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Rigidity and Non-rigidity Results on the Sphere

Fengbo Hang1, Xiaodong Wang

1. Introduction.

It is a simple consequence of the maximum principle that a superharmonic
function u on R

n(i.e. ∆u ≤ 0) which is 1 near infinity is identically 1 on R
n

(throughout this paper, n ≥ 3). Geometrically, this means that one cannot
conformally deform the Euclidean metric in a bounded region without de-
creasing the scalar curvature somewhere. In fact, there is a much stronger
result: one cannot have any compact deformation of the Euclidean metric
without decreasing the scalar curvature somewhere, i.e., if g is a metric on
R

n which has non-negative scalar curvature and is the Euclidean metric near
infinity, then g is the Euclidean metric on R

n. This is a simple version of
the positive mass theorem [9, 12]. Another implication of the positive mass
theorem is the following rigidity theorem for the unit ball in R

n.

Theorem 1.1. Let (M,g) be an n-dimensional compact Riemannian man-
ifold with boundary and the scalar curvature R ≥ 0. The boundary is iso-
metric to the standard sphere Sn−1 and has mean curvature n − 1. Then
(M,g) is isometric to the unit ball in Rn. (If n > 7, we also assume M is
spin.)

The proof uses a generalized version of the positive mass theorem, see
Shi and Tam [11] and Miao [6]. On the other hand, there are non-trivial
metrics on R

n which agree with the Euclidean metric near infinity and have
non-positive scalar curvature by the work of Lohkamp [5].

One can establish parallel results for the hyperbolic space H
n by analo-

gous methods. It is natural to wonder about the other space form Sn. The
following conjecture was posed by Min-Oo in 1995.
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Conjecture 1.2. Let (M,g) be an n-dimensional compact Riemannian
manifold with boundary and the scalar curvature R ≥ n(n− 1). The bound-
ary is isometric to the standard sphere Sn−1 and is totally geodesic. Then,
(M,g) is isometric to the hemisphere Sn

+.

This is an intriguing conjecture. It seems extremely difficult. The formu-
lation given here is probably over-ambitious, but any progress under some
extra assumptions would be interesting. In an unpublished manuscript [7],
Min-Oo attempted to prove the conjecture by a Witten type argument un-
der the assumption that M is spin. Unfortunately, his attempt has been
unsuccessful. To the authors’ knowledge, the conjecture is even open under
the stronger assumption Ric ≥ n− 1.

Inspired by this conjecture, we study some special cases and related
questions. We first prove that on the standard sphere (Sn, gSn), we can
even conformally deform gSn without decreasing the scalar curvature and
with the deformation supported in any given open geodesic ball of radius
> π/2. In other words, the corresponding rigidity for a geodesic ball of
radius > π/2 fails even among conformal deformations. Without restricting
to conformal deformation, we also construct a rotationally symmetric g on
Sn such that its sectional curvature ≥ 1 and strict somewhere and near the
north pole and south pole g = gSn . These results are interesting in view
of the work of Corvino [3]. We then verify the rigidity for the hemisphere
among conformal deformations. In fact, in this situation, we have some
stronger results. In the last section, we establish the rigidity in the Einstein
case.

2. Non-rigidity when the boundary is non-convex.

We first introduce some notations. Let (Sn, gSn) be the unit sphere in
the Euclidean space R

n+1 with the induced metric. We denote the north
pole by N and the south pole by S. For r ∈ (0, π), let B(N, r) be the
open geodesic ball of radius r with center N . Its boundary is umbilic with
principal curvatures all equal to cos r

sin r . Therefore, the boundary is non-convex
if and only if r > π/2. The closed upper hemisphere is denoted by Sn

+.

Theorem 2.1. For any r ∈ (π
2 , π) there is a smooth metric g = e2φgSn on

Sn with the following properties

• Rg ≥ n(n− 1),

• Supp (φ) ⊂ B(N, r).
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• φ �≡ 0.

Remark 2.2. Since φ �≡ 0, the inequality Rg ≥ n(n − 1) must be strict
somewhere inside B(N, r).

To put the above theorem in a context, we mention the following theorem
due to Corvino [3] which has shed new light on the positive mass theorem.

