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Degeneration of Kähler–Einstein Manifolds II: the

Toroidal case

Wei–Dong Ruan1

In this paper, we prove that the Kähler–Einstein metrics for a
toroidal canonical degeneration family of Kähler manifolds with
ample canonical bundles Gromov–Hausdorff converge to the com-
plete Kähler–Einstein metric on the smooth part of the central fiber
when the base locus of the degeneration family is empty. We also
prove the incompleteness of the Weil–Peterson metric in this case.

1. Introduction.

This paper is a sequel to [8]. In algebraic geometry, when discussing the
compactification of the moduli space of complex manifold X with ample
canonical bundle KX , it is necessary to consider holomorphic degeneration
family π : X → B, where Xt = π−1(t) are smooth for t �= 0, X and X0

are Q-Gorenstein, such that the canonical bundle of Xt for t �= 0 and the
dualizing sheaf of X0 are ample. We will call such degeneration canonical
degeneration. We are interested in studying the degeneration behavior of the
family of Kähler–Einstein metrics gt on Xt when t approaches 0. Following
his seminal proof of Calabi conjecture [13], Yau [11] initiated the program of
studying the application of Kähler–Einstein metrics to algebraic geometry
with the belief that the behavior of Kähler–Einstein metrics should reflect
the topological, geometric and algebraic structure of the underlying complex
algebraic manifolds. According to this philosophy, one would expect the
metric degeneration of the Kähler–Einstein manifolds to be closely related
to the algebraic degeneration of the underlying algebraic manifolds. In [9],
Tian made the first important contribution along this direction. He proved
that the Kähler–Einstein metrics on Xt converge to the complete Cheng-Yau
Kähler–Einstein metric on the smooth part of X0 in the sense of Cheeger–
Gromov, when X is smooth and the central fibre X0 is the union of smooth
normal crossing divisors D1, · · · ,DL, with a technical restriction that no
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three divisors have common intersection. Following the general framework
in Tian’s paper ([9]), [4] and later [8] studied the general normal crossing
case and removed the technical restriction in [9].

In this paper, we generalize the result in [8] to the case when the cen-
tral fibre X0 is a union of toroidal orbifolds that results from the so-called
toroidal canonical degeneration of smooth Xt (see Section 2 for definitions).
The total space X for this kind of degeneration will be toroidal and gener-
ally not smooth. Please note that a toroidal canonical degeneration, where
X0 is not normal crossing in X , cannot be reduced to a normal crossing
canonical degeneration. The normal crossing case is a very special case of
toroidal canonical degeneration. For an algebraic curve, a toroidal canoni-
cal degeneration is equivalent to Deligne–Mumford stable degeneration into
stable curves.

In this paper, we always require an algebraic variety X to possess a
(set-theoretical) canonical (Whitney) stratification X =

⋃
p∈Σ

Dp by smooth

algebraic strata. By “canonical”, we mean that any other (Whitney) stratifi-
cation X =

⋃
p′∈Σ′

D′
p′ by smooth strata is a refinement of the canonical (Whit-

ney) stratification. More precisely, we have D′
p′ ⊂ Dp when D′

p′ ∩Dp �= ∅.
For example, the toroidal varieties defined in Section 2 satisfy such require-
ment.

The degeneration family is called base point free if each smooth strata
of X0 is inside a smooth strata of X . The smoothness condition of X when
X0 is normal crossing is equivalent to requiring the degeneration family to
be base point free. In some sense, toroidal canonical degenerations that we
consider in this paper are generic base point free canonical degenerations.
(Toroidal canonical degenerations and related concepts and constructions
are discussed in Section 2.)

Our first main theorem (proved in Section 5) is the following.

Theorem 1.1. Let π : X → B be a toroidal canonical degeneration of
Kähler–Einstein manifolds {Xt, gE,t} with Ric(gE,t) = −gE,t. Then, the
Kähler–Einstein metrics gE,t on Xt converge in the sense of Cheeger–
Gromov to a complete Cheng–Yau Kähler–Einstein metric gE,0 on the
smooth part of the canonical limit X ′

0 (which is a finite cover of the cen-
tral fibre X0).

To prove this theorem, we follow the three steps outlined in [8]. The first
step is to construct certain smooth family of background Kähler metrics ĝt
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on Xt and their Kähler potential volume forms V̂t. The second step is to
construct a smooth family of approximate Kähler metrics gt with Kähler

form ωt =
i

2π
∂∂̄ log Vt, where Vt = hV̂t (h is a function on X ) satisfies a

certain uniform estimate independent of t. The third step is to use Monge–
Ampère estimate of Aubin [1] and Yau [13] to derive a uniform estimate
(independent of t) for the smooth family of Kähler–Einstein metrics gE,t,
starting with the smooth family of approximate Kähler metric gt, which is
enough to ensure the Gromov–Hausdorff convergence of the family to the
unique complete Kähler–Einstein metric gE,0 = {g0,i}l

i=1 on the smooth
part of X0. The first and the third steps are carried out in the very brief
Sections 3 and 5 and are virtually the same as in the normal crossing case
[8]. The second step, carried out in Section 4, is more involved than the
simple global construction in [8].

The following similar but much more non-trivial (comparing to [8]) esti-
mate of the Weil–Peterson metric near the degeneration, which implies the
incompleteness of the Weil–Peterson metric, is worked out in Section 6.

Theorem 1.2. The restriction of the Weil–Peterson metric on the moduli
space of complex structures to the toroidal canonical degeneration π : X → B

is bounded from above by a constant multiple of
dt ∧ dt̄

| log |t||3|t|2 . In particular,

Weil–Peterson metric is incomplete at t = 0.

Note on notation: We say A ∼ B if there exist constants C1, C2 > 0 such
that C1B ≤ A ≤ C2B.

2. Toroidal canonical degeneration.

In this section, we introduce the concepts of toric degeneration and toroidal
degeneration, and discuss the details of relevant stratification structures
and the construction of compatible partition functions that we need for the
construction of approximate metrics in Section 4.

2.1. Toric degenerations.

(Unless specified otherwise, the notations in this subsection will not be car-
ried over to other parts of this paper.)

Let us first introduce the basic notions in toric geometry. An (n + 1)-
dimensional affine toric variety Aσ0 is determined by a strongly convex
(n + 1)-dimensional integral polyhedral cone σ0 in a rank n + 1 lattice M̃ .
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Let σ0(k) denote the set of k-dimensional subfaces of σ0. Then, σ0(n) cor-
responds to toric Weil divisors {Di}i∈σ0(n) in Aσ0 , and σ0(1) corresponds to
toric Cartier divisors {(fi)}i∈σ0(1) in Aσ0 . For i ∈ σ0(1),

(fi) =
∑

j∈σ0(n)

aijDj ,

where aij is the natural pairing of the primitive elements in i ∈ σ0(1) and
j ∈ σ∨0 (1) ∼= σ0(n). σ∨0 denotes the dual cone of σ0.

