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From Sparks to Grundles — Differential Characters

Reese Harvey and Blaine Lawson

We introduce a new homological machine for the study of sec-
ondary geometric invariants. The objects, called spark complexes,
occur in many areas of mathematics. The theory is applied here
to establish the equivalence of a large family of spark complexes
which appear naturally in geometry, topology and physics. These
complexes are quite different. Some of them are purely analytic,
some are simplicial, some are of Čech-type, and many are mix-
tures. However, the associated theories of secondary invariants are
all shown to be canonically isomorphic. Numerous applications
and examples are explored.

0. Introduction.

The point of this paper is to present a general homological apparatus for
the study of sparks, differential characters, gerbes and analogous objects.
This overarching theory encompasses all the known theories equivalent to
differential characters, as well as many new ones, and it establishes this
equivalence. The basic algebra is elementary and self-contained. Neverthe-
less, it enables one to rigorously establish canonical isomorphisms between
the quite disparate approaches to the theory: the original Cheeger–Simons
formulation, the de Rham–Federer theory using currents, the Čech–de Rham
formulation connected with gerbes, and many others. It also provides a ho-
mological framework for the development of new secondary theories which
will be pursued in separate papers.

In the first section, we introduce the concept of a homological spark com-
plex and its associated group of homological spark classes. (These play roles
analogous to cochain complexes and their associated groups of cohomology
classes in standard homological algebra.) We establish a basic 3 × 3 grid
of short exact sequences with the group of homological spark classes in the
center. The spark complexes of interest in this paper will be referred to col-
lectively as (R,Z)-spark complexes. For these complexes, the grid captures
all of the basic short exact sequences.

We then introduce the notion of compatible spark complexes and show
that compatible complexes have naturally isomorphic groups of spark
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classes. This is the tool that enables us to rigorously unify the many ap-
proaches to the (R,Z) theory.

The next part of the paper is devoted to studying specific examples.
We shall present: holonomy maps, differential characters, de Rham–Federer
spark classes, hyperspark classes, smooth hyperspark classes, grundles (n-
gerbes with connection), cochain hyperspark classes, Cheeger–Simons spark
classes, current cochain spark classes, and prove that all of these concepts
are equivalent. The diagram

Hyper-Spks Cochain-Hyper-Spks Diff-Char

↗ ↖ ↗ ↖ ↗ ↖

DeR-Fed-Spks Smooth-Hyper-Spks Cheeger-Simons-Spks Holon-Maps

↓ ↖ ↗

Grundles Current-Cochain-Spks

(R,Z)-Spark Complexes

provides a convenient summary. The arrows in this diagram represent the
direction of the inclusion maps at the level of spark complexes. This part of
the paper is organized as follows.

In Section 2, we recall the de Rham–Federer spark complexes which first
appeared in [8] and [10] and were systematically studied in [17]. There are in
fact many such complexes, from the most general one involving all currents,
to quite restricted ones in which only forms with L1

loc-coefficients appear as
sparks [17, Section 2].

In Section 3, we define the complex of hypersparks whose compatibility
with all the de Rham–Federer spark complexes establishes the isomorphisms
between their groups of spark classes.

In Section 4, we introduce smooth hypersparks and show that they form
a compatible subcomplex of the hypersparks.

In Section 5, we present the concept of grundles of degree k and the no-
tion of gauge equivalence. Grundles of degree 1 are just Čech presentations
of hermitian line bundles with unitary connection, and “gauge equivalence”
corresponds to the standard equivalence as unitary bundles with connection.
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Grundles of degree 2 similarly correspond to (abelian) gerbes with connec-
tion, and “gauge equivalence” corresponds to the standard equivalence found
in the literature [20, 1].

Grundles of degree k and smooth hypersparks of degree k are essentially
the same. They differ only in the lowest order component where one is
obtained from the other by choosing logarithms (or inversely by exponen-
tiation). In particular, we show that gauge equivalence classes of grundles
are isomorphic to the corresponding classes of smooth hypersparks (which
are isomorphic to groups of spark classes of all the aforementioned spark
complexes).

In Section 6, we consider Cheeger–Simons sparks which are the sparks
most closely related to differential characters as originally defined in [3].
These sparks are shown to be compatible with the smooth hypersparks via
a larger complex which encompasses them both (cochain hypersparks).

In Section 7, we examine Cheeger–Simons theory. Recall that in [3], a
differential character of degree k is defined to be a homomorphism

h : Zk(X) −→ R/Z such that dh ≡ φ mod Z

for some smooth (k + 1)-form φ on X. Here, Zk(X) = {c ∈ Ck(X) : ∂c =
0} where Ck(X) is the group of C∞ singular k-chains in X with integer
coefficients, and the congruence above means that h(∂c) −

∫
c φ ∈ Z for

all c ∈ Ck+1(X). We show that the group DiffChark(X) is isomorphic to
Cheeger–Simons spark classes, and hence to each group of spark classes
appearing in Sections 2–6.

From a geometric point of view perhaps the most natural starting point
for the (R,Z)-theory is to define “holonomy maps”. Quite surprisingly, this
concept does not seem to be part of the literature. Note that every k-chain
c ∈ Ck(X) defines a current, that is, a linear functional c̃ on the space Ek(X)
of smooth k-forms on X, by setting c̃(ψ) =

∫
c ψ. Let Z̃k(X) be the group of

currents coming from cycles in Zk(X) in this way. (These are current chains
in the sense of de Rham.) There is a short exact sequence

0 → Nk(X) → Zk(X)
ρ−→ Z̃k(X) → 0

where ρ(z) = z̃ and Nk(X) is the group of null cycles on X, the cycles
over which all forms integrate to be 0. Note for example that a compact
oriented submanifold M ⊂ X of dimension k defines an element [M ] ∈
Z̃k(X). Among the many cycles z with ρ(z) = [M ] are those arising from
smooth triangulations of M .
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In Section 8, we define the set of degree k holonomy maps to be

Hol(X) ≡ {H ∈ Hom(Z̃k(X),R/Z) : dH ≡ φ modZ

for some φ ∈ Ek+1(X)}

In Theorem 8.2, we show that every differential character h as above can be
written in the form h = H ◦ ρ for a homomorphism H : Z̃k(X) → R/Z. In
other words, there is an isomorphism

DiffChark(X) ∼= Hol(X).(0.1)

It is well known that in degree 1, differential characters are isomorphic to
gauge equivalence classes of principal S1-bundles with connection, and that
the isomorphism is given by the classical holonomy of the connection. The
above results generalize this statement to grundles of all degrees. In par-
ticular, the analogue of (0.1) for grundles (abelian gerbes with connection)
recaptures results in [22].

This analogue implies that the holonomy of any grundle over a compact
oriented submanifold M is independent of any choice of triangulation of
M . However, given a triangulation it is interesting to find combinatorial
formulae for the holonomy in terms of the grundle data. A general formula
of this type is derived in Section 9. In degree 1, this formula computes the
holonomy around a loop by integration of the connection 1-forms on sub-
arcs where the bundle is trivialized and the change of trivialization at the
endpoints of the arcs. The corresponding formula (9.4) for the holonomy of
a gerbe with connection involves integration of the gerbe data over the 0-,1-
and 2-faces.

There are many (R,Z) homological spark complexes which were not
mentioned in Sections 2–6. We briefly discuss two useful ones in Section 10.

We note that the discussion here was restricted to the case of “integer
coefficients”. However, one can easily replace Z with any proper subring
Λ ⊂ R. For example, in the discussion of Section 3, one replaces C∗(U ,Z) ⊂
C∗(U ,R) with C∗(U ,Λ) ⊂ C∗(U ,R), and everything goes through.

Historically, the spark equation and spark equivalence first appeared
in [8] and [10] and were systematically developed in [17], where Poincaré–
Pontrjagin duality for differential characters was established. The concept
of smooth hypersparks can be found in the work of Freed–Witten [7], and
Picken [21], and the concept of grundles (sometimes called n-gerbes with
connection) can be found in many places, e.g. [20]. Cheeger–Simons cochain
sparks appear explicitly in the papers of Cheeger and Simons [2, 3] as
“liftings” of differential characters φ : Zk(X) → R/Z to homomorphisms
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φ̃ : Zk(X) → R. However, they do not systematically study the spark
equation and spark equivalence.

In Section 11, we discuss many applications and examples. Topics
include: ring structure, functoriality, Gysin maps and Thom homomor-
phisms, secondary characteristic classes, flat sparks, projective bundles,
Hodge sparks, Morse sparks, the Wess–Zumino term, refined integer Steifel–
Whitney classes, and linear dependency sparks. In each case, the main con-
cern is to determine which points of view represented in the diagram above
are most illuminating.

