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Diameter control under Ricci flow

Peter Topping
1

We estimate the diameter of a closed manifold evolving under Ricci
flow in terms of a scalar curvature integral. The proof uses a new
maximal function and extends some of Perelman’s recent ideas.

1. Introduction.

Given a closed manifold M, a smooth family of Riemannian metrics g(t) for
t ∈ [0, T ] is said to be evolving under Ricci flow if

(1.1)
∂g

∂t
= −2Ric(g).

This geometric flow was introduced by Hamilton [2] together with the ‘nor-
malised Ricci flow’

(1.2)
∂g

∂t
= −2Ric(g) +

2
n

(∫
−RdV

)
g,

in which the volume is kept fixed by allowing the metric to drift by an
appropriate homothetic scaling. Here, Ric and R are the Ricci and scalar
curvature respectively. The two flows then differ only by a space-scaling
together with a reparameterisation of time. Given an ‘initial’ metric g0,
Hamilton [2] and DeTurck [1] proved that there is a unique solution to these
flows over some short time interval, with g(0) = g0.

As the metric evolves during these flows, the distance between two points,
and in particular, the diameter of the manifold, is liable to change. If one
takes M to be an upper bound for |Ric| throughout M × [0, T ], then one
obtains some control immediately from the equation (1.1): for any vector
X, we have ∣∣∣∣ ∂∂t ln |X|

∣∣∣∣ =
1
2

∣∣∣∣ ∂∂t ln g(X,X)
∣∣∣∣ ≤M,
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and so, for t ∈ [0, T ]

diam(M, g(0))e−Mt ≤ diam(M, g(t)) ≤ diam(M, g(0))eMt.

(See [3, Section 17] for improved estimates on how distances can shrink.)
Unfortunately, if a Ricci flow develops a singularity in finite time, then
the Ricci curvature must be unbounded (see [8]) so this diameter estimate
degenerates as we take T closer to the time of the singularity.

In this paper, we obtain improved control of the diameter of the flow,
without assuming upper curvature bounds throughout. One should keep in
mind that currently, it is still open as to whether the diameter must remain
bounded over finite time intervals for the unnormalised flow (1.1), although
severe constraints on any rate of blow-up can be established. The equivalent
question for the normalised flow (1.2) is not as subtle; if one starts with the
initial manifold Sn−1 × S1, then at a later time t, one sees the manifold
Sn−1

ε1/n ×S1
ε−1+1/n , with ε(t) = (1− 2(n−2)

n t)
n
2 , where the subscripts denote the

‘radii’ of the spheres. The flow then clearly develops a singularity in finite
time, and shortly before the singularity, the diameter is roughly πε−1+1/n

which is blowing up. Nevertheless, it is possible to establish interesting
estimates in this case also.

The starting point of the proof is Perelman’s W-entropy [6, Section 3]
and we give an exposition of this theory using Perelman’s notation, but
with more detail added which could be compared to [4] and [10]. We use
Perelman’s ideas in conjuction with a new maximal function (see Section 4)
which essentially allows us to develop a theory analagous to Perelman’s ‘no
local collapsing’ result [6, Section 4] replacing pointwise bounds for the full
curvature tensor in Perelman’s work by much weaker integral bounds on the
scalar curvature, in any dimension.

2. The estimates.

We will give slightly different results for Ricci flow and normalised Ricci
flow. However, it is not worth distinguishing the normalised flow if it differs
only by a uniformly controlled homothetic scaling over finite time intervals,
so we consider only normalised flows when the Ricci flow with the same
initial metric has volume decreasing to zero in finite time.

Theorem 2.1. For n ≥ 3, let (Mn, g(t)) be a smooth closed normalised
Ricci flow (that is, a solution to (1.2)) on a maximal time interval [0, T ) with
0 < T ≤ ∞, and suppose that the volume of the Ricci flow with the same
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initial metric converges to zero in finite time. Then there exists C = C(g(0))
such that

(2.1) diam(Mn, g(t)) ≤ C

∫
M

|R|n−1
2 dV,

for t sufficiently close to T (or t sufficiently large in the case that T = ∞)
where R and dV are computed with respect to g(t).