A toric map π : X → B ∼= C is called a toric degeneration, if X = Aσ0 is
an affine toric variety such that X \X0 is the big open torus. Consequently,
Xt for t �= 0 are codimension one subtori in X \ X0. A toric degeneration
is determined by a strongly convex integral polyhedral cone σ0 ⊂ M̃ with
a marked primitive element t in the interior of the cone σ0. Under such
notation, the central fibre is

X0 = D =
⋃

i∈σ0(n)

Di.

Let M = M̃/Z{t}. Since t is in the interior of σ0, the projection of σ0

to M determines a complete fan Σ on M . Splittings M̃ ∼= M ×Z{t} can be
parameterized (non-canonically) by Z-valued linear functions on M . Each
such splitting realizes σ0 as a Q-valued function wσ0 on the lattice M . In
such a way, σ0 can be understood as an equivalence class [wσ0 ] (modulo Z-
valued linear functions) of convex piecewise linear Q-valued functions on the
lattice M that are compatible with a complete fan Σ in M . Let Σ(k) denote
the set of k-dimensional cones in Σ. Naturally, Σ(k) ∼= σ0(k) for 1 ≤ k ≤ n.
We will use σ̃ ∈ σ0(k) to denote the cone corresponding to σ ∈ Σ(k).

For each σ ∈ Σ, there is an affine variety Aσ = Spec(C[σ]). For σ, σ′ ∈ Σ
satisfying σ ⊂ σ′, there is a natural semi-group morphism σ′ → σ that
restricts to identity map on σ ⊂ σ′ and restricts to zero map on σ′ \σ, which
induces the map hσσ′ : Aσ → Aσ′ . Using {hσσ′}σ,σ′∈Σ, we may glue the
affine pieces {Aσ}σ∈Σ into the singular variety XΣ. We have the following
natural canonical (Whitney) stratification

(2.1) XΣ =
⋃
σ∈Σ

Tσ, where Tσ = (SpanZσ)∨ ⊗Z C∗ = (M∨/σ⊥) ⊗Z C∗.

In such a way, Σ determines a singular variety XΣ that is a mirror dual
to the usual toric variety PΣ in certain sense.

For σ ∈ Σ, the natural injection σ̃ ↪→ σ over Z induces a cover map
pσ : Aσ → Aσ̃ and subsequently, qσ = hσ̃σ0 ◦ pσ : Aσ → Aσ0 = X . It is easy
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to check that pσ, qσ for σ ∈ Σ glue together to form the maps pΣ : XΣ → X0,
qΣ : XΣ → X .

Recall that a complex torus has a canonical toric holomorphic volume
form, and consequently, a canonical real toric volume form. Via this toric
holomorphic volume form on the complex torus X \X0, the dualizing sheaf
KX can be naturally identified with OX (−D). We call π simple when each
divisor Di is of multiplicity one under π. Then, the Cartier divisor (t) = D,
and the dualizing sheaf KX is a line bundle.

Proposition 2.1. A toric degeneration π : X → B ∼= C is simple if and
only if [wσ0 ] is Z-valued on M if and only if qΣ : XΣ → X is an imbedding
(or equivalently, pΣ : XΣ → X0 is an isomorphism).

Proof. For σ̃ ∈ σ0(n), it is straightforward to check that the multiplicity of
t along Dσ̃ is |(SpanZσ)/(SpanZσ̃)|. Consequently, π is simple if and only if
for each σ ∈ Σ(n), the natural injection σ̃ ↪→ σ over Z is bijection (which
amounts to that [wσ0 ] is Z-valued on σ) if and only if pσ : Aσ → Aσ̃ is
an isomorphism for each σ ∈ Σ(n). These local results together imply the
proposition. �

Proposition 2.2. For a toric degeneration π : X → B ∼= C, let d be the
smallest positive integer so that d[wσ0 ] is Z-valued. Then, the canonical d′-
fold base extension π′ : X ′ → B′ is a simple toric degeneration if and only
if d|d′.

Proof. It is easy to see that the canonical d′-fold base extension π′ : X ′ → B′

is determined by d′σ0 ⊂ M̃ . Since [wd′σ0 ] = d′[wσ0 ] is Z-valued if and only
if d|d′, by Proposition 2.1, we get the desired conclusion. �

Remark: Propositions 2.1 and 2.2 are well known. (A special case of
Proposition 2.2, where Σ is simplicial fan, was proved and used in the proof
of the semistable reduction theorem [5] by Mumford and Kun.) We provide
simple proofs of them here for the convenience of the readers.

Σ(1) can be equivalently interpreted as the set of primitive generating
elements of 1-dimensional cones in Σ. The piecewise linear function wσ0 is
determined by {wm}m∈Σ(1), with wm = wσ0(m) ∈ Q for m ∈ Σ(1). The
toric degeneration family can be equivalently characterized by the following
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family of toric immersions:

it : NC∗ → C|Σ(1)|

defined as {twmzm}m∈Σ(1), where N = M∨ and NC∗ = (N ⊗Z C)/N . We
are also interested in generalized toric degenerations, where wm ∈ R are not
necessarily rational.

Example: The simplest toric degenerations that are not normal crossing
are:
(1) Xt = {z ∈ C4|z1z2 = z3z4 = t} (product of normal crossing degenera-
tions).
(2) Xt = {z ∈ C4|z1z2 = t, z3z4 = tz1}. �

Remark: A priori, the piecewise linear function f generated by {wm}m∈Σ(1)

need not be convex. Then, we may take the largest convex function f̃ ≤ f .
The piecewise linear convex function f̃ will be generated by {wm}m∈Σ̃(1),
where Σ̃(1) is a subset of Σ(1). There is a natural projection P : C|Σ(1)| →
C|Σ̃(1)|. It is easy to check that P induces an equivalence between the toric
degeneration families determined by toric embeddings it and ĩt = P ◦ it.
Therefore, we only need to consider the case when f is convex. For f
generic, the fan it determines is a simplicial fan. Namely, the toric divisors
are all toric orbifolds.

2.2. Toroidal degenerations.

A holomorphic degeneration π : X → B = {t ∈ C : |t| < 1} is called a
toroidal degeneration if it is locally toric. Let

(2.2) X0 =
n⋃

k=0

X
(k)
0 = D =

⋃
p∈Σ

Dp, X
(k)
0 =

⋃
p∈Σ(k)

Dp, Σ =
n⋃

k=0

Σ(k)

be the canonical stratification for X0, with {Dp}p∈Σ parameterizing all the
strata and X

(k)
0 denoting the union of all k-dimensional strata. π is called

simple if each divisor D̄p is of multiplicity 1 under π for p ∈ Σ(n). Proposi-
tions 2.1 and 2.2 imply the following generalization to toroidal case.