In this paper, our attention is focused on (R,Z)-spark complexes. How-
ever, there exist many spark complexes whose associated class groups are
quite different and interesting.

For example on complex manifolds, one can define a ∂-analogue of dif-
ferential characters by applying (a slight generalization of) the homologi-
cal machinery developed here to spark complexes involving forms and cur-
rents of type (0, q). There are several compatible formulations of the theory
which yield the same ∂-spark classes. One formulation uses a smooth Čech–
Dolbeault complex which is related (as in this paper) to ∂-grundles. In
low degrees, these grundles have beautiful geometric interpretations as in
the classical case. However, there is quite a different Dolbeault–Federer
approach to ∂-spark classes which is purely analytic. It enables us to es-
tablish functoriality and to define a ∗-product which makes these groups
into a graded ring. The equivalence of these spark complexes is proved by
a larger hyperspark complex compatible with them both, as in this paper.
One interesting by-product of the discussion is an acyclic resolution of the
sheaf O∗ by forms and currents. All these results will appear in [15].

We emphasize that there exist many further interesting spark complexes.
Some involve (p, q)-forms and are related to Deligne cohomology (see [15]).
Others arise in a quite general way from interesting double complexes.
Among these are complexes related to the arithmetic Chow groups of Gillet
and Soulé [16].

Note. In discussing certain spark complexes, we talk freely about sheaves of
germs of currents of various types. For a unified approach to the cohomology
of current complexes (such as flat, integrally flat, integral, etc.), the reader
is referred to the Appendix A in [18].

For simplicity, all complexes in this paper will be complexes of abelian
groups, i.e., Z-modules.



30 Reese Harvey & Blaine Lawson

1. Homological Sparks.

A spark complex consists of a differential complex F ∗, d, and two subcom-
plexes E∗ ⊂ F ∗ and I∗ ⊂ F ∗ which satisfy the following properties:

(A) Hk(E∗) ∼= Hk(F ∗), k = 0, 1, . . .
(B) Ek ∩ Ik = {0}, k = 1, 2, . . .
It follows that

(C) E0 ∩ I0 = H0(I∗) ⊂ H0(E∗),

since a ∈ E0 ∩ I0 implies da ∈ E1 ∩ I1 = {0} and H0(I∗) ⊂ H0(F ∗) =
H0(E∗).

Definition 1.1. An element a ∈ F k with the property that

da = φ− r (the Spark equation)

where φ ∈ Ek+1 and r ∈ Ik+1 is a homological spark of degree k. Two
homological sparks are equivalent if their difference is of the form

db+ s

with b ∈ F k−1 and s ∈ Ik. Given a homological spark a ∈ F k, let â denote
the equivalence class containing the spark a, and let Ĥk denote the group
of homological spark classes.

Sometimes, it is convenient to set Ĥ−1 = H0(I∗). (The spark equation
is 0 = φ− r.)

Lemma 1.2. Each homological spark a ∈ F k uniquely determines φ ∈ Ek+1

and r ∈ Ik+1, and dφ = 0, dr = 0. Moreover, φ ∈ Ek+1 and [r] ∈ Hk+1(I∗)
only depend on the spark class â ∈ Ĥk.

Consequently, we may define

δ1 : Ĥk → Ek+1 and δ2 : Ĥk → Hk+1(I∗)

by δ1â = φ, and δ2â = [r]. Given a spark class α ∈ Ĥk, the element
φ = δ1α ∈ Ek+1 will be referred to as the curvature of α, and the class
δ2α ∈ Hk+1(I∗) will be referred to as the divisor class of α.

Proof. Uniqueness of φ and r is immediate from Axiom (B). Since dφ = dr,
Axiom (B) implies both must vanish. Changing the homological spark a
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by adding db does not change φ or r. Changing the homological spark a by
adding s ∈ Ik does not change φ and changes r to r−ds (Again using (B)). �

There is an obvious notion of morphism of spark complexes.
Let Zk

I (E∗) denote the space of cycles φ ∈ Ek which are F ∗-homologous
to some r ∈ Ik, i.e. the space of possible curvature elements. Let us also
define

Hk
I (F ∗) ≡ Image{Hk(I∗) → Hk(F ∗)} = Ker{Hk(F ∗) → Hk(F ∗/I∗)}

(1.1)

Hk+1(F ∗, I∗) ≡ Ker{Hk+1(I∗) → Hk+1(F ∗)}(1.2)

= Image{Hk(F ∗/I∗) → Hk+1(I∗)}.

Finally, let Ĥk
E denote the space of spark classes that can be represented by

a homological spark a ∈ Ek. Note that

Ĥk
E
∼= Ek/Zk

I

Proposition 1.3. The following diagram commutes, and each row and col-
umn is exact (k > 0):

0 0 0� � �
0 −−−−→ Hk(F ∗)

Hk
I (F ∗)

−−−−→ Ĥk
E

δ1−−−−→ dEk −−−−→ 0� � �
0 −−−−→ Hk(F ∗/I∗) −−−−→ Ĥk δ1−−−−→ Zk+1

I −−−−→ 0

δ2

� δ2

� �
0 −−−−→ Hk+1(F ∗, I∗) −−−−→ Hk+1(I∗) −−−−→ Hk+1

I (F ∗) −−−−→ 0� � �
0 0 0

The proof is straightforward, see [17] or Remark 1.6 below.
A spark complex

E∗ ⊂F ∗

∪
I∗
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is said to be a subspark complex of another spark complex

E
∗ ⊂F ∗

∪
I
∗

if F ∗ ⊂ F
∗ is a differential subcomplex with E∗ = E

∗ the same, and I∗ ⊂ I
∗

such that:
H∗(I∗) ∼= H∗(I∗).

Two spark complexes are said to be compatible if they can be embedded as
subspark complexes of a spark complex.

Theorem 1.4. Given two compatible spark complexes, there is a natural

isomorphism Ĥk ∼= Ĥ
k
, k = −1, 0, 1, . . . .

The following Lemma will be used twice in the proof of this Proposition.

Lemma 1.5. Suppose F ∗, d is a subdifferential complex of F ∗, d. Then,
the assertion:

Hk(F ∗) ∼= Hk(F ∗) k = 0, 1, . . .

can be restated as follows: Given g ∈ F p+1 and a solution α ∈ F
p to the

equation dα = g there exists γ ∈ F p−1, with

f = α+ dγ ∈ F p.

(Not only is there a solution f ∈ F p to df = g, but one which is homologous
to the given solution α in F

p.)

Proof. Since Hp+1(F ∗) → Hp+1(F ∗) is injective, there exists a solution
h ∈ F p with dh = g. Thus, α − h is d-closed. Since Hp(F ∗) → Hp(F ∗) is
surjective, there exist γ ∈ F

p−1 such that α− h+ dγ ∈ F p. �

Proof of Theorem. We may assume that a subspark complex is given.
Suppose ā ∈ F

k is an (F , I)-spark, i.e. dā = φ − r̄ with φ ∈ Ek+1 and
r̄ ∈ I

k+1. Since dr = 0 and Hk+1(F ∗) ∼= Hk+1(F ∗) there exist s̄ ∈ I
k,

r ∈ Ik+1 with r̄ = r − ds̄. Therefore, d(ā − s̄) = φ− r. Since φ− r ∈ F k+1

and H∗(F ∗) ∼= H∗(F ∗), the Lemma implies that there exist b̄ ∈ F with
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a = ā− s̄− db̄ ∈ F k. This proves that the (F, I)-spark ā ∈ F k is equivalent
to an (F, I)-spark a ∈ F k.

Suppose that a ∈ F is an (F, I)-spark which is equivalent to zero as an
(F, I)-spark i.e. da = φ − r, with φ ∈ Ek+1, r ∈ Ik+1 and a = db̄ + s̄ with
b̄ ∈ F

k−1 and s̄ ∈ I. Then ds̄ = φ − r which implies that both φ = 0 and
ds̄ = −r. Applying the Lemma to I∗ ⊂ I

∗ there exist t̄ ∈ I
k−1, s ∈ Ik with

s = s̄+ dt̄. Therefore, a− s = d(b̄− t̄). Since Hk(F ∗) ∼= Hk(F ∗), there exist
b ∈ F k−1 with a− s = db. That is, a is (F , I) equivalent to zero. �

Remark 1.6. We include a proof of the exactness of the 3× 3 grid (Propo-
sition 1.3) for the sake of completeness. The standard long exact se-
quence in homology associated with the short exact sequence of complexes,
0 → I∗ → F ∗ → F ∗/I∗ → 0, yields the equalities in (1.1) and (1.2) and the
exactness of the left column and the bottom row. In the middle column, sur-
jectivity of δ2 is equivalent to each cycle r ∈ Ik+1 satisfying a spark equation
da = φ− r, which is easily verified. To see that δ2 has kernel Ĥk

E, first note
that if δ2α = 0, then we may choose a spark a ∈ α with da = φ ∈ Ek+1. The
basic assumption (A) may be restated as follows. (This is just Lemma 1.5
applied to E∗ ⊂ F ∗.)