Remark 2.2. This estimate is sharp, as can be seen via the flow of Sn−1 ×
S1. We saw in the previous section that the flow at a later time is Sn−1

ε1/n ×
S1

ε−1+1/n with ε(t) ↓ 0 as t ↑ T . For small ε, the diameter is then roughly
πε−1+1/n and since the scalar curvature is C(n)(ε1/n)−2, the right-hand side
of (2.1) may be computed to be C(n)ε−1+1/n.

Remark 2.3. Only the possibility of a flow which hasR ≡ 0 at some instant
in time forces us to require t close to T . The dependence of C on g(0)
implicitly includes dependence on n and M.

For the unnormalised flow, we require an extra hypothesis before claim-
ing an estimate like (2.1) because of the possibility of starting with a flat
manifold, which would not move under Ricci flow.

Theorem 2.4. For n ≥ 3, let (Mn, g(t)) be a smooth closed Ricci flow (that
is, a solution to (1.1)) on a time interval [0, T ) with 0 < T <∞. Then there
exists C = C(g(0), T ) such that for all t ∈ [0, T ), if diam(Mn, g(t)) ≥ C,
then

(2.2) diam(Mn, g(t)) ≤ C

∫
M

|R|n−1
2 dV,

with R and dV computed with respect to g(t).

The proofs of these theorems will be given in Section 5.

Remark 2.5. Theorem 2.4, as stated, only gives information in the case
that the diameter blows up, since the constant C is allowed to depend on
g(0). However, if one knew that the right-hand side of (2.2) remained finite
under the Ricci flow, then one could deduce that the diameter remained
bounded via a contradiction argument. Moreover, it is possible to deter-
mine the dependency of C on g(0) explicitly in terms of the dimension and
elementary geometric quantities such as its volume, the infimum of its scalar
curvature and its entropy (see Section 3).
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Remark 2.6. We will show in Section 5.3 that in the case that n = 3, one
can (after adjusting C) replace the conclusion (2.2) by the simpler conclusion

(2.3) diam(Mn, g(t)) ≤ C

∫
M
RdV.

This integral of R – the total scalar curvature – turns out to be precisely the
rate of decrease of volume, −dV

dt , under the Ricci flow (see for example [3] or
[12]). In particular, if the diameter becomes unbounded under the flow, the
estimate (2.3) forces volume to be dissipated at a controlled, unbounded rate.

Our results have some relation to diameter estimates for surfaces im-
mersed in R

3 as proved in [11, Lemma 1] and [9]. As we shall see, Perelman’s
entropy estimates give analogues of a key estimate from that work.

3. Perelman’s entropy.

One of the ingredients of the proof is Perelman’s W-entropy [6]. Given
a closed manifold M equipped with a Riemannian metric g, a function
f : M → R and a number τ > 0, Perelman defines

W(g, f, τ) :=
∫
M

[
τ(R + |∇f |2) + f − n

]
u dV,

where u is defined by

(3.1) u := (4πτ)−
n
2 e−f .

We call the arguments g, f and τ compatible if

(3.2)
∫
M
u dV ≡

∫
M

e−f

(4πτ)
n
2

dV = 1.

The following facts are required in the work of Perelman [6]. Prior work of
Rothaus [7] provides detail for the proof of the first part.

Lemma 3.1. For any smooth Riemannian metric g on M, and τ > 0, the
infimum of W(g, f, τ) over all compatible f (that is, those f satisfying (3.2))
is attained by a smooth compatible f .

Defining µ as this infimum,

(3.3) µ(g, τ) := inf
f

W(g, f, τ),

the function µ(g, τ) is bounded below as τ varies within any finite interval
(0, τ0].
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Given this lemma, we may define, for τ0 > 0,

(3.4) ν(g, τ0) := inf
τ∈(0,τ0]

µ(g, τ).