Theorem 2.3 (Corvino). Let Ω be a compactly contained smooth domain
in a Riemannian manifold (M,g0). Suppose the linearization Lg0 of the
scalar curvature map R : C∞(Ω) → C∞(Ω) has an injective formal L2-
adjoint L∗

g0
on Ω. Then ∃ε > 0 such that for any smooth function f which

equals R(g0) in a neighborhood of ∂Ω and ‖f −R(g0)‖C1 < ε, there is a
smooth metric g on M with R(g) = f and g ≡ g0 outside Ω.

The main point is that if g0 is non-static (i.e. KerL∗
g0

= 0), then there are
compact deformations of g0 with the scalar curvature going either direction.
This is in contrast with R

n, which is static, where one cannot have compact
deformations without decreasing the scalar curvature somewhere.

The sphere (Sn, gSn) is also static. In fact, L∗
gSnf = −∆f · gSn +D2f −

(n − 1)f · gSn and its kernel is spanned by the n + 1 coordinate functions
x1, . . . , xn+1 (also the first eigenspace). Theorem 2.1 shows that one still
can deform gSn without decreasing the scalar curvature on any geodesic ball
of radius r > π/2.

To prove Theorem 2.1, we need a technical lemma.

Lemma 2.4. Assume f1, f2 ∈ C∞ ([−1, 1]) and

f1 (0) = f2 (0) , f ′1 (0) < f ′2 (0) .

Let

g (x) =
{
f1 (x) , −1 ≤ x ≤ 0;
f2 (x) , 0 ≤ x ≤ 1.

Then, for any ε > 0 small, there exists a gε ∈ C∞ ([−1, 1] ,R) such that

gε (x) = g (x) for |x| ≥ ε;
g (x) ≤ gε (x) ≤ g (x) + ε for |x| ≤ ε;
g′′ (x) ≤ g′′ε (x) for x �= 0;
g′′ (x) < g′′ε (x) for some x �= 0.
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Proof. Without loss of generality, we may assume f1 ≡ 0. Then, f2 (0) =
0, a = f ′2 (0) > 0. Let

f3 (x) = f2 (x) − f ′2 (0) x,

then f3 (0) = f ′3 (0) = 0. We may find some M > 0 such that∣∣f ′′3 (x)
∣∣ ≤M for |x| ≤ 1.

Let

k (x) =
{

0, x ≤ 0;
ax, 0 ≤ x;

r (x) =
{

0, −1 ≤ x ≤ 0;
f3 (x) , 0 ≤ x ≤ 1.

Denote

ρ (x) =

{
c0e

− 1
1−x2 , |x| ≤ 1;

0, |x| > 1.

Here, c0 is a positive constant such that
∫ ∞
−∞ ρ (x) dx = 1.

Fix δ > 0 small, then we let kδ (x) = (ρδ ∗ k) (x), here ρδ (x) =
δ−1ρ (x/δ). It is clear that kδ (x) = k (x) for |x| ≥ δ, k (x) < kδ (x) ≤
k (x) + aδ for |x| < δ and k′′δ (x) = aρδ (x). Fix a smooth function η on R

such that 0 ≤ η ≤ 1, η (x) = 0 for x ≤ 0 and η (x) = 1 for x ≥ 1. For
0 < τ < δ/2, we let rτ (x) = η

(
x
τ

)
f3 (x). Then for 0 ≤ x ≤ τ , we have

∣∣r′′τ (x)
∣∣ =

∣∣∣∣ 1
τ2
η′′

(x
τ

)
f3 (x) +

2
τ
η′

(x
τ

)
f ′3 (x) + η

(x
τ

)
f ′′3 (x)

∣∣∣∣ ≤ cM .

Here, c is an absolute constant. On the other hand, for 0 ≤ x ≤ τ ,

|rτ (x) − r (x)| ≤ M

2
τ2.

Hence, for 0 < |x| ≤ τ , we have

k′′δ (x) + r′′τ (x) ≥ a

δ
ρ

(
1
2

)
− cM ≥ 2M > g′′ (x)

if δ is small enough. For |x| > τ , we have

k′′δ (x) + r′′τ (x) ≥ g′′ (x) .

