
communications in

analysis and geometry

Volume 13, Number 5, 1057-1075, 2005

Rigidity of Differentiable Structure for New Class of
Line Arrangements1

Shaobo Wang, Stephen S.-T. Yau
2

An arrangement of hyperplanes is a finite collection of C-linear
subspaces of codimension one in a complex vector space Cl. For
such an arrangement A, there is a natural projective arrangement
A∗ of hyperplanes in CPl−1 associated to it. Let M(A) = Cl −⋃

H∈A H and M(A∗) = CPl−1 −⋃H∗∈A∗ H∗.
One of central topics in the theory of arrangements is to find con-
nections between the topology or differentiable structure of M(A)
(or M(A∗)) and the combinatorial geometry of A. A partial so-
lution to this problem was given by Jiang and Yau [6]. Specially,
they showed that for a class of nice arrangement in CP2, the dif-
feomorphic types of the complements are combinatorial in nature.
In this paper, we introduce a new class of simple arrangements in
CP2. This class of simple arrangements is much larger than the
class of nice arrangements. We prove that for this new class of sim-
ple arrangements, the diffeomorphic types of the complements are
still combinatorial in nature. In fact, the moduli space of simple
arrangements with fixed combinatorial data is connected.

1. Introduction.

An arrangement of hyperplanes is a finite collection of C-linear subspaces
of codimension one in a complex vector space Cl. A central arrangement in
Cl means that all hyperplanes of the arrangement pass through the origin.
For such an arrangement A, there is a natural projective arrangement A∗

of hyperplanes in CPl−1 associated to it. Let M(A) = Cl − ⋃H∈A H be
a complement of A, which is an open connected submanifold of Cl. Let
M(A∗) = CPl−1 −⋃H∗∈A∗ H∗ be a complement of A∗ in CPl.

There are many interesting research topics on the theory of arrange-
ments (see [1, 9]). One of the central topics is to find connection between
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the topology or differentiable structure of M(A) (or M(A∗)) and the combi-
natorial geometry of A. In 1980, Orlik and Solomon [10] gave a collection of
‘homotopy type’ conjectures, which assert that various homotopy invariants
of the complement depend only on the lattice associated with A. A great
deal of research in the homotopy theory of arrangements has been focused
on conjectures of this type. The major positive result in this direction was
obtained by Jiang and Yau [6] in 1994.

Let A∗ be a projective arrangement in CP2 and L(A∗) be the set of
all intersections of elements of A∗ partially ordered by inverse inclusion.
It is natural to ask whether the combinatorial data L(A∗) of the projec-
tive arrangements is determined by the homotopy type, topological type,
or diffeomorphic type of the complement M(A∗), and conversely whether
the homotopy type, topological type, or diffeomorphic type of the comple-
ment M(A∗) of the projective arrangements is determined by the combi-
natorial data L(A∗). For the first question, Falk has written a series of
papers [2, 3, 4, 5] on whether there are combinatorially distinct arrange-
ments which have homotopic equivalent complements. In [4], Falk con-
structed two projective arrangements in CP2, each of which has two triple
points and nine double points, but they are different combinatorially. The
homotopic equivalence of their complements was shown in [5]. Jiang and
Yau [8] showed that in general L(A∗) is a topological invariant of M(A∗),
which is perhaps one of the deepest results in the subject. Hence, the two
projective arrangements constructed by Falk do not have same topological
types. For the second question, a partial solution was given by Jiang and
Yau [6] in 1994 and [7] in 1997. They introduced a large class of arrange-
ments in CP2 which are called nice arrangements, and showed that for
these nice arrangements, the diffeomorphic types of the complement M(A∗)
are determined by the combinatorial types of the arrangements. This pa-
per generalizes the result of [6] to a much larger class of arrangements
in CP2.

For a projective arrangement A∗ in CP2, we can define a graph G(A∗)
which depends only on the combinatorial data of the arrangement. A result
of [8] asserts that G(A∗) depends only on the topological type of M(A∗). An
arrangement A∗ is called a simple arrangement if after removing pairwise
disjoint stars (see Definition 2.3) and free simple nets of G (see Defini-
tion 2.5), the graph G from A∗ becomes a forest. Recall that the concept
of disjoint starts was introduced in [6]. The essential contribution of this
paper is the new formulation of the concept of disjoint simple nets. This
makes the class of simple arrangements a much larger class than the class
of nice arrangements.
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Main Theorem 1.1. Let A0 and A1 be two simple arrangements in C3

and A∗
0 and A∗

1 be the corresponding projective arrangements in CP2. If
the lattices of A0 and A1 are isomorphic, then M(A∗

0) and M(A∗
1) are dif-

feomorphic to each other. In fact, the moduli space of simple arrangements
with fixed lattice is connected.