(A)′ Given a ∈ F k with φ = da ∈ Ek+1, there exists b ∈ F k−1 with
a+ db ∈ Ek.

Hence, we can choose a′ = a+ db ∈ α with a′ ∈ Ek. This proves exactness
of the middle column.

By the definition of Zk+1
I , as the space of possible curvature elements,

δ1 in the middle row is surjective. By various definitions the kernel of δ1 is
Hk(F ∗/I∗).

Surjectivity in the right column asserts that the image of Zk+1
I equals

Image{Hk+1(I∗) → Hk+1(F ∗)}. This means that the image of the set of all
divisors classes equals the set of all curvature classes in Hk+1(F ∗), which is
straightforward. The kernel is dEk since F -homology implies E-homology
by assumption (A).

It remains to show that:

(1.3) (ker δ1) ∩ (ker δ2) = Hk(F ∗)/Hk
I (F ∗).

First, note that if δ1α = 0 and δ2α = 0, then there exists a spark a ∈ α with
da = 0. Two such sparks are equivalent if a − a′ = db + s with b ∈ F k−1,
s ∈ Ik. Since da = da′ = 0, it follows that ds = 0 completing the proof of
exactness in the 3×3 grid. Commutativity of the diagram is straightforward
to verify. �
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Remark 1.7. Proposition 1.4 can be strengthened by weakening the notion
of compatible spark complexes to include the case of a chain map from
F ∗ → F

∗. See Section 10 for an application.

The remainder of this paper will be devoted to the study of a particular
equivalence class of spark complexes, which will be collectively called (R/Z)-
spark complexes. The 3 × 3 grid for these complexes is given at the end of
the next section.

2. Sparks (de Rham–Federer).

For completeness, we review in this section some of the results of [17].

Definition 2.1. A spark of degree k is a current α ∈ D′k(X) with the
property that

(2.1) da = φ−R, (The Spark equation)

where φ ∈ Ek+1(X) is smooth and R ∈ IFk+1(X) is integrally flat. Let
Sk(X) denote the space of sparks of degree k.

Recall that a current R is integrally flat if it can be written as R = T+dS
where T and S are locally rectifiable currents. The de Rham–Federer spark
complex is obtained by taking Ek = Ek(X), F k = D′k(X) and Ik = IFk(X).
Condition (A) is, of course, standard [5]. A proof of condition (B), i.e. that

(2.2) Ek(X) ∩ IFk(X) = {0} k = 1, 2, . . .

is given in [17]. (See the proof of Lemma 1.3 on page 796.)
For convenience, the notion of equivalence is restated specifically for the

de Rham–Federer complex.

Definition 2.2 (Spark Equivalence). Two sparks a and a′ are (spark)
equivalent if there exists b ∈ D′k−1(X), an arbitrary current, and S ∈
IFk(X) an integrally flat current, with

(2.3) a− a′ = db+ S.

The equivalence class determined by a spark a ∈ Sk(X) will be denoted
â, and the space of spark classes will be denoted by Ĥk

spark(X).
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There are many useful subspark complexes of the de Rham–Federer spark
complex. For example, let L1

loc(X)k denote the space of currents of degree k
which can be expressed as differential forms with locally Lebesgue integrable
coefficients, and let C̃k

deR(X) denote the space of currents (the current chains
of de Rham) that can locally be expressed as integration over a smooth
singular (n − k)-chain with integer coefficients. Take F k = L1

loc(X)k +
dL1

loc(X)k−1. Then, Ik = C̃k
deR(X) ⊂ F k and one obtains

Ĥk
spark(X) ∼= {a ∈ L1

loc(X)k : da = φ−R with φ ∈ Ek+1(X) and

R ∈ C̃k+1
deR (X) a current chain}/(dL1

loc(X)k + C̃k
deR(X))

All such modifications follow from Proposition 1.4.
Since Hk(E∗(X)) = Hk(X,R), Hk(IF∗(X)) = Hk(X,Z), and

Hk(D′∗(X)/IF∗(X)) = Hk(X,S1) (see [17] and [18]), the diagram in Propo-
sition 1.3 can be rewritten as:

0 0 0� � �
0 −−−−→ Hk(X,R)

Hk
free(X,Z)

−−−−→ Ĥk∞(X) δ1−−−−→ dEk(X) −−−−→ 0� � �
0 −−−−→ Hk(X,S1) −−−−→ Ĥk(X) δ1−−−−→ Zk+1

0 (X) −−−−→ 0

δ2

� δ2

� �
0 −−−−→ Hk+1

tor (X,Z) −−−−→ Hk+1(X,Z) −−−−→ Hk+1
free (X,Z) −−−−→ 0� � �

0 0 0

3. Hypersparks.

Suppose U = {Ui} is an open covering of X (with each intersection UI

contractible). Consider the Čech-Current bicomplex

(3.1)
⊕
p,q≥0

Cp(U ,D′q)

with total differential D = (−1)qδ + d.
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Note that D2 = 0, and that both the horizontal and vertical homology
is zero except along the two edges.

The kernel of δ on the left (vertical) edge (p = 0) is the de Rham complex
D′∗(X), d since

0 −→ D′q(X) −→ C0(U ,D′q) δ−→ C1(U ,D′q)

is exact.
The kernel of d on the bottom edge (q = 0) is the Čech complex Cp(U ,R),

δ since
0 −→ Cp(U ,R) −→ Cp(U ,D′o) d−→ Cp(U ,D′1)

is exact.
We will consider Cp(U ,Z) as a subcomplex of Cp(U ,R), and Cp(U , IF q)

as a subbicomplex of Cp(U ,D′q).

Definition 3.1. A hyperspark of degree k is an element

A ∈
⊕

p+q=k

Cp(U ,D′q)

with the property that

(3.2) DA = φ−R (Hyperspark equation)

where φ ∈ Ek+1(X) is smooth of bidegree 0, k + 1 and R ∈⊕
p+q=k+1C

p(U , IF q) is an integrally flat cochain.

Said differently, we are defining a spark complex by letting F
∗ =⊕

p+q=∗C
p(U ,D′q) be the Čech-current bi-complex, and setting E

∗ =
E∗(X) ⊂ C0(U ,D′q) and I∗ =

⊕
p+q=∗C

p(U , IF q). Axioms A and B follow
easily, and the notion of equivalence becomes:

Definition 3.2 (Equivalence). Two hypersparks A and A are said to
be equivalent if there exists B ∈

⊕
p+q=k−1C

p(U ,D′q) and S ∈⊕
p+q=k C

p(U , IF q) satisfying

(3.3) A−A′ = DB + S.

The equivalence class determined by a hyperspark A will be denoted by
Â, and the space of hyperspark classes will be denoted by Ĥk

hyperspark(X).
There is obviously a well defined map

Ĥk
spark(X) −→ Ĥk

hyperspark(X)
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Theorem 3.3.

Ĥk
spark(X) ∼= Ĥk

hyperspark(X).

Proof. The hyperspark complex (F ∗
, E

∗
, I

∗) defined above contains the
sparks: F ∗ = D′∗(X), E∗ = E∗(X) and I∗ = IF ∗(X) as a subspark com-
plex (in the component C0(U ,D′∗)). Applying Proposition 1.4 completes
the proof. �

4. Smooth Hypersparks.

If a de Rham–Federer spark a ∈ Sk(X) is smooth, i.e. a ∈ Ek(X) ⊂ D′k(X),
then da = φ, i.e. R = 0. In fact, a is equivalent to a smooth spark if and only
if the class of R inHk+1(X,Z) is zero. In particular, a general spark need not
be equivalent to a smooth spark. The situation is different for hypersparks.
Consider the Čech-form sub-bicomplex of the full Čech-current bicomplex

(4.1)
⊕
p,q≥0

Cp(U , Eq) ⊂
⊕
p,q≥0

Cp(U ,D′q).

Definition 4.1. A hyperspark A is smooth if A ∈
⊕

p+q=k C
p(U , Eq).

Note that

(4.2) Cp(U , Eq) ∩ Cp(U , IF q) = {0}

unless q = 0, in which case:

(4.3) Cp(U , E0) ∩Cp(U , IF 0) = Cp(U ,Z).