Perelman has observed that W is monotonic under Ricci flow coupled
with an appropriate flow for f and τ , provided a solution can be found:

Proposition 3.2. When g, f and τ evolve according to

(3.5)




∂g
∂t = −2Ric
dτ
dt = −1
∂f
∂t = −∆f + |∇f |2 −R+ n

2τ

the functional W increases, and

d

dt
W(g, f, τ) = 2τ

∫
M

∣∣Ric+Hess(f) − g
2τ

∣∣2u dV ≥ 0.

Remark 3.3. Under the evolution of the previous proposition, u satisfies
the linear backwards heat equation

(3.6) �∗u := −ut − ∆u+Ru = 0,

One consequence is that the compatibility constraint (3.2) is preserved under
the evolution in (3.5), because noting that ∂

∂tdV = −RdV (see, for example,
[12]) we have

d

dt

∫
M
u dV = −

∫
M

�∗u dV = 0.

We shall use the W-entropy to prove the following result, which is a
rephrasing of some of Perelman’s work [6, Section 4]. With respect to a
given metric, we use the notation B(p, s) to denote the open geodesic ball
centred at p ∈ M of radius s > 0, and write

V (p, s) := V ol(B(p, s)); K(p, s) =
V (p, s)
sn

,

calling K the volume ratio.

Theorem 3.4. Suppose T0 > 0, r0 > 0 and p ∈ M. Then if g(t) is a smooth
Ricci flow for t ∈ [0, T ] with T ∈ (0, T0], and r ∈ (0, r0], then computing
volumes, curvature and geodesic balls at time T , we have

(3.7) γ ≤ V (p, r)
V (p, r

2)
+

r2

V (p, r
2 )

∫
B(p,r)

|R|dV + ln [K(p, r)] ,

for some γ = γ(g(0), r0, T0) ∈ R.
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In the proof of this theorem, the monotonicity of W will give a lower
bound for W under the flow, which will then be turned into geometric in-
formation via the following lemma.

Lemma 3.5. For any smooth metric g on M, r > 0, p ∈ M and λ > 0,

µ(g, λr2) ≤ 36λ
V (p, r)
V (p, r

2)
+

λr2

V (p, r
2 )

∫
B(p,r)

|R|dV + ln
[
V (p, r)

(4πλr2)
n
2

]
− n.

The proof of such a result is hinted at in [6, Section 4]. Various expan-
sions of those hints are available (see [4] or [10] for example). We give an
alternative exposition in an appendix to this paper. One may set λ = 1 in
the lemma if one is prepared to accept a less clean version of (3.7).

Proof of Theorem 3.4. First, let us specialise Lemma 3.5 to the case λ = 1
36

and g = g(T ), and estimate
(3.8)

µ

(
g(T ),

1
36
r2
)

≤ V (p, r)
V (p, r

2)
+

r2

V (p, r
2)

∫
B(p,r)

|R|dV +ln
[
V (p, r)
rn

]
−n

2
ln
π

9
−n.

By Lemma 3.1, there exists a smooth fT : M → R compatible with g(T )
and τ = 1

36r
2 such that

(3.9) W
(
g(T ), fT ,

1
36
r2
)

= µ

(
g(T ),

1
36
r2
)
.

We set τ = T + 1
36r

2 − t, and for our given Ricci flow g(t), find the
f : M × [0, T ] → R with f(T ) = fT completing a solution of (3.5). To
see that this is possible, we may change variables from f to u which solves
a backwards linear heat equation as discussed in Remark 3.3, where we also
saw that g(t), f(t) and τ remain compatible for all t. Using the definition
of µ, Proposition 3.2 and (3.9), we then have

µ

(
g(0),

1
36
r2 + T

)
≤ W

(
g(0), f(0),

1
36
r2 + T

)
≤ W

(
g(T ), f(T ),

1
36
r2
)

= µ

(
g(T ),

1
36
r2
)
,

which coupled with (3.8) and the definition of ν from (3.4) gives

ν

(
g(0),

1
36
r20 + T0

)
+
n

2
ln
π

9
+ n

≤ V (p, r)
V (p, r

2)
+

r2

V (p, r
2)

∫
B(p,r)

|R|dV + ln
[
V (p, r)
rn

]
.

