 solution φ to D/∗Aφ = 0 must be parallel, hence 0
since R4 has infinite volume.

The map Φi = Pmxi is the composite of the multiplication by the ith
coordinate, denoted mxi and the L2-projection P on ker(D/∗A), while the map
η encodes the asymptotic behavior of elements of V .

For an instanton (E,A), the associated algebraic data (V,W,Φ, η) satisfy
a non-degeneracy condition and the ADHM equation, the precise formula-
tion of which is not important here. This “ADHM transform” places in
one-to-one correspondence instantons modulo gauge equivalence with non-
degenerate solutions to the ADHM equation modulo some symmetry group
action. A complete description of this construction can be found in [11,
Chapter 3], and in the author’s thesis [6].

It is a fruitful idea to interpret the set of maps Φ = (Φ1, . . . ,Φ4) as a
constant connection form

B = Φ1dx
1 + · · ·Φ4dx

4

on the trivial bundle V over R4 with fiber V . The curvature FB of B splits
as

FB = (ASD part) + ( SD part involving η).

Morally, the idea is that the transformed connection B on R4∗, invariant
under the action of Λ∗ = R4∗, is almost anti-self-dual, and the self-dual part
is determined by the asymptotic behavior of harmonic spinors.
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3. The Nahm transform heuristic.

The work of Nahm provides a framework in which to think about the classi-
fication of all the finite energy solutions to the ASD equation on a quotient
R4/Λ. Philosophically, once we find the appropriate codomain for the Nahm
transform to be described in this section, it should be an isomorphism. This
idea has been shown to work in many cases, as explained in the introduction.

A connection A on a SU(n)-bundle E over R
4, invariant under the action

of a closed subgroup Λ, and whose curvature FA satisfies the ASD equation

∗FA = −FA

and the finite energy condition∫
R4/Λ

|FA|2 <∞

gives rise, this time, to a bundle V with a connection B over R
4∗/Λ∗. Those

objects are constructed in the following way.
For an element z of R4∗, the space of R-valued linear functions on R4,

we define the bundle Lz over R4 to be a trivial C-bundle with connection

ωz := 2πiz = 2πi
4∑

j=1

zjdx
j .

For z′ ∈ Λ∗, the flat bundles Lz and Lz+z′ over R
4/Λ, both invariant under

the action of Λ, are isomorphic. We write Az for the connection A⊗1+1⊗ωz

on E ⊗ Lz = E. For z ∈ R
4∗, consider the operator

D/∗Az
: Γ(R4, S− ⊗ E ⊗ Lz) → Γ(R4, S+ ⊗ E ⊗ Lz).

A section of the bundle S− ⊗ E ⊗ Lz is said to be in L2
Λ if it is invariant

under the action of Λ and if its L2-norm over R4/Λ is finite.
The first ingredient of the Nahm transform of the instanton (E,A) is the

family of vector spaces

Vz := L2
Λ ∩ ker(D/∗Az

).

Since the vector space Vz is built using the augmented Dirac operator
D/∗Az

acting on sections of S−⊗E, the dimension of Vz can often be computed
by an appropriately chosen index theorem, and it is constant on connected
components on which D/Az is Fredholm provided the cokernel L2

Λ ∩ker(D/Az)
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is {0}. For a quotient R
4/Λ of infinite volume, it is indeed so, as the Weitzen-

bock formula

D/∗AD/A = ∇∗
A∇A + cl(F+

A )

clearly establishes: for an instanton connection, the Clifford multiplication
term vanishes and a L2 solution φ to D/∗Aφ = 0 must be parallel, hence 0
because of the infinite volume condition. For a quotient of finite volume, we
must add an extra condition to ensure the cokernel is trivial.

It turns out in many cases that D/∗Az
is not Fredholm for every z, which

is a good thing. Suppose for example that D/∗Az
was Fredholm everywhere

when Λ = Z3. As we explore in this present paper, the object created by the
Nahm transform is a monopole over T 3. But as one can show (see [26, Prop.
1]), smooth monopoles over compact 3-manifolds are not very interesting.

Set gz(x) := e2πiz(x). Notice that for any section φ of S− ⊗ E, we have
D/∗Az

(gzφ) = gz D/∗Aφ. Then, for all z′ ∈ Λ∗, we have an isomorphism

(3.1) gz′ : Vz → Vz+z′ ,

hence V is a bundle over R
4∗/Λ∗.

3.1. First viewpoint: on R
4∗, a curvature computation.

In the understanding of the ADHM construction, it was beneficial to view
the maps Φi as parts of a connection on the bundle V on R4∗, without
passing to the quotient. We do similarly here and consider first the bundle
V on an open subset of R4∗ on which the Dirac operator is Fredholm.

We define a connection B on V . Each fiber Vz is in fact contained in the
vector space L2

Λ(S−⊗E). We can then consider the trivial connection dz in
the trivial bundle of fibers L2

Λ(S− ⊗E), and its projection Pdz to V .
The operator D/∗Az

D/Az should be invertible, and we use its inverse, the
Green’s operator GAz = (D/∗Az

D/Az)−1, to define the projection P by the
formula

P = 1 − D/AzGAz D/∗Az
.

To parallel the ADHMN story, let us now compute the curvature FB

of B. To simplify the notation, we set Ω := 2πi
∑4

j=1 cl(dx
j)dzj . Then

[dz, D/Az ] = Ω, and similarly for D/∗Az
.
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The curvature FB can be computed as follows:〈
(Pdz)2φ,ψ

〉
= 〈dzPdzφ,ψ〉
= 〈Pdzφ, dzψ〉 − 〈dzφ, dzψ〉
= − 〈

D/AzGAz D/Azd
zφ, dzψ

〉
=

〈
D/AzGAzΩφ, d

zψ
〉
.

Let ν be the normal vector field to Sr−1(R) × T s. The integration by
parts necessary to bring D/Az on the right-hand side of the scalar product
introduces a boundary term

(3.2) ∂-term := lim
R→∞

∫
Sr−1(R)×T s

〈cl(ν)GAzΩφ, d
zψ〉 .

Performing the said integration by parts, we obtain

〈FBφ,ψ〉 =
〈
GAzΩφ, D/Azd

zψ
〉

+ ∂-term
= −〈GAzΩφ,Ωψ〉 + ∂-term
= 〈GAzφ,Ω ∧ Ωψ〉 + ∂-term.

In terms of the usual basis εj and ε̄j of respectively
∧+ and

∧−, we have

Ω ∧ Ω = −4π2
3∑

j=1

(
cl(εj)εj + cl(ε̄j)ε̄j

)
.

Since
∧+ acts trivially on S− ⊗ E, the first term of the curvature is ASD.

In the case we are studying at this moment, the ∂-term is 0.