Consequently, each smooth hyperspark A satisfies

(4.4) DA = φ−R

with R ∈ Ck+1(U ,Z) a Čech integer cocycle.

Said differently, we are considering the sub-spark complex with F k =⊕
p+q=k C

p(U , Eq), Ek = Ek(X) ⊂ C0(U , Ek), and Ik = Ck(U ,Z) ⊂
Ck(U , E0).
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E2(X) ⊂ C0(U , E2) −→
↑ d ↑ d ↑

E1(X) ⊂ C0(U , E1) −δ−→ C1(U , E1) −→
↑ d ↑ d ↑ d ↑

E0(X) ⊂ C0(U , E0) δ−→ C1(U , E0) δ−→ C2(U , E0) −→
∪ ∪ ∪

C0(U ,Z) δ−→ C1(U ,Z) δ−→ C2(U ,Z) −→

Diagram 4.1: The Smooth Čech–de Rham Bicomplex

Low Degree Smooth Hypersparks.

Degree 0: A ∈ C0(U , E0), φ ∈ E1(X), R ∈ C1(U ,Z)

dAα = φ

Aβ −Aα = −Rαβ .

Degree 1: A ∈ C0(U , E1) ⊕ C1(U , E0), φ ∈ E2(X), R ∈ C2(U ,Z)

dAα = φ

Aβ −Aα = −dAαβ

Aβγ −Aαγ +Aαβ = −Rαβγ

Degree 2: A ∈ C0(U , E2)⊕C1(U , E1)⊕C2(U , E0), φ ∈ E3(X), R ∈ C3(U ,Z)

dAα = φ ∈ E3(X)
Aβ −Aα = dAαβ

Aαβ +Aβγ +Aγα = dAαβγ

Aβγδ −Aαγδ +Aαβδ −Aαβγ = −Rαβγδ ∈ Z

Degree k: A =
⊕

p+q=kA
p,q ∈

⊕
p+q=k C

p(U , Eq), φ ∈ Ek+1(X), R ∈
Ck+1(U ,Z)

dA0,k = φ

dA1,k−1 + (−1)kδA0,k = 0
...

dAk,0 − δAk−1,1 = 0

δAk,0 = −R.
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For smooth hypersparks, it is natural to define equivalence using only Čech–
de Rham forms.

Definition 4.2. Two smooth hypersparks, A and A, of degree k, are said
to be smoothly equivalent if there exist B ∈

⊕
p+q=k−1C

p(U , Eq) and S ∈
Ck(U ,Z) satisfying

A−A = DB + S.

Low Degree Equivalence.

Degree 0: Aα −Aα = Sα ∈ C0(U ,Z). Degree 1:

Aα −Aα = dBα

Aαβ −Aαβ = Bβ −Bα + Sαβ

for some B ∈ C0(U , E0) and some S ∈ C1(U ,Z).

Degree 2:

Aα −Aα = dBα

Aαβ −Aαβ = −Bβ +Bα + dBαβ

Aαβγ −Aαβγ = Bβγ −Bαγ +Bαβ + Sαβγ

for some B ∈ C0(U , E1) ⊕ C1(U , E0) and some S ∈ C2(U ,Z).

Let Ĥk
smooth(X) denote the space of smooth hypersparks under smooth

equivalence. There is a natural map

Ĥk
smooth(X) −→ Ĥk

hyperspark(X).

Theorem 4.3.

Ĥk
smooth(X) ∼= Ĥk

hyperspark(X).

Proof. Note that the smooth hypersparks form a subspark complex of the
hypersparks and apply Proposition 1.4. �
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5. Grundles.

In this section, we present grundles which are closely related (and equivalent)
to smooth hypersparks, but more geometric in nature. A grundle of degree
k is obtained from a smooth hyperspark A of degree k by simply replacing
the last component Ak,0 with its exponential:

(5.1) gα0...αk
= e2πiAα0...αk

Thus, g ∈ Ck(U , ES1) where ES1 is the sheaf of smooth S1-valued functions.
The last component of the hyperspark equation:

δAk,0 = −R

where Rα0...αk
∈ Z implies that

δg = 0,

i.e. g is a cocycle.

Definition 5.1. A grundle of degree k is a pair (A, g) with g ∈ Ck(U , ES1),
δg = 1 (a cocycle) and A ∈

⊕
p+q=k

(p,q)�=(k,0)

Cp(U , Eq), satisfying

dA0,k = φ ∈ Ek+1(X)

dA1,k−1 + (−1)kδA0,k = 0
...

dAk−1,1 + δAk−2,2 = 0
1

2πi
dg

g
− dAk−1,1 = 0

The cocycle condition δg = 1 implies that for any choice A0,k = 1
2πi log g

of the logarithm of the g, we have δA0,k ∈ Ck+1(U ,Z). Therefore, if we let
R denote −δA0,k ∈ Zk+1(U ,Z), then although R is not uniquely determined
by g, the class [R] ∈ Hk+1(U ,Z) is uniquely determined by g. That is, two
different choices A0,k and A

0,k differ by A0,k − A
0,k = S ∈ C0,k(U ,Z) and

hence R−R = δS represent the same class in Hk+1(U ,Z). In other words

Hk(U , ES1) ∼= Hk+1(U ,Z) (k ≥ 1)
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with g representing the class in Hk(U , ES1) and R = −δA0,k representing
the class in Hk+1(U ,Z). For k = 0, the sequence

0 −→ Z −→ E(X) −→ ES1(X) −→ H1(U ,Z) −→ 0 is exact.

Low Degree Grundles

Degree 0: A grundle of degree 0 is a g ∈ C0(U , ES1) satisfying the
cocycle condition δg = 1. That is g ∈ ES1(X) is just a smooth circle valued
function.

Degree 1: A grundle of degree 1 consist of a cocycle g ∈ Z1(U , ES1) (i.e.
gij ∈ ES1(Uij) satisfying gijgjkgki = 1.) and A = A0,1 ∈ C0(U , E1) satisfying

dAi = φ ∈ E2(X)

Aj −Ai =
−1
2πi

dgij

gij
.

Thus, a grundle of degree 1 is just a hermitian line bundle equipped with a
local trivialization on each Ui and equipped with a unitary connection.

Degree 2: A grundle of degree 2 consists of a cocycle g ∈ Z2(U , ES1)
(i.e. gijk ∈ ES1(Uijk) satisfying δg = 1) A1,1 = {Aij} ∈ C1(U , E1), and
A0,2 = {Ai} ∈ C0(U , E2) satisfying

dAi = φ ∈ E3(X)
Aj −Ai = dAij

Aij +Ajk +Aki =
1

2πi
dgijk

gijk
.

Thus, a grundle of degree 2 is just a gerbe with connection (see Hitchin [20]).

Definition 5.2 (Gauge Equivalence). Two grundles (A, g) and (A, ḡ)
are said to be gauge equivalent if first, there exist an h ∈ Ck−1(U , ES1)
with gḡ−1 = δh (i.e. g and ḡ equivalent, via h, in Hk(U , ES1)), and second,
there exist B ∈

⊕
p+q=k−1

q �=0
Cp(U , Eq) satisfying the equations

A0,k −A
0,k = dB0,k−1

A1,k−1 −A
1,k−1 = dB1,k−2 + (−1)k−1δB0,k−1

...

Ak−1,1 −A
k−1,1 =

1
2πi

dh

h
− δBk−2,1,
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Low Degree Gauge Equivalence

Degree 0: Two grundles g and ḡ ∈ ES1(X) are gauge equivalent if they are

equal.

Degree 1: Two grundles (A, g) and (A, ḡ) are gauge equivalent if there
exist h ∈ C0(U , ES1) with gij ḡ

−1
ij = hi/hj and Ai − Ai = 1

2πi
dhi
hi

. Thus,
equivalence classes of degree 1 grundles are the same as equivalence classes
of unitary line bundles with unitary connection.

Degree 2: Grundles (A, g) and (A, ḡ) (i.e. gerbes with connection) are
gauge equivalent if there exist a cochain h ∈ C1(U , ES1) and B ∈ C1(U , E1)
satisfying

Ai −Ai = dBi

Aij −Aij =
1

2πi
dhij

hij
−Bj +Bi

gijkḡ
−1
ijk = hijhjkhki

Remark 5.3. Let Ĥk
grundle(X) denote the gauge equivalence classes of de-

gree k grundles on X. It is straightforward to check that there is an isomor-
phism

(5.2) Ĥk
smooth(X) ∼= Ĥk

grundle(X)

induced by exponentiation of the last term as in (5.1).