�
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Remark 3.6. One might compare Lemma 3.5 with [11, inequality (22)] and
its predecessor in [9].

4. The maximal function theorem.

In Perelman’s first approach to his ‘no local collapsing’ results, one uses
a theorem such as Theorem 3.4 to control the volume ratio K(p, r) from
below, under pointwise constraints on the curvature tensor |Rm| (or more
generally on the Ricci curvature). In contrast, we want to use Theorem 3.4
under weaker integral constraints on the scalar curvature. In this case, we
can no longer control the collapsing directly at a given scale. However, we
turn out to be able to use the same theorem to pass information on the
amount of collapsing between different scales.

This technique will be used in the proof of Theorem 4.2 below, which is
phrased in terms of the following new maximal function.

Definition 4.1. For smooth f : M → R, we define the maximal function
Mf : M× (0,∞) → R of f to be

(4.1) Mf(p, r) := sup
s∈(0,r]

s−1 [V (p, s)]−
n−3

2

(∫
B(p,s)

|f |dV
)n−1

2

Theorem 4.2. Suppose n ≥ 3, T0 > 0, r0 > 0 and (Mn, g(t)) is a smooth
closed Ricci flow (that is, a solution of (1.1)) for t ∈ [0, T ] with T ∈ (0, T0].
Then there exists ξ = ξ(g(0), r0, T0) > 0 such that for all p ∈ M and
r ∈ (0, r0],

K(p, r) ≤ ξ =⇒MR(p, r) > ξ,

when we compute quantities with respect to the metric g(T ).

This can be considered a refined version of the idea that we cannot
simultaneously have small curvature and small volume ratio K.

We will prove this theorem with an explicit ξ. Let ω be the volume of
the unit ball in R

n. Given r0, T0 and an initial metric g(0), let γ be the
number from Theorem 3.4. Then we set

(4.2) ξ := min
{ω

2
, eγ−2n+1

}
.

Most of the proof of Theorem 4.2 will be contained in the following, de-
scribing how the property of small volume ratio K is propagated to smaller
scales when the curvature is small in a weak sense.
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Lemma 4.3. Given n ≥ 3, T0 > 0, r0 > 0 and a smooth closed Ricci
flow (Mn, g(t)) (that is, a solution of (1.1)) for t ∈ [0, T ] with T ∈ (0, T0],
let us define ξ as in (4.2). Computing with respect to the metric g(T ), if
MR(p, r) ≤ ξ for some p ∈ M and r ∈ (0, r0], then for all s ∈ (0, r],

K(p, s) ≤ ξ =⇒ K(p,
s

2
) ≤ ξ.

Before proving this lemma, we note how it implies the theorem.

Proof of Theorem 4.2. With n, T0, r0, T and g(t) satisfying the hypothe-
ses of the theorem, suppose that the theorem is false with ξ defined as in
(4.2). Then there exist p ∈ M and r ∈ (0, r0] such that K(p, r) ≤ ξ and
MR(p, r) ≤ ξ. By applying Lemma 4.3, we learn that K(p, r

2) ≤ ξ. Further
applications tell us that K(p, r

4) ≤ ξ, and indeed that for all m ∈ N,

K(p, 2−mr) ≤ ξ ≤ ω

2
,

by (4.2). However, since (M, g(T )) is a smooth Riemannian manifold, we
must have lims↓0K(p, s) = ω, a contradiction. �

Proof of Lemma 4.3. Suppose we are in the situation of the lemma, and
that MR(p, r) ≤ ξ and K(p, s) ≤ ξ with s ∈ (0, r]. We will prove that
K(p, s

2 ) ≤ ξ by considering two separate cases depending on the relative
sizes of V (p, s

2 ) and V (p, s).