Moreover, for 0 ≤ x ≤ τ , we have

kδ (x) > k (x) + σ
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for some σ > 0, hence

g (x) + aδ +
M

2
τ2 = k (x) + r (x) + aδ +

M

2
τ2

≥ kδ (x) + rτ (x) ≥ k (x) + r (x) + σ − M

2
τ2 ≥ g (x)

when τ is small enough. For other x, we clearly have

g (x) + aδ = k (x) + r (x) + aδ ≥ kδ (x) + rτ (x) ≥ k (x) + r (x) = g (x) .

The lemma follows by taking gε (x) = kδ (x) + rτ (x). �

We now present the proof of Theorem 2.1. The stereographic projection
from the south pole is given by

πS (y) =
y′

1 + yn+1
for y =

(
y′, yn+1

) ∈ Sn.

On R
n, we have standard coordinates x1, · · · , xn, polar coordinates r, θ and

cylindrical coordinates t, θ, where r = e−t. We have

(
π−1

S

)∗
gSn =

4(
1 + |x|2

)2

n∑
i=1

dxi ⊗ dxi =
4

(1 + r2)2
(
dr ⊗ dr + r2gSn−1

)
= (cosh t)−2 (dt⊗ dt+ gSn−1) .

Let g be the metric we are looking for, then

(
π−1

S

)∗
g = u

4
n−2

n∑
i=1

dxi ⊗ dxi = v
4

n−2 (dt ⊗ dt+ gSn−1) .

The scalar curvature of g is given by

R = −4 (n− 1)
n− 2

u−
n+2
n−2 ∆u

= v−
n+2
n−2

[
−4 (n− 1)

n− 2
(vtt + ∆Sn−1v) + (n− 1) (n− 2) v

]
.

For λ > 0, let dλx = λx be the dilation, then

d∗λ
(
π−1

S

)∗
gSn =

4λ2(
1 + λ2 |x|2

)2

n∑
i=1

dxi ⊗ dxi.
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Denote

uλ (x) =
2

n−2
2(

1
λ + λ |x|2

)n−2
2

,

then

−∆uλ =
n (n− 2)

4
u

n+2
n−2

λ .

We need to solve the following

(2.1)


u ∈ C∞ (Rn) , u > 0, u �≡ u1,
u (x) = u1 (x) for |x| > a;

−∆u ≥ n(n−2)
4 u

n+2
n−2 .

Claim 2.5. For any a > 1, (2.1) has at least one solution.

Remark 2.6. It is interesting to note here that for a ≤ 1, (2.1) has no
solution. This is implied by the Theorem 3.1 below.

Proof. The rough idea is the following, let

u (x) = min {ua−2 (x) , u1 (x)} =
{
ua−2 (x) , |x| ≤ a−2;
u1 (x) , |x| ≥ a−2.

Then, clearly, −∆u ≥ n(n−2)
4 u

n+2
n−2 in weak sense. One may get a smooth u

by suitable smoothing procedure.
More precisely, we may do the following, let f (t) = (cosh t)−

n−2
2 , then

−f ′′ =
n (n− 2)

4
f

n+2
n−2 − (n− 2)2

4
f.

For δ > 0 small, let g (t) = f (t+ 2δ), then f (−δ) = g (−δ), f ′ (−δ) >
g′ (−δ). Let

h (t) =
{
g (t) , t ≥ −δ;
f (t) , t ≤ −δ.

By Lemma 2.4, for ε > 0 tiny, we may find a smooth function hε such that

hε (t) = h (t) for |t+ δ| ≥ ε;
h (t) − ε ≤ hε (t) ≤ h (t) for |t+ δ| ≤ ε;
h′′ε (t) ≤ h′′ (t) for t �= −δ.



Rigidity and Non-rigidity Results on the Sphere 97

Hence, for t �= −δ,

−h′′ε (t) ≥ −h′′ (t) =
n (n− 2)

4
h (t)

n+2
n−2 − (n− 2)2

4
h (t)

≥ n (n− 2)
4

hε (t)
n+2
n−2 − (n− 2)2

4
hε (t) ,

observing that h (t) is very close to 1 when |t+ δ| ≤ ε.
Now g = π∗S

(
hε (t)

4
n−2 (dt⊗ dt + gSn−1)

)
is the needed metric. �

If we do not restrict ourselves to conformal deformations, we can even
construct a deformation without decreasing the sectional curvatures.

