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Growth of solutions to the minimal surface equation

over domains in a half plane

Allen Weitsman

We consider minimal graphs u = u(x, y) > 0 over unbounded
domains D with u = 0 on ∂D. We shall study the rates at which
u can grow when D is contained in a half plane.

1. Introduction.

Let D be an unbounded domain in the half plane H = {(x, y) : x > 0,−∞ <
y < ∞} and u(x, y) a positive solution to the minimal surface equation with
vanishing boundary values

div
∇u√

1 + |∇u|2 = 0, u > 0 in D,(1.1)

u = 0 on ∂D.

If H were replaced by a sector of opening less than π, then Nitsche [9,
p. 256] observed that (1.1) would have no solutions. Thus, the first non-
trivial sector is the half plane. In this case, we shall be concerned with
upper and lower bounds for the growth of such solutions. In what follows,
we shall use complex notation z = x + iy for convenience.

Theorem 1.1. Let D be a domain in a half plane whose boundary is a
Jordan arc. If u satisfies (1.1) in D, then there exist positive constants M
and R such that

(1.2) Mr ≤ max
|z|=r z∈D

u(z) ≤ eMr |z| > R.

One measure of growth for solutions to (1.1) is given by the order α of
u,

α = lim sup
|z|→∞ z∈D

log u(z)
log |z| .
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1078 A. Weitsman

Regarding the lower bound, the left side of (1.2) shows that u cannot have
sublinear growth. Planes given by u(x, y) = cx show that this is best possi-
ble. With the hypotheses of Theorem 1.1, the weaker condition on the order
α ≥ 1 follows from [12, Theorem 1.1].

Using catenoid surfaces

u(x, y) =
(√

cosh2 Cx − C2y2 − 1
)

/C,

in the subset of the right half plane where u > 0, we see that the upper
bound in (1.2) is also sharp.

Theorem 1.1 indicates that there are severe limitations on the growth of
solutions to the minimal surface equation. Some results have been obtained
in recent years in this direction. In Section 5 we shall discuss this further as
well as some open problems.

2. Preliminaries.

If S is a minimal graph over a simply connected region D, then S can
be parametrized in isothermal coordinates by the Weierstrass functions
x(ζ), y(ζ), U(ζ) with ζ in the right half plane H, U(ζ) = u(x(ζ), y(ζ)) and
(up to additive constants)

x(ζ) = �e
1
2

∫ ζ

ζ0

ω(ζ̃)(1 − G2(ζ̃)) dζ̃

y(ζ) = �e
i

2

∫ ζ

ζ0

ω(ζ̃)(1 + G2(ζ̃)) dζ̃(2.1)

U(ζ) = �e

∫ ζ

ζ0

ω(ζ̃)G(ζ̃) dζ̃.

Here, G(ζ) is the stereographic projection of the Gauss map corresponding
to the upper normal, ω is analytic for all values in H, and ω has zeros at
the poles of G with multiplicity of the zero twice the order of the pole of G.

Since S is a graph, the function z(ζ) = x(ζ) + iy(ζ) is univalent and
with the hypotheses of Theorem 1.1, we can normalize so that z(∞) = ∞.
Also, since U(ζ) is a positive harmonic function in H which is zero on the
imaginary axis (cf. [5, Corollary 1]), it follows that

(2.2) U(ζ) = C�e ζ
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for some positive constant C. From the third equation in (2.1), we then
have

(2.3) ω(ζ) = C/G(ζ).

In particular, G(ζ) �= 0,∞.
Since |G(ζ)| > 1, G has non-tangential limits a.e. on ∂H, so we may

take ζ0 = 0, translating if necessary so that G has finite non-tangential limit
at 0.

By (2.1) and (2.3), z(ζ) then satisfies

z(ζ) = (C/2)�e

∫ ζ

0
(1/G(ζ̃) − G(ζ̃)) dζ̃ + (C/2)�e i

∫ ζ

0
(1/G(ζ̃) + G(ζ̃)) dζ̃

(2.4)

= (C/4)(
∫ ζ

0
(1/G(ζ̃) − G(ζ̃)) dζ̃ +

∫ ζ

0
(1/G(ζ̃) − G(ζ̃)) dζ̃

−
∫ ζ

0
(1/G(ζ̃) + G(ζ̃)) dζ̃ +

∫ ζ

0
(1/G(ζ̃) + G(ζ̃)) dζ̃ )

= (C/2)

(
−
∫ ζ

0
G(ζ̃) dζ̃ +

∫ ζ

0
1/G(ζ̃) dζ̃

)
.