Case A. Suppose that V (p, s
2) ≤ ξ

2
n−1 2−ns

2n
n−1 [V (p, s)]

n−3
n−1 .

Then we compute

K
(
p,
s

2

)
:= 2ns−nV (p,

s

2
)

≤ ξ
2

n−1 s
2n

n−1
−n [V (p, s)]

n−3
n−1

= ξ
2

n−1 [K(p, s)]
n−3
n−1

≤ ξ
2

n−1 ξ
n−3
n−1

= ξ

as desired.

Case B. Suppose instead that V (p, s
2) > ξ

2
n−1 2−ns

2n
n−1 [V (p, s)]

n−3
n−1 .
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By definition of MR(p, r), the fact that MR(p, r) ≤ ξ and the fact that
we are in case B, we have∫

B(p,s)
|R|dV ≤ [MR(p, r)]

2
n−1 s

2
n−1 [V (p, s)]

n−3
n−1 ≤ ξ

2
n−1 s

2
n−1 [V (p, s)]

n−3
n−1

< 2ns−2V (p,
s

2
),

and combining with Perelman’s work through Theorem 3.4, and the fact
that K(p, s) ≤ ξ, we then have

γ ≤ V (p, s)
V (p, s

2)
+

s2

V (p, s
2)

∫
B(p,s)

|R|dV + ln [K(p, s)]

≤ V (p, s)
V (p, s

2)
+ 2n + ln ξ

By the definition of ξ in (4.2), we know that ln ξ ≤ γ − 2n+1, giving

2n ≤ V (p, s)
V (p, s

2 )
,

and hence,

K
(
p,
s

2

)
=

2nV (p, s
2)

sn
≤ V (p, s)

sn
= K(p, s) ≤ ξ.

�

Remark 4.4. Weaker arguments along the lines of those in this section
allow one to strengthen Perelman’s no collapsing result [6, Section 4] to
require only pointwise bounds on the scalar curvature rather than the full
curvature tensor |Rm|. See [12] for more details. Lei Ni has informed us
that Perelman has also made this remark privately, and that related facts
may be found in [5].

5. Proofs of the results of Section 2.

5.1. Proof of Theorem 2.1.

Although this theorem concerns the normalised Ricci flow, we may exploit
the scale-invariance of (2.1) and prove instead the following equivalent as-
sertion.



1048 P. Topping

Claim 5.1. For n ≥ 3, let (Mn, g(t)) be a smooth closed Ricci flow (that is,
a solution to (1.1)) for t ∈ [0, T0) for which V ol(M, g(t)) → 0 as t ↑ T0 <∞.
Then there exists C = C(g(0)) such that

(5.1) diam(Mn, g(t)) ≤ C

∫
M

|R|n−1
2 dV,

for t sufficiently close to T0.

Proof of Claim 5.1. With the flow g(t) and T0 of the claim, and r0 = 1, let
ξ be the number generated by Theorem 4.2. Since the volume converges to
zero, for T < T0 sufficiently close to T0, we may assume that V ol(M, g(T )) ≤
ξ, and in particular that for all p ∈ M, K(p, 1) = V (p, 1) ≤ ξ. By Theorem
4.2, we then find that MR(p, 1) > ξ for all p ∈ M. Unravelling the definition
of the maximal function, we can then be sure that for all p ∈ M, there exists
s = s(p) > 0 such that

ξ ≤ s−1 [V (p, s)]−
n−3

2

(∫
B(p,s)

|R|dV
)n−1

2

,

and by Hölder’s inequality,

(5.2) ξ ≤ 1
s

∫
B(p,s)

|R|n−1
2 dV.