Claim 2.7. For any 0 < a < b < π
2 , there exists a function f ∈

C∞ ([0, 2b] ,R) such that

f (x) =
{

sinx, 0 ≤ x ≤ a,
sin (2b− x) , 2b− a ≤ x ≤ 2b,

f (x) = f (2b− x) for 0 < x < 2b,
−f ′′ ≥ f > 0 on (0, 2b) , − f ′′ > f somewhere,

1 ≥ f ′2 + f2 on [0, 2b] , 1 > f2 + f ′2 somewhere.

Proof. Denote

ρ (x) =

{
ce

− 1
1−x2 , |x| < 1,
0, |x| ≥ 1,

here c is a positive constant such that
∫

R
ρ (x) dx = 1. For δ > 0, ρδ (x) =

1
δρ

(
x
δ

)
.

For 0 < δ < π/2, denote

cδ =
∫ δ

−δ
ρδ (x) cos xdx ∈ (0, 1) ,

then ∫ δ

−δ
ρδ (y) sin (x− y) dy = cδ sinx.

Let

g (x) =
{

sinx, x ≤ b,
sin (2b− x) , b ≤ x.
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For 0 < δ < b− a, let

f (x) =
1
cδ

∫ δ

−δ
ρδ (y) g (x− y) dy,

then f satisfies all the requirements. �

Theorem 2.8. For any a ∈ (
0, π

2

)
, there exists a smooth metric g on Sn

such that g = gSn on B (S, a) ∪B (N, a) and the sectional curvature of g is
at least 1 and larger than 1 somewhere.

Proof. Fix a number b ∈ (
a, π

2

)
. Let f be as in the Claim 2.7. Consider the

metric
g̃ = dr ⊗ dr + f (r)2 gSn−1 .

Let e1, · · · , en−1 be a local orthonormal frame on Sn−1, then the curvature
operator of g̃ is given by

Q̃ (∂r ∧ ei) = −f
′′

f
∂r ∧ ei,

Q̃ (ei ∧ ej) =
1 − f ′2

f2
ei ∧ ej ,

for 1 ≤ i, j ≤ n− 1. By Claim 2.7, we see the sectional curvature of g̃ is at
least 1.

Next we will construct a smooth function φ : [0, π] → [0, 2b] such that

φ (r) =
{

r, 0 ≤ r ≤ a,
r + 2b− π, π − a ≤ r ≤ π,

φ′ (r) > 0 and φ′ (r) = φ′ (π − r) .

Indeed, let

α (x) =

{
ce

− 1
x(1−x) , 0 < x < 1,
0, x ≤ 0 or x ≥ 1,

here c is chosen such that
∫ 1
0 α (x) dx = 1. Let β (x) =

∫ x
0 α (t) dt. Fix

a λ > 0 such that 2a + λ (π − 2a) < 2b. For 0 < ε < π
2 − a, let δ =

min
{
ε, π

2 − a− ε
}

and

gε (x) =

 λ+ (1 − λ) β
( π

2
−ε−x

δ

)
, 0 ≤ x ≤ π

2 ,

λ+ (1 − λ) β
(

x−π
2
−ε

δ

)
, π

2 ≤ x ≤ π.



Rigidity and Non-rigidity Results on the Sphere 99

Then, for some ε, we have
∫ π
0 gε (x) dx = 2b. We may put φ (x) =

∫ x
0 gε (t) dt

and φ satisfies all the requirements.
Let r be the distance function on Sn to N , then we may put

g = dφ (r) ⊗ dφ (r) + f (φ (r))2 gSn−1 .

It satisfies all the requirements in the theorem. �

3. Conformal deformation on the hemisphere.

The assumption r > π/2 in Theorem 2.1 is optimal as it turns out that it is
impossible to localize the deformation in the hemisphere.