3.2. Second viewpoint: on a 3-dimensional quotient, the
Bogolmolny equation.

Let us now shift our perspective and look at V and B from the viewpoint of
the quotient. Suppose some R is in Λ∗, say as the axis z1. In fact, suppose
here that Λ = Z3, and thus that Λ∗ = R × Z3. Set gz(x) = e2πix1z1. Then,

g(B) = −2πiPmx1dz
1 + P

(
∂

∂z2
dz2 + · · · + ∂

∂z4
dz4

)
.

So using this gauge transformation, we render B independent of the z1
coordinate. We define the Higgs field Φ by

Φ = −2πiPmx1 ,
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and the connection B on R
4∗/Λ∗ = T 3 by

B = Pdz,

where z represents here the coordinates (z2, z3, z4) on T 3. As we just saw,

g(B) = Φdz1 +B.

Should we be able to prove that ∂-term = 0, it would be so that g(B) is
ASD. It is in fact so, as we see in the next section, and thus (B,Φ) satisfies
the dimensional reduction of the ASD equation

∇BΦ = ∗FB

called the Bogomolny equation.

4. Fredholmness of the Dirac operator.

It is crucial now to understand exactly for which z ∈ T 3 the Dirac operator
D/∗Az

acting on L2 sections of S− ⊗E over R × T 3 is Fredholm.
Let us start with a SU(2)-instanton (E,A) on R × T 3 and call t the R-

coordinate. Modulo gauge transformation, we can pick a representative in
temporal gauge: A has no dt term and can be seen as a path of connections
on T 3, parameterized by R. In temporal gauge, the Dirac operator splits as

D/∗A = − ∂

∂t
+DA

with DA the Dirac operator on the cross-section {t} × T 3. Furthermore, as
t → ∞ and t → −∞, the connection A has flat limits Γ+ and Γ−; see [21,
Theorem 4.3.1]. Consequently, the operator DAz limits to DΓ+ z and DΓ− z

at +∞ and −∞. It is a crucial observation of Atiyah–Patodi–Singer [2] that
the unbounded operator D/∗Az

: L2 → L2 is Fredholm if and only if 0 is not in
the spectrum of either DΓ+ z or DΓ− z ; see [6, Chapter 6] for a very detailed
account.

As it turns out, any flat SU(2) bundle over a 3-manifold splits as a sum
of flat U(1)-bundles. Our bundle E, restricted to ±∞, splits respectively as

E = Lw± ⊕ L−w± ,

for some w± ∈ R3∗. The spectrum of DΓ+ z is thus the multiset

(4.1) Spec(DΓ+ z) = ±2π
∣∣Λ∗

Z − w+ − z
∣∣ ∪ ±2π

∣∣Λ∗
Z + w+ − z

∣∣
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for the part Λ∗
Z
∼= Z3 of Λ∗ in R3∗, and similarly for DΓ− z ; see [6, Chapter 3].

Thus, D/∗Az
is Fredholm as long as z is not in the set

W = {w+,−w+, w−,−w−}.

Keeping a parallel with the notation for the ADHMN story, the set W is in
some sense our set of “infinity data,” although in a much milder way than
for R

4.
It is appropriate at this point to ask for which z is D/∗Az

Fredholm when
we change the domain to allow for more or less growth. Choosing a weight
δ ∈ R

2, say δ = (δ−, δ+), and a weighing function σδ such that

σδ =

{
e−δ−t, for t < −1,
e−δ+t, for t > 1,

we define the weighted L2-norm

‖f‖
L2

δ
:= ‖σδf‖L2,

and naturally
L2

δ :=
{
f ∈ L2

loc | ‖f‖L2
δ
<∞}

.

We omit the bundle from the notation, as it should always be clear which
bundle is involved.

Similarly, we can define weighted Sobolev spaces. These include only
those L2

δ sections whose derivatives are also in L2
δ . Fix a connection ∇ on

E, and set
W 1,2

δ := {f ∈ L2
δ | ∇f ∈ L2

δ}.
Keeping in mind that the first coordinate of the weight describes the

growth at −∞ while the second describes the growth at +∞, we define the
grid

GA := Spec(DΓ−) × R ∪ R × Spec(DΓ+)

in the weight space R2. Naturally, the Atiyah–Patodi–Singer condition be-
comes

D/∗Az
: W 1,2

δ → L2
δ is Fredholm if and only if δ �∈ GAz .

We define the spaces

(4.2)
ker(δ) := ker(D/A : W 1,2

δ → L2
δ),

ker∗(δ) := ker(D/∗A : W 1,2
δ → L2

δ),
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and the integers

(4.3)
ind(δ) := ind(D/A : W 1,2

δ → L2
δ)

N(δ) := dimker(δ), and
N∗(δ) := dimker∗(δ).

Since (L2
δ)

∗ = L2
−δ, elliptic regularity tells us that dim coker(D/A) =

N∗(−δ), hence
ind(δ) = N(δ) −N∗(−δ).

That the formal adjoint D/∗A on W 1,2
−δ is really the adjoint of D/A on W 1,2

δ is
guaranteed by the following lemma.

Lemma 4.1. The subspace ker∗(−δ) of L2
−δ = (L2

δ)
∗ kills Im(δ) in the L2

natural pairing.

Proof. Suppose φ is a smooth function with compact support. Then for all
ψ ∈ ker∗(−δ), we have

〈
ψ, D/φ

〉
=

〈
D/∗ψ, φ

〉
= 0. Since C∞

c is dense in W 1,2
δ ,

the lemma holds. �

The operator D/∗Az
: W 1,2

δ → L2
δ is conjugate to the operator D/∗Az

+
σδcl(grad σ−1

δ ) from W 1,2 to L2. So the family parameterized by δ in an
open square delimited by GAz is continuous and hence has constant index.
In fact, the dimensions of the kernel and the cokernel are also constant in
an open square. The proof is easy and can be found in [6, Theorem 6.3-2].

As we cross a wall in GA to change from one open square to another,
the index ind of D/A and the index ind∗ of D/∗A change as follows:

ind(δ) = ind(η) + dim{DΓ+φ = −λφ}, and
ind∗(δ) = ind∗(η) + dim{DΓ+φ = λφ}(4.4)

when δ+ < η+, and δ and η are in adjacent open squares separated by the
wall R × {λ} ⊂ GA;

ind(δ) = ind(η) + dim{DΓ−φ = −λφ}, and
ind∗(δ) = ind∗(η) + dim{DΓ−φ = λφ}

when δ− > η−, and δ and η are in adjacent open squares separated by the
wall {λ} × R ⊂ GA.

When the limit Γ+ is such that the kernel of DΓ+ is {0}, not only are D/A

and D/∗A Fredholm, as we saw above, we also have that A decays exponentially
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to Γ+. So there exist β > 0 such that |A− Γ+| ≤ Ce−βt for t > 0; this is a
consequence of [21, Theorem 5.2.2] and of the embedding ofW 1,2 in bounded
C0 functions, [12, Theorem 3.4]. In that case, we have the following result
on harmonic spinors.