6. Cheeger–Simons Sparks.

Consider smooth singular (integral) chains Cq(X) on X and let Cq
Z(X)

= Hom(Cq(X),Z) denote the space of integer cochains of degree q. Let
Cq

R(X) ⊃ Cq
Z(X) denote the vector space of real cochains on X. Each

smooth form φ ∈ Eq(X) determines, via integration, a real cochain. This
cochain uniquely determines the form φ, i.e. if a form φ integrates to
zero over all singular chains, then φ = 0. Also, it is easy to see that
Eq(X) ∩ Cq

Z(X) = 0, q = 1, 2, . . . and E0(X) ∩ C0
Z(X) = Z. Thus,

E∗ = E∗(X), F ∗ = C∗
R(X) and I∗ = C∗

Z(X) form a spark complex. The
associated sparks are called “Cheeger–Simons sparks”, that is, we have the
following.
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Definition 6.1. A Cheeger–Simons spark of degree k on X is a real cochain
a ∈ Ck

R(X) with the property that

da = φ− r

with φ ∈ Ek+1(X) a smooth form and r ∈ Ck+1
Z (X) an (integer) cochain.

Two such sparks are equivalent if they differ by a real cochain of the form
db + s where b ∈ Ck−1

R (X) and s ∈ Ck
Z(X). Let Ĥk

CS denote the space of
Cheeger–Simons spark classes.

Theorem 6.2. There exists a natural isomorphism

Ĥk
smooth(X) ∼= Ĥk

CS(X).

Proof. We must show that the spark complex of smooth hypersparks

E∗ = E∗(X), F ∗ =
⊕

p+q=∗
Cp(U , Eq), and I∗ = C∗(U ,Z)

and the spark complex of Cheeger–Simons sparks

E∗ = E∗(X), F ∗ = C∗
R(X), and I∗ = C∗

Z(X)

are compatible. Let Cq
R denote the sheaf of germs of real q-cochains and let

Cq
Z denote the subsheaf of (integer) cochains. The spark complex with

E
∗ = E∗(X),

F
∗ =

⊕
p+q=∗

Cp(U , Cq
R), and

I
∗ =

⊕
p+q=∗

Cp(U , Cq
Z)

contains both of the previous spark complexes. This larger “cochain hyper-
spark complex” and Proposition 1.4 complete the proof. �

7. Differential Characters.

In their fundamental paper [3], Cheeger and Simons defined the space of
differential characters of degree k to be the group

DiffChark(X) = {h ∈ Hom(Zk(X),R/Z) : dh ≡ φ (mod Z)

for some φ ∈ Ek+1(X)}.

where Zk(X) ⊂ Ck(X) denotes the group of smooth singular k-cycles with
Z-coefficients.



44 Reese Harvey & Blaine Lawson

Proposition 7.1. For any manifold X, there is a natural isomorphism

Ĥk
CS(X) ∼= DiffChark(X)

Proof. Suppose a ∈ Ck
R(X) is a Cheeger–Simons spark. Define ha to be a

restricted to Zk(X) modulo Z. If a = db+ s represents the zero spark class,
then ha(c) = db(c)+ s(c) = s(c) ∈ Z for every c ∈ Zk(X). Thus, ha depends
only on the spark class â.

Onto: Now, given h ∈ Hom(Zk(X),R/Z), we may lift to a cochain a ∈
Ck

R(X). Moreover, dh ≡ φ (mod Z) is equivalent to da−φ being Z-valued
on Ck+1(X), i.e. da−φ = −r ∈ Ck+1

Z (X) is an integer cochain. This proves
that a is a Cheeger–Simons spark.

One-to-One: Suppose a ∈ Ck
R(X) is a Cheeger–Simons spark (i.e. da =

φ − r with φ ∈ Ek+1(X) ⊂ Ck+1
R (X) and r ∈ Ck+1

Z (X). Let ha denote the
induced differential character. Suppose ha = 0, that is, suppose

a : Zk(X) → Z

is integer-valued. Pick an extension s ∈ Hom(Ck(X),Z), i.e. s ∈ Ck
Z(X) and

a− s vanishes on Zk(X). Consequently, a− s = db for some b ∈ Ck−1
R (X),

i.e. the Cheeger–Simons spark a is equivalent to zero. �

8. Holonomy Maps.

Recall now that every C∞ singular integral k-chain c ∈ Ck(X) determines
a current c̃ ∈ D′k(X) by integration of forms over c. The image of this
map, denoted C̃k(X) ⊂ D′k(X), is the de Rham group of current chains in
dimension k. There is a short exact sequence of chain complexes

(8.1) 0 → Nk(X) → Ck(X)
ρ−→ C̃k(X) → 0

and the map ρ(c) = c̃ induces an isomorphism in homology (cf. [5]). The
elements of Nk(X) will be called null chains. To get some feeling for this,
note that integration over a compact oriented k-dimensional submanifold
Σ ⊂ X defines an element [Σ] ∈ C̃k(X). Every smooth triangulation of Σ
yields a chain c ∈ Ck(X) with ρ(c) = [Σ].

Let Z̃k(X) denote the group of cycles in C̃k(X). We define the set of
holonomy maps of degree k to be the group

Holk(X) = {H ∈ Hom(Z̃k(X),R/Z) : dH ≡ φ (mod Z)

for some φ ∈ Ek+1(X)}.
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The form φ is called the associated curvature form. Here dH(c) = H(∂c)
by definition. Of course, if H ∈ Holk(X), then h = H ◦ ρ ∈ DiffChark(X).

Theorem 8.1. Every differential character h ∈ Hom(Zk(X),R/Z) de-
scends to a homomorphism H ∈ Hom(Z̃k(X),R/Z), i.e. it can be written
in the form h = H ◦ ρ. This yields a natural isomorphism

DiffChark(X) = Holk(X)

Proof. The pull-back map Holk(X) −→ DiffChark(X) given by H �→ H ◦ ρ,
is obviously injective. Therefore, the isomorphism follows from the first
assertion. To prove this, let h ∈ DiffChark(X) be any differential character.
By definition dh = φ for some smooth (k + 1)-form φ. Now, it suffices to
show that for any pair c1, c2 ∈ Zk(X) satisfying c̃1 = c̃2, there exists a null
chain B with c1 − c2 = dB because in this case

h(c1) − h(c2) = h(dB) =
∫

B
φ = 0.

Note that a = c1 − c2 is a null cycle. Furthermore, the homology class of a
in C∗(X) must be zero since ã = 0 and the map ρ(c) ≡ c̃ in (7.1) is injective
in homology. Hence, there exists b ∈ Ck+1(X) with db = a, and we have
db̃ = ã = 0. Now, since the map ρ is surjective in homology, we can write
b̃ = z̃ + dẽ where dz = 0. Set B = b− z − de. Then, B is a null chain with
dB = a = c1 − c2 as desired. �

9. Grundle holonomy.

Combining Remark 5.3, Theorem 6.2, Proposition 7.1 and Theorem 8.1, we
see that every grundle (A, g) of degree k induces a homomorphism

h(A,g) : Z̃k(X) −→ R/Z = S1

called the holonomy of (A, g). It depends only on the gauge-equivalence
class of the grundle. (By Theorem 4.7, every hyperspark also has such a
holonomy homomorphism.)

In particular, let M be a compact connected oriented manifold of dimen-
sion k (∂M = ∅) and f : M → X a smooth map. Then by Theorem 8.2, the
holonomy of (A, g) on M

h(A,g)(M) ∈ S1
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is well-defined (i.e. independent of the choice of triangulation of M). It
can be computed as follows. The induced grundle f∗(A, g) represents a
class in Ĥk

grundle(M) = Hk(M ; R)/Hk(M ; Z) = Hom(Hk(M ; Z), S1) =
Hom(Z · [M ], S1) by the diagram at the end of Section 2. Then, h(A,g)(M) =
[f∗(A, g)]([M ]).

What is most interesting is to find intrinsic geometric definitions of
the holonomy over such cycles M and to find combinatorial formulae for
h(A,g)(M) in terms of the grundle data. A basic example of this occurs in
degree 1 where equivalence classes of grundles coincide with gauge equiv-
alence classes of complex line bundles with unitary connection. Here, the
holonomy around a closed loop γ coincides with the rotation angle obtained
by parallel translation around γ (the classical holonomy) [3]. This is ex-
pressed in the combinatorial grundle formula derived below.

We shall systematically derive formulae for grundles of all degrees.
The general procedure is as follows. Consider a grundle of degree k

presented by a smooth hypersparkA. (That is, we choose logarithms Aα0...αk

for the gα0...αk
as in (5.1).) Let h be a Cheeger–Simons spark which is

equivalent to A in the cochain hyperspark complex. Then, the holonomy
hA : Zk(X) → R/Z is given by

hA(z) ≡ h(z) (mod Z)

The idea now is to use the equivalence between A and h to generate the
formula.