Theorem 3.1. Let g = e2φgSn be a C2 metric on Sn
+ satisfying the assump-

tions

• Rg ≥ n(n− 1),

• the boundary is totally geodesic and is isometric to the standard Sn−1.

Then g is isometric to gSn .

Remark 3.2. This verifies Conjecture 1.2 among conformal deformations.

Proof. By the assumption g|Sn−1 = e2φ|Sn−1gSn−1 is isometric to gSn−1 . By
the Obata theorem, there exist λ ≥ 1 and ζ ∈ Sn−1 such that g|Sn−1 =
ψ∗

λ,ζgSn−1 , where ψλ,ζ is the conformal transformation of Sn which is dilation
by λ when we identify Sn with R

n by the stereographic projection from ζ.
Replacing g by (ψ−1

λ,ζ)
∗g, we can assume g|Sn−1 = gSn−1 , i.e. φ|Sn−1 ≡ 0. We

are to prove φ ≡ 0 on Sn
+.

As in the proof the Theorem 2.1, we work on R
n via the stereographic

projection from the south pole. We write(
π−1

S

)∗
g = u

4
n−2

n∑
i=1

dxi ⊗ dxi = v
4

n−2 (dt ⊗ dt+ gSn−1) .

Then u ∈ C2(B1) is positive and satisfies

(3.1)


−∆u ≥ n(n−2)

4 u
n+2
n−2 in B1;

u = 1 on ∂B1
∂u
∂r = −n−2

2 on ∂B1.

(The Neumann boundary condition is the geometric assumption that the
boundary is totally geodesic.)
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Claim 3.3. The only solution to (3.1) is u1(x) =
(

2
1+|x|2

)n−2
2 .

We work with v in cylindrical coordinates.

−vtt − ∆Sn−1v +
(n− 2)2

4
v ≥ n (n− 2)

4
v

n+2
n−2 .

Let
f (t) =

1
nωn

∫
Sn−1

v (t, θ)dS (θ) ,

here ωn is the volume of the unit ball in R
n. By Holder’s inequality, we have

(3.2)
1
nωn

∫
Sn−1

v (t, θ)
n+2
n−2 dS (θ) ≥ f(t)

n+2
n−2 .

Therefore, we have
f ∈ C2 ([0,∞) ,R) , f > 0

−f ′′ (t) ≥ n(n−2)
4 f (t)

n+2
n−2 − (n−2)2

4 f (t) ,
f (0) = 1, f ′ (0) = 0.

Denote

e (t) = −f ′′ (t) − n (n− 2)
4

f (t)
n+2
n−2 +

(n− 2)2

4
f (t) ≥ 0.

Since f ′′ (0) < 0, we see f ′ (t) < 0 for t > 0 small. Assume b > 0 such that
f ′ (t) < 0 on (0, b), then for 0 ≤ t ≤ b, we have

f ′ (t)2 = −2
∫ t

0
f ′ (s) e (s) ds+

(n− 2)2

4

(
f (t)2 − f (t)

2n
n−2

)
.

In particular, f ′ (b)2 > 0. This implies that f ′ (t) < 0 for any t.
Assume e is not identically zero, then for some b > 0, e is not identically

zero on (0, b), then for any t > b, we have

f ′ (t)2 ≥ c > 0.

This implies f ′ (t) ≤ −√
c and hence, limt→∞ f (t) = −∞, a contradiction.

Hence, e (t) ≡ 0. This shows

f (t) = (cosh t)−
n−2

2 for t ≥ 0.
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Moreover, the inequality (3.2) must be an equality. This implies that

v(t, θ) = f(t) = (cosh t)−
n−2

2 . Hence, u =
(

2
1+|x|2

)n−2
2 . �

With a little improvement of our argument, we can remove the assump-
tion that the boundary is totally geodesic.

Theorem 3.4. Let g = e2φgSn be a C2 metric on Sn
+ satisfying the assump-

tions

• Rg ≥ n(n− 1),

• the boundary is isometric to the standard Sn−1.

Then, g is isometric to gSn .