Theorem 4.2. Suppose φ ∈ ker(D/∗A) ∩W 1,2
δ . Suppose λ − β < η < δ and

that λ is the only eigenvalue of DΓ+ between η and δ: Spec(DΓ+) ∩ [η, δ] =
{λ}. Then, there exists an eigenvector ψ̄ of DΓ+ of eigenvalue λ on T 3 and
φ̄ ∈W 1,2

η ((0,∞) × T 3) such that

(4.5) φ = eλtψ̄ + φ̄ for t > 0.

Furthermore, φ̄ = O(eηt) as t→ ∞.

Proof. The space L2(T 3) splits according to the finite dimensional
eigenspaces Wλ for DΓ+ . Let Π+

δ , Π−
δ and Πδ be respectively the projections

from L2(T 3) to ⊕
λ>δ

Wλ,
⊕
λ<δ

Wλ, and Wδ.

To simplify the notation, we omit δ when it is 0 and set φ± := Π±(φ).
For every φ ∈ L2(Y ), let φλ be its Wλ component. Thus φ =

∑
φλ.

Using this decomposition, we can define the space W
1
2
,2(T 3) using the norm

(4.6) ‖φ‖2

W
1
2 ,2 =

∑
(1 + |λ|)‖φλ‖2

L2 .

Because T 3 is compact, the space W
1
2
,2(T 3) defined by two different

Dirac operators are equal, with commensurate norms. The + and − part of
L2, however, depend highly on DΓ+ .

The operator

(4.7)
D/!

Γ+
: W 1,2([a,∞) × T 3) → L2([a,∞) × T 3) ⊕ Π+W

1
2
,2({a} × T 3)

φ �→ (D/Γ+φ,Π
+φ(a))

is an isomorphism when DΓ+ has no kernel.
The proof of this fact starts as one does in the full cylinder case:

‖D/Γ+φ‖2

L2 = ‖∂tφ‖2

L2 + ‖DΓ+φ‖2

L2 +
∫ ∞

a
∂t

〈
φ,DΓ+φ

〉
L2(Y )

≥ C‖φ‖2

W 1,2 −
〈
φ(a),DΓ+φ(a)

〉
L2(Y )

.
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Contrary to the full cylinder case, the boundary term here cannot be made to
vanish and henceforth helps control theW 1,2-norm of φ. Using the inequality
above and the decomposition φ =

∑
φλ, we find

(4.8) ‖φ‖2

W 1,2 ≤ C
(
‖D/Γ+φ‖2

L2 + ‖φ+(a)‖2

W
1
2 ,2(T 3)

)
.

We just proved that ‖φ‖
W 1,2 ≤ C‖D/!

Γ+
φ‖, hence D/!

Γ+
is semi-Fredholm

and injective. Suppose now that (ψ, η) is perpendicular to Im(D/!
Γ+

). For
all φ ∈W 1,2([a,∞) × T 3), we have

0 =
〈
D/Γ+φ,ψ

〉
+

〈
η, φ+(a)

〉
=

〈
φ, D/∗Γ+

ψ
〉
− 〈φ(a), ψ(a)〉 +

〈
η, φ+(a)

〉
=

〈
φ, D/∗Γ+

ψ
〉
− 〈

φ−(a), ψ−(a)
〉

+
〈
η − ψ+(a), φ+(a)

〉
.

Testing against all the φ with φ(a) = 0 in a first time, φ+(a) = 0 then, and
finally φ−(a) = 0, we prove

D/∗Γ+
ψ = 0,

η = ψ+(a),
ψ−(a) = 0.

Thus we have −∂tψ+DΓ+ψ = 0, which means that ψ is a linear combination
of the eλtψλ. The condition ψ−(a) = 0 forces out all the negative λ, while
the positive ones are forced out by the L2 condition. Hence, ψ = 0 and D/!

Γ+

is surjective. The proof that the operator in Eq. (4.7) is an isomorphism is
now complete.

For a big enough, the operator D/!
A, not independant of t but close

enough to D/!
Γ+

, is also an isomorphism.
As in the full cylinder case, we can look at weighted version of D/ and D/!.

For computing the asymptotic expansion of harmonic spinors, we actually
need to consider the dual D/∗ and its counterpart

D/!∗
A : W 1,2

δ ([a,∞) × T 3) → L2
δ([a,∞) × T 3) ⊕ Π−

δ W
1
2
,2(T 3)

φ �→ (D/∗Aφ,Π
−φ(a)),

which is Fredholm if and only if δ �∈ Spec(D), and is an isomorphism when
Fredholm.

We close the proof of Theorem 4.2 with a diagram chase. We first intro-
duce maps to compose our diagram.
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Recall η < δ and Spec(D) ∩ [η, δ] = {λ}. Then obviously, the map

I : Π−
η W

1
2
,2({a} × T 3) ⊕Wλ → Π−

δ W
1
2
,2({a} × T 3)

(φ,ψ) �→ φ+ eaλψ

is an isomorphism, while the map

J : W 1,2
η ([a,∞) × T 3) ⊕Wλ →W 1,2

δ ([a,∞) × T 3)

(φ,ψ) �→ φ+ eλtψ

is an injection.
Consider now the map

K : W 1,2
η ([a,∞) × T 3) ⊕Wλ → L2

η([a,∞) × T 3) ⊕ Π−
η W

1
2
,2({a} × T 3) ⊕Wλ

(φ,ψ) �→ (
D/A(φ+ eλtψ),Π−

η φ,ψ + e−aλΠλφ(a)
)
.

As
∣∣D/∗A(eλtψ)

∣∣ ≤ Ce(λ−β)t|ψ|, then D/∗A(eλtψ) ∈ L2
η([a,∞) × T 3), and K is

well-defined.
We put all these maps in a commutative diagram

(4.9)

W 1,2
δ ([a,∞) × T 3)

D/!
∗
A−−−−→ L2

δ([a,∞) × T 3) ⊕ Π−
δ W

1
2
,2({a} × T 3)

J

� �ι⊕I

W 1,2
η ([a,∞) × T 3) ⊕Wλ −−−−→

K
L2

η([a,∞) × T 3) ⊕ Π−
η W

1
2
,2({a} × T 3) ⊕Wλ

We know that D/!∗
A is an isomorphism. Using the identification

D/!∗
A : W 1,2

η ([a,∞) × T 3) ≡ L2
η([a,∞) × T 3) ⊕ Π−

η W
1
2
,2({a} × T 3),

we see that K has the form [
1 p
q 1

]

for the splittingW 1,2
η ([a,∞)×T 3)⊕Wλ of the domain and codomain. Hence,

K − 1 is a compact operator, and K is thus Fredholm of index 0. If K(x) =
K(y), then D/!∗

AJ(x) = D/!∗
AJ(y) as the diagram is commutative, hence x = y

and K is injective. Being of index 0, it henceforth must be an isomorphism.
Let us now exploit this fantastic diagram. Suppose

φ ∈ ker(D/∗A) ∩W 1,2
δ (R × T 3).
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Then for a big enough, the diagram (4.9) has rows which are isomorphism
for δ and η satisfying the hypothesis of the theorem.