In Section 2, we introduce our new notion of free simple net from which
we can define a new general class of simple arrangements. We also give some
examples of simple arrangements. In Section 3, we correct some misprints
of the lemmas in [6], prove the Main Theorem and give its corollary that the
homotopy groups of the complement M(A∗) of a simple arrangement in CP2

depend only on the lattice of A. We also define a class of generalized simple
projective arrangements which includes the class of simple arrangements as
a special case. We prove that the diffeomorphic types of the complements
are still combinatorial in nature.

2. Definitions and Examples.

In this section, we denote A the (central) arrangement of hyperplanes in C3

and A∗ its associated projective arrangement of lines in CP2. Let L(A) be
the lattice associated with A.

Definition 2.1. A point p in CP2 is of multiplicity k in A∗ if p is the
intersection of exactly k lines in A∗. Let tk(A∗) be the number of k-tuple
points in the arrangement A∗. The complexity c(A∗) of A∗ is defined to be∑

k≥3(k − 2)tk(A∗).

Now, we define a graph G from an arrangement A∗ in CP2. Let V G

be the set of vertices of G consisting of all points of A∗ with multiplicity
greater than 2. Let EG be the set of edges of G, each edge of which is a pair
of distinct vertices (v1, v2) of V G which span a line < v1, v2 > of A∗.

Definition 2.2. A path of G is denoted by a (n+1)-tuple (v0, . . . , vn) such
that (vi−1, vi) ∈ EG for i = 1, . . . , n − 1. Furthermore, it is called a circle
when v0 = vn, n ≥ 3.

A reduced path is a path which satisfies < vi−1, vi >�=< vi, vi+1 > for
i = 1, . . . , n − 1. If v0 = vn, n ≥ 3, then the reduced path is called a reduced
circle. G is called a forest if it does not contain such a reduced circle.

In this paper, we consider only reduced paths and reduced circles.
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Definition 2.3. For a v0 ∈ V G, a star of v0 is a subgraph of G, denoted
by St(v0), where V St(v0) = {v0} ∪ {v ∈ V G :< v0, v >∈ A∗} and ESt(v0) =
{(v, w) ∈ EG : v = v0 or w = v0, otherwise < v, w >=< v0, v >}.

Definition 2.4. ([6]) An arrangement A∗ in CP2 is called nice if the graph
G from A∗ has the following property: There are v1, . . . , vm ∈ V G such that
St(v1), . . . , St(vm) are pairwise disjoint in G and G′ = G −⋃m

i=1(E
St(vi) ∪

{vi}) is a forest.

Now, we define the simple net and simple arrangement.

Definition 2.5. (a) For a reduced circle B and another reduced circle or
a vertex C, a net of B and C is a subgraph of G, denoted by Net(B, C),
where

V Net(B,C) = V B ∪ V C ∪ N,

ENet(B,C) = {(v, u) ∈ EG|v, u ∈ V Net(B,C)},

where N = {v ∈ V G − (V B ∪ V C)|v is connected with only one vertex in
V B ∪ V C by an edge in EG}.

C, B and N are called center, base and node of the net respectively.
(b) If any two non-adjacent vertices of center C or two non-adjacent

vertices of base B are not connected by an edge, any two vertices of center
C do not connect a same vertex of the base B by two edges, moreover, any
two vertices of net do not connect a same vertex in V G − V Net(B,C) by two
edges, then we call Net(B, C) simple net.

(c) A vertex v ∈ V B is called free in G if there is no edge connecting v
and center. The simple net with free vertex is called free simple net.

Definition 2.6. An arrangement A∗ in CP2 is called simple if the graph
G from A∗ has the following property: There are finitely many stars and
free simple nets, say St(v1), . . . , St(vm) and Net(B1, C1), . . . , Net(Bn, Cn),
which are pairwise disjoint in G and

G′ = G −
{( m⋃

i=1

(ESt(vi) ∪ {vi})
)

∪
( n⋃

j=1

(
ENet(Bj ,Cj) ∪ {v|v ∈ V Net(Bj ,Cj) − Nj}

))}

is a forest, where Nj is the node of the net Net(Bj , Cj), j = 1, . . . n.
Clearly, a nice graph is simple.
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Example 2.7. The following graphs show the examples of free simple net
and non-simple net. In Fig. 1

C = (v1, v2, v3, v4, v1).
B = (v5, v6, v7, v8, v9, v5).