Degree 0: Here, a 0-grundle is given by gα = exp(2πiAα) on Uα ∈ U . Let
h ∈ C0

R(X) be an equivalent Cheeger–Simons spark. Then, Aα − h = Sα

in Uα for some S ∈ C0(U , C0
Z). We conclude that the holonomy on the

zero-cycle x ∈ X can be written as

hA(x) ≡ Aα(x) (mod Z)

where x ∈ Uα. Of course, as noted in Section 5, a grundle of degree 0 is just
a smooth map g : X → S1, and its holonomy at x is seen to be g(x) ∈ S1.
This is the “intrinsic” definition of holonomy in degree 0.

Degree 1: Let A = ({Aαβ}, {Aα}) ∈ C1(U , E0) ⊕ C0(U , E1) be a smooth
hyperspark representing a 1-grundle as above, and let h ∈ C1

R(X) be
an equivalent Cheeger–Simons spark. The elements A and h both lie
in C1(U , C0

R) ⊕ C0(U , C1
R) where h = ({hα,β}, {hα}) = (0, h|Uα). The

equivalence of A and h means there exist elements a ∈ C0(U , C0
R) and
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S ∈ C1(U , C0
Z) ⊕ C0(U , C1

Z) with

daα = Aα − h+ Sα

aβ − aα = Aαβ + Sαβ
(9.1)

Let γ ∈ Z1(X) be a closed loop and write γ =
∑N

α=1 γα where γ1, . . . , γN are
successive 1-simplices subordinate to elements U1, . . . , UN of the covering.
Set Vα,α+1 = γα+1 ∩ γα with indices taken mod N . Then, using Theorem
8.2 and calculating with Equation (9.1), we find

hA(γ) ≡
N∑

α=1

h(γα) ≡
N∑

α=1

{∫
γα

Aα + aα(dγα)
}

(mod Z)

≡
N∑

α=1

{∫
γα

Aα + aα(Vα,α+1 − Vα−1,α)
}

(mod Z)

≡
N∑

α=1

∫
γα

Aα −
N∑

α=1

Aα,α+1(Vα,α+1) (mod Z).

Remark 9.1. Suppose that our grundle data {Aj} and {gi,j}, with gij =
exp(2πiAij), correspond to the line bundle with connection (L,D). Then,
Aj represents the connection 1-form with respect to a nowhere vanishing
section σj of L

∣∣
Uj

, and gij is the change of trivialization on Ui ∩ Uj . One
has that Dσj = iAj ⊗ σj , and a section σ = fjσj is parallel along the arc
Ij ⊂ Uj iff dfj + ifjAj = 0 on Ij. Therefore, the effect of parallel translation
in L once around the loop γ, is given by the formula:

(9.2) hA(γ) ≡
N∑

j=1

∫
γj

Aj −
N∑

j=1

∫
Vj

Aj,j+1 (mod Z)

which we derived above. The first integrals represent parallel translation
along Ij in the given frame; the second integrals represent the change of
frame at the vertex.

Degree 2: Let A = ({Aαβγ}, {Aαβ}, {Aα}) ∈ C2(U , E0) ⊕ C1(U , E1) ⊕
C0(U , E2) be a smooth hyperspark representing the 2-grundle (or gerbe with
connection) as above, and let h ∈ C2

R(X) be an equivalent Cheeger–Simons
spark. Equivalence in the cochain hyperspark complex means that there
exist elements a ∈ C1(U , C0

R)⊕C0(U , C1
R) and S ∈ C2(U , C0

Z)⊕C1(U , C1
Z)⊕
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C0(U , C2
Z) with

daα = Aα − h+ Sα

aβ − aα − daαβ = Aαβ + Sαβ(9.3)
aαβ + aβγ + aγα = Aαβγ + Sαβγ

Suppose now that Σ is a compact oriented surface without boundary in X.
We assume that Σ is provided with a smooth cell structure T ∗ dual to some
triangulation T of Σ. The 2-cells of T ∗ are polygons defined by taking the
stars of the vertices of T in its first barycentric subdivision. Each vertex of
T ∗ meets exactly three edges and three 2-cells. By taking T fine enough, we
may assume each 2-cell P of T ∗ is contained in some Uα ∈ U . We choose
one such Uα ⊃ P and label P as Pα. Each Pα is oriented by the orientation
of Σ. Each edge E is contained in exactly two faces Pα and Pβ. We label
E as Eαβ and orient Eαβ as the boundary of Pα. (Thus, Eβα is oriented
oppositely, as the boundary of Pβ .) Each vertex V meets exactly three edges
and three faces and is thereby labelled Vαβγ . Using the Equations (9.3) and
arguing as in the degree −1 case, we find that the holonomy of our gerbe
with connection A on Σ is given by the formula:

(9.4) hA(Σ) ≡
∑
α

∫
Pα

Aα −
∑
αβ

∫
Eαβ

Aαβ +
∑
αβγ

∫
Vαβγ

Aαβγ (mod Z)

Degree k: Let A ∈ Ck(U , E0) ⊕ · · · ⊕ C0(U , Ek) be a smooth hyperspark
and h ∈ Ck

R(X) an equivalent Cheeger–Simons spark. Then as above, there
exist elements a ∈ C∗(U , C∗

R) and S ∈ C∗(U , C∗
Z) such that

(9.5) Da = A− h+ S

where D is the total differential as in Section 3. Now, let M be a compact
oriented submanifold of dimension k in X. We suppose M is given a smooth
cell structure which is dual to a triangulation and for which each k-cell eα
is contained in an open set Uα ∈ U . Each (k− 
)-cell is contained in exactly

 + 1 k-cells and is thereby labelled eα0...α�

. The cell eα is oriented by M .
Inductively, the cell eα0...α�

is oriented as part of the boundary of eα0...α�−1
.

Then, proceeding as above, one finds that

(9.6) hA(M) ≡
k∑

�=0

(−1)�
∑

α0...α�

∫
eα0...α�

Aα0...α�
(mod Z)

where the 
th sum is over the (k − 
)-cells in the complex.
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Remark 9.2 (Holonomy via de Rham–Federer Sparks). Let A and
M be as above and suppose A is equivalent to a de Rham–Federer spark
a ∈ D′k(X). By changing a by a boundary db, b ∈ D′k−1(X), we may as-
sume that a is smooth on M (see [17, Prop. 4.2].) If a is a de Rham–Federer
spark which is smooth, then a is also a smooth hyperspark with only one
non-zero component, namely of bidegree 0, k. Consequently, (9.6) reduces
to:

(9.7) hA(M) ≡
∫

M
a (mod Z)

This direct connection between de Rham–Federer sparks and differen-
tial characters given by (9.7) was the basis for showing Ĥk

spark(X) ∼=
Ĥk

Diff Char(X) in [17].

10. Further Spark Complexes.

There are many interesting homological spark complexes which are not
treated in this paper. We sketch two quick examples.

Combinatorial Sparks. SupposeX is a manifold provided with a smooth
triangulation (or cubulation) T . Consider the family of all barycentric sub-
divisions (or dyadic subdivisions) of T , and let Ck(T ) denote the abelian
group generated by the oriented k-simplices (or k-cubes) belonging to these
subdivisions, modulo the relation σ = −σ∗ where ∗ indicates the reversed
orientation. Then, we can define
(10.1)
F ∗ = Hom(C∗(T ),R), E∗ = Image(E∗(X) → F ∗), I∗ = Hom(C∗(T ),Z).

Note that because of the subdivisions, the differential forms E∗(X) inject
into F ∗. From this and the fact that C∗(T ) computes the integral ho-
mology of X, we have that H∗(X; R) ∼= H∗(F ∗) ∼= H∗(E∗). Using the
subdivisions, we also see that Ek ∩ Ik = {0} for k > 0. Hence, (10.1) is
a homological spark complex. Since H∗(I∗) ∼= H∗(X; Z), one sees that
this complex is compatible with the Cheeger–Simons sparks. Hence, the
associated group of homological spark classes Ĥk coincide with the differ-
ential characters Ĥk

Diff Char(X). When T is a cubulation, this gives a direct
approach to Cheeger’s ∗-product [2].

Current Cochain Sparks. SupposeX is a manifold and let C̃∗(X) denote
de Rham’s complex of current chains discussed in Section 8. Then, we can
define the complex of current cochains by F k = C̃k(X) = Hom(C̃k(X),R)
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with Ik = Hom(C̃k(X),Z) the integral current cochains. The differential
forms E∗ = E∗(X) clearly inject into F ∗, and since C̃∗(X) computes the
integral homology of X, we have that H∗(X; R) ∼= H∗(F ∗) ∼= H∗(E∗).
Evidently, Ek ∩ Ik = {0} for k > 0, and we have a homological spark
complex.