We now chase around the diagram. Since I is an isomorphism, we know
there exist (χ, ν) ∈ Π−

η W
1
2
,2({a} × T 3) ⊕Wλ such that

ι⊕ I(0, χ, ν) = D/!∗
A(φ).

But as K is an isomorphism, there is (φ̄, ψ̄) ∈W 1,2
η ([a,∞)× T 3)⊕Wλ such

that
K(φ̄, ψ̄) = (0, χ, ν).

By commutativity of the diagram, we have

D/!∗
AJ(φ̄, ψ̄) = D/!∗

A(φ)

but D/!∗
A is an isomorphism hence φ = eλtψ̄ + φ̄ for t > a.

As the choice of a is artificial, we set a = 0. The proof is now complete.
�

Suppose now

λ ∈ Spec(DΓ−) × Spec(DΓ+),
δ is in the upper left open square adjacent to λ,
η is in the lower right open square adjacent to λ.

When A decays exponentially to its limits, we have

(4.10) ker(λ) = ker(η).

Indeed, suppose now φ ∈ ker(λ). Then, φ ∈ ker(δ) hence by Theorem 4.2,
we expand φ for t > 0 as φ = e−λ+tψλ+ + φ̄, with φ̄ ∈ W 1,2

η+ ([0,∞) × T 3).
Since φ and φ̄ are both in W 1,2

λ+
, so is the term e−λ+tψλ+ . This fact implies

that ψλ+ = 0. Using a similar proof at −∞, we find φ ∈ W 1,2
η . Obviously,

the same is true for ker∗.

5. Nahm transform: Instantons to singular monopoles.

Since D/∗Az
is Fredholm L2 → L2 outside of W , and since ker(D/Az) = 0 as

FAz is ASD and R × T 3 has infinite volume, we have a bundle V over T 3\W
whose fiber at z is

Vz := ker(D/∗Az
) ∩ L2.
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As outlined earlier, this bundle is equipped with

a connection B on T 3 \W,
a Higgs field Φ ∈ Γ(T 3 \W,EndV ).

The main result of this present paper is the following theorem.

Theorem 5.1. Outside of a set W consisting of at most four points, the
family of vector spaces V described above defines a vector bundle of rank

1
8π2

∫
|FA|2,

and the couple (B,Φ) satisfies the Bogomolny equation

∇BΦ = ∗FB .

For w ∈ W and z close enough to w, there are maps Φ⊥ and Φ� such
that

Φ =
−i

2|z − w|Φ
⊥ + Φ�,

and Φ⊥ is the L2-orthogonal projection on the orthogonal complement of a
naturally defined subbundle V� of V .

The last part of the theorem is made clearer by the introduction of V� in
Section 6.

Proof. The rank of V is computed in Lemma 5.2 below.
The boundary term of Eq. (3.2) is

∂-term = 〈νΩGφ, dzψ〉T 3

∣∣∣∞
−∞

.

For z �∈W , both Gφ and dzψ decay exponentially by Theorem 4.2 hence

∂-term = 0,

and the connection Pdz on R × (T 3 \ W ) is ASD. Thus, as explained in
Section 3, the pair (B,Φ) satisfies outside of W the appropriate dimensional
reduction of the ASD equation, which is in this case the Bogomolny Equation

∇BΦ = ∗FB .



From spatially periodic instantons to singular monopoles 197

The last part of the theorem is the content of Section 7 and rests on the
splitting of Section 6. �

As announced, we compute now the rank of V , and prove an L2-index
theorem for R × T 3.

Lemma 5.2. For a SU(2)-instanton (E,A) on R × T 3, the index of the
Dirac operator

D/A : W 1,2(R × T 3) → L2(R × T 3)

when A has non-zero limits at ±∞ is given by the formula

ind(D/A) = − 1
8π2

∫
|FA|2.

Proof. The fact that A has non-zero limits guarantees that the operator D/A

is Fredholm on W 1,2. Moreover, A decays exponentially to its limits.
Let

(χ+
R, χ

−
R, χ

0
R)

be a partition of unity subordinate to the covering(
(R,∞) × T 3, (−∞,−R) × T 3, (−R − 1, R+ 1) × T 3

)
.

Suppose Γ± = d + γ±, and A = d + a. Then a tends to γ+ and γ− when t
tends to +∞ and −∞ respectively. Set

(5.1) aR = χ+
Rγ+ + χ−

Rγ− + χ0
Ra.

The sequence D/an − D/aR
of compact operators is Cauchy, and thus has

a limit, K say, which is then compact. As D/A = D/aR
+ K, we have that

ind(D/A) = ind(D/aR
) for all R > 0. We now compute ind(D/aR

) using the
relative index theorem. It could be that Γ− �= Γ+, but this case is easily
converted to a situation where Γ− = Γ+, as we now see.

Choose a path Γs in the space of flat connections on T 3 starting at Γ+

and ending at Γ−, and avoiding the trivial connection. Hence, 0 �∈ Spec(DΓs)
for all s; recall Eq. (4.1). Suppose Γs = d+ γs and set

(5.2) as
R = χ+

Rγs + χ−
Rγ− + χ0

Ra.

The family D/as
R

of Fredholm operator depends continuously on s. Hence

ind(D/A) = ind(D/aR
) = ind(D/a0

R
) = ind(D/a1

R
).
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Note that the connection a1
R equals Γ− outside [−R− 1, R+ 1]×T 3. Hence

the relative index theorem tells us

(5.3) ind(D/a1
R
) − ind(D/Γ−) = ind(D̃/a1

R
) − ind(D̃/Γ−),

where the tilded operators are extensions to some compact manifold of the
restriction of the operators D/a1

R
and D/Γ− to [−R− 1, R + 1] × T 3.

Because DΓ− has no kernel, D/Γ− : W 1,2 → L2 is an isomorphism, and
thus ind(D/Γ−) = 0. Hence, the left-hand side of Eq. (5.3) is equal to ind(D/A).

To compute the right-hand side, we embed [−R− 1, R+ 1]×T 3 in some
flat T 4. The spinor bundles S+ and S− on [−R− 1, R+ 1] × T 3 agree very
nicely with those of T 4. We extend both a1

R and Γ− by the trivial bundle
with connection Γ−.

The Atiyah–Singer index theorem tells us that

ind(D̃/Γ−) =
{
ch(Γ−) · Â(T 4)

}
[T 4]

ind(D̃/a1
R
) =

{
ch(a1

R) · Â(T 4)
}
[T 4]

=
(
c21
2

− c2

)
[T 4].