Net(B, C) = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12}
∪ {(v1, v2), (v2, v3), (v3, v4), (v4, v1), (v5, v6), (v6, v7),

(v7, v8), (v8, v9), (v9, v5), (v1, v5), (v2, v6), (v3, v7), (v4, v9),
(v5, v10), (v6, v11), (v8, v12)}.

v8 is a free vertex. Net(B, C) is a free simple net.

Figure 1: A free simple net

In Fig. 2, Net(B, C) is a non-simple net because the vertices v6 and v7
in Net(B, C) connect same vertex v11 by edges (v6, v11) and (v7, v11) and v5
in B connects two vertices v1 and v2 in C by two edges (v1, v5) and (v2, v5).
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Figure 2: A non-simple net

Example 2.8. Let A be an arrangement of hyperplanes in C3 and A∗ as-
sociated arrangement in CP2 as shown in the following figures. This is an
example of simple arrangement and it is not a nice arrangement. In Figs.
3, 4 and 5,

St(v1) = {v1, v6, v7, v9} ∪ {(v1, v6), (v1, v7), (v1, v9)}.

C = {v3}.

B = (v2, v4, v8, v5, v2).
Net(B, C) = {v2, v3, v4, v5, v8, v11}

∪ {(v3, v2), (v3, v4), (v3, v8), (v2, v4), (v2, v5), (v4, v8),
(v5, v8), (v8, v11}.

v5 is free vertex. Net(B, C) is a free simple net. A∗ is a simple arrangement,
but not a nice arrangement.
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Figure 3: A simple arrangement A∗ including the line in infinite

Figure 4: The graph G of A∗

Figure 5: The graph G′
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3. Proof of the Main Theorem.

The following Definition 3.1 to Remark 3.5 can be found in [6]. Since they
play an important role in the proof of our main theorem and there are some
misprints in [6], for the sake of convenience to the readers, we include them
below.

Definition 3.1. For the following equation

(3.1) ay1x2x3 + bx1y2x3 + cx1x2y3 + dx1y2y3 + ey1x2y3 + fy1y2x3 = 0,

where (x1 : y1), (x2 : y2) and (x3 : y3) ∈ CP1 are different variables,
a, b, c, d, e and f ∈ C, and abcdef �= 0, (x1 : y1) is called irregular for
Equation (3.1) if

(ay1)x2x3 + (bx1 + fy1)y2x3 + (cx1 + ey1)x2y3 + (dx1)y2y3

is a reducible polynomial of the other two variables (x2 : y2) and (x3 : y3) .
Otherwise, we call (x1 : y1) regular for the Equation (3.1).

Lemma 3.2. Assume ((x1 : y1), (x2 : y2), (x3 : y3)) ∈ (CP1)3 is a solution
of (3.1). If (x1 : y1) is irregular, then either (x2 : y2) or (x3 : y3) is irregular
for (3.1). If (x1 : y1) is regular, then (x2 : y2) and (x3 : y3) are either both
regular or both irregular for (3.1).

Proof. When y1 = 0, (3.1) becomes

(3.2) by2x3 + cx2y3 + dy2y3 = 0

which is irreducible. Hence, if (x1 : y1) is irregular, then x1 �= 0 and y1 �= 0.
Write (3.1) as polynomial of (x2 : y2) and (x3 : y3)

(3.3) (ay1)x2x3 + (bx1 + fy1)y2x3 + (cx1 + ey1)x2y3 + (dx1)y2y3 = 0.

It is reducible if and only if

(3.4) (bx1 + fy1)(cx1 + ey1) = adx1y1

or

(3.5) bcx2
1 + (be + fc − ad)x1y1 + efy2

1 = 0,
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which has at most two roots of (x1 : y1). When (x1 : y1) is a root of the
equation above, (3.1) becomes

(3.6) [(ay1)x3 + (cx1 + ey1)]
[
x2 +

dx1

cx1 + ey1
y2

]
= 0

from which we have the solution either

(x2 : y2) = (−dx1 : cx1 + ey1)

or
(x3 : y3) = (−(cx1 + ey1) : ay1).

In the first case, we have
x1

y1
= − ex2

cx2 + dy2
.

Using these in (3.5) yields

(3.7) bc
e2x2

2
(cx2 + dy2)2

− (be + fc − da)
ex2

(cx2 + dy2)
+ ef = 0.

Combining the like terms, we get

bcex2
2 − (be + fc − da)(cx2

2 + dx2y2) + (fc2x2
2 + 2cdfx2y2 + fd2y2

2) = 0

(3.8) cax2
2 + (ad + fc − be)x2y2 + fdy2

2 = 0.

The last equation (3.8) is a necessary and sufficient condition for (x2 : y2)
being irregular of (3.1).