By the same argument, we can reduce the problem to a partial differential
inequality on B1 ⊂ R

n. In fact, we establish the following stronger result

Claim 3.5. Assume u ∈ C2
(
B1,R

)
, u > 0 and{

−∆u ≥ n(n−2)
4 u

n+2
n−2 in B1;

u|∂B1
≥ 1.

Then u = u1.

(The proof of Theorem 3.4 only requires the special case u|∂B1
= 1.)

To prove this claim, we take an approach different from our previous
method. First, we observe that if we solve v such that{

−∆v = n(n−2)
4 u

n+2
n−2 in B1;

v|∂B1
= 1.

Then 1 ≤ v ≤ u and −∆v ≥ n(n−2)
4 v

n+2
n−2 . If we can prove v = u1, then

n (n− 2)
4

u
n+2
n−2 = −∆v = −∆u1 =

n (n− 2)
4

u
n+2
n−2

1 .

Hence, u = u1. Therefore, from now on, we may assume u|∂B1
= 1.

We consider the following PDE

(3.3)

{
−∆v = n(n−2)

4 v
n+2
n−2 in B1;

v|∂B1
= 1.



102 Fengbo Hang and Xiaodong Wang

We claim the only positive solution is v = u1. Indeed, it follows from the
moving plane method of Gidas, Ni and Nirenberg [4] that v (x) = f (|x|) for
some f , moreover {

f ′′ + n−1
r f ′ + n(n−2)

4 f
n+2
n−2 = 0;

f (0) = a > 0, f ′ (0) = 0.

It is clear
g (r) =

a(
1 + a

4
n−2

4 r2
)n−2

2

is a solution to the problem. On the other hand, since f satisfies

f (r) = a− n (n− 2)
4

∫ r

0
dt

∫ t

0

(s
t

)n−1
f (s)

n+2
n−2 ds.

It follows from contraction mapping theorem that for some ε > 0, f = g

on [0, ε]. Hence, f = g. Since f (1) = 1, we see a = 2
n−2

2 . Hence, f (r) =
2

n−2
2

(1+r2)
n−2

2
and v = u1.

Since 1 is a subsolution for (3.3) and u is a supersolution with u ≥ 1,
by the standard method of iteration, we may find a solution v for (3.3) and
1 ≤ v ≤ u. Since the only positive solution is u1, we see u1 = v ≤ u.

If u1 �= u, then since −∆ (u− u1) ≥ 0 and (u− u1)|∂B1
= 0, we see

u > u1 in B1. Moreover, it follows from Hopf maximum principle that for
some c1 > 0, u (x) − u1 (x) ≥ c1 (1 − |x|). This implies that for some c > 0,

u (x)
u1 (x)

≥
[
1 + c

(
1 − |x|2

)]n−2
2
.

On the other hand, for λ > 1, we have(
uλ (x)
u1 (x)

) 2
n−2

= 1 +
(λ− 1)

(
1 − λ

∣∣x2
∣∣)

1 + λ2 |x|2

≤ 1 +
(λ− 1)

(
1 − ∣∣x2

∣∣)
1 + λ2 |x|2

≤ 1 + c
(
1 − |x|2

)
≤

(
u (x)
u1 (x)

) 2
n−2
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if λ − 1 is small enough. Hence, for some λ > 1, uλ ≤ u. Since uλ is also
a subsolution, we may find a solution v for (3.3) such that uλ ≤ v ≤ u.
It follows from previous discussion that v = u1. Hence, uλ ≤ u1, this
contradicts with the fact λ > 1.

4. The Einstein case.

In this section, we prove the following uniqueness theorem:

Theorem 4.1. Let (M,g) be a smooth n-dimensional compact Einstein
manifold with boundary Σ. If Σ is totally geodesic and is isometric to Sn−1

with the standard metric, then (M,g) is isometric to the hemisphere Sn
+ with

the standard metric.

This verifies Conjecture 1.2 in the special case that g is Einstein.