Since a1
R is in SU(2), we have c1 = 0, while

c2[T 4] =
1

8π2

∫
T 4

|(|F−
a1

R
|2 − |F+

a1
R
|2)|2.

Note that on the complement of [−R−1, R+1]×T 3 in T 4, the connection
a1

R equals Γ− hence is flat there. Furthermore, on [−R,R] × T 3, we have
a1

R = A. On [R,R + 1] × T 3 and [−R − 1,−R] × T 3, the curvature Fa1
R

involves cut off functions, their derivatives and (A − Γ−) terms. Since A
tends to Γ− exponentially fast, we therefore have constant C and β such
that ∣∣∣ind(D/A) +

1
8π2

∫
[−R,R]×T 3

|FA|2
∣∣∣ ≤ Ce−βR.

As R→ ∞, we have the wanted result. �

6. A geometric splitting and exact sequences.

In this section, we analyze a splitting of V in a neighborhood of a point
w ∈ W where the solution (B,φ) to Bogomolny equation is singular. This
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point w is associated, say, to the limit Γ = Γ+ of A at +∞, in the sense
that Γ splits E as Lw ⊕ L−w on T 3.

Suppose the connection A decays at most with rate β, as in |A− Γ+| ≤
Ce−βt for t > 0 and |A− Γ−| ≤ Ceβt for t < 0. Set

ε :=
1
4

min
(
β,dist

(
w,Λ∗ +W \ {w})) ,

and define the six weights

�ε := (−ε, ε) ε := (0, ε) ε� := (ε, ε)

�ε := (−ε,−ε) ε := (0,−ε) ε� := (ε,−ε)

displayed here in a way which is reminiscent of their position in R
2.

Consider the ball B3(w) of radius 2ε around w. As z varies in B3(w),
and depending on whether Γ+ = Γ− or not, there are two or one walls to
cross to pass from 0 to �ε and from ε� to 0. In a picture, we have

2π|z − w|

−2π|z − w|

2π|z − w|−2π|z − w|
�ε

0

ε�

Γ+ = Γ−

2π|z − w|

−2π|z − w|

�ε

0

ε�

Γ+ �= Γ−

As z varies in B3(w), those walls move around without ever touching
ε� and �ε . Hence, for L2

ε� and L2
�ε , the operators D/Az , D/

∗
Az

and D/∗Az
D/Az are

Fredholm for all z ∈ B3(w).
Hence, for z ∈ B3(w), the six vector spaces

�V z := ker(D/∗Az
) ∩ L2

�ε ,
�Kz := ker(D/Az) ∩ L2

�ε ,

V�z := ker(D/∗Az
) ∩ L2

ε� , Kz := ker(D/Az) ∩ L2

Hz := ker(∇∗
Az

∇Az) ∩ L2
�ε , K�z := ker(D/Az) ∩ L2

ε� ,

are kernels of Fredholm operators. By contrast, the space Vz, already defined
as ker(D/∗Az

) ∩ L2, is not the kernel of a Fredholm operator at w.
Notice that none of those vector spaces form a priori a bundle over

B3(w) as the dimensions could jump at random. However, for L2
�ε and

L2
ε� , the operators D/Az , D/∗Az

, and ∇∗
Az

∇Az are Fredholm operators for all



200 Benoit Charbonneau

z ∈ B3(w). The various indices are therefore constant and we have that, for
example,

dimV�z − dim �Kz is constant on B3(w).

We have the following obvious results:

V� ⊂ V ⊂ �V , K� ⊂ K ⊂ �K,

D/H ⊂ �V , �K ⊂ H,
K� = K = {0}.

Equation (4.10) signifies here that V�w = Vw. The following few lemmas
describe in more detail the relationship between the various spaces.

The smallest eigenvalues of DΓz are ±2π|z − w|. For simplicity, we set

λ := 2π|z − w|,
and define

Wλ := λ eigenspace of DΓz on T 3.

The family Wλ defines a bundle over the sphere |z − w| = λ/2π around
w. Its rank is given by

(6.1) rkWλ =




1, if λ �= 0 and 2w �∈ Λ∗;
2, if λ �= 0 and 2w ∈ Λ∗, or λ = 0 and 2w �∈ Λ∗;
4, if λ = 0 and 2w ∈ Λ∗.

This Wλ plays an important role in understanding the relations between the
various spaces just introduced.

For any instanton connection A′ on R × T 3, set

V (δ) := ker(D/∗A′) ∩ L2
δ ,

K(δ) := ker(D/A′) ∩ L2
δ ,

and let [δ] denote the open square in R
2 \ GA′ containing δ.

Lemma 6.1 (one wall). Suppose δ, η ∈ R
2 \GA′ are weights for which [δ]

and [η] are adjacent and separated by the wall {µ} × R or R × {µ}. Then,
the sequence
(6.2)

0 −→ V (δ) −→ V (η)
lim(e−µt·)−−−−−−→ Wµ

(
lim(eµt·)

)∗

−−−−−−−→ K(−δ)∗ −→ K(−η)∗ −→ 0,

where the limits are both evaluated at +∞ when [η] is above [δ] and at −∞
when [η] is to the left of [δ], is exact.
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Proof. Theorem 4.2 ensures that the limits give functions α and β∗ which
are well defined, and that

0 −→ V (δ) −→ V (η) −→Wµ and 0 −→ K(−η) −→ K(−δ) −→Wµ

are exact.
It only remains to prove that Sequence (6.2) is exact at Wµ. Suppose

φ ∈ V (η) and ψ ∈ K(−δ). Then,

0 =
〈
D/∗A′φ,ψ

〉 − 〈
φ, D/A′ψ

〉
= lim

t→∞

〈
φ, cl

(
∂

∂t

)
ψ

〉
− lim

t→−∞

〈
φ, cl

(
∂

∂t

)
ψ

〉

= lim
t→∞

〈
e−µtφ, cl

(
∂

∂t

)
eµtψ

〉
− lim

t→−∞

〈
e−µtφ, cl

(
∂

∂t

)
eµtψ

〉
.

One of those limits is β∗α(φ)(ψ) while the other one vanishes as we now
see. Suppose [η] is above [δ], and suppose {µ′}×R is the wall to their right.
Then, φ = O(eµ

′t) as t → −∞ by Theorem 4.2. But for some µ′′ < µ′,
the wall {−µ′′} × R is exactly to the right of [−η]; hence, ψ = O(e−µ′′t) as
t→ −∞. But then

β∗α(φ)(ψ) = lim
t→−∞O(e(µ

′−µ′′)t) = 0,

hence Im(α) ⊂ ker(β∗). A similar argument establishes the same fact when
[η] is to the left of [δ].

The sequence is then exact if dim Im(α) = dim ker(β∗). We have two
short exact sequences:

0 −→ V (δ) −→ V (η) −→ Im(α) −→ 0, and
0 −→Wµ/ ker(β∗) −→ K(−δ)∗ −→ K(−η)∗ −→ 0.