We now have to pick appropriate points p at which to apply (5.2). Let a, b be
extremal points in M at time T , in that the distance from a to b with respect
to g(T ) achieves its maximum diam(M, g(T )). Let Σ be a shortest geodesic
between a and b. Clearly, Σ is covered by the balls {B(p, s(p)) : p ∈ Σ}.
However, we also have the following covering lemma.

Lemma 5.2. There exists a countable (possibly finite) set of points {pi} ⊂ Σ
such that the balls B(pi, s(pi)) are disjoint, and cover at least one third of
Σ.

Assuming this lemma for the moment, we have

1
3

diam ≤ length

(⋃
i

Σ ∩B(pi, s(pi))

)
≤
∑

i

2s(pi),
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and by (5.2), we may then conclude the proof of Claim 5.1 with

diam(M, g(T )) ≤ 6
∑

i

s(pi) ≤ 6
∑

i

1
ξ

∫
B(pi,s(pi))

|R|n−1
2 dV

≤ 6
ξ

∫
M

|R|n−1
2 dV.

�

For completeness, we give a proof of the covering lemma.

Proof of Lemma 5.2. First pick p1 ∈ Σ so that s(p1) ≥ 1
2 supp∈Σ s(p). We

define the rest of the sequence {pi} inductively. For i ∈ N, define

Ωi := {p ∈ Σ : B(p, s(p)) is disjoint from B(pj, s(pj)) for 1 ≤ j ≤ i}.

Given p1, . . . , pi, we pick pi+1 ∈ Ωi such that

(5.3) s(pi+1) ≥ 1
2

sup
p∈Ωi

s(p).

This inductive point-picking process may go on forever (in which case
s(pi) → 0) or may terminate if Ωi becomes empty. Either way, we can
be sure that for any q ∈ Σ, there must be non-trivial intersection between
B(q, s(q)) and at least one of the balls B(pi, s(pi)). Indeed, if this were not
the case, then surely the point picking process did not terminate (because
we could pick q as the next point in the sequence), but since s(pi) → 0, and
we could at any time have picked q (that is, q ∈ Ωi for all i) we cannot have
performed the point-picking to correctly satisfy (5.3).

Now, we assert that

(5.4) Σ ⊂
⋃
i

B(pi, 3s(pi)).

Indeed, for an arbitrary point q ∈ Σ, we saw above that B(q, s(q)) must
intersect at least one of the balls B(pi, s(pi)), so let us fix the least such i
for which this is true. (Note that if i > 1, then q ∈ Ωi−1.) By virtue of
the point picking rule (5.3), we must have s(pi) ≥ 1

2s(q), and hence since
B(q, s(q)) and B(pi, s(pi)) intersect,

dist(q, pi) ≤ s(q) + s(pi) ≤ 3s(pi),

which shows that q ∈ B(pi, 3s(pi)), establishing (5.4).



1050 P. Topping

Consequently, we may conclude the proof of the covering lemma with
the calculation

length(Σ) ≤
∑

i

length(Σ ∩B(pi, 3s(pi)))

≤ 3
∑

i

length(Σ ∩B(pi, s(pi)))

= 3 length

(
Σ ∩

(⋃
i

B(pi, s(pi))

))

�

5.2. Proof of Theorem 2.4.

In order to match the notation of the theorem with the notation of the
tools we have developed, we record the following equivalent formulation of
Theorem 2.4.

Claim 5.3. For n ≥ 3, let (Mn, g(t)) be a smooth closed Ricci flow (that
is, a solution to (1.1)) on a time interval [0, T ] with 0 < T ≤ T0 <∞. Then
there exists C = C(g(0), T0) such that if diam(M, g(T )) ≥ C, then with
respect to g(T ),

(5.5) diam(M, g(T )) ≤ C

∫
M

|R|n−1
2 dV.

In contrast to Theorem 2.4, we no longer ask that the volume decays to
zero, and thus cannot assume that K(p, 1) = V (p, 1) ≤ ξ for all p. However,
we can control the set of relevant points for which this inequality fails.
Indeed, we have the following lemma which allows us to complete the proof
using precisely the same method as in the proof of Theorem 2.1, but with
the modified Σ as below.