As we saw in Section 8, the natural map from F ∗, current cochains, to F ∗,
cochains, is not injective. However, as noted in Remark 1.7, Proposition 1.4
can be easily modified to include this case, proving that current cochain
spark class are isomorphic to Cheeger–Simons spark classes.

Just as it was straightforward to show (cf. Proposition 7.1) that
Cheeger–Simons spark classes are isomorphic to differential characters, it
is straightforward to show that current cochain spark classes are isomorphic
to Hol(X). This provides another proof of Theorem 8.2.

11. Applications and Examples.

To give the reader a feeling of the abundance and usefulness of spark com-
plexes, we briefly sketch a number of examples and applications. The em-
phasis is on evaluating which of the approaches to the (R,Z) theory is
best suited for the particular application or example being considered. Fre-
quently, multiple points of view are enlightening.

Ring structure. One of the deep and most useful features of (R,Z)-spark
classes is the existence of a natural graded ring structure ∗ : Ĥ∗(X) ×
Ĥ∗(X) → Ĥ∗(X). The difficulty of establishing this product depends
greatly on the formulation (i.e. spark complex) chosen to represent char-
acters. The original construction by Cheeger and Simons [3, 2] was quite
non-trivial due to the difference between the wedge-product of differential
forms and the cup-product of the cochains they define. If one takes a grun-
dle approach or the approach of (even smooth) hypersparks, the existence of
this product seems something of a miracle. In the de Rham–Federer spark
approach, there is a simple and quite useful formula for this product [17, 8]
which holds for generic sparks in any pair of spark classes. It is established
using transversality theory for flat and rectifiable currents.

These remarks apply to the (O,Z)-spark classes discussed in [15].
We see that for this ring structure, the existence of many different ap-

proaches is quite useful. Another example is the following.

Functoriality. Any smooth mapping f : X → Y between manifolds induces
a ring homomorphism f∗ : Ĥ∗(Y ) → Ĥ∗(X) compatible with δ1 and δ2. This
assertion is evident from say the Cheeger–Simons or the holonomy approach
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to characters, and also in the setting of smooth hypersparks. However, it is
far from clear in many other approaches since, for example, the pull-back
of currents is not universally defined. Here, the ability to switch from one
theory to the other is quite useful.

Gysin maps and Thom homomorphisms. To a smooth proper sub-
mersion f : X → Y between oriented manifolds, there is associated a Gysin
mapping f∗ : Ĥ∗(X) → Ĥ∗(Y ) compatible with δ1 and δ2. This is com-
pletely evident from the de Rham–Federer viewpoint (cf. [17, Section 10]),
but rather mysterious from many other points of view. Similarly, using
sparks, one can naturally define Thom homomorphisms [17, Section 9] which
are not so evident in other formulations.

Secondary (refined) characteristic classes. Working from their view-
point, Cheeger and Simons developed a full theory of characteristic classes
associated to principal bundles with connection [3]. It simultaneously refined
both Chern–Weil theory and the theory of integral characteristic classes,
and it gave new invariants for flat bundles and foliations. Their elegant
arguments involved functorialty and the existence of classifying spaces for
bundles with connection.

These refined classes can also be defined from the de Rham–Federer
spark viewpoint. The construction involves a choice of section or bundle
map α and yields an L1

loc-transgression form T with dT = ϕ−S(α) where ϕ
is a characteristic form and S(α) is a rectifiable current measuring certain
singularities of α. The secondary Chern and Pontrjagin classes can be sys-
tematically developed in this way. The advantage here is that singularities
of geometric problems explicitly enter the picture.

Example: The Euler Spark. An understanding of this case provides geo-
metric motivation for the spark equation and spark equivalence. Suppose
E is a real oriented vector bundle. Equipping E with a metric connection
enables one to compute an Euler (Pfaff) form χ for E. Equipping E with a
section s whose zero set is reasonable (say s has simple zeros or more gener-
ally s is atomic) provides a divisor or zero current Div(s). In fact, there is a
canonically defined L1

loc spark σ satisfying the local Gauss–Bonnet equation
(the spark equation):

dσ = χ− Div(s) on X.

See [19] for the details of this discussion. The explicit formula for σ as a
fiber integral leads one to compare two sparks σ and σ′ generated by two
sections s and s′ by considering the section γ = ts+ (1 − t)s′ of the bundle
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Ẽ, equal to E pulled back over R × X. Now, a Stokes theorem argument
yields the spark comparison formula

σ − σ′ = dL+R on X.

where L is a fiber integral and hence an L1
loc form, and where R is the

pushforward of the divisor of γ (cut off on 0 ≤ t ≤ 1), and hence, is a
rectifiable current.

Note that taking the exterior derivative of both sides yields the divisor
comparison formula

Div(s′) − Div(s) = dR.

In summary, the refined Euler class χ̂ ∈ Ĥn(X) of a bundle with metric
connection is the spark class made up of the Euler sparks σ. Its divisor class
is the euler class χ of E in Hn(X,Z) made up of the divisors Div(s), its
curvature is the Euler Pfaff form χ, and the spark equation is just the local
Gauss–Bonnet equation above.

Flat sparks. A Flat spark is any representative of a class c ∈ Ĥk(X)
whose curvature form vanishes, i.e. φ ∈ ker δ1 = Hk(X,S1). The grundle
point of view is very natural in this case. Moreover, the Čech representation
of Hk(X,S1) shows that there exists a grundle representative of the form
(A, g) with A = 0 and with g ∈ Zk(U , S1) actually taking locally constant
values in S1.

The holonomy point of view is also natural in this case. A holonomy
map is flat if it vanishes on boundaries. This induces a homomorphism from
Hk(X;Z) ∼= Hn−k(X;Z) to S1, so that Holkflat(X) ∼= Hom(Hn−k(X;Z), S1).
Thus, the isomorphism

Holkflat(X) ∼= Hk(X;S1)

is equivalent to

Hom(Hn−k(X;Z), S1) ∼= Hk(X;S1)

which is one way to state the classical Poincaré Duality Theorem over Z.
The same discussion applies to flat differential characters.

The de Rham–Federer point of view is natural once the isomorphism

Hk(X;S1) ∼= {a ∈ D′k−1(X) : da ∈ Rectk+1(X)}
dD′k−1(X) +Rectk(X)

is established. (See [17, pg 8] for a proof.) One considers all sparks a
satisfying the spark equation da = φ − R with φ = 0. Note that spark
equivalence is the same as the equivalence relation for H1(X,S1).
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Projective bundles. Flat grundles appear in addressing the following
question. Let P → X be a smooth fibre bundle with fibre Pn−1 and structure
group PGLn(C). When does there exist a complex vector bundle E → X
of rank n with P(E) ∼= P? This is equivalent to asking for a complex line
bundle λ→ P whose restriction to the fibres is O(−1), for then E is obtained
from λ by blowing down the zero-section.

To answer the question, we first reduce the structure group, by general
principles, to PUn. Consider the short exact sequence

0 → S1 → Un
π−→ PUn → 1.

Let U = {Ui}i be an acyclic covering of X with trivializations P
∣∣
Ui

→
Ui × Pn−1 and transition functions Gij : Uij → PUn. Choose lift-
ings gij : Uij → Un with π ◦ gij = Gij and define a 2-grundle over U
by setting φ = 0, Ai = 0, Aij = 1

nd log det gij and gilkI = gijgjkgki.
Note that π(gijgjkgki) ≡ 1 and so gijk ∈ S1 and that (Ai, Aij , g) sat-
isfy the grundle conditions of Section 5. The class of the cocycle gijk in
H2

tor(X; ES1) ∼= H3
tor(X;Z) represents the obstruction to the existence of

the desired vector bundle E. This group H3
tor(X;Z), called the topological

Brauer group, was introduced by Grothendieck and Serre [9].

Hodge sparks. On a Riemannian manifold, the Greens operator G pro-
vides an important source of sparks (see [17, Section 12] for more detials).
Given an integrally flat (k + 1) cycle R (such as a current chain without
boundary), the Hodge spark of R is defined by σ(R) = −d∗G(R). It satisfies
the spark equation

dσ(R) = H(R) −R

where H(R) is the harmonic form determined by the class of R.
This is an example where the de Rham–Federer point of view is clearly

superior to the other points of view. The holonomy map is easily computed
for any cycle S which does not meet R by the formula

hR(S) ≡
∫

S
σ(R) (mod Z)

If R is a boundary, then H(R) = 0 and the spark class of σ(R) lies in
the torus Hk(X;R)/Hk(X;Z) = ker δ1 ∩ ker δ2. This “Jacobian” torus can
be realized either as Jack = Hark(X)/Hark

0 (X), harmonic forms modulo
those with integral periods, or by duality as Hom(Hark

0 (X),R/Z). The
induced “Abel–Jacobi”map j : Bk+1 → Jack on the space of boundaries
can be realized directly by sending the boundary R = dΓ to the spark class
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of H(Γ), the harmonic form corresponding to Γ. That is σ(R) and H(R)
are equivalent sparks.