Proposition 2.3. For a toroidal degeneration π : X → B, there exists an
integer d > 0 such that the canonical d′-fold base extension π′ : X ′ → B′ is a
simple toroidal degeneration if and only if d|d′. X ′

0 (which will be called the
canonical limit) is independent of d′ satisfying d|d′ with the natural finite
cover map X ′

0 → X0.
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Proof. Since d′-fold base extension is canonical and local, the d > 0 here can
be taken to be the lowest common multiple of the d’s specified in Proposi-
tion 2.2 for all local toric models. When d|d′, namely π′ is simple, Proposi-
tion 2.1 implies that X ′

0 restricted to each local toric model can be identified
with XΣ in Proposition 2.1, therefore is canonical and independent of d′. �

Through Proposition 2.3, all discussions for toroidal degeneration can be
reduced to discussions for simple toroidal degeneration via base extension.
For this reason, we will always assume that π is simple. Consequently,
the dualizing sheaf KX is a line bundle. For such generic degeneration π,
the Weil divisors D̄p for p ∈ Σ(n) are toroidal orbifolds. Without loss of
generality and for simplicity of notations, we will also assume that each D̄p

does not self-intersect.
Choose a suitable tubular neighborhood Ũp of D̄p for each p ∈ Σ such

that for any p1, p2 ∈ Σ, we have

Ũp1 ∩ Ũp2 ⊂
⋃

q∈Σ,Dq∈D̄p1∩D̄p2

Ũq.

For each p ∈ Σ, we can construct a tubular neighborhood Up of Dp as
Ũp minus the union of divisors D̄q for q ∈ Σ(n) satisfying Dp �⊂ D̄q. We will
also need U0

p ⊂ Up defined as Ũp minus the union of (slightly shrunk) Ũ q for
q ∈ Σ(n) satisfying Dp �⊂ D̄q. Let D0

p = Dp ∩ U0
p . Since

⋃
p∈Σ

Up =
⋃
p∈Σ

U0
p

forms a neighborhood of X0 that contains Xt for t small, many of our dis-
cussions on Xt can be reduced locally to either Up∩Xt or U0

p ∩Xt for p ∈ Σ.
Notice that for any p1, p2 ∈ Σ, we also have

Up1 ∩ Up2 ⊂
⋃

q∈Σ,Dq∈D̄p1∩D̄p2

Uq, U0
p1

∩ U0
p2

⊂
⋃

q∈Σ,Dq∈D̄p1∩D̄p2

U0
q .

Locally, Up = Ap × Dp and U0
p = Ap × D0

p. Ap is a neighborhood of the
origin of the affine toric local model determined by the fan Σp and the in-
tegral convex function {wm}m∈Σp(1) (notation as in 2.1). Let |p| := dimDp

and l = n − |p|. Σp(l) (which can be naturally identified with a subset
of Σ(n)) corresponds to toroidal Weil divisors {Dq ∩ Up}q∈Σp(l)⊂Σ(n) in Up.
Σp(1) corresponds to toroidal Cartier divisors {(sm)}m∈Σp(1) in Up contain-
ing Dp. We may choose local coordinate (t, z, z̃) for Up, z = (z1, · · · , zl),
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z̃ = (zl+1, · · · , zn), so that sm = twmzm, (t, z) and z̃ form coordinates for Ap

and Dp. (z, z̃) can be considered as coordinate for Xt ∩ Up. For m ∈ Σp(1),
sm can be viewed as a section of a line bundle on Up that defines the Cartier
divisor. One can choose a Hermitian metric ‖ · ‖m on the line bundle over
U0

p such that ‖sm‖m ≤ 1 and ‖sm‖m = 1 outside a small neighborhood of
the Cartier divisor (sm). More precisely, we require that ‖sm‖m = 1 on U0

q

for q ∈ Σ when sm is non-vanishing on Dq.

For p, q ∈ Σ satisfying Dq ⊂ D̄p, Cartier divisors in Up can be natu-
rally extended to certain Q-Cartier divisors in Uq that can be expressed by
the natural injective map epq : Σp(1) → Σq(1). By suitably adjusting the
Hermitian metric of the line bundle, for m ∈ Σp(1), we may assume that
‖sm‖m = ‖sepq(m)‖epq(m) in the common domain U0

p ∩U0
q . It is easy to check

that epq′ = eqq′ ◦ epq for q′ ∈ Σ satisfying Dq′ ⊂ D̄q. Therefore, the Cartier
divisor (sm) in U0

p for m ∈ Σp(1) naturally extends to the Q-Cartier divi-
sor (still denoted by (sm)) in Ũp. ‖sm‖m for m ∈ Σp(1) can similarly be
extended from U0

p to Ũp.

Let Σp(1) denote the set of q ∈ Σ(|p| + 1) satisfying Dq ⊂ D̄p. For
q ∈ Σp(1), Dp can be naturally identified with an element [Dp] ∈ Σq(|q| −
|p|) = Σq(1), which can also be viewed as a Cartier divisor sq in Ũp supported
in Ũp \Up. Σp

p = Σp(1)∪Σp(1) (resp. Σp(1)) can be characterized as the set
of Cartier divisors on Ũp whose defining functions are not identically zero
(resp. nowhere zero) on X0 ∩ Up.

A (holomorphic) volume form on Up \D is called toroidal if its pullback
to the local toric model differs from the standard toric (holomorphic) volume
form by a bounded nowhere zero (holomorphic) factor on Up. By examining
the holomorphic toric volume form, it is easy to see that a holomorphic
toroidal volume form on X \D can be naturally identified with a nowhere
zero holomorphic section of KX (D), or in another word, a meromorphic
section of KX with a pole of order 1 along D.

2.3. Partition functions.

Let µ(x) be a smooth increasing function on R with bounded deriva-
tives satisfying µ(x) = 0 for x ≤ 0 and µ(x) = 1 for x ≥ 1. Let
min′(x1, · · · , xl) be a smooth function with bounded derivatives that co-
incide with min(x1, · · · , xl) when min

i�=j
(|xi − xj |) ≥ 1. (In another word,

min′(x1, · · · , xl) is a smoothing of min(x1, · · · , xl) with bounded deriva-
tives.)
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For each p ∈ Σ and η > 0 large, we may define the smooth function

µ̃p = µ

(
1

log(τ/η2)
min′

(
{log(am/η)}m∈Σp(1) , {log(τ/amη)}m∈Σp(1)

))
,

where τ = − log |t|2 and am = η−log ‖sm‖2
m. These will give us the partition

functions {µp}p∈Σ, where µp = µ̃p


∑

p∈Σ

µ̃p




−1

. We generally have D0
p ⊂

supp(µp) ⊂ Up. The condition on ‖ · ‖m implies that

(2.3) U0
p ∩ supp(µq) = ∅ when Dp �⊂ D̄q.