For the second case, we have the same conclusion for (x3 : y3). �

From the argument above, we also have

Lemma 3.3. There are at most two irregular (xi : yi) of (3.1) for each
i = 1, 2, 3. (0 : 1) and (1 : 0) are regular of (3.1).

Lemma 3.4. For each fixed regular (x1 : y1) of (3.1), the following relation
produces an automorphism of CP1

(3.9)
(

x3
y3

)
= K

(−ey1 − cx1 −dx1
ay1 bx1 + fy1

)(
x2
y2

)
, K ∈ C∗

which sends regular values to regular values of (3.1). In particular,
(x1 : y1) = (x2 : y2) = (0 : 1) (respectively (1 : 0)) corresponds to (x3 : y3) =
(0 : 1) (respectively (1 : 0)).
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Proof. Consider∣∣∣∣−ey1 − cx1 −dx1
ay1 bx1 + fy1

∣∣∣∣ = −bcx2
1 − (be + fc − da)x1y1 − fey2

1.

Since (x1 : y1) is a regular value, the above expression is non-zero by (3.5).
Hence, (3.9) is an automorphism of CP1. Clearly, (3.9) satisfies Equation
(3.1). By Lemma 3.1, the mapping (3.9) sends regular values of (3.1) to
regular values of (3.1). The last statement of the lemma is obvious. �

Remark 3.5. Equation (3.9) is equivalent to Equation (3.1).
If we write (3.1) as

(ay1x2 + bx1y2 + fy1y2)x3 + (dx1y2 + ey1x2 + cx1x2)y3 = 0.

Then (x3, y3) = K(−dx1y2 − ey1x2 − cx1x2, ay1x2 + bx1y2 + fy1y2) which
is (3.9). Hence, if (x1 : y1) and (x2 : y2) are regular of (3.1), then there
is a unique (x3 : y3) solved in terms of (x1 : y1) and (x2 : y2). We
call such a procedure “fixing two variables to solve the other” and call
(x1 : y1), (x2 : y2), (x3 : y3) “solved variables”.

Definition 3.6. Let G be a graph from a simple arrangement and T be a
connected component in G′ which is a forest. Then T is a tree. We call a
vertex of T an end vertex if it is also a vertex of a star or free simple net.

A length of the reduced path P from vertex v1 to v2 is the number of the
edges in P . The distance from v1 to v2 is the smallest length of the reduced
path among all reduced paths from v1 to v2. The closest vertex different
from v1 to v1 is the vertex whose distance from v1 is the smallest among all
vertices connecting v1 by reduced paths.

Lemma 3.7. Let G be a graph from a simple arrangement and T be a tree
in G′. Then

(a) Each end vertex of T connects only one edge of star or free simple net.

(b) For any two vertices of T , there is exactly one reduced path connecting
them.

Proof. (a) is clear since the stars and free simple nets are pairwise disjoint.
Since T is a tree, there is a path connecting any two vertices. If there

are two reduced paths connecting two vertices, then these two reduced paths
contain a circle. It is a contradiction. Hence, (b) is true. �
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Lemma 3.8. (Lattice–Isotopy Theorem [12]) If two arrangements are con-
nected by a one-parameter family of arrangements which have the same lat-
tice, the complements are diffeomorphic, hence of the same homotopy type.

Now, we state and prove our main theorem.

Main Theorem 3.9. Let A∗
0 and A∗

1 be two simple projective arrangements
in CP2. If the lattices of A0 and A1 are isomorphic, then the complements
M(A∗

0) and M(A∗
1) are diffeomorphic to each other.

Proof. We represent the two arrangements as A∗
1 = {H1, H2, . . . , Hn} and

A∗
0 = {G1, G2, . . . , Gn} where Hi = (hi1, hi2, hi3) and Gi = (gi1, gi2, gi3)

(Here, we use the coefficient vector of the defining equation to represent
the hyperplane.) are in CP2. We shall construct a one-parameter family
of arrangements A∗(t) such that A∗(0) = A∗

0, A∗(1) = A∗
1 and L(A(t)) ≡

L(A0) for all t ∈ [0, 1].
Let A∗ = {F1, F2, . . . , Fn} where Fi = xiGi + yiHi for some xi, yi ∈ C

such that Fi is in CP2, i = 1, 2, . . . , n. Let I = {(i, j, k) : 1 ≤ i < j < k ≤
n}. So |I| =

(
n
3

)
. Consider any triple (Fi, Fj , Fk), (i, j, k) ∈ I. Denote the

matrix 
 xigi1 + yihi1 xigi2 + yihi2 xigi3 + yihi3

xjgj1 + yjhj1 xjgj2 + yjhj2 xjgj3 + yjhj3
xkgk1 + ykhk1 xkgk2 + ykhk2 xkgk3 + ykhk3




by [FiFjFk] and its determinant by |FiFjFk|. We now can write

|FiFjFk| = |GiGjGk|xixjxk + |HiGjGk|yixjxk + |GiHjGk|xiyjxk(3.10)
+ |GiGjHk|xixjyk + |GiHjHk|xiyjyk + |HiGjHk|yixjyk

+ |HiHjGk|yiyjxk + |HiHjHk|yiyjyk.