We define boundaries in the kernel of the Abel–Jacobi map j to be
linearly equivalent to zero. These are the “principal boundaries” whose
associated spark class is 0. One has that a boundary R = dΓ is linearly
equivalent to zero iff

σ(R) =
∫

Γ
θ (mod Z)

for all harmonic (n− k)-forms θ with integral periods.
In summary, this example is best described from the de Rham–Federer

point of view. See [20, 4] for a gerbe discussion in special cases.

Morse sparks. Suppose ϕt is a Morse–Stokes flow [14] or more generally
a finite-volume flow (see [14] and [23]). Then, for each critical point p, both
the stable manifold Sp and the unstable manifold Up have finite volume and
define currents (by integration) also denoted by Sp and Up. Under the flow
ϕt, each smooth form α has the limit

P (α) = lim
t→∞ϕ∗

t (α) =
∑
p∈Cr

(∫
Up

α

)
Sp

in the space of currents. For a form α whose residues
∫
Up
α are integers, the

limit P (α) = R is a rectifiable current, and α can be considered a “Thom
form” for α.

There exists a continuous linear operator T from forms to currents which
lowers degree by one. The Morse spark T (α) satisfies the spark equation

dT (α) = α−R.

The operator T is induced by the kernel current T ≡ {(x, ϕt(x)) ∈ X ×X :
t ≥ 0}. There is an abundance of interesting sparks coming from specific
flows and forms. This is a case where the de Rham–Federer viewpoint seems
the only way to construct the spark classes.

Curvature-driven sparks. When Hk(X,S1) = 0, the curvature form
uniquely determines each spark class since δ1 : Ĥk(X) → Zk+1

0 (X) is an iso-
morphism. By Poincaré duality, Hk(X,S1) vanishes if and only if Hk(X,Z)
vanishes. (Also note that Hk(X,S1) = 0 if and only if Hk(X,R) = 0 and
Hk+1

tor (X,Z) = 0.) In this case, the holonomy point of view is transparent.
Since each cycle Σ of dimension k is a boundary Σ = dΓ, the holonomy
hφ(Σ) ≡

∫
Γ φ (mod Z) is well defined. (

∫
Γ φ is well defined modulo the

periods of φ.)



From Sparks to Grundles — Differential Characters 55

Example: The Wess–Zumino term. Suppose G is a compact simple
simply-connected Lie group. Let Φ(X,Y,Z) = B(X, [Y,Z]) denote the Car-
tan 3-form (bi-invariant and d-closed) on G where B denotes the Killing
form on the Lie algebra g. Since H3(G;Z) ∼= Z, Φ may be normalized to be
a generator. Also, H2(G;Z) = 0, and hence Φ uniquely determines a class
wz ∈ Ĥ2(G).

As noted above, the holonomy map (as well as the differential character)
point of view is transparent in this case. However, a de Rham–Federer spark
also provides some geometric insight. Let E : g → G denote the exponential
map. There exists a unique bounded star-shaped neighborhood U of the
origin in g which is diffeomorphic, under E, to the open set G − C where
C is the cut locus. The cut locus is a codimension-3 stratified set which
naturally determines a current of degree 3 on G. If a ∈ E2(g) is chosen to
satisfy the equation da = E∗(Φ) on g, then A = E∗(χUa) is an L1

loc-spark
on G with curvature form Φ. In fact, one can show that on G

(11.1) dA = Φ − [C].

Note that if Ā is another current on G satisfying the equation (11.1), then
Ā = A+ dB for some B ∈ D′1(G) because H1(G) = 0. In particular a, and
therefore also A, can be chosen to be AdG-invariant. AdG-invariant sparks
satisfying (11.1) will be called Wess–Zumino sparks.

An even more explicit construction of an (AdG-invariant) Wess–Zumino
spark is given by the taking the Hodge spark A = −d∗G([C]) of the cut
locus C.

Torsion classes. Suppose c ∈ Ĥk(X) is a torsion class of torsion degree
n. Then, since nc = 0, the curvature satisfies nδ1(c) = nφ = 0. Hence,
c ∈ ker δ1 ≡ Ĥk

flat(X) = Hk(X,S1) is a flat class. Such classes c ∈ Hk(X,S1)
can be related to elements in Hk(X,Zn) as follows. The exact triple 0 →
Zn

1/n−→ S1 n−→ S1 → 0 induces a long exact sequence · · · → Hk(X,Zn)
1/n−→

Hk(X,S1) n−→ Hk(X,S1) −→ . . . . Since nc = 0, there exists an element
u ∈ Hk(X,Zn) whose image in Hk(X,S1) is c. Let β denote the Bockstein
map induced by 0 → Z n−→ Z → Zn → 0. Then, the “divisor class” of
c, namely δ2(c) ∈ Hk+1(X,Z), can be computed more directly in terms
of u. That is, β(u) = δ2(c) in Hk+1(X,Z). This fact follows from the
commutativity of the following diagram.

0 −−−−→ Z n−−−−→ Z −−−−→ Zn −−−−→ 0

=

� 1
n

� 1
n

�
0 −−−−→ Z −−−−→ R −−−−→ S1 −−−−→ 0
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Since Hk
n-torsion(X,S

1) = Hom(Hk(X,Z),Zn), the n-torsion elements in
Ĥk(X) are given from the holonomy map point of view by

Holn-torsion(X) ∼= Hom(Hk(X,Z),Zn).

The refined integer Stiefel–Whitney class. Suppose F is an oriented
rank n real vector bundle. Then, the kth Steifel–Whitney class of F is
a class wk(F ) ∈ Hk(X;Z2). Suppose k < n is even (otherwise twist by
the orientation bundle of F ). The image of wk(F ) under the Bockstein
map associated with 0 → Z 2−→ Z → Z2 → 0 is the (k + 1)st integer
Stiefel–Whitney class Wk+1(F ) ∈ Hk+1

2-torsion(X;Z). This defines a unique
Stiefel–Whitney secondary class Ŵk+1(F ) ∈ Hk(X;S1) ⊂ Ĥk(X), namely
Ŵk+1(F ) is the image of wk(F ) under the mappingHk(X;Z2) → Hk(X;S1)
as in the paragraph above.

Linear dependency currents and Stiefel–Whitney sparks. Suppose
F is a rank n real vector bundle. Following [18], suppose α = (α1, . . . , αn−k)
is an atomic collection of sections of F . Suppose F is oriented (or otherwise
twist by the orientation bundle of F ). Assume k is even. Then, there
exists a d-closed locally integrally flat current LD(α) of degree k+ 1, whose
support is contained in the linear dependency set of the collection of sections.
Furthermore, if β is another atomic collection of sections, then

LD(α) − LD(β) = dR

where R is a locally rectifiable current.
It is proven in [18] that the class of LD(α) in Hk+1(X;Z) is Wk+1(F ),

the (k + 1)st integer Stiefel–Whitney class of F .
Now, given a metric connection on F , Zweck [25] constructs a canonical

spark Sk+1(α) which is a current with L1
loc-coefficients satisfying the (flat)

spark equation
dSk+1(α) = −LD(α)

on X. Furthermore, Zweck [25] proves a spark comparison formula

Sk+1(α) − Sk+1(α′) = T + dL

with T locally integrally flat and L an L1
loc-current. That is, there is a well

defined class
[Sk+1(α)] ∈ Hk(X;S1) ⊂ Ĥk(X)

Zweck [25] proves that this spark class, which refines Wk+1(F ) is the image
of the kth Stiefel-Whitney class wk(F ) ∈ Hk(X;Z2) under the map (1/2) :
Hk(X;Z2) → Hk(X;S1). This proves that the spark class of Sk+1(α) is the
refined integer (k + 1)st Stiefel–Whitney class Ŵk+1(F ), discussed above.
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des Schémas, North Holland Publ. Co, 1968.

[10] B. Harris, Differential characters and the Abel-Jacobi map, in Alge-
braic K-theory: Connections with Geometry and Topology, (Jardine
and Snaith, eds), Kluwer Academic Publishers, 1989, 69–86.

[11] F.R. Harvey and H.B. Lawson, Jr., A theory of characteristic currents
associated with a singular connection, Astérisque, 213 Société Math.
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