Given local coordinates ξ1, . . . , ξn−1 on the boundary, we can introduce
local coordinates on a collar neighborhood of Σ in M as follows. For ξ ∈ Σ,
let γξ(t) = γ(t, ξ) be the normal geodesic starting at ξ with initial velocity
ν(ξ), the unit inner normal vector at ξ. Then, t, ξ1, . . . , ξn−1 form local
coordinates on a collar neighborhood of Σ in M . Let hij = 〈 ∂γ

∂ξi ,
∂γ
∂ξj 〉. By

the Gauss lemma, the metric g takes the form

g = dt2 + hij(t, ξ)dξidξj ,

where Latin indices i, j, . . . run from 1 to n− 1. Greek indices α, β, . . . will
be used to run from 0 to n − 1. We denote the curvature tensors of M
and Σ by R and K, respectively. Since Σ is totally geodesic, by the Gauss
equation, we have

Rikjl = Kikjl.

Then the Ricci tensor is given by

Rij = Ri0j0 +Kij.

Taking trace, we get the scalar curvature

R = 2R00 + (n− 1)(n − 2) = 2R/n+ (n− 1)(n − 2),

hence R = n(n− 1). Thus, Ric (g) = (n− 1)g.
The second fundamental form of the t-hypersurface is given by

Aij = −
〈
D

∂t

∂γ

∂ξi
,
∂γ

∂ξj

〉
= −1

2
∂hij

∂t
.
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We also need to know the second derivative of hij in t.

1
2
∂2hij

∂t2
=

〈
D2

∂t2
∂γ

∂ξi
,
∂γ

∂ξi

〉
+

〈
D

∂t

∂γ

∂ξi
,
D

∂t

∂γ

∂ξj

〉
= −R

(
∂γ

∂t
,
∂γ

∂ξi
,
∂γ

∂t
,
∂γ

∂ξj

)
+

1
4
hkl ∂hik

∂t

∂hjl

∂t
,

where, in the last step, we use the fact that ∂γ
∂ξi is a Jacobi field along the

geodesic γ(t, ξ). As g is Einstein, the above equation can be written as

(4.1)
1
2
∂2hij

∂t2
= −(n− 1)hij +

1
4
hkl ∂hik

∂t

∂hjl

∂t
+ hklRikjl.

Claim 4.2. Infinitesimally hij(t, ξ) equals cos2(t)hij(0, ξ) .

Remark 4.3. It is clear that gSn = dt2 + cos2(t)gSn−1

We prove by induction that

hij(t, ξ) = cos2(t)hij(0, ξ) +O(tm), as t→ 0

for any integer m > 0. The case m = 1 is trivial. Suppose it is true for
m. We assume without loss of generality that hij(0, ξ) = δij . We first have
Rikjl = cos4(t)(δijδkl − δilδkj) + O(tm−1) (this is true because Rijkl only
involves differentiating the metric in t once). By (4.1), we get

1
2
∂2hij

∂t2
= −(n− 1) cos2(t)δij +

1
4
δkl sin

2(2t)
cos2(t)

δikδjl

+ cos2(t)δkl(δijδkl − δilδkj) +O(tm−1)

= −(n− 1) cos2(t)δij + sin2(t)δij + (n− 2) cos2(t)δij +O(tm−1)

= − cos(2t)δij +O(tm−1).

This implies that hij(t, ξ) = cos2(t)hij(0, ξ) +O(tm+1).

Consider Sn
+ with the standard metric gSn . It is easy to see that gSn =

dt2 + cos2(t)gSn−1 , where t is the distance to the boundary Sn−1. We form
a closed manifold M by joining M and Sn

+ along their boundary. In view
of Claim 4.2, we get a smooth Riemannian manifold with a totally geodesic
hypersurface Σ which is isometric to Sn−1. The metric, also denoted by g,
is of course Einstein.

By [2], g is real analytic in harmonic coordinates. We define Ω to be the
set of points where g has constant curvature 1 in a neighborhood. This is
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an open set by definition. If it is not the whole manifold, we take a point
p on its boundary and choose local harmonic coordinates x1, . . . , xn on a
connected neighborhood U . The analytic functions Rikjl − gijgkl + gilgjk

vanish on an open subset of U for U ∩Ω �= ∅, hence vanish identically on U .
Then p ∈ Ω, a contradiction. Therefore, g has constant sectional curvature
1 everywhere. It is then easy to see that (M,g) is isometric to Sn and (M,g)
is isometric to Sn

+.
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