Using those short exact sequences and notation from Eq. (4.3), we have

dim Im(α) − dimker(β∗) = N∗(η) −N∗(δ) − dimWµ +N(−δ) −N(−η)
= ind∗(η) − ind∗(δ) − dimWµ.

The Wall Crossing Equation (4.4) forces the last line to be 0. The proof is
thus complete. �

Corollary 6.2. Suppose Γ+ �= Γ−. Then the sequences

0 −→ Vz −→ �V z −→Wλ −→ 0, for λ �= 0,(6.3)
0 −→ V�z −→ Vz −→W−λ −→ �Kz −→ 0, for λ �= 0,(6.4)
0 −→ Vw −→ �V w −→W0 −→ �Kw −→ 0,(6.5)
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are exact.

Proof. Apply Lemma 6.1 to the choice of weights {�ε , 0} and {0, ε�} for the
connection A′ = Az, and remember that K� = K = {0}. �

Corollary 6.3. Suppose Γ+ = Γ−. Then the sequences

0 −→ Vz −→ �V z −→Wλ ⊕W−λ −→ 0, for λ �= 0,(6.6)
0 −→ V�z −→ Vz −→ Wλ ⊕W−λ −→ �Kz −→ 0, for λ �= 0,(6.7)
0 −→ Vw −→ �V w −→W0 ⊕W0 −→ �Kw −→ 0,(6.8)

are exact.

Proof. Suppose we have the following choice of weights:

µ

−µ
δ�

δ�

�δ

�δ

Denote ι any inclusion map, and L±
µ the maps

L+
µ (φ) = lim

t→∞ eµtφ, and L−
µ = lim

t→−∞ eµtφ.

Then sequences akin to Sequence (6.2) fit in a diagram
(6.9)
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Suppose φ ∈ V (�δ), and ψ ∈ K(−δ�). Then

0 =
〈
D/A′φ,ψ

〉 − 〈
φ, D/A′ψ

〉
=

〈
φ, cl

(
∂

∂t

)
ψ

〉
|∞−∞

= lim
t→∞

〈
e−µtφ, cl

(
∂

∂t

)
eµtψ

〉
− lim

t→−∞

〈
eµtφ, cl

(
∂

∂t

)
e−µtψ

〉
=

(
L+

µ
∗
L+
−µ(φ) − L−

−µ
∗
L−

µ (φ)
)
(ψ),

hence the middle square commutes. It is quite obvious that all the other
squares and triangles commute. From Diagram (6.9), we extract, for an
obvious choice of maps, the exact sequence

0 −→ V (δ�) −→ V (�δ) −→Wµ ⊕W−µ −→ K(−δ�)∗ −→ K(−�δ)∗ −→ 0.

In particular, the sets of weights

λ

−λ

λ−λ
�ε ε

�ε 0

at z �= w
Γ+ = Γ−

λ

−λ

λ−λ

ε�0

ε�ε

at z �= w
Γ+ = Γ−

λ

−λ

ε�

ε�

�ε

�ε

at z = w
Γ+ = Γ−

yield for A′ = Az the exact sequences (6.6), (6.7) and (6.8). �

An analysis for ∇∗
Az

∇Az brings a very similar wall crossing formula

ind(∇∗
Az

∇Az , �ε) − ind(∇∗
Az

∇Az , ε�) =

{
2 dimW0, for Γ+ �= Γ−;
4 dimW0, for Γ+ = Γ−.

However, since ∇∗
Az

∇Az is self-adjoint, ind(∇∗
Az

∇Az , �ε) = −ind(∇∗
Az

∇Az , ε�),
whence

rkH =

{
dimW0, for Γ+ �= Γ−;
2 dimW0, for Γ+ = Γ−.

Using Equation (6.1), we can even say

rkH =




2, for Γ+ �= Γ− and 2w �∈ Λ∗;
4, for Γ+ �= Γ− and 2w ∈ Λ∗, or Γ+ = Γ− and 2w �∈ Λ∗;
8, for Γ+ = Γ− and 2w ∈ Λ∗.
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Similarly, we have for the Laplacian the following isomorphisms:

0 −→ Hz −→Wλ ⊕W−λ −→ 0, for z �= w and when Γ+ �= Γ−,(6.10)
0 −→ Hw −→W0 −→ 0, when Γ+ �= Γ−,(6.11)

0 −→ Hz −→ (
Wλ ⊕W−λ

)⊕2 −→ 0, for z �= w and when Γ+ = Γ−,
(6.12)

0 −→ Hw −→W0 ⊕W0 −→ 0, when Γ+ = Γ−.(6.13)

Bringing all of those sequences together allows us to conclude the fol-
lowing.

Theorem 6.4. On B3(w), we have

�V = V� ⊕ D/H.

Proof. Denote W ′
λ the space

W ′
λ :=

{
Wλ ⊕W−λ, if Γ+ = Γ−;
Wλ, if Γ+ �= Γ−.

Let p : W ′
λ ⊕W ′−λ →W ′

λ denote the map p(a, b) = 2λa.
For λ �= 0, we use the Snake Lemma on the diagram

0 −−−−→ H −−−−→ W ′
λ ⊕W ′−λ −−−−→ 0� D/

� �p

0 −−−−→ V −−−−→ �V −−−−→ W ′
λ −−−−→ 0

coming from Sequences (6.3), (6.6), (6.10), and (6.12), to produce an exact
sequence

ker(0)−→ ker(D/)−→ ker(p) −→coker(0)−→coker(D/)−→coker(p)
0 −→ �Kz −→ W ′−λ−→ Vz −→coker(D/)−→ 0(6.14)

Note that the map V → coker(D/) being surjective forces �V to be spanned
by V and D/H.

Sequences (6.4) and (6.7) imply

dimVz = dimV�z + dimW ′
λ − dim �Kz
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while Sequences (6.3) and (6.6) imply

dim �V z = dimVz + dimW ′
λ.

Thus,

dim �V z = dimV�z + 2dimW ′
λ − dim �Kz = dimV�z + dim D/H.

Since Lemma 4.1 guarantees that
〈
D/H, V�

〉
= {0}, we have V ∩ D/H per-

pendicular to V� for the L2 inner product. Hence, D/H ∩ V� = {0}, and
�V z = V�z ⊕ D/H.

It remains to prove the theorem for z = w. We already know V�w = Vw

and D/Hw ⊂ �V w. We also know from Sequences (6.5) and (6.8) that

dim �V w = dimVw + dimW ′
0 − dim �Kw

= dimV�w + dim D/Hw.

We therefore only have to prove that the intersection Vw ∩ D/AwHw is {0} to
complete the proof.