Lemma 5.4. For n ≥ 3, let (Mn, g(t)) be a smooth closed Ricci flow (that
is, a solution to (1.1)) on a time interval [0, T ] with 0 < T ≤ T0 < ∞. Set
r0 = 1, and let ξ be defined by (4.2) (which then depends on g(0) and T0).

There exist constants D and β depending on g(0) and T0 such that if
diam(M, g(T )) ≥ D, then with respect to g(T ), there exists a minimising
geodesic Σ connecting two points in M with the properties that

• for all p ∈ Σ, K(p, 1) ≤ ξ;
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• diam(M, g(T )) ≤ β length(Σ).

Proof. Let R0 be the minimum of the scalar curvature R at time t = 0. It is
well known and easy to prove (see [3] or [12] for example) that at all points
in M and at all subsequent times t ∈ [0, T ], we have R ≥ R0. Meanwhile,
as we mentioned in Remark 2.6, if V (t) := V ol(M, g(t)) then

dV

dt
= −

∫
M
RdV ≤ −R0V,

and, in particular, we have

V (T ) ≤ V := e|R0|T0V (0),

an upper bound depending only on g(0) and T0.
From now on, we work exclusively with respect to the metric g(T ).

Choose a, b ∈ M such that dist(a, b) = diamM. Let σ be a minimising
geodesic from a to b. If K(p, 1) ≤ ξ for all p ∈ σ, then we set Σ = σ, and the
lemma holds for any D, provided β ≥ 1. Otherwise, we will construct the
Σ of the lemma to be a (connected) subset of σ. Pick points p1, . . . , pN ∈ σ
such that the balls {B(pi, 1)} are disjoint and V (pi, 1) = K(pi, 1) > ξ, with
N as large as possible. Clearly Nξ ≤ V .

We define Σ to be a largest component of the set σ\⋃N
i=1B(pi, 2), which

may have up to N + 1 disconnected components. (By asking at least that
D > 4V

ξ , we can be sure that this set is not empty because then by hy-

pothesis, length(σ) ≥ D > 4V
ξ ≥ 4N .) Then for all p ∈ Σ, we must have

K(p, 1) ≤ ξ since otherwise, we contradict the maximality of N . Moreover,

diam(M, g(T )) ≤ (N + 1)length(Σ) + 4N

≤
(
V

ξ
+ 1
)
length(Σ) + 4

V

ξ

≤
(
V

ξ
+ 1
)
length(Σ) +

D

2
,

if we ask that D ≥ 8V
ξ . Therefore, if diam ≥ D, we have

diam(M, g(T )) ≤ 2
(
V

ξ
+ 1
)
length(Σ),

completing the proof provided that β ≥ 2(V
ξ + 1). �
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5.3. Justification of Remark 2.6.

In the case n = 3, the conclusion of Theorem 2.4 is an estimate

diam ≤ C

∫
M

|R|dV.

We wish to show that one can replace |R| in this estimate by R, at the
expense of a larger constant C. As in the previous section, we will use the
fact that the volume has a bound V (t) ≤ V depending on g(0) and T (with T
being an upper bound for t as in Theorem 2.4) and that the scalar curvature
R satisfies R ≥ R0 at all points and times, where R0 is the minimum scalar
curvature initially. Then |R| ≤ R+ 2|R0|, and so∫

M
|R|dV ≤

∫
M
RdV + 2|R0|V .

By the hypothesis diam ≥ C of Theorem 2.4 and its conclusion (2.2), after
increasing C, we can ask for the additional conclusion that

4|R0|V ≤
∫
M

|R|dV,

and hence that ∫
M

|R|dV ≤ 2
∫
M
RdV.

6. Appendix: the proof of Lemma 3.5.

Our approach below was influenced by conversations with Klaus Ecker.