3. Construction of the background metric.

For construction in this section to work, it is necessary to assume that the
dualizing line bundle KX of the total space X exists and is ample, which is
valid in our situation. (The construction in this section is partially inspired
by our work [7] on Bergmann metrics.) Recall that KX/B = KX ⊗K−1

B and
KXt = KX/B |Xt

∼= KX |Xt . (The last equivalence is not canonical, depending
on the trivialization KB

∼= OB . We will use dt to fix the trivialization of
KB .) SinceKXt is ample for all t, certain multipleKm

Xt
will be very ample for

all t. Equivalently, Km
X is very ample on X . It is not hard to find sections

{Ωk}Nm
k=0 of Km

X that determine an embedding e : X → CPNm , such that
{Ωt,k}Nm

k=0 forms a basis of H0(KXt) for all t, where Ωt,k = (Ωk ⊗ (dt)−m)|Xt .
{Ωt,k}Nm

k=0 will determine a family of embedding et : Xt → CPNm such that
et = e|Xt . Choose the Fubini–Study metric ωFS on CPNm , and define

ω̂ =
1
m
e∗ωFS, ω̂t = ω̂|Xt =

1
m
e∗tωFS.

Since Km
X is very ample on X , ω̂ is a smooth metric on X . The Kähler

potential of ω̂ and ω̂t are the logarithm of the volume forms

V̂ =

(
Nm∑
k=0

Ωk ⊗ Ω̄k

) 1
m

, and V̂t =

(
Nm∑
k=0

Ωt,k ⊗ Ω̄t,k

) 1
m

= V̂ ⊗ (dt⊗ dt̄)−1
∣∣∣
Xt

.

Since Km
X is ample and therefore base point free, V̂ is a non-degenerate

smooth volume form on X . Recall (t) = D. Hence, V̂
|t|2 is a toroidal volume

form on X . On the other hand, dt
t is the standard toric holomorphic form
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on B. Therefore,

V̂t =

(
Nm∑
k=0

Ωt,k ⊗ Ω̄t,k

) 1
m

= V̂ ⊗ (dt ⊗ dt̄)−1
∣∣∣
Xt

=
V̂

|t|2 ⊗
(
dt

t
⊗ dt̄

t̄

)−1
∣∣∣∣∣
Xt

is also toroidal, namely

(3.1) V̂t = ρ(t, z, z̃)


 l∏

j=1

dzjdz̄j
|zj |2




 n∏

j=l+1

dzjdz̄j




under the coordinate (z, z̃) for Xt ∩ Up, where ρ(t, z, z̃) ∼ 1 is a smooth
positive function on Up.

Since e : X → CPNm is an embedding, locally in Up, there exists a
decomposition e = ê ◦ iΣp , where iΣp = (sΣp , z̃) : X → C|Σp(1)|+|p| and
ê : C|Σp(1)|+|p| → CPNm are smooth embeddings and sΣp = (sm)m∈Σp(1).
Therefore,

(3.2) ω̂ =
∑

m,m′∈Σp(1)

gmm′(sΣp , z̃)dsmds̄m′ + (terms involving dz̃, d¯̃z).

4. Construction of the approximate metric.

The approximate metric is constructed by gluing together appropriate met-
rics on the neighborhood of each strata by the partition functions con-
structed in Section 2.3.

For p ∈ Σ and m ∈ Σp
p, in Up, define

hp = τ2(|Σp(1)|−l)
∏

m∈Σp
p

η2

a2
m

, am = η − log ‖sm‖2
m, τ = − log |t|2.

On Xt, let Vt = hV̂t, where log h =
∑
p∈Σ

µp log hp, and let

ωt =
i

2π
∂∂̄ log Vt = ω̂t +

i

2π
∂∂̄ log h = ω̂t + γt + αt,
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where

αt =
∑
p∈Σ

µpαt,p, αt,p =
i

π

∑
m∈Σp

p

1
a2

m

∂am∂̄am,

γt =
∑
p∈Σ

µp

∑
m∈Σp(1)

2
am

Ric(‖ · ‖m)

+
i

2π

∑
p∈Σ

(log hp∂∂̄µp + ∂ log hp∂̄µp + ∂µp∂̄ log hp).

The main result of this section is the estimate (Propositions 4.6 and 4.7) on
the approximate Kähler metric gt with the Kähler form ωt on Xt.

Since Σp is a simplicial fan, σ ∈ Σp(l) naturally corresponds to a subset
Sσ ⊂ Σp(1) with l elements.

Proposition 4.1. There exist λ1, λ2 > 0 such that log ‖sm‖2
m ≥ λ2 log |t|2

on U0
p for all m ∈ Σp(1). And for any x ∈ U0

p , Sx = {m ∈
Σp(1)| log ‖sm(x)‖2 ≥ λ1 log |t|2} ⊂ Sσ for some σ ∈ Σp(l).

Proof. Since log ‖sm‖2
m = log |sm|2 + O(1), where |sm| is the absolute value

of sm viewed as monomial in the toric local model, it is sufficient to prove
the proposition for log |sm|2 in the place of log ‖sm‖2

m. For m ∈ Σp(1), there
exists σ ∈ Σp(l) such that −m belongs to the cone spanned by Sσ. Namely,

m = −
∑

m′∈Sσ

bm′m′

where bm′ ≥ 0 for all m′ ∈ Sσ. Therefore,

log |sm|2 = wm log |t|2 + log |zm|2 = wm log |t|2 −
∑

m′∈Sσ

bm′ log |zm′ |2

= (wm +
∑

m′∈Sσ

bm′wm′) log |t|2 −
∑

m′∈Sσ

bm′ log |sm′ |2

≥ (wm +
∑

m′∈Sσ

bm′wm′) log |t|2.

We may take λ2 to be the maximum of such (wm +
∑

m′∈Sσ
bm′wm′).

Take a subset S′ ⊂ S such that S′ span a simplicial cone and S′ �⊂ Sσ

for any σ ∈ Σp(l). There exists a linear function vm on M such that vm =
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log |sm|2
log |t|2 ≤ λ1 for m ∈ S′ and |vm| ≤ Cλ1 for m ∈ Σp(1) \ S′. Then,

w′
m =

log |sm|2
log |t|2 − vm = wm +

log |zm|2
log |t|2 − vm

is an adjustment of wm by a linear function on M , such that w′
m = 0

for m ∈ S′. Since S′ �⊂ Sσ for any σ ∈ Σp(l). The strict convexity of
{wm}m∈Σp(1) implies that there exists an m′ ∈ Σp(1) \S′ such that w′

m′ < 0
is the smallest. Take λ3 to be the maximum of such w′

m′ < 0 for all possible
S′, which have only finite many possibilities. Then, λ3 < 0 and

log |sm′ |2
log |t|2 = w′

m′ + vm′ ≤ λ3 + Cλ1.