Since two distinct lines in CP2 meet exactly at one point, to get L(A) ≡
L(A0), it is sufficient to have the following: For any (i, j, k) ∈ I,

(3.11) |FiFjFk| = 0 if and only if |GiGjGk| = 0.

Let l =
∑

j≥3
(

j
3

)
tj(A∗

1), we need to have l equations and
(

n
3

)− l inequalities

(3.12) P1 = 0, . . . , Pl = 0.

(3.13) Q1 �= 0, . . . , Q(
n
3

)
−l

�= 0.
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Both Pi and Qj have the forms like (3.10). But for Pi, the first term and last
term are zero since |GiGjGk| = |HiHjHk| = 0 by (3.11). Among P1, . . . , Pl

at most c(A∗
1) =

∑
j≥3(j − 2)tj(A∗

1) of them are independent. To see this,
we consider a j-tuple point v (j ≥ 3). Let F1, . . . , Fj be the lines of A∗

passing though v. We have
(

j
3

)
equations (|FiFjFk| = 0, . . . , etc.). Since

{F1, . . . , Fj} can be linearly generated by F1 and F2, the
(

j
3

)
equations are

reduced equivalently to j − 2 equations |F1F2Fk| = 0 for i = 3, . . . , j. Now,
consider all j−tuple points (j ≥ 3). We have a system of c(A∗

1) equations,
say {P1 = 0, . . . , Pc(A∗

1) = 0} which is equivalent to {P1 = 0, . . . , Pl = 0}.
As we observed before, each Pr can be written as

Pr = aryirxjrxkr + brxiryjrxkr + crxirxjrykr + drxiryjrykr + eryirxjrykr

(3.14)

+ fryiryjrxkr

where ar = |HirGjrGkr| etc. Replacing A∗ by φ(A∗) if necessary where
φ : CP2 → CP2 is a complex analytic automorphism, we assume without
loss of generality that any one (two) line(s) in A∗

0 and any two (one) line(s)
in A∗

1 do not intersect at a point. This means that arbrcrdrerfr �= 0 for all
r = 1, . . . , c(A∗

1).
Note that Pr is viewed as a polynomial in ((x1 : y1), . . . , (xn : yn)) ∈

(CP1)n. For each r, indices ir, jr, kr are pairwise distinct and (ir, jr, kr) �=
(is, js, ks) for r �= s where 1 ≤ ir, jr, kr, is, js, ks ≤ n and 1 ≤ r, s ≤ c(A∗

1).
Since A∗

1 is a simple projective arrangement in CP2, there
are the disjoint stars and simple nets, say St(v1), . . . , St(vm) and
Net(B1, C1), . . . , Net(Bn, Cn) in G such that

G′ = G −
{( m⋃

i=1

(
ESt(vi) ∪ {vi}

))
∪
( n⋃

j=1

(
ENet(Bj ,Cj)

∪ {v|v ∈ V Net(Bj ,Cj) − Nj}
))}

is a forest, where Nj is the node of the net Net(Bj , Cj), j = 1, ...n.
We shall prove that we can solve all variables in terms of some variables

(in the sense of Remark 3.5) without ambiguity. Here, we shall use the
notation in Definition 2.6.

Case 1: Suppose m = 1, n = 0, i.e. there is only a star St(v).
Assume that v is a vertex of multiplicity k in A∗

1. Since k ≥ 3 by
definition of G, there are k variables appearing in k − 2 equations of
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(3.14). Without loss of generality, we suppose that these variables are
(x1 : y1), . . . , (xk : yk) and (x1 : y1) and (x2 : y2) appear in each of
these k − 2 equations. Thus, we can fix (x1 : y1) and (x2 : y2) to solve
(x3 : y3), . . . , (xk : yk).

The rest of the unsolved variables and equations in (3.14) correspond to
the graph G′ which is a forest. A connected component T is a tree of G′.
We consider these trees respectively. Assume that the end vertices of T are
v1, v2, . . . , vt.

If t = 1, that is, there is only one end vertex, say v1, which is also
the vertex of the edge E in the star. By Lemma 3.7, v1 only connects E
in star. We fix the variable corresponding to E and any another variable
corresponding to the edge other than E issuing from v1. Then we can solve
all variables about the tree by fixing these two variables.