3. Proof of the lower bound in (1.2).

With the hypotheses of Theorem 1.1, let z(ζ) be as in (2.4). Then z(ζ) is a
harmonic function in H with �e z(ζ) > 0, so if

F (ζ) =
∫ ζ

0
(1/G(ζ̃) − G(ζ̃)) dζ̃,

then

F (ζ) = −
∫ ζ

0
G(ζ̃) dζ̃ +

∫ ζ

0
1/G(ζ̃) dζ̃ −

∫ ζ

0
1/G(ζ̃) dζ̃ +

∫ ζ

0
1/G(ζ̃) dζ̃

(3.1)

= (2/C)z(ζ) − 2�m

∫ ζ

0
1/G(ζ̃) dζ̃.

Thus, F (ζ) is analytic with �eF (ζ) > 0 in H, and (cf [11, p. 152]) there
exists a real constant k (0 ≤ k < ∞) such that in any sector Sβ = {z :



1080 A. Weitsman

| arg z| ≤ β < π/2},

(3.2) lim
|ζ|→∞ ζ∈Sβ

F ′(ζ) = k.

It follows from (3.1) and (3.2) that

lim
|ζ|→∞ ζ∈Sβ

(1/G(ζ) − G(ζ)) = k.

Since G is the stereographic projection of the Gauss map of the surface given
by u > 0, it follows that

(3.3) lim
|ζ|→∞ ζ∈Sβ

G(ζ) = K = −(k +
√

k2 + 4)/2.

In particular,

(3.4) K ≤ −1.

Returning to (2.4), this implies that

z(ζ) =(C/2)

(
−
∫ ζ

0
(K + o(1)) dζ̃ +

∫ ζ

0
(1/K + o(1)) dζ̃

)
(3.5)

=(C/2)(−Kζ + (1/K)ζ + o(ζ))
=(C/2)((−K + 1/K)σ − i(K + 1/K)τ + o(ζ))

(|ζ| → ∞, ζ = σ + iτ ∈ Sβ).

It follows from this that as ζ → ∞ along the real axis, we have

(3.6) |z(σ)| < C1σ (σ > σ0)

for some positive constants C1 and σ0. Using (2.2) and (3.6), we then have

U(σ)
|z(σ)| ≥

Cσ

C1σ
(σ > σ0).

In the xy plane with z = x + iy, we then have for some R > 0,

max
|z|=r z∈D

u(z)
|z| ≥ C

C1
r > R.

�
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4. Proof of the upper bound in (1.2).

We shall use the following result from [1, p. 826].

Theorem A. Let Ω ⊆ Ω1 = {(x, y)|x > 0,−f(x) < y < f(x)}, where
f , g ∈ C[0,∞), f, g ≥ 0, g(0) = 0, f(t), g(t)/t increases as t increases,
and let u ∈ C(Ω) ∩ C2(Ω).

Suppose that

i) div ∇u√
1+|∇u|2 ≥ 0 in Ω,

ii) u|∂Ω∩{x}×[−f(x),f(x)] ≤ g(x) for x ∈ [0,∞),

iii) 0 < κ(x) ≡ f(x)/(g(x)) < 1 for some x1 > 0 and all x > x1,

iv) κ(x) decreases in [x1,∞).

Then u(x, y) ≤ g(x)/(1 − κ(x)) for every (x, y) ∈ Ω with x > x1.

Continuing from Section 3 , we consider two cases in (3.3). Suppose first
that K �= −1. Then from (3.5), we find that in Sβ,

(4.1)
U(ζ)
|z(ζ)| ≤

C|ζ|
(C/2)(−K + 1/K)|ζ| cos β

(1 + o(1)) (ζ → ∞, ζ ∈ Sβ).

Also from (3.5), it follows that z(Sβ) contains the portion of the x axis
x > R for some R > 0. So, from (4.1), we deduce that, in particular, on the
x axis,

lim sup
x→0

u(x)
x

≤ 1
(1/2)(−K + 1/K) cos β

.

Let D+ be the portion of D in the first quadrant and e−iπ/4D+ the
clockwise rotation of D+ by π/4. Then e−iπ/4D+ is contained in the sector
Σ = {z : −π/4 < arg z < π/4}. We now apply Theorem A with Ω =
e−iπ/4D+ and Ω1 = Σ, so f(t) = t. We may take g(t) = t2, since on one
portion of the boundary of Ω u is 0, and on the other, (3.5) and (4.1) imply
that it has at most linear growth. Taking u − k for some constant k if need
be so that (ii) above holds near the origin, Theorem A then shows that u(z)
cannot grow more rapidly than |z|2 in D+. The portion D− of D in the
fourth quadrant can be handled similarly.

Thus, we need only consider the case

(4.2) lim
|ζ|→∞ ζ∈Sβ

G(ζ) = −1.
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Now, |G(ζ)| > 1, so we may write

(4.3) G(ζ) = −eφ(ζ),

where φ(ζ) is analytic in H, and

(4.4) �e φ > 0 and lim
|ζ|→∞ ζ∈Sβ

φ(ζ) = 0.