We may take λ1 > 0 to be small so that λ3 + Cλ1 < 0. Then, |sm′ |2 has to
be big, contradicting the fact that |sm′ |2 is small in Up. Therefore, S ⊂ Sσ

for some σ ∈ Σp(l). �

Lemma 4.2.

γt = O(ω̂t/η) +O((ω̂t + αt)/ log τ), where τ = − log |t|2.

Proof. In the argument of this paper, we will always first fix η > 0 large and
then take τ large according to the fixed η. By our construction, am ≥ η is
large. Hence,

∑
p∈Σ

µp

∑
m∈Σp(1)

2
am

Ric(‖ · ‖m) = O(ω̂t/η).

For any x ∈ Xt, there exist a q ∈ Σ such that x ∈ Xt ∩ U0
q . Since

∑
p∈Σ

µp = 1,
∑
p∈Σ

∂∂̄µp = 0.

We have ∑
p∈Σ

log hp∂∂̄µp =
∑
p∈Σ

(log hp − log hq)∂∂̄µp.

Since U0
q ∩ supp(µp) = ∅ when Dq �⊂ D̄p according to (2.3), we may consider

only those p ∈ Σ satisfying Dq ⊂ D̄p. Then, there are the natural inclusions
Σq(1) ⊂ Σp(1), Σp(1) ⊂ Σq(1) and the Cartier divisors in Σp(1) \ Σq(1)
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vanishing along Dq can be naturally identified with a subset of Σp(1) \
Σq(1). Under such identifications Σq

q ∩ Σp
p is defined. For any m ∈ Σp

p \ Σq
q,

(sm)∩D̄q = ∅. Consequently, ‖sm‖2
m = 1 and am = η on Ũq for m ∈ Σp

p\Σq
q.

Hence,
log hp − log hq = 2

∑
m∈Σq

q\Σp
p

log
am

τη

is bounded on supp(µp)∩Uq ⊂ Up ∩Uq. From the explicit expressions of µp

and hp, it is straightforward to check that ∂∂̄µp = O(1/ log τ), ∂ log hp =
O(1) and ∂µp = O(1/ log τ) with respect to the Hermitian metric ω̂t + αt.
(Such kind of verification is more carefully done in the proof of Proposi-
tion 4.5 using (4.1).) Consequently, γt = O(ω̂t/η) +O((ω̂t + αt)/ log τ). �

For σ ∈ Σp(l), let Aσ(x) = min
m∈Σp(1)\Sσ

am(x) and

U0
pσ = Upσ ∩ U0

p , Upσ = {x ∈ Up|Aσ(x) ≥ Aσ′(x) for σ′ ∈ Σp(l)}.
Then, the Proposition 4.1 implies that Aσ(x) ≥ λ1τ > 0 for x ∈ U0

pσ and

Proposition 4.3. For t small enough, we have

Xt ∩ U0
p =

⋃
σ∈Σp(l)

Xt ∩ U0
pσ,

and a2
m ∼ (log |t|2)2 in U0

pσ for m ∈ Σ(1) \ Sσ.

For Sσ = {m1, · · · ,ml}, on Upσ, we may choose coordinate z = {zk}l
k=1 =

{smk
}l

k=1. By adjusting the convex function w = {wm}m∈Σp(1) by linear
function, we may assume that wm = 0 for m ∈ Sσ and wm > 0 for m ∈
Σp(1) \ Sσ. Then, we have sm = twmzm, where m = {mk}l

k=1 also denotes
the coordinate of m with respect to the basis {mk}l

k=1. It is easy to see
that this coordinate z is a special case of the toroidal coordinate z defined
in Section 2. Let

αpσ =
i

π

∑
m∈Sσ

1
a2

m

∂am∂̄am, αt,pσ = αpσ|Xt .

Proposition 4.4.
αpσ ≤ α ≤ C(w)αpσ

along z direction in U0
pσ. Consequently,

C1

( ∏
m∈Sσ

1
a2

m

)
V̂t ≤ ωn

t ≤ C2

( ∏
m∈Sσ

1
a2

m

)
V̂t, in U0

pσ ∩Xt.
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Proof. By the definition of U0
pσ, clearly αpσ ≤ α ≤ C(w)αpσ along z direction

in U0
pσ. Therefore, ωt ∼ ω̂t +αt ∼ ω̂t +αt,pσ according to Lemma 4.2. Since

αl+1
t,pσ = 0. In Xt ∩ U0

pσ, we have

ωn
t ∼ (ω̂t + αt,pσ)n ∼ ω̂n−l

t ∧ αl
t,pσ.

According to formula (3.1),

V̂t = ρ(z)


 l∏

j=1

dzjdz̄j
|zj |2




 n∏

j=l+1

dzjdz̄j


 .

Hence,

ω̂n−l
t ∧ αl

t,pσ ∼

 ∏

m∈Sj

∂am∂̄am

a2
m




 n∏

j=l+1

dzjdz̄j


 ∼


 ∏

m∈Sp

1
a2

m


 V̂t.

�

Notice that Vt = hV̂t is the Kähler potential of ωt. Assume

e−φt =
ωn

t

Vt
.

Proposition 4.5. |φt| is bounded independent of t.

Proof. According to Proposition 4.3, it is sufficient to verify in each U0
pσ∩Xt

for p ∈ Σ and σ ∈ Σp(l). Proposition 4.4 implies that

ωn
t

Vt
∼ η2|Σp(1)| ∼ 1 in U0

pσ ∩Xt.

Therefore, |φt| is bounded independent of t. �

Let gt denote the Kähler metric corresponding to the Kähler form ωt, then
we have

Proposition 4.6. The curvature of gt and its derivatives are all uniformly
bounded with respect to t.
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Proof. On a Riemannian manifold (M,g), we call a basis {vi} proper if the
corresponding metric matrix satisfies C1(δij) ≤ (gij) ≤ C2(δij) for C1, C2 >
0. To verify that the curvature of the Riemannian metric g and all its
covariant derivatives are bounded, it is sufficient to find a proper basis {vi}
satisfying that the coefficients of [vi, vj] with respect to the basis {vi} and
all their derivatives with respect to {vi} are bounded, such that gij and all
their derivatives with respect to {vi} are bounded.