If t ≥ 2, we choose any end vertex, say v1. From Lemma 3.7, v1 connects
only one edge E of the star and there is only one reduced path from v1
to another end vertex. We choose the closest end vertex from v1, say v2.
Assume that P1 is this reduced path connecting v1 and v2. Along this
reduced path from v1 to v2, we can fix the variable corresponding to the
edge E of star and any other variable corresponding to the edge issuing from
v1 on P1 and solve other variables corresponding to the edges on P1. At v2,
there are only two edges (one from the star, one from the path P1) whose
variables are solved. Hence, we can fix these two solved variables to solve
others corresponding to the edges issuing from v2. Then we consider other
end vertices not in P1. Pick one, say v3, which is connected to a vertex on
P1, say w1. Assume a path P2 is a shortest path which connects w1 and v3.
At w1, there are only two edges from P1 or star whose variables are solved.
We use these two solved variables to solve other variables corresponding to
the edges along the path P2 from w1 to v3. At v3, by Lemma 3.7, v3 connects
only one edge in star and one edge in P2 whose variables are solved. Fixing
the variables corresponding to these two edges, we can solve other variables
corresponding to the edges issuing from v3. Now, we consider other end
vertices not in P1 and P2. Pick one, say v4, which is connected to a vertex
on P1 ∪ P2, say w2. Assume a path P3 is a shortest path which connects w2
and v4. Similar to the above, we can solve other variables corresponding to
the edges along the path P3 from w2 to v4. We continue the same procedure
until last end vertex, say vt. Since T is a tree, we can assume that there
is only one path, say Pt−1, connecting some vertex, say wt−2, on the path
P1 ∪ P2 ∪ · · · ∪ Pt−2 and vt. Otherwise, we will find a circle in T . Thus, at
wt−2, there are only two variables solved which correspond to the edges on
P1 ∪P2 ∪ · · · ∪Pt−2 or in the star . We fix these two variables corresponding
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to these two edges and solve other variables along Pt−1. At vt, we can fix two
variables corresponding to the edge of star and other variable corresponding
to the edge on Pt−1 and solve other variables. Thus, we can solve all variables
in terms of some variables without ambiguity.

Case 2: Suppose m = 0 and n = 1, i.e. there is only a free simple net
Net(B, C).

Without loss of generality, let B, (v0, v1, . . . , vq), (vq = v0), be the circle
with a free vertex v0.

If C is a vertex v of multiplicity k in A∗
1. Since k ≥ 3 by definition of G,

there are k variables appearing in k − 2 equations of (3.14) corresponding
to v. We can fix any two variables, say (x1 : y1) and (x2 : y2), to solve the
other variable (x3 : y3), . . . , (xk : yk) corresponding to v.

Now, we consider base B. If each vertex on B is free, then there is
not any edge between B and v. Choosing any vertex on B, say vi. We
fix any two variables corresponding to the edges issuing from vi and solve
the other variables related. Next step, we consider vi+1 (or vi−1). Since
vi+1 (or vi−1) is free, there is only one solved variable corresponding to the
edge (vi, vi+1) (or (vi, vi−1) ) issuing from vi+1 (or vi−1). We use this solved
variable and fix any other variable to solve all other variables corresponding
to the edges issuing from vi+1 (or vi−1). Continuing this step till last vertex,
say vq(= v0). Since vq is free, there are only two edges (vq, vq−1) and (v0, v1)
whose variables are solved. We use these two variables to solve all other
variables at vq.

If there is a non-free vertex on B, say vi, (i �= q and 0). Assume the
multiplicity of vi is t(≥ 3). Similarly, there are t variables appearing in t−2
equations of (3.14) corresponding to vi. Since vi is adjacent to v, the variable
corresponding to the edge (v, vi) is solved, we can use the solved variable,
say, (x1 : y1) and fix any other variable, say, (xk+1 : yk+1) to solve all other
variables (xk+2 : yk+2), . . . , (xk+t−1 : yk+t−1) at vi. At the following step,
we choose vertex vi+1 (or vi−1) along the circle B. If vi+1 (or vi−1) is free,
then there is only one solved variable corresponding to the edge (vi, vi+1)
(or (vi, vi−1)) issuing from vi+1 (or vi−1). We use this solved variable and
fix any other variable to solve all other variables corresponding to the edges
issuing from vi+1 (or vi−1). If vi+1 (or vi−1) is not free, then there are only
two edges (vi, vi+1) and (v, vi+1) (or (vi, vi−1) and (v, vi−1)) whose variables
are solved. We use these two solved variables corresponding to the edges
(v, vi+1) and (vi, vi+1) (or (v, vi−1) and (vi, vi−1) respectively) to solve other
variables corresponding to the edges issuing from vi+1 (or vi−1). We apply
the same procedure till vq(v0). Since v0 is free, it does not connect C by
an edge. Hence, there are only two edges on B passing through v0. Thus,
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we can use the solved variables corresponding to these two edges (v0, v1)
and (vq, vq−1) to solve the other variables corresponding to the edges issuing
from v0.