The asymptotic behavior of φ ∈ Hw is

φ =

{
tφ+

0 + φ+
1 + o(1), as t→ ∞;

tφ−0 + φ−1 + o(1), as t→ −∞;

for some φ±0 , φ
±
1 ∈ W0. If Γ+ �= Γ−, we must have φ−0 = φ−1 = 0, as w is

associated to Γ+.
The asymptotic behavior of D/Awφ is

D/Awφ =

{
φ+

0 + o(1), as t→ ∞;
φ−0 + o(1), as t→ −∞.

Suppose D/Awφ ∈ L2. Then,

‖D/Awφ‖2

L2 =
〈
D/∗Aw

D/Awφ, φ
〉

+ lim
t→∞

〈
D/Awφ, cl

(
∂

∂t

)
φ

〉

+ lim
t→−∞

〈
D/Awφ, cl

(
∂

∂t

)
φ

〉
=

〈
φ+

0 , φ
+
1

〉
+ lim

t→∞ t|φ+
0 |2 −

〈
φ−0 , φ

−
1

〉 − lim
t→−∞ t|φ−0 |2.

For ‖D/Awφ‖L2 to be finite, we must get rid of the limits, thus forcing φ±0 = 0
and consequently, we have D/Awφ = 0. The proof is now complete. �
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For a continuous family of Fredholm operators, like D/Az on L2
�ε para-

meterized on B3(w), the dimension of the kernel can only drop in a small
neighborhood of a given point, it cannot increase. However, not any random
behavior is acceptable.

Lemma 6.5 (see [20, p. 241]). Let T : X → Y be Fredholm and S : X →
Y a bounded operator. Then the operator T+tS is Fredholm and dim ker(T+
tS) is constant for small |t| > 0.

We obviously use this lemma with T = D/Aw ,X = W 1,2
�ε , Y = L2

�ε , and
S = cl(e) for some direction e ∈ R3. Let us note that three scenarios are
possible.

1. dim �Kz is constant on a neighborhood around w, say B3(w);

2. dim �Kz is constant for z ∈ B3(w) \ {w}, but is smaller than dim �Kw;

3. dim �Kw+λe �= dim �Kw+λ′e′ for small λ, λ′ > 0 and some e �= e′.

7. Asymptotic of the Higgs field.

We now study the behavior of the Higgs field Φ as z approaches of a given
element w of W . We know w is associated to the limit Γ of A at ∞ or −∞,
in the sense that Γ splits E as Lw ⊕ L−w. Without loss of generality, we
suppose

Γ+ = Γ.

When Γ+ �= Γ−, and for 2π|z − w| < ε, notice that

�V z = L2
�ε ∩ ker(D/∗Az

) = L2
ε ∩ ker(D/∗Az

) = L2
ε� ∩ ker(D/∗Az

), and

V�z = L2
�ε ∩ ker(D/∗Az

) = L2
ε ∩ ker(D/A∗

z
) = L2

ε� ∩ ker(D/∗Az
).

When Γ+ = Γ−, those spaces are a priori all different.

Theorem 7.1. On a closed ball B3(w) around w, there exist families of
operators Φ⊥ and Φ�, bounded independently of z , such that

(7.1) Φ =
−i

2|z − w|Φ
⊥ + Φ�.

Furthermore, Φ⊥ is the L2-orthogonal projection on D/AzHz ∩ Vz.
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Proof. Obviously, V� supports many different norms, and amongst those are
the L2 and L2

ε� norms. For φ ∈ V�z, observe that

‖tφ‖
L2 ≤ Cε‖φ‖L2

ε�
.

We would really like to bound this last quantity by a multiple of ‖φ‖
L2 .

Let Q denote the projection L2 → Vw. Of course, since L2
ε� ⊂ L2, the

projection is also defined on L2
ε� . Let V ⊥

w be the L2-orthogonal complement,
and V 0

w = V ⊥
w ∩ L2

ε� . In fact, we have

L2
ε� = Vw ⊕ V 0

w

since at w, we have Vw = V�w.
Since D/∗Aw

is injective on V 0
w , there is a constant such that

‖u‖
L2

ε�
≤ C‖D/∗Aw

u‖
L2

ε�
for u ∈ V 0

w .

But then for u ∈ V�w+λe, we have

‖u‖
L2

ε�
≤ ‖Qu‖

L2
ε�

+ ‖(1 −Q)u‖
L2

ε�

≤ ‖Qu‖
L2

ε�
+ C‖D/∗Aw

(1 −Q)u‖
L2

ε�

= ‖Qu‖
L2

ε�
+ C‖D/∗Aw

u‖
L2

ε�

= ‖Qu‖
L2

ε�
+ Cλ‖u‖

L2
ε�
.

Hence, for λ small enough,

‖u‖
L2

ε�
≤ 2‖Qu‖

L2
ε�
.

Of course, since Vw is finite dimensional, there exists a constant C for
which ‖Qu‖

L2
ε�
≤ C‖Qu‖

L2 and thus for u ∈ V�z with z close to w,

‖tu‖
L2 ≤ Cε‖u‖L2

ε�
≤ 2Cε‖Qu‖L2

ε�
≤ C‖Qu‖

L2 ≤ C‖u‖
L2 .

Denote P � the L2-orthogonal projection of V on V�. We just proved that

Φ ◦ P � is bounded independently of z ∈ B3(w).

It is part of the map Φ� announced in the statement of the theorem.
One of the crucial features of this proof is our ability to find a uniform

bound for mt on V�.
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As suggested above, let Φ⊥ denote the L2-orthogonal projection on
D/AzHz ∩ Vz. Then,

Φ = −2πiPmt = ΦP � − 2πi
(
P � + Φ⊥)

mtΦ⊥

= ΦP � + 2πiP �mtΦ⊥ − 2πiΦ⊥mtΦ⊥.

For φ1 ∈ V�, and φ2 ∈ V , we have 〈φ1, tΦ⊥φ2〉 = 〈tφ1,Φ⊥φ2〉. Thus,
P �mtΦ⊥ is also bounded independently of z ∈ B3(w).

It remains only to analyze Φ⊥mtΦ⊥. Pick a vector e ∈ R3 of length 1.
Let

R = {w +
λ

2π
e} ⊂ B3(w)

be a ray inside B3(w) emerging from w. As the notation suggests, we para-
meterize this ray by λ = 2π|z − w|. Pick a family φz ∈ D/AzHz for z ∈ R,
with

φz ∈ Vz for λ > 0,
‖φz‖L2

�ε
= 1.(7.2)

But then,
‖φz‖L2 → ∞ as λ→ 0.

To prove this claim, suppose it is not true. Then, there is a subsequence
φzj ⇀ φ̃w weakly in L2. Hence,

〈
φzj , f

〉 →
〈
φ̃w, f

〉
for all f ∈ L2, in

particular for all f ∈ L2
ε� = (L2

�ε )
∗, whence φzj ⇀ φ̃w weakly in L2

�ε . Since
φz → φw in L2

�ε , we have φ̃w = φw, which is impossible as φ̃w is in L2 while
φw is not.