According to Proposition 4.3, it is sufficient to verify in each U0
pσ ∩Xt.

Let Wj = amjzj
∂

∂zj
for 1 ≤ j ≤ l and Wj = ∂

∂zj
for l+1 ≤ j ≤ n. According

to Proposition 4.4, it is straightforward to check that the basis {Wj , W̄j}n
j=1

is proper in U0
pσ∩Xt. Namely, C1(δij) ≤ (gij̄) ≤ C2(δij) for some C1, C2 > 0,

where (gij̄) denotes the metric matrix with respect to the basis {Wj, W̄j}n
j=1.

(For the upper bound estimate, we need
amj

am
to be bounded for 1 ≤ j ≤ l

and m ∈ ΣI(1) \ Si, which is due to our restriction to U0
pσ.)

For 1 ≤ j ≤ l, ‖smj‖2
mj

= ρj|zj |2.

Wk(amj ) =
Wk(‖smj‖2

mj
)

‖smj‖2
mj

=
Wk(ρj)
ρj

+
Wi(|zj |2)

|zj |2 .

Wk(amj ) = amk

(
zk
∂ log ρj

∂zk
+ δkj

)
for 1 ≤ k ≤ l.

Wk(amj ) =
∂ log ρj

∂zk
for l + 1 ≤ k ≤ n.

The functions

(4.1)

1
amj

, smP (a), s̄mP (a), zjP (amj ), z̄jP (amj ),

amj

am
,

log |t|2
am

,
am

log |t|2 , for m ∈ Σp(1) \ Sσ, 1 ≤ j ≤ l.

are all bounded in U0
pσ ∩Xt, where P (a) is a polynomial on ({amj}l

j=1, log t)
and P (amj ) is a polynomial on amj . The above computations imply that
the derivatives of functions in (4.1) with respect to {Wj , W̄j}n

j=1 are smooth
functions of terms in (4.1) and other smooth bounded terms. Therefore,
they are bounded.

It is straightforward to check that gij̄ and the coefficients of [Wj ,Wk],
[Wj, W̄k], [W̄j , W̄k] with respect to the basis {Wj , W̄j}n

j=1 are all smooth
functions of terms in (4.1) and other bounded smooth terms. Consequently,
any derivatives of theirs with respect to {Wj, W̄j}n

j=1 are also smooth
functions of terms in (4.1) and other bounded terms, therefore, are all
bounded. �
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Proposition 4.7. For any k, ‖φt‖Ck ,gt
is uniformly bounded with respect

to t.

Proof. Similar to the proof of the previous proposition, in U0
pσ ∩ Xt, it is

straightforward to check according to Proposition 4.5 and the explicit ex-
pression of φt that φt is a bounded smooth function of terms in (4.1) and
other smooth bounded terms. Consequently, all multi-derivatives of φt with
respect to {Wj, W̄j}n

j=1 are smooth functions of terms in (4.1) and other
smooth bounded terms. Therefore, they are bounded. �

5. Construction of Kähler–Einstein metric via complex
Monge–Ampère.

In this section, we will use the same notions as in the previous sections. In
[9], using the Monge–Ampère estimate of Aubin and Yau, Tian essentially
proved the following.

Theorem 5.1. (Tian) Assume that φt, the curvature of gt and their multi-
derivatives are all bounded uniformly independent of t, then the Kähler–
Einstein metric gE,t on Xt will converge to the complete Cheng–Yau Kähler–
Einstein metric gE,0 on X0\Sing(X0) in the sense of Cheeger–Gromov: there
are an exhaustion of compact subsets Fβ ⊂ X0 \ Sing(X0) and diffeomor-
phisms ψβ,t from Fβ into Xt satisfying:

(1) Xt \
∞⋃

β=1

ψβ,t(Fβ) consists of finite union of submanifolds of real codi-

mension 1;

(2) for each fixed β, ψ∗
β,tgE,t converge to gE,0 on Fβ in Ck-topology on the

space of Riemannian metrics as t goes to 0 for any k.

Proof of Theorem 1.1. Proposition 2.3 reduces the theorem to the case
that π : X → B is simple, which is a direct corollary of Theorem 5.1 and
Propositions 4.5, 4.6, and 4.7. �

It is easy to see that our construction actually implies the following asymp-
totic description of the family of Kähler–Einstein metrics.
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Theorem 5.2. Kähler–Einstein metric gE,t on Xt is uniformly quasi-
isometric to the explicit approximate metric gt. More precisely, there exist
constants C1, C2 > 0 independent of t such that C1gt ≤ gE,t ≤ C2gt.

Proof. The uniform C0-estimate of the complex Monge–Ampère equations
implies that C1ω

n
t ≤ ωn

E,t ≤ C2ω
n
t for some C1, C2 > 0. The uniform C2-

estimate of the complex Monge–Ampère equations implies that TrgtgE,t is
uniformly bounded from above. Combining these two estimates, we get our
conclusion. �

6. Weil–Peterson metric near degeneration.

In this section, we will start with the discussion of the toric case, which
is of independent interest and the estimate is more precise. Then, we will
proceed to the global toroidal case.

6.1. The Toric case.

Note: The notations in this subsection are the same as in Subsection 2.1.
Unless specified otherwise, the notations in this section will not be carried
over to other parts of this paper.

Example: Consider a toric degeneration π : X → B ∼= C determined by
a complete fan Σ in M and an integral piecewise linear convex function
determined by {wm}m∈Σ(1). For i ∈ Σ(n), assume wm = 0 for m ∈ Si and
wm > 0 for m ∈ Σ(1) \ Si. With Si = {m1, · · · ,mn} and toric coordinate
zj = smj for 1 ≤ j ≤ n, we have

ω =
i

π

n∑
j=1

dzj ∧ dz̄j
|zj |2(log |zj |2)2 +

i

π

∑
m∈Σ(1)\Si

dsm ∧ ds̄m

|sm|2(log |sm|2)2 .

Let

W =
∇ log t
|∇ log t|2 ,

then ∂̄W |Xt is a natural representative of Kodaira–Spencer deformation class
in the Dolbeaut cohomology H1(TXt). W can also be determined by the
conditions π∗W = t d

dt and i(W )ω|Xt = 0 for all t. Let aj = log |zj |2 and
am = log |sm|2 for m ∈ Σ(1) \ Si. We will use ρ = 1 + O(aj/am) to denote
a bounded smooth function on aj/am for 1 ≤ j ≤ n,m ∈ Σ(1) \ Si. (Here,
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O(aj/am) is a shorthand for O(aj/am, 1 ≤ j ≤ n,m ∈ Σ(1) \ Si).) It is
straightforward to derive that

ωt = ω|Xt =
i

π

n∑
j,k=1

gjk̄

∂aj

aj
∧ ∂̄ak

ak
,

gjk̄ = δjk + ajakO

(
1
a2

m

)
, gjk̄ = δjk + ajakO

(
1
a2

m

)
,

ωn
t = n!