Using (2.4), (4.2), (4.3), and (4.4) we may then write with ζ = σ + iτ ,

z(ζ) =(C/2)


 ∞∑

j=0

∫ ζ

0

φ(ζ̃)j

j!
dζ̃ −

∞∑
j=0

∫ ζ

0

(−1)jφ(ζ̃)j

j!
dζ̃


(4.5)

=(C/2)


2i

∞∑
j=0

�m

∫ ζ

0

φ(ζ̃)2j

(2j)!
dζ̃ + 2

∞∑
j=0

�e

∫ ζ

0

φ(ζ̃)2j+1

(2j + 1)!
dζ̃


 .

With φ = u + iv, taking the path of integration along the real axis, we have

∞∑
j=0

�e

∫ σ

0

φ(σ̃)2j+1

(2j + 1)!
dσ̃ =

∫ σ

0
u(σ̃)dσ̃ +

∞∑
j=1

�e

∫ σ

0

(u(σ̃) + iv(σ̃))2j+1

(2j + 1)!
dσ̃.

Consider the term with j = n in the sum. This is the sum of 22n+1 terms of
the form u(σ̃)k(iv(σ̃))2n+1−k. These are pure imaginary when k is even. In
particular, this is the case when k = 0. Thus, we may factor one u(σ̃) from
all terms and obtain∣∣∣∣�e

(u(σ̃) + iv(σ̃))2n+1

(2n + 1)!

∣∣∣∣ ≤ 22n

(2n + 1)!
u(σ̃)|φ(σ̃)|2n.

This with (4.4) then yields

(4.6)
∞∑

j=0

�e

∫ σ

0

φ(σ̃)2j+1

(2j + 1)!
dσ̃ =

∫ σ

0
u(σ̃)dσ̃(1 + o(1))

as σ → ∞.
We also need an estimate on the imaginary part. Here, we have on the

real axis

�m z(σ) = (C/2)
∞∑

j=0

�m

∫ σ

0

(u(σ̃) + iv(σ̃))2j

(2j)!
dσ̃

Again, in the j = n term of the sum, there are 22n terms of the form
u(σ̃)k(iv(σ̃))2n−k. These are pure real when k is even. Thus, the j = 0 does
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not appear, and every other term contains at least one u(σ̃) factor. We then
have ∣∣∣∣

∞∑
j=0

�m

∫ σ

0

(φ(σ̃))2j

(2j)!
dσ̃

∣∣∣∣ ≤
∞∑

j=1

∫ σ

0

22j

(2j)!
u(σ̃)|φ(σ̃)|2j−1dσ̃(4.7)

= o

(∫ σ

0
u(σ̃)dσ̃

)
(σ → ∞).

Now, since u is a positive harmonic function in H, we may represent it
[11, p. 149] by

(4.8) u(σ̃) =
σ̃

π

∫ ∞

−∞

dχ(s)
|σ̃ − is|2 + cσ̃

where χ(s) is a non-decreasing function and c ≥ 0 a constant. By (4.2) and
(4.3), we have

(4.9) c = 0.

Let δ > 0 be large enough so that χ(δ) − χ(−δ) = χ0 > 0. Then, from
(4.8) and (4.9) ∫ σ

0
u(σ̃)dσ̃ ≥

∫ σ

0

σ̃

π

∫ δ

−δ

dχ(s)
σ̃2 + δ2

dσ̃

=
χ0

π

∫ σ

1

σ̃

σ̃2 + δ2
dσ̃

=
χ0

2π
log(σ2 + δ2).

Using this in (4.5) and (4.6), we obtain

(4.10) �e z(σ) >
Cχ0

2π
(log(σ2 + δ2))(1 + o(1)) (σ → ∞).

We are now in a position again to use Theorem A. We first note that
given ε > 0, then (4.5), (4.6), and (4.7) imply that on the real axis,

z(σ) ∈ Sε σ > σ0

for some σ0 > 0.
We take D+ = z({0 < arg ζ < π

2}) ∩ {−ε < arg z < π
2 } (0 < ε < π/8).