If C is a circle, say, (w0, w1, . . . , wp), (wp = w0). Let k = maximum
of multiplicities of all vertices in C. Choosing any vertex wi, i �= 0, p with
multiplicity k(≥ 3) in C (we can rerange the indices so that i �= 0, p). Then
there are k variables appearing in k − 2 equations of (3.14) corresponding
to wi. Without loss of generality, we suppose that (x1 : y1) and (x2 : y2)
appear in each of these k − 2 equations. We can fix (x1 : y1) and (x2 : y2) to
solve the other variables (x3 : y3), . . . , (xk : yk). At next step, we choose the
vertex wi+1 (or wi−1) along C and use one solved variable from (wi, wi+1)
(or (wi, wi−1)) and fix any other variable corresponding to the edge issuing
from wi+1 or (wi−1) to solve the variables corresponding to the edges issuing
from wi+1 (or wi−1). We apply same procedure till wp(w0). Since C is a
circle and wp = w0, there are only two edges (w1, w0) and (wp−1, wp) whose
variables are solved at w0. We use these two solved variables from (w1, w0)
and (wp−1, wp) to solve the variables corresponding to the edges issuing from
w0.

Now, we consider base circle B, (v0, v1, . . . , vq), (vq = v0), with a free
vertex v0. Since Net(B, C) is simple, there is at most one edge between a
vertex v of B and C. If all vertices of B are free, then there is not any edge
between B and C. In other words, B and C are not related. Notice that
B and C are circles. Thus, we can solve the variables corresponding to the
edges on B is the same manner as solving the variables corresponding to
the edges on C as above. If there is some non-free vertex on B, choosing a
non-free vertex, say vi ∈ B, which is connected C by one edge, say (wj , vi),
whose variable is solved, we use the solved variable from (wj , vi) and fix any
other variable to solve other variables corresponding to the edges issuing
from vi. At the following step, we choose vertex vi+1 (or vi−1) from B. If
vi+1 (or vi−1) is free, then there is only one solved variable corresponding
to the edge (vi, vi+1) (or (vi, vi−1)) issuing from vi+1 (or vi−1). We use
this solved variable and fix any other variable to solve all other variables
corresponding to the edges issuing from vi+1 (or vi−1). If vi+1 (or vi−1) is
not free, since Net(B, C) is simple, there is only one edge connecting vi+1
(or vi−1) and some vertex in C, say wt. Thus, there are only two variables
solved corresponding to the edges (vi+1, vi) and (wt, vi+1) (or (vi−1, vi) and
(wt, vi−1)). We use these two solved variables to solve other variables issuing
from vi+1 (or vi−1). We apply the same procedure till vq(v0). Last step, we
solved variables about free vertex v0 where there are only two vertices v1
and vq−1 connecting it in B. Hence, We can use these two solved variables
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from (v1, v0) and (vq−1, vq) to solve the variables corresponding to the edges
issuing from v0.

The rest of the unsolved variables and equations in (3.14) correspond to
the graph G′ which is a forest. We can consider these trees in G′ respectively.
Since Net(B, C) is a simple net, there are not two vertices from Net(B, C)
which connect a same vertex in V G−V Net(B,C). Each end vertex corresponds
to only one edge whose variable is solved in simple net. Thus, other unsolved
variables in G′ have the same situation as the variables of G′ in Case 1.
Hence, they can be solved by same procedure as Case 1.

Case 3: Suppose m ≥ 1 or n ≥ 1.
From Case 1 and Case 2, we know that we can solve the variables from all

stars or all free simple nets respectively. The rest of the unsolved variables
and equations in (3.14) correspond to the graph G′ which is a forest. We
consider the trees of G′ respectively. By Lemma 3.7, each end vertex of
the tree connects only one edge of star or free simple net and any two end
vertices are connected by exact one reduced path. Thus, other unsolved
variables in G′ have the same situation as the variables of G′ in Case 1.
We can consider the end vertices in a tree and apply the same procedure as
Case 1 or Case 2 to solve all variables in terms of some variables without
ambiguity since G′ is forest.

All variables are presented as

((x1 : y1), . . . , (xn : yn)) = f((x1 : y1), . . . , (xp : yp))

where each component of f is a composition by some maps as (3.9). So,
they are homogeneous polynomial of (x1 : y1), . . . , (xp : yp).