Proof of Lemma 3.5 – c.f. [6, Section 4]. If we adopt the change of variables
φ = e−

f
2 , and write τ = λr2, then we find (abusing notation for W) that

(6.1)

W(g, φ, λr2) = (4πλr2)−
n
2

∫
M

[
λr2(4|∇φ|2 +Rφ2) − 2φ2 lnφ− nφ2

]
dV,

and the compatibility constraint (3.2) becomes

(6.2) (4πλr2)−
n
2

∫
M
φ2dV = 1.

These expressions have the benefit of making perfect sense when φ is merely
weakly (rather than strictly) positive, and by approximation,

(6.3) inf
f

W(g, f, λr2) = inf
φ

W(g, φ, λr2),
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where the infima are taken over f : M → R and φ : M → [0,∞) compatible
with g and τ = λr2, and we are abusing notation for W as usual.

Let ψ : [0,∞) → [0, 1] be a smooth cut-off function, supported in [0, 1],
such that ψ(y) = 1 for y ∈ [0, 1

2 ] and |ψ′| ≤ 3. We then write

φ(x) = e−
c
2ψ

(
dist(x, p)

r

)
,

where c ∈ R is determined by the constraint (6.2), and since

V (p,
r

2
) ≤ ec

∫
M
φ2dV ≤ V (p, r),

we deduce that

(6.4) (4πλr2)−
n
2 V (p,

r

2
) ≤ ec ≤ (4πλr2)−

n
2 V (p, r).

We now estimate each of the four terms in (6.1) separately.
Term 1. For the specific φ we have chosen, whose gradient is supported on
B(p, r)\B(p, r

2), and satisfies |∇φ| ≤ e−
c
2

1
r sup |ψ′| ≤ 3

re
− c

2 , we estimate

(4πλr2)−
n
2

∫
M
λr24|∇φ|2dV ≤ 4λr2(4πλr2)−

n
2 sup |∇φ|2V (p, r)

≤ 36λ(4πλr2)−
n
2 e−cV (p, r)

≤ 36λ
V (p, r)
V (p, r

2 )
,

the last inequality using the first part of (6.4).
Term 2. For the specific φ we have chosen, which is supported on B(p, r),
and satisfies

φ2 ≤ e−c ≤ (4πλr2)
n
2

V (p, r
2)

,

we estimate,

(4πλr2)−
n
2

∫
M
λr2Rφ2dV ≤ λr2

V (p, r
2 )

∫
B(p,r)

|R|dV.

Term 3. By again using the fact that the support of φ lies within B(p, r),
we rewrite

(6.5) (4πλr2)−
n
2

∫
M

−2φ2 lnφdV =
∫
G(σ)dµ,
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where σ : B(p, r) → [0,∞) is defined by σ := φ2, the continuous function
G : [0,∞) → R is defined for y > 0 by G(y) := −y ln y, and the measure dµ
is supported on B(p, r), where dµ := (4πλr2)−

n
2 dV . Because G is concave,

we may apply Jensen’s inequality:∫
−G(σ)dµ ≤ G

(∫
−σdµ

)
,

(see for example [13, Theorem 1.7]) and since by (6.2), we have∫
σdµ = 1,

this tells us that∫
G(σ)dµ ≤

(∫
dµ

)
G

(
1∫
dµ

)
= ln

(∫
dµ

)
.

By (6.5) and the definition of dµ, we conclude that

(4πλr2)−
n
2

∫
M

−2φ2 lnφdV ≤ ln
[
V (p, r)

(4πλr2)
n
2

]
.

Term 4. By the constraint (6.2), we have simply

(4πλr2)−
n
2

∫
M

−nφ2dV = −n.

When we combine these calculations with (6.1), we find that for the
particular φ under consideration,

W(g, φ, λr2) ≤ 36λ
V (p, r)
V (p, r

2)
+

λr2

V (p, r
2)

∫
B(p,r)

|R|dV + ln
[
V (p, r)

(4πλr2)
n
2

]
− n,

which together with (6.3), proves the lemma. �
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