(
i

π

)n

ρ
n∏

j=1

dzj ∧ dz̄j
a2

j |zj |2
= n!

(
1
π

)n

ρ
n∏

j=1

daj ∧ dθj

a2
j

.

�

Lemma 6.1.

W = t
∂

∂t
−

n∑
j=1

∑
m∈Σ(1)\Si

wmm
j
a2

j

a2
m

ρzj
∂

∂zj
.

Proof. Since π∗W = t d
dt , we may assume that W = t ∂

∂t +
∑n

j=1 qjzj
∂

∂zj
.

i(W )ω|Xt = 0 implies that

∑
m∈Σ(1)\Si

wm
ds̄m

s̄ma2
m

+
n∑

j=1

qj
dz̄j
z̄ja

2
j

+
∑

m∈Σ(1)\Si

n∑
j=1

qjm
j ds̄m

s̄ma2
m

= 0.

Consequently, qj = −∑m∈Σ(1)\Si
wmm

j a2
j

a2
m
ρ. �

Define F = a = (a1, · · · , an) : X → Rn. Let Ai(x) = minm∈Σ(1)\Si
am(x).

For η > 0, consider the domain Ui,η = {x ∈ Uη|Ai(x) ≥ Ai′(x) for i′ ∈ Σ(n)},
where Uη = {x ∈ X|am(x) ≥ η for m ∈ Σ(1)}. Notice that Proposition 4.1
implies that Ai(x) ≥ λ1τ > 0 for x ∈ Ui,η. It is easy to observe that there
exist c′ > c > 0 such that [η, cτ ]n ⊂ F (Xt ∩ Ui,η) ⊂ [η, c′τ ]n. For ωt and W
as in the previous example, we have

Proposition 6.2. There exists a constant Ci,η ≥ 0, such that∫
Xt∩Ui,η

‖∂̄W‖2ωn
t∫

Xt∩Ui,η

ωn
t

=
Ci,η +O(τ−1 log τ)

| log |t|2|3 .
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Proof. We may compute the volume of Xt ∩ Ui,η.

∫
Xt∩Ui,η

ωn
t = n!2n

∫
F (Xt∩Ui,η)

ρ

n∏
j=1

daj

a2
j

= n!2n

∫
[η,cτ ]n

ρ

n∏
j=1

daj

a2
j

(1 +O(1/τ))

= n!2n
n∏

j=1

(∫ cτ

η

daj

a2
j

)
(1 +O(τ−1 log τ)) =

n!2n

ηn
(1 +O(τ−1 log τ)).

Notice

∂̄

(
a2

j

a2
m

ρ

)
= ρ

2aj

a2
m

∂̄aj +
a2

j

a2
m

O

(
∂̄aj′

am

)
.

It is straightforward to compute

∥∥∥∥∥∥
∑

m∈Σ(1)\Si

wmm
j ∂̄

(
a2

j

a2
m

ρ

)∥∥∥∥∥∥
2

= 4a4
jρ

∣∣∣∣∣∣
∑

m∈Σ(1)\Si

wmm
j

a2
m

∣∣∣∣∣∣
2

.

According to Lemma 6.1, we have

∂̄W = −
n∑

j=1

∑
m∈Σ(1)\Si

wmm
j ∂̄

(
a2

j

a2
m

ρ

)
zj

∂

∂zj

‖∂̄W‖2 =
n∑

j=1

4a2
jρ

∣∣∣∣∣∣
∑

m∈Σ(1)\Si

wmm
j

a2
m

∣∣∣∣∣∣
2

.

∫
Xt∩Ui,η

‖∂̄W‖2ωn
t = n!2n

∫
F (Xt∩Ui,η)

n∑
j=1

4ρ

∣∣∣∣∣∣
∑

m∈Σ(1)\Si

wmm
j

a2
m

∣∣∣∣∣∣
2

daj

∏
j′ �=j

daj′

a2
j′

For each j, let

Ũ0
ij,η = {a ∈ Rn|η ≤ aj ≤ cjτ, η ≤ aj′ ≤ cτ, for j′ �= j}.

Ũ1
ij,η = {a ∈ F (Xt ∩ Ui,η)|η ≤ aj′ ≤ cτ, for j′ �= j}, Ũ2

ij,η = F (Xt ∩ Ui,η) \ Ũ1
ij,η.
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It is straightforward to derive that

∫
Ũ2

ij,η

4ρ

∣∣∣∣∣∣
∑

m∈Σ(1)\Si

wmm
j

a2
m

∣∣∣∣∣∣
2

daj

∏
j′ �=j

daj′

a2
j′

= O

(
1

ηn−1τ4

)∫
Ũ1

ij,η

4ρ

∣∣∣∣∣∣
∑

m∈Σ(1)\Si

wmm
j

a2
m

∣∣∣∣∣∣
2

daj

∏
j′ �=j

daj′

a2
j′

=
∫

Ũ1
ij,η

4ρj(bj)

∣∣∣∣∣∣
∑

m∈Σ(1)\Si

wmm
j

(wmτ +mjaj)2

∣∣∣∣∣∣
2

daj

∏
j′ �=j

daj′

a2
j′

+O

(
log τ
ηn−1τ4

)

(∫
Ũ1

ij,η

−
∫

Ũ0
ij,η

)
4ρj(bj)

∣∣∣∣∣∣
∑

m∈Σ(1)\Si

wmm
j

(wmτ +mjaj)2

∣∣∣∣∣∣
2

daj

∏
j′ �=j

daj′

a2
j′

= O

(
log τ
ηn−1τ4

)∫
Ũ0

ij,η

4ρj(bj)

∣∣∣∣∣∣
∑

m∈Σ(1)\Si

wmm
j

(wmτ +mjaj)2

∣∣∣∣∣∣
2

daj

∏
j′ �=j

daj′

a2
j′

=
4

ηn−1| log |t|2|3
n∑

j=1

Bj

∏
j′ �=j

∫ +∞

1

dxj′

x2
j′

+O

(
log τ
ηn−1τ4

)
,

where

Bj =
∫ cj

0
ρj(bj)

∣∣∣∣∣∣
∑

m∈Σ(1)\Si

wmm
j

(wm +mjbj)2

∣∣∣∣∣∣
2

dbj ,

with cj =
wm̃j

1−m̃j
j

, bj = aj/τ , xj′ = aj′/η, and ρj(bj) is ρ replacing aj/am by

bj/(wm + mjbj) and replacing aj′ for j′ �= j by zero. Combining all these
estimates, we have∫

Xt∩Ui,η

‖∂̄W‖2ωn
t =

n!2n+2

ηn−1

1
| log |t|2|3

n∑
j=1

(Bj +O(τ−1 log τ)),

We may take Ci,η = 4η
∑n

j=1Bj for the proposition to hold. �

6.2. The Toroidal case.

With respect to the local Kähler metric ωp = ω̂ + i
2π∂∂̄ log hp and para-

meterizing function t on Up, we can similarly define W(p) = ∇ log t
|∇ log t|2 . Let
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W =
∑

p∈Σ µpW(p). ∂̄W also represents the Kodaira–Spencer deformation
class. We have

Proposition 6.3. There exists a constant C > 0 independent of t such that∫
Xt

‖∂̄W‖2
gt
ωn

t ≤ C

| log |t|2|3
∫

Xt

ωn
t .