Let U := (CP1)p−{((x1 : y1), . . . , (xp : yp)) : for some 1 ≤ i ≤ p, (xi : yi)
is irregular of some equation of (3.14)}. By Lemma 3.3, U is an open
connected set of (CP1)p. By Lemma 3.4, f defines an embedding from U ⊂
(CP1)p to (CP1)n. Since U is irreducible, so is f(U) irreducible. Observe
that (0 : 1)n = ((0 : 1), . . . , (0 : 1)) and (1 : 0)n = ((1 : 0), . . . , (1 : 0)) are
contained in f(U). We deduce that (0 : 1)n and (1 : 0)n are in the same
irreducible component of {P1 = 0, . . . , Pc(A∗

1) = 0}. Recall that irreducible
variety minus a subvariety is still a connected set. If ((x1 : y1), . . . , (xn :
yn)) = ((1 : 0), . . . , (1 : 0)) (respectively ((0 : 1), . . . , (0 : 1))), then A∗ is
A∗

0 (respectively A∗
1). Therefore, condition (3.12) is satisfied at these two

points, so there is a curve from ((1 : 0), . . . , (1 : 0)) to ((0 : 1), . . . , (0 : 1))
such that (3.12) is satisfied for any point lying in the curve. This means that
we have constructed a one-parameter family of arrangements A∗(t) such that
A∗(0) = A∗

0, A∗(1) = A∗
1 and L(A(t)) ≡ L(A0) for all t ∈ [0, 1]. Now, we can

apply Lattice–Isotopy Theorem and finish the proof of our Main Theorem. �
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The following corollary is an immediate application of Main Theorem
3.9.

Corollary 3.10. The homotopy groups of the complement M(A∗) of a sim-
ple arrangement in CP2 depend only on the lattice of A.

From the proof of Main Theorem, we can generalize the result easily.

Definition 3.11. (a) For a sequence of reduced circles B0, B1, . . . , Bn (B0
can be a vertex), a generalized net of B0, B1, . . . , Bn is a subgraph of G,
denoted by Net(B0, B1, . . . , Bn), where

V Net(B0,B1,...,Bn) =
n⋃

i=0

V Bi
⋃

N,

ENet(B0,B1,...,Bn) = {(v, u) ∈ EG|v, u ∈ V Net(B0,B1,...,Bn)},

where N = {v ∈ V G|v connects only one vertex in
⋃n

i=0 V Bi by an edge in
EG}.

Bi, i = 0, 1, . . . , n and N are called base-i and node respectively.
The vertex v in V Net(B0,B1,...,Bn) which connects a vertex of V G −

V Net(B0,B1,...,Bn) by an edge is called end vertex.
(b) If any two non-adjacent vertices of the base-i Bi, i = 0, . . . , n are not

connected by an edge, any two vertices of two base-i Bi and base-j Bj , i, j =
0, 1, . . . , n−2 do not connect a same vertex in base-k Bk, (k > i and j) by two
edges, moreover, any two vertices in the net cannot be connected to a same
vertex in V G − V Net(B0,B1,...,Bn) by two edges, we call Net(B0, B1, . . . , Bn)
generalized simple net.

(c) The vertex v in V Bi is called free if there is no edge connecting v
and V Bj (j < i). The generalized simple net with free vertex in V Bi , for all
i = 1, . . . , n is called generalized free simple net.

Definition 3.12. An arrangement A∗ in CP2 is called generalized sim-
ple if the graph G from A∗ has the following property: There are fi-
nitely many stars and generalized free simple nets, say St(v1), . . . , St(vm)
and Net(B10 , B11 , . . . , B1k1

), . . . , Net(Bn0 , Bn1 , . . . , Bnkn
), which are pair-

wise disjoint in G and

G′ = G −
{(

m⋃
i=1

(
ESt(vi) ∪ {vi}

))
∪
(

n⋃
j=1

(
E

Net(Bj0 ,Bj1 ,...,Bjkj
)

∪
{

v ∈ V
Net(Bj0 ,Bj1 ,...,Bjkj

)|v is not an end vertex
}))}
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is a forest.
Clearly, a nice graph is simple and a simple graph is generalized simple.

Now, Main Theorem can be generalized as follows

Theorem 3.13. Let A∗
0 and A∗

1 be two generalized simple projective
arrangements in CP2. If the lattices of A0 and A1 are isomorphic, then
the complements M(A∗

0) and M(A∗
1) are diffeomorphic to each other.

Proof. We notice that the method in Case 2 dealing with the net in the
proof of Main Theorem can be used in generalized simple net here. Hence,
Theorem 3.13 still holds. �
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