Because Γw is independent of t, and because −ε is not an eigenvalue of
DΓw , the operator D/∗Γw

is an isomorphism W 1,2
�ε → L2

�ε, and W 1,2
ε� → L2

ε�,
hence there exists a constant C such that

‖u‖
W 1,2

�ε
≤ C‖D/∗Γw

u‖
L2

�ε
, for u ∈W 1,2

�ε ,(7.3)

‖u‖
W 1,2

ε�
≤ C‖D/∗Γw

u‖
L2

ε�
, for u ∈W 1,2

ε� .(7.4)

Because φz ∈ Vz for λ > 0, for t > 0, we can write φz =
e−λtψ−λ + gz for some eigenvector ψ−λ of eigenvalue −λ of DΓz and some
gz ∈ W 1,2

−ε ([0,∞) × T 3). When Γ− = Γ+, and for t < 0, we can write
φz = eλtψλ + jz for some eigenvector ψλ of eigenvalue λ of DΓz and some
jz ∈W 1,2

ε ((−∞, 0] × T 3).
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While gz and jz appear to be defined only for t > 0 and t < 0 respectively,
let us define them globally on R × T 3 by gz = φz − e−λtψ−λ and jz =
φz − eλtψλ.

Notice that

(7.5) D/∗Γz
gz = D/∗Γz

φz = (D/∗Γz
− D/∗Az

)φz = cl(Γ −A)φz,

and similarly

(7.6) D/∗Γz
jz = D/∗Γz

φz = (D/∗Γz
− D/∗Az

)φz = cl(Γ −A)φz,

Overall, there is a constant such that |cl(A − Γ)| ≤ Cσ(0,β), and this
estimate can be improved to |cl(A− Γ)| ≤ Cσ(−β,β) when Γ− = Γ+. Hence,
cl(A − Γ) gives a bounded map L2

�ε → L2
�ε in all cases and L2

�ε → L2
ε� when

Γ− = Γ+. Thus, Eq. (7.5) yields

(7.7) ‖D/∗Γz
gz‖L2

�ε
≤ C‖φz‖L2

�ε
,

and for the special case Γ− = Γ+, Eq. (7.6) yields

(7.8) ‖D/∗Γz
jz‖L2

ε�
≤ C‖φz‖L2

�ε
.

From Eqs. (7.3), and (7.7), we derive

‖gz‖W 1,2
�ε

≤ C‖D/∗Γw
gz‖L2

�ε

= C‖D/∗Γz
gz + λcl(e)gz‖L2

�ε

≤ C‖φz‖L2
�ε

+ Cλ‖gz‖L2
�ε
,

After rearranging, we notice that ‖gz‖W 1,2
�ε

is bounded independently of small

z, and similarly ‖jz‖W 1,2
ε�

is bounded independently of small z. This last fact

is also true for Γ− �= Γ+, for in that case jz = φz and its L2
�ε -norm is

equivalent to the L2
ε�-norm, as both as defined on �V over B3(w).

While it is agreeable to work with a smooth splitting, nothing prevents
us from considering the functions

hλ =

{
eλtψλ, for t < 0,
e−λtψ−λ, for t > 0,

and rz =

{
jz, for t < 0,
gz, for t > 0,

and the associate splitting
φz = hλ + rz.
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That ‖rz‖L2
ε�

is bounded independently of small z follows from the similar
fact concerning gz and jz .

Consider the families

φ̄z := φz/‖φz‖L2 ,

h̄λ := hλ/‖φz‖L2 ,

r̄z := rz/‖φz‖L2 .

Since ‖φz‖L2 → ∞ and ‖rz‖L2
ε�

is bounded, we have ‖r̄z‖L2
ε�

→ 0 as

λ→ 0, and a fortiori, ‖r̄z‖L2 → 0. The triangle inequality then guarantees∣∣‖h̄λ‖L2 − ‖r̄z‖L2

∣∣ ≤ ‖φ̄z‖L2 ≤ ‖h̄λ‖L2 + ‖r̄z‖L2 .

Since ‖φ̄z‖L2 = 1, and ‖r̄z‖L2 → 0, we must have

‖h̄λ‖L2 → 1 as λ→ 0.

Let us now come back to our main worry. We study〈
tφ̄z, φ̄z

〉
=

〈
th̄λ, h̄λ

〉
+ 2

〈
h̄λ, tr̄z

〉
+ 〈tr̄z, r̄z〉 .

The last two terms are bounded by a multiple of ‖tr̄z‖L2 . But

‖tr̄z‖L2 ≤ C‖r̄z‖L2
ε�
,

hence it is going to 0.
As for the first term, we have

〈
th̄λ, h̄λ

〉
=

1

‖φλ‖2

L2

(∫ ∞

0
te−2λt|ψ−λ|2 +

∫ 0

−∞
te2λt|ψλ|2

)

=
1
2λ

1

‖φλ‖2

L2

(∫ ∞

0
e−2λt|ψ−λ|2 +

∫ 0

−∞
e2λt|ψλ|2

)

=
1
2λ

‖h̄λ‖2

L2 ,

hence 〈
tφ̄λ, φ̄λ

〉
=

1
2λ

+ o(1) as λ→ 0.

Suppose now φ̄1
z and φ̄2

z are two such families, but so that〈
φ̄1

z, φ̄
2
z

〉
L2 = 0.
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Then

〈
tφ̄1

z, φ̄
2
z

〉
=

〈
th̄1

λ, h̄
2
λ

〉
+

〈
h̄1

λ, tr̄
2
z

〉
+

〈
tr̄1z , h̄

2
λ

〉
+

〈
tr̄1z , r̄

2
z

〉
=

1
2λ

〈
h̄1

λ, h̄
2
λ

〉
+ o(1),

and of course
〈
h̄1

λ, h̄
2
λ

〉 → 0, hence the result. �

Finally, let us note that in fact, Scenario 3 of page 206 cannot happen.
We can take the trace of (B,Φ) to obtain an abelian monopole (b, ϕ) on
B3(w) \ {w}. The Bogomolny equation reduces to

dϕ = ∗d b,

and thus ∆ϕ = 0. Since ϕ is harmonic, not every possible behavior is
acceptable as z → w. For one thing, there is a unique set of homogeneous
harmonic polynomials pm and qm of degree m which give a decomposition
of ϕ on B3(w) \ {w} as a Laurent series

ϕ =
∞∑

m=0

pm(z − w) +
∞∑

m=0

qm(z − w)
|z − w|2m+1

;

see for example [3, Theorem 10.1, p. 209].
Whether or not the rank is constant, we can find for any sequence of

points approaching w a subsequence of points zj → w for which the decom-
position of Eq. 7.1 is valid. We then have

lim
j→∞

2|zj − w|ϕzj = idim D/Azj
Hzj = i(rkH− dim �Kzj).

By the Laurent series decomposition given above, this number must be the
same in any way we approach w, hence dim �Kz must be constant on B3(w)\
{w}.
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