On one portion of ∂D+, we have u = 0, and by (2.2) and (4.10) on the other,
we have

u(z)
ek|z| =

U(z(σ))
e|kz(σ)| ≤ Cσ

exp((kCχ0/2π) log(σ2 + δ2)(1 + o(1)))

= Cσσ−(kCχ0/π)(1+o(1))).
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Fixing k > π/Cχ0. We then have for this portion of ∂D+,

u(z) ≤ ek|z| (|z| > R0)

for some R0 > 0.
Now, let e−(π/4−ε/2)iD+ be the clockwise rotation of D+ through π/4−

ε/2 so that e−(π/4−ε/2)iD+ ⊂ Sπ
4
+ ε

2
. Using Ω1 = Sπ

4
+ ε

2
so that f(t) =

(tan(π
4 + ε

2))t, and Ω = e−(π/4−ε/2)iD+ with g(t) = t2e2kt, the upper bound
in (1.2) now follows for D+ by Theorem A. The upper bound for D\D+

follows similarly. �

5. Survey of results and open questions.

In this section, we shall discuss general questions regarding solutions to

(5.1) div
∇u√

1 + |∇u|2 = 0 in D,u = 0 on ∂D.

In Section 1, we assumed that u > 0 for convenience. For most ques-
tions, this can be assumed by separately considering components where u is
positive and negative. Nitsche’s theorem [9, p. 256] then says that (5.1) has
only trivial solutions if D is contained in a sector of opening less than π.

The hypotheses of Theorem 1.1 include that topological condition that
D be simply connected. It seems unlikely that this assumption is needed for
the upper bound. In this regard, Hwang has studied the growth of solutions,
but only in special regions contained in the half plane [2, 3, 4].

Problem 1. Is it true that for solutions to (5.1),

(5.2) max
|z|=r z∈D

u(z) ≤ eMr |z| > R.

holds for any region contained in a half plane?

It seems likely that there should be an upper bound for the growth of
solutions to (5.1) in any region.

Problem 1a. For solutions to (5.1), is there an upper bound for the rate
of growth? In particular, does (5.2) hold for solutions over general regions?

Regarding the lower bound in (1.2), it seems likely that the condition on
the boundary being a Jordan arc can be removed.
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Problem 2. For solutions u > 0 to (5.1) in D, is the lower bound in (1.2)
valid for any simply connected D?

Without the assumption that D lie in a half plane, the results in [12]
show that the order must be at least 1/2 for regions bounded by a Jordan
arc. The catenoid with axis of symmetry perpendicular to the xy plane
shows that simple connectivity in this case is needed. However, it is easy to
construct examples to show that 1/2 is the correct exponent.

Example. Let z(ζ) = x(ζ) + iy(ζ) be as in Section 2 be defined by

z(ζ) = (ζ + 1)2/2 − log(ζ + 1).

Then z(ζ) maps H onto a region D. Its Jacobian is |ζ + 1|2 − |ζ + 1|−1 > 0
in H, and its imaginary part on the boundary ζ = it, −∞ < t < ∞ is
t+tan−1 t which is monotone, so z(ζ) is univalent in H. The height function
U(ζ) corresponding to z(ζ) is 2�e ζ. Thus, for any z ∈ D, there is a ζ ∈ H
such that z = z(ζ) and we have

u(z)
|z|1/2

=
u(z(ζ))
|z(ζ)|1/2

=
2�eζ

|(ζ + 1)2/2 − log(ζ + 1)|1/2
.

It seems likely that a conclusion stronger than order 1/2 should be true.

Problem 2a. Is it true that for solutions u > 0 to (5.1) in general simply
connected domains D,

Mr1/2 ≤ max
|z|=r z∈D

u(z) |z| > R

holds for some positive constants M and R?

If something is known of the geometry of D, then further constraints are
known to exist regarding the lower growth of u. If D is simply connected,
then the asymptotic angle β is defined by

β = lim sup
r→∞

measθ(D ∩ {|z| = r})

where 0 < measθ ≤ 2π is the angular measure of the arc. For regions which
are not simply connected, in classical potential theory, the quantity measθ

is taken to be +∞ if D contains the whole circle |z| = r. In any case, partial
results [8, Lemma 1], [10], and [12] raise the following question.
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Problem 3. If D has asymptotic angle β ≥ π, then must the order of any
non-trivial solution u of (5.1) in D be at least π/β?

From Nitsche’s theorem, it seems likely that the case β < π is different.

Problem 3a. If D has asymptotic angle less than π is it true that (5.1)
has only trivial solutions?

The estimates for asymptotic angle are useful in dealing with some con-
jectures of Meeks presented at his Clay Institute lectures.

Problem 4.(Meeks) Can there be at more than 2 disjoint domains D over
which there are non-trivial solutions to (5.1)?

Meeks’s conjecture to this is that there can be at most 2. Partial results
to this are contained in [6], [10], and [8, Theorem 2]. In the case where u
is of sublinear growth, (|u(x)|/|x| → 0 as x → ∞ in D) perhaps there is a
stronger result.

Problem 4a.(Meeks) Can there be 2 disjoint domains D with non-trivial
solutions to (5.1), and having sublinear growth?

It seems reasonable to expect that the answer is no.
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