Proof. Locally in each U0
qσ, we will use similar coordinate and proper basis

{Wj , W̄j}n
j=1 as in the proof of Proposition 4.6. Then the dual basis is

{βj , β̄j}n
j=1, where βj = dzj

ajzj
, aj = log |zj |2 for 1 ≤ j ≤ l and βi = dzi

for l + 1 ≤ j ≤ n. Recall that O(1) denotes a smooth function on terms
in (4.1) and other smooth bounded terms. (Notice that here we assume
am = log |sm|2, which is slightly different from (4.1) and do not affect our
arguments here. In this proof, we are using aj to denote amj and O(aj/am)
as a shorthand for O(aj/am, 1 ≤ j ≤ n,m ∈ Σq(1) \ Sσ).) We will also use
O(1) to denote a tensor with O(1) coefficients with respect to the proper
and dual proper basis. It is easy to see that the action of the proper basis
{Wj , W̄j}n

j=1 will send O(1) to O(1), also ∂̄Wj = O(1). Under such notation,
we have

ωt,q =
n∑

j,k=1

gjk̄βj β̄k.

gjk̄ = δjk

(
1 +

1
ak
O(1)

)
+ ajakO

(
1
a2

m

)
+

1
ajak

O(1), for 1 ≤ j, k ≤ l.

gjk̄ =
1
ak
O(1), gjk̄ =

1
ak
O(1), for 1 ≤ k ≤ l and l + 1 ≤ j ≤ n.

It is straightforward to derive that

i

(
t
∂

∂t

)
ωq

∣∣∣∣
Xt

=
l∑

j=1

∑
m∈Σq(1)\Sσ

wmm
j aj

a2
m

β̄j +O

(
1
a2

m

)
,

W(q) = t
∂

∂t
−

l∑
j=1

∑
m∈Σq(1)\Sσ

wmm
j aj

a2
m

ρWj +O

(
1
a2

m

)
,

∂̄W(q) = −
l∑

j=1

∑
m∈Σq(1)\Sσ

wmm
j ∂̄

(
a2

j

a2
m

ρ

)
zj

∂

∂zj
+O

(
1
a2

m

)
.
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Applying Proposition 6.2, we can find C > 0 independent of t such that∫
U0

qσ∩Xt

‖∂̄W(q)‖2
gt
ωn

t ≤ C

| log |t|2|3
∫

U0
qσ∩Xt

ωn
t .

The rest of the proof closely resembles the proof of Lemma 4.2. For any
x ∈ Xt, there exist a q ∈ Σ such that x ∈ Xt ∩ U0

q . Since

∑
p∈Σ

µp = 1,
∑
p∈Σ

∂̄µp = 0.

We have ∑
p∈Σ

∂̄µpW(p) =
∑
p∈Σ

∂̄µp(W(p) −W(q)).

Since U0
q ∩ supp(µp) = ∅ when Dq �⊂ D̄p according to (2.3), we may consider

only those p ∈ Σ satisfying Dq ⊂ D̄p. As in the proof of Lemma 4.2, for such
p, q ∈ Σ, we can naturally define Σq

q∩Σp
p. For anym ∈ Σp

p\Σq
q, (sm)∩D̄q = ∅.

Consequently, ‖sm‖2
m = 1 and am = η on Ũq for m ∈ Σp

p \ Σq
q. Hence

W(p) −W(q) =
l∑

j=1

O

(
aj

a2
m

)
Wj +O

(
1
a2

m

)

∂̄W(p) =
l∑

j=1

O

(
aj

a2
m

)
+O

(
1
a2

m

)

on supp(µp) ∩ Uq ⊂ Up ∩ Uq. From the explicit expressions of µp, it is
straightforward to check that ∂̄µp = O(1/ log τ) with respect to the Her-
mitian metric ωt. Consequently,

∫
U0

qσ∩Xt

∥∥∥∥∥∥
∑
p∈Σ

∂̄µpW(p)

∥∥∥∥∥∥
2

gt

ωn
t ≤ C

τ3 log τ

∫
U0

qσ∩Xt

ωn
t .

∫
U0

qσ∩Xt

∥∥∥∥∥∥
∑
p∈Σ

µp∂̄W(p)

∥∥∥∥∥∥
2

gt

ωn
t ≤ C

τ3

∫
U0

qσ∩Xt

ωn
t .

Combine these estimates for all σ ∈ Σq(l), q ∈ Σ applying to

∂̄W =
∑
p∈Σ

µp∂̄W(p) +
∑
p∈Σ

∂̄µpW(p),
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we will get the desired estimate. �

Remark: It is not hard to observe that the constant Ci,η ≥ 0 in Proposi-
tion 6.2 is actually positive. With this observation and a bit more argument,
one can show that the lower bound estimate in Proposition 6.3 (more pre-
cisely the estimate in Proposition 6.3 with the reversed inequality) is also
true. Since such more precise estimates are not needed for arguments in this
paper, we will omit them here.

Proof of Theorem 1.2. As pointed out in [9],

gWP

(
d

dt
,
d

dt

)∣∣∣∣
Xt

=
∫

Xt

∥∥∥∥H
(
d

dt

)∥∥∥∥
2

gE,t

ωn
E,t,

where H
(

d
dt

)
denote the harmonic representative of the Kodaira–Spencer

deformation class. As mentioned earlier, such class can also be represented
by ∂̄W

t . Applying Proposition 6.3 and Theorem 5.2, we have

∫
Xt

∥∥∥∥H
(
d

dt

)∥∥∥∥
2

gE,t

ωn
E,t ≤

∫
Xt

∥∥∥∥ ∂̄Wt
∥∥∥∥

2

gE,t

ωn
E,t ≤ C

∫
Xt

∥∥∥∥ ∂̄Wt
∥∥∥∥

2

gt

ωn
t

≤ C

| log |t||3|t|2